ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / shmem.c
blob4622ffad5dc582f94539b9ddc1705aecc12d083b
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/backing-dev.h>
54 #include <asm/uaccess.h>
55 #include <asm/div64.h>
56 #include <asm/pgtable.h>
58 /* This magic number is used in glibc for posix shared memory */
59 #define TMPFS_MAGIC 0x01021994
61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
65 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
68 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71 #define SHMEM_PAGEIN VM_READ
72 #define SHMEM_TRUNCATE VM_WRITE
74 /* Definition to limit shmem_truncate's steps between cond_rescheds */
75 #define LATENCY_LIMIT 64
77 /* Pretend that each entry is of this size in directory's i_size */
78 #define BOGO_DIRENT_SIZE 20
80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
81 enum sgp_type {
82 SGP_QUICK, /* don't try more than file page cache lookup */
83 SGP_READ, /* don't exceed i_size, don't allocate page */
84 SGP_CACHE, /* don't exceed i_size, may allocate page */
85 SGP_WRITE, /* may exceed i_size, may allocate page */
86 SGP_FAULT, /* same as SGP_CACHE, return with page locked */
89 static int shmem_getpage(struct inode *inode, unsigned long idx,
90 struct page **pagep, enum sgp_type sgp, int *type);
92 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
95 * The above definition of ENTRIES_PER_PAGE, and the use of
96 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
97 * might be reconsidered if it ever diverges from PAGE_SIZE.
99 * __GFP_MOVABLE is masked out as swap vectors cannot move
101 return alloc_pages((gfp_mask & ~__GFP_MOVABLE) | __GFP_ZERO,
102 PAGE_CACHE_SHIFT-PAGE_SHIFT);
105 static inline void shmem_dir_free(struct page *page)
107 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
110 static struct page **shmem_dir_map(struct page *page)
112 return (struct page **)kmap_atomic(page, KM_USER0);
115 static inline void shmem_dir_unmap(struct page **dir)
117 kunmap_atomic(dir, KM_USER0);
120 static swp_entry_t *shmem_swp_map(struct page *page)
122 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
125 static inline void shmem_swp_balance_unmap(void)
128 * When passing a pointer to an i_direct entry, to code which
129 * also handles indirect entries and so will shmem_swp_unmap,
130 * we must arrange for the preempt count to remain in balance.
131 * What kmap_atomic of a lowmem page does depends on config
132 * and architecture, so pretend to kmap_atomic some lowmem page.
134 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
137 static inline void shmem_swp_unmap(swp_entry_t *entry)
139 kunmap_atomic(entry, KM_USER1);
142 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
144 return sb->s_fs_info;
148 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
149 * for shared memory and for shared anonymous (/dev/zero) mappings
150 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
151 * consistent with the pre-accounting of private mappings ...
153 static inline int shmem_acct_size(unsigned long flags, loff_t size)
155 return (flags & VM_ACCOUNT)?
156 security_vm_enough_memory(VM_ACCT(size)): 0;
159 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
161 if (flags & VM_ACCOUNT)
162 vm_unacct_memory(VM_ACCT(size));
166 * ... whereas tmpfs objects are accounted incrementally as
167 * pages are allocated, in order to allow huge sparse files.
168 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
169 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
171 static inline int shmem_acct_block(unsigned long flags)
173 return (flags & VM_ACCOUNT)?
174 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
177 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 if (!(flags & VM_ACCOUNT))
180 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
183 static const struct super_operations shmem_ops;
184 static const struct address_space_operations shmem_aops;
185 static const struct file_operations shmem_file_operations;
186 static const struct inode_operations shmem_inode_operations;
187 static const struct inode_operations shmem_dir_inode_operations;
188 static const struct inode_operations shmem_special_inode_operations;
189 static struct vm_operations_struct shmem_vm_ops;
191 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
192 .ra_pages = 0, /* No readahead */
193 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
194 .unplug_io_fn = default_unplug_io_fn,
197 static LIST_HEAD(shmem_swaplist);
198 static DEFINE_SPINLOCK(shmem_swaplist_lock);
200 static void shmem_free_blocks(struct inode *inode, long pages)
202 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
203 if (sbinfo->max_blocks) {
204 spin_lock(&sbinfo->stat_lock);
205 sbinfo->free_blocks += pages;
206 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
207 spin_unlock(&sbinfo->stat_lock);
212 * shmem_recalc_inode - recalculate the size of an inode
214 * @inode: inode to recalc
216 * We have to calculate the free blocks since the mm can drop
217 * undirtied hole pages behind our back.
219 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
220 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
222 * It has to be called with the spinlock held.
224 static void shmem_recalc_inode(struct inode *inode)
226 struct shmem_inode_info *info = SHMEM_I(inode);
227 long freed;
229 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
230 if (freed > 0) {
231 info->alloced -= freed;
232 shmem_unacct_blocks(info->flags, freed);
233 shmem_free_blocks(inode, freed);
238 * shmem_swp_entry - find the swap vector position in the info structure
240 * @info: info structure for the inode
241 * @index: index of the page to find
242 * @page: optional page to add to the structure. Has to be preset to
243 * all zeros
245 * If there is no space allocated yet it will return NULL when
246 * page is NULL, else it will use the page for the needed block,
247 * setting it to NULL on return to indicate that it has been used.
249 * The swap vector is organized the following way:
251 * There are SHMEM_NR_DIRECT entries directly stored in the
252 * shmem_inode_info structure. So small files do not need an addional
253 * allocation.
255 * For pages with index > SHMEM_NR_DIRECT there is the pointer
256 * i_indirect which points to a page which holds in the first half
257 * doubly indirect blocks, in the second half triple indirect blocks:
259 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
260 * following layout (for SHMEM_NR_DIRECT == 16):
262 * i_indirect -> dir --> 16-19
263 * | +-> 20-23
265 * +-->dir2 --> 24-27
266 * | +-> 28-31
267 * | +-> 32-35
268 * | +-> 36-39
270 * +-->dir3 --> 40-43
271 * +-> 44-47
272 * +-> 48-51
273 * +-> 52-55
275 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
277 unsigned long offset;
278 struct page **dir;
279 struct page *subdir;
281 if (index < SHMEM_NR_DIRECT) {
282 shmem_swp_balance_unmap();
283 return info->i_direct+index;
285 if (!info->i_indirect) {
286 if (page) {
287 info->i_indirect = *page;
288 *page = NULL;
290 return NULL; /* need another page */
293 index -= SHMEM_NR_DIRECT;
294 offset = index % ENTRIES_PER_PAGE;
295 index /= ENTRIES_PER_PAGE;
296 dir = shmem_dir_map(info->i_indirect);
298 if (index >= ENTRIES_PER_PAGE/2) {
299 index -= ENTRIES_PER_PAGE/2;
300 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
301 index %= ENTRIES_PER_PAGE;
302 subdir = *dir;
303 if (!subdir) {
304 if (page) {
305 *dir = *page;
306 *page = NULL;
308 shmem_dir_unmap(dir);
309 return NULL; /* need another page */
311 shmem_dir_unmap(dir);
312 dir = shmem_dir_map(subdir);
315 dir += index;
316 subdir = *dir;
317 if (!subdir) {
318 if (!page || !(subdir = *page)) {
319 shmem_dir_unmap(dir);
320 return NULL; /* need a page */
322 *dir = subdir;
323 *page = NULL;
325 shmem_dir_unmap(dir);
326 return shmem_swp_map(subdir) + offset;
329 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
331 long incdec = value? 1: -1;
333 entry->val = value;
334 info->swapped += incdec;
335 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
336 struct page *page = kmap_atomic_to_page(entry);
337 set_page_private(page, page_private(page) + incdec);
342 * shmem_swp_alloc - get the position of the swap entry for the page.
343 * If it does not exist allocate the entry.
345 * @info: info structure for the inode
346 * @index: index of the page to find
347 * @sgp: check and recheck i_size? skip allocation?
349 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
351 struct inode *inode = &info->vfs_inode;
352 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
353 struct page *page = NULL;
354 swp_entry_t *entry;
356 if (sgp != SGP_WRITE &&
357 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
358 return ERR_PTR(-EINVAL);
360 while (!(entry = shmem_swp_entry(info, index, &page))) {
361 if (sgp == SGP_READ)
362 return shmem_swp_map(ZERO_PAGE(0));
364 * Test free_blocks against 1 not 0, since we have 1 data
365 * page (and perhaps indirect index pages) yet to allocate:
366 * a waste to allocate index if we cannot allocate data.
368 if (sbinfo->max_blocks) {
369 spin_lock(&sbinfo->stat_lock);
370 if (sbinfo->free_blocks <= 1) {
371 spin_unlock(&sbinfo->stat_lock);
372 return ERR_PTR(-ENOSPC);
374 sbinfo->free_blocks--;
375 inode->i_blocks += BLOCKS_PER_PAGE;
376 spin_unlock(&sbinfo->stat_lock);
379 spin_unlock(&info->lock);
380 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
381 if (page)
382 set_page_private(page, 0);
383 spin_lock(&info->lock);
385 if (!page) {
386 shmem_free_blocks(inode, 1);
387 return ERR_PTR(-ENOMEM);
389 if (sgp != SGP_WRITE &&
390 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
391 entry = ERR_PTR(-EINVAL);
392 break;
394 if (info->next_index <= index)
395 info->next_index = index + 1;
397 if (page) {
398 /* another task gave its page, or truncated the file */
399 shmem_free_blocks(inode, 1);
400 shmem_dir_free(page);
402 if (info->next_index <= index && !IS_ERR(entry))
403 info->next_index = index + 1;
404 return entry;
408 * shmem_free_swp - free some swap entries in a directory
410 * @dir: pointer to the directory
411 * @edir: pointer after last entry of the directory
412 * @punch_lock: pointer to spinlock when needed for the holepunch case
414 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
415 spinlock_t *punch_lock)
417 spinlock_t *punch_unlock = NULL;
418 swp_entry_t *ptr;
419 int freed = 0;
421 for (ptr = dir; ptr < edir; ptr++) {
422 if (ptr->val) {
423 if (unlikely(punch_lock)) {
424 punch_unlock = punch_lock;
425 punch_lock = NULL;
426 spin_lock(punch_unlock);
427 if (!ptr->val)
428 continue;
430 free_swap_and_cache(*ptr);
431 *ptr = (swp_entry_t){0};
432 freed++;
435 if (punch_unlock)
436 spin_unlock(punch_unlock);
437 return freed;
440 static int shmem_map_and_free_swp(struct page *subdir, int offset,
441 int limit, struct page ***dir, spinlock_t *punch_lock)
443 swp_entry_t *ptr;
444 int freed = 0;
446 ptr = shmem_swp_map(subdir);
447 for (; offset < limit; offset += LATENCY_LIMIT) {
448 int size = limit - offset;
449 if (size > LATENCY_LIMIT)
450 size = LATENCY_LIMIT;
451 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
452 punch_lock);
453 if (need_resched()) {
454 shmem_swp_unmap(ptr);
455 if (*dir) {
456 shmem_dir_unmap(*dir);
457 *dir = NULL;
459 cond_resched();
460 ptr = shmem_swp_map(subdir);
463 shmem_swp_unmap(ptr);
464 return freed;
467 static void shmem_free_pages(struct list_head *next)
469 struct page *page;
470 int freed = 0;
472 do {
473 page = container_of(next, struct page, lru);
474 next = next->next;
475 shmem_dir_free(page);
476 freed++;
477 if (freed >= LATENCY_LIMIT) {
478 cond_resched();
479 freed = 0;
481 } while (next);
484 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
486 struct shmem_inode_info *info = SHMEM_I(inode);
487 unsigned long idx;
488 unsigned long size;
489 unsigned long limit;
490 unsigned long stage;
491 unsigned long diroff;
492 struct page **dir;
493 struct page *topdir;
494 struct page *middir;
495 struct page *subdir;
496 swp_entry_t *ptr;
497 LIST_HEAD(pages_to_free);
498 long nr_pages_to_free = 0;
499 long nr_swaps_freed = 0;
500 int offset;
501 int freed;
502 int punch_hole;
503 spinlock_t *needs_lock;
504 spinlock_t *punch_lock;
505 unsigned long upper_limit;
507 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
508 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
509 if (idx >= info->next_index)
510 return;
512 spin_lock(&info->lock);
513 info->flags |= SHMEM_TRUNCATE;
514 if (likely(end == (loff_t) -1)) {
515 limit = info->next_index;
516 upper_limit = SHMEM_MAX_INDEX;
517 info->next_index = idx;
518 needs_lock = NULL;
519 punch_hole = 0;
520 } else {
521 if (end + 1 >= inode->i_size) { /* we may free a little more */
522 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
523 PAGE_CACHE_SHIFT;
524 upper_limit = SHMEM_MAX_INDEX;
525 } else {
526 limit = (end + 1) >> PAGE_CACHE_SHIFT;
527 upper_limit = limit;
529 needs_lock = &info->lock;
530 punch_hole = 1;
533 topdir = info->i_indirect;
534 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
535 info->i_indirect = NULL;
536 nr_pages_to_free++;
537 list_add(&topdir->lru, &pages_to_free);
539 spin_unlock(&info->lock);
541 if (info->swapped && idx < SHMEM_NR_DIRECT) {
542 ptr = info->i_direct;
543 size = limit;
544 if (size > SHMEM_NR_DIRECT)
545 size = SHMEM_NR_DIRECT;
546 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
550 * If there are no indirect blocks or we are punching a hole
551 * below indirect blocks, nothing to be done.
553 if (!topdir || limit <= SHMEM_NR_DIRECT)
554 goto done2;
557 * The truncation case has already dropped info->lock, and we're safe
558 * because i_size and next_index have already been lowered, preventing
559 * access beyond. But in the punch_hole case, we still need to take
560 * the lock when updating the swap directory, because there might be
561 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
562 * shmem_writepage. However, whenever we find we can remove a whole
563 * directory page (not at the misaligned start or end of the range),
564 * we first NULLify its pointer in the level above, and then have no
565 * need to take the lock when updating its contents: needs_lock and
566 * punch_lock (either pointing to info->lock or NULL) manage this.
569 upper_limit -= SHMEM_NR_DIRECT;
570 limit -= SHMEM_NR_DIRECT;
571 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
572 offset = idx % ENTRIES_PER_PAGE;
573 idx -= offset;
575 dir = shmem_dir_map(topdir);
576 stage = ENTRIES_PER_PAGEPAGE/2;
577 if (idx < ENTRIES_PER_PAGEPAGE/2) {
578 middir = topdir;
579 diroff = idx/ENTRIES_PER_PAGE;
580 } else {
581 dir += ENTRIES_PER_PAGE/2;
582 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
583 while (stage <= idx)
584 stage += ENTRIES_PER_PAGEPAGE;
585 middir = *dir;
586 if (*dir) {
587 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
588 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
589 if (!diroff && !offset && upper_limit >= stage) {
590 if (needs_lock) {
591 spin_lock(needs_lock);
592 *dir = NULL;
593 spin_unlock(needs_lock);
594 needs_lock = NULL;
595 } else
596 *dir = NULL;
597 nr_pages_to_free++;
598 list_add(&middir->lru, &pages_to_free);
600 shmem_dir_unmap(dir);
601 dir = shmem_dir_map(middir);
602 } else {
603 diroff = 0;
604 offset = 0;
605 idx = stage;
609 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
610 if (unlikely(idx == stage)) {
611 shmem_dir_unmap(dir);
612 dir = shmem_dir_map(topdir) +
613 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
614 while (!*dir) {
615 dir++;
616 idx += ENTRIES_PER_PAGEPAGE;
617 if (idx >= limit)
618 goto done1;
620 stage = idx + ENTRIES_PER_PAGEPAGE;
621 middir = *dir;
622 if (punch_hole)
623 needs_lock = &info->lock;
624 if (upper_limit >= stage) {
625 if (needs_lock) {
626 spin_lock(needs_lock);
627 *dir = NULL;
628 spin_unlock(needs_lock);
629 needs_lock = NULL;
630 } else
631 *dir = NULL;
632 nr_pages_to_free++;
633 list_add(&middir->lru, &pages_to_free);
635 shmem_dir_unmap(dir);
636 cond_resched();
637 dir = shmem_dir_map(middir);
638 diroff = 0;
640 punch_lock = needs_lock;
641 subdir = dir[diroff];
642 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
643 if (needs_lock) {
644 spin_lock(needs_lock);
645 dir[diroff] = NULL;
646 spin_unlock(needs_lock);
647 punch_lock = NULL;
648 } else
649 dir[diroff] = NULL;
650 nr_pages_to_free++;
651 list_add(&subdir->lru, &pages_to_free);
653 if (subdir && page_private(subdir) /* has swap entries */) {
654 size = limit - idx;
655 if (size > ENTRIES_PER_PAGE)
656 size = ENTRIES_PER_PAGE;
657 freed = shmem_map_and_free_swp(subdir,
658 offset, size, &dir, punch_lock);
659 if (!dir)
660 dir = shmem_dir_map(middir);
661 nr_swaps_freed += freed;
662 if (offset || punch_lock) {
663 spin_lock(&info->lock);
664 set_page_private(subdir,
665 page_private(subdir) - freed);
666 spin_unlock(&info->lock);
667 } else
668 BUG_ON(page_private(subdir) != freed);
670 offset = 0;
672 done1:
673 shmem_dir_unmap(dir);
674 done2:
675 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
677 * Call truncate_inode_pages again: racing shmem_unuse_inode
678 * may have swizzled a page in from swap since vmtruncate or
679 * generic_delete_inode did it, before we lowered next_index.
680 * Also, though shmem_getpage checks i_size before adding to
681 * cache, no recheck after: so fix the narrow window there too.
683 * Recalling truncate_inode_pages_range and unmap_mapping_range
684 * every time for punch_hole (which never got a chance to clear
685 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
686 * yet hardly ever necessary: try to optimize them out later.
688 truncate_inode_pages_range(inode->i_mapping, start, end);
689 if (punch_hole)
690 unmap_mapping_range(inode->i_mapping, start,
691 end - start, 1);
694 spin_lock(&info->lock);
695 info->flags &= ~SHMEM_TRUNCATE;
696 info->swapped -= nr_swaps_freed;
697 if (nr_pages_to_free)
698 shmem_free_blocks(inode, nr_pages_to_free);
699 shmem_recalc_inode(inode);
700 spin_unlock(&info->lock);
703 * Empty swap vector directory pages to be freed?
705 if (!list_empty(&pages_to_free)) {
706 pages_to_free.prev->next = NULL;
707 shmem_free_pages(pages_to_free.next);
711 static void shmem_truncate(struct inode *inode)
713 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
716 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
718 struct inode *inode = dentry->d_inode;
719 struct page *page = NULL;
720 int error;
722 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
723 if (attr->ia_size < inode->i_size) {
725 * If truncating down to a partial page, then
726 * if that page is already allocated, hold it
727 * in memory until the truncation is over, so
728 * truncate_partial_page cannnot miss it were
729 * it assigned to swap.
731 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
732 (void) shmem_getpage(inode,
733 attr->ia_size>>PAGE_CACHE_SHIFT,
734 &page, SGP_READ, NULL);
737 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
738 * detect if any pages might have been added to cache
739 * after truncate_inode_pages. But we needn't bother
740 * if it's being fully truncated to zero-length: the
741 * nrpages check is efficient enough in that case.
743 if (attr->ia_size) {
744 struct shmem_inode_info *info = SHMEM_I(inode);
745 spin_lock(&info->lock);
746 info->flags &= ~SHMEM_PAGEIN;
747 spin_unlock(&info->lock);
752 error = inode_change_ok(inode, attr);
753 if (!error)
754 error = inode_setattr(inode, attr);
755 #ifdef CONFIG_TMPFS_POSIX_ACL
756 if (!error && (attr->ia_valid & ATTR_MODE))
757 error = generic_acl_chmod(inode, &shmem_acl_ops);
758 #endif
759 if (page)
760 page_cache_release(page);
761 return error;
764 static void shmem_delete_inode(struct inode *inode)
766 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
767 struct shmem_inode_info *info = SHMEM_I(inode);
769 if (inode->i_op->truncate == shmem_truncate) {
770 truncate_inode_pages(inode->i_mapping, 0);
771 shmem_unacct_size(info->flags, inode->i_size);
772 inode->i_size = 0;
773 shmem_truncate(inode);
774 if (!list_empty(&info->swaplist)) {
775 spin_lock(&shmem_swaplist_lock);
776 list_del_init(&info->swaplist);
777 spin_unlock(&shmem_swaplist_lock);
780 BUG_ON(inode->i_blocks);
781 if (sbinfo->max_inodes) {
782 spin_lock(&sbinfo->stat_lock);
783 sbinfo->free_inodes++;
784 spin_unlock(&sbinfo->stat_lock);
786 clear_inode(inode);
789 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
791 swp_entry_t *ptr;
793 for (ptr = dir; ptr < edir; ptr++) {
794 if (ptr->val == entry.val)
795 return ptr - dir;
797 return -1;
800 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
802 struct inode *inode;
803 unsigned long idx;
804 unsigned long size;
805 unsigned long limit;
806 unsigned long stage;
807 struct page **dir;
808 struct page *subdir;
809 swp_entry_t *ptr;
810 int offset;
812 idx = 0;
813 ptr = info->i_direct;
814 spin_lock(&info->lock);
815 limit = info->next_index;
816 size = limit;
817 if (size > SHMEM_NR_DIRECT)
818 size = SHMEM_NR_DIRECT;
819 offset = shmem_find_swp(entry, ptr, ptr+size);
820 if (offset >= 0) {
821 shmem_swp_balance_unmap();
822 goto found;
824 if (!info->i_indirect)
825 goto lost2;
827 dir = shmem_dir_map(info->i_indirect);
828 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
830 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
831 if (unlikely(idx == stage)) {
832 shmem_dir_unmap(dir-1);
833 dir = shmem_dir_map(info->i_indirect) +
834 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
835 while (!*dir) {
836 dir++;
837 idx += ENTRIES_PER_PAGEPAGE;
838 if (idx >= limit)
839 goto lost1;
841 stage = idx + ENTRIES_PER_PAGEPAGE;
842 subdir = *dir;
843 shmem_dir_unmap(dir);
844 dir = shmem_dir_map(subdir);
846 subdir = *dir;
847 if (subdir && page_private(subdir)) {
848 ptr = shmem_swp_map(subdir);
849 size = limit - idx;
850 if (size > ENTRIES_PER_PAGE)
851 size = ENTRIES_PER_PAGE;
852 offset = shmem_find_swp(entry, ptr, ptr+size);
853 if (offset >= 0) {
854 shmem_dir_unmap(dir);
855 goto found;
857 shmem_swp_unmap(ptr);
860 lost1:
861 shmem_dir_unmap(dir-1);
862 lost2:
863 spin_unlock(&info->lock);
864 return 0;
865 found:
866 idx += offset;
867 inode = &info->vfs_inode;
868 if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
869 info->flags |= SHMEM_PAGEIN;
870 shmem_swp_set(info, ptr + offset, 0);
872 shmem_swp_unmap(ptr);
873 spin_unlock(&info->lock);
875 * Decrement swap count even when the entry is left behind:
876 * try_to_unuse will skip over mms, then reincrement count.
878 swap_free(entry);
879 return 1;
883 * shmem_unuse() search for an eventually swapped out shmem page.
885 int shmem_unuse(swp_entry_t entry, struct page *page)
887 struct list_head *p, *next;
888 struct shmem_inode_info *info;
889 int found = 0;
891 spin_lock(&shmem_swaplist_lock);
892 list_for_each_safe(p, next, &shmem_swaplist) {
893 info = list_entry(p, struct shmem_inode_info, swaplist);
894 if (!info->swapped)
895 list_del_init(&info->swaplist);
896 else if (shmem_unuse_inode(info, entry, page)) {
897 /* move head to start search for next from here */
898 list_move_tail(&shmem_swaplist, &info->swaplist);
899 found = 1;
900 break;
903 spin_unlock(&shmem_swaplist_lock);
904 return found;
908 * Move the page from the page cache to the swap cache.
910 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
912 struct shmem_inode_info *info;
913 swp_entry_t *entry, swap;
914 struct address_space *mapping;
915 unsigned long index;
916 struct inode *inode;
918 BUG_ON(!PageLocked(page));
920 * shmem_backing_dev_info's capabilities prevent regular writeback or
921 * sync from ever calling shmem_writepage; but a stacking filesystem
922 * may use the ->writepage of its underlying filesystem, in which case
923 * we want to do nothing when that underlying filesystem is tmpfs
924 * (writing out to swap is useful as a response to memory pressure, but
925 * of no use to stabilize the data) - just redirty the page, unlock it
926 * and claim success in this case. AOP_WRITEPAGE_ACTIVATE, and the
927 * page_mapped check below, must be avoided unless we're in reclaim.
929 if (!wbc->for_reclaim) {
930 set_page_dirty(page);
931 unlock_page(page);
932 return 0;
934 BUG_ON(page_mapped(page));
936 mapping = page->mapping;
937 index = page->index;
938 inode = mapping->host;
939 info = SHMEM_I(inode);
940 if (info->flags & VM_LOCKED)
941 goto redirty;
942 swap = get_swap_page();
943 if (!swap.val)
944 goto redirty;
946 spin_lock(&info->lock);
947 shmem_recalc_inode(inode);
948 if (index >= info->next_index) {
949 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
950 goto unlock;
952 entry = shmem_swp_entry(info, index, NULL);
953 BUG_ON(!entry);
954 BUG_ON(entry->val);
956 if (move_to_swap_cache(page, swap) == 0) {
957 shmem_swp_set(info, entry, swap.val);
958 shmem_swp_unmap(entry);
959 spin_unlock(&info->lock);
960 if (list_empty(&info->swaplist)) {
961 spin_lock(&shmem_swaplist_lock);
962 /* move instead of add in case we're racing */
963 list_move_tail(&info->swaplist, &shmem_swaplist);
964 spin_unlock(&shmem_swaplist_lock);
966 unlock_page(page);
967 return 0;
970 shmem_swp_unmap(entry);
971 unlock:
972 spin_unlock(&info->lock);
973 swap_free(swap);
974 redirty:
975 set_page_dirty(page);
976 return AOP_WRITEPAGE_ACTIVATE; /* Return with the page locked */
979 #ifdef CONFIG_NUMA
980 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
982 char *nodelist = strchr(value, ':');
983 int err = 1;
985 if (nodelist) {
986 /* NUL-terminate policy string */
987 *nodelist++ = '\0';
988 if (nodelist_parse(nodelist, *policy_nodes))
989 goto out;
990 if (!nodes_subset(*policy_nodes, node_online_map))
991 goto out;
993 if (!strcmp(value, "default")) {
994 *policy = MPOL_DEFAULT;
995 /* Don't allow a nodelist */
996 if (!nodelist)
997 err = 0;
998 } else if (!strcmp(value, "prefer")) {
999 *policy = MPOL_PREFERRED;
1000 /* Insist on a nodelist of one node only */
1001 if (nodelist) {
1002 char *rest = nodelist;
1003 while (isdigit(*rest))
1004 rest++;
1005 if (!*rest)
1006 err = 0;
1008 } else if (!strcmp(value, "bind")) {
1009 *policy = MPOL_BIND;
1010 /* Insist on a nodelist */
1011 if (nodelist)
1012 err = 0;
1013 } else if (!strcmp(value, "interleave")) {
1014 *policy = MPOL_INTERLEAVE;
1015 /* Default to nodes online if no nodelist */
1016 if (!nodelist)
1017 *policy_nodes = node_online_map;
1018 err = 0;
1020 out:
1021 /* Restore string for error message */
1022 if (nodelist)
1023 *--nodelist = ':';
1024 return err;
1027 static struct page *shmem_swapin_async(struct shared_policy *p,
1028 swp_entry_t entry, unsigned long idx)
1030 struct page *page;
1031 struct vm_area_struct pvma;
1033 /* Create a pseudo vma that just contains the policy */
1034 memset(&pvma, 0, sizeof(struct vm_area_struct));
1035 pvma.vm_end = PAGE_SIZE;
1036 pvma.vm_pgoff = idx;
1037 pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1038 page = read_swap_cache_async(entry, &pvma, 0);
1039 mpol_free(pvma.vm_policy);
1040 return page;
1043 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
1044 unsigned long idx)
1046 struct shared_policy *p = &info->policy;
1047 int i, num;
1048 struct page *page;
1049 unsigned long offset;
1051 num = valid_swaphandles(entry, &offset);
1052 for (i = 0; i < num; offset++, i++) {
1053 page = shmem_swapin_async(p,
1054 swp_entry(swp_type(entry), offset), idx);
1055 if (!page)
1056 break;
1057 page_cache_release(page);
1059 lru_add_drain(); /* Push any new pages onto the LRU now */
1060 return shmem_swapin_async(p, entry, idx);
1063 static struct page *
1064 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1065 unsigned long idx)
1067 struct vm_area_struct pvma;
1068 struct page *page;
1070 memset(&pvma, 0, sizeof(struct vm_area_struct));
1071 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1072 pvma.vm_pgoff = idx;
1073 pvma.vm_end = PAGE_SIZE;
1074 page = alloc_page_vma(gfp, &pvma, 0);
1075 mpol_free(pvma.vm_policy);
1076 return page;
1078 #else
1079 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
1081 return 1;
1084 static inline struct page *
1085 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1087 swapin_readahead(entry, 0, NULL);
1088 return read_swap_cache_async(entry, NULL, 0);
1091 static inline struct page *
1092 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1094 return alloc_page(gfp);
1096 #endif
1099 * shmem_getpage - either get the page from swap or allocate a new one
1101 * If we allocate a new one we do not mark it dirty. That's up to the
1102 * vm. If we swap it in we mark it dirty since we also free the swap
1103 * entry since a page cannot live in both the swap and page cache
1105 static int shmem_getpage(struct inode *inode, unsigned long idx,
1106 struct page **pagep, enum sgp_type sgp, int *type)
1108 struct address_space *mapping = inode->i_mapping;
1109 struct shmem_inode_info *info = SHMEM_I(inode);
1110 struct shmem_sb_info *sbinfo;
1111 struct page *filepage = *pagep;
1112 struct page *swappage;
1113 swp_entry_t *entry;
1114 swp_entry_t swap;
1115 int error;
1117 if (idx >= SHMEM_MAX_INDEX)
1118 return -EFBIG;
1120 if (type)
1121 *type = 0;
1124 * Normally, filepage is NULL on entry, and either found
1125 * uptodate immediately, or allocated and zeroed, or read
1126 * in under swappage, which is then assigned to filepage.
1127 * But shmem_readpage and shmem_prepare_write pass in a locked
1128 * filepage, which may be found not uptodate by other callers
1129 * too, and may need to be copied from the swappage read in.
1131 repeat:
1132 if (!filepage)
1133 filepage = find_lock_page(mapping, idx);
1134 if (filepage && PageUptodate(filepage))
1135 goto done;
1136 error = 0;
1137 if (sgp == SGP_QUICK)
1138 goto failed;
1140 spin_lock(&info->lock);
1141 shmem_recalc_inode(inode);
1142 entry = shmem_swp_alloc(info, idx, sgp);
1143 if (IS_ERR(entry)) {
1144 spin_unlock(&info->lock);
1145 error = PTR_ERR(entry);
1146 goto failed;
1148 swap = *entry;
1150 if (swap.val) {
1151 /* Look it up and read it in.. */
1152 swappage = lookup_swap_cache(swap);
1153 if (!swappage) {
1154 shmem_swp_unmap(entry);
1155 /* here we actually do the io */
1156 if (type && !(*type & VM_FAULT_MAJOR)) {
1157 __count_vm_event(PGMAJFAULT);
1158 *type |= VM_FAULT_MAJOR;
1160 spin_unlock(&info->lock);
1161 swappage = shmem_swapin(info, swap, idx);
1162 if (!swappage) {
1163 spin_lock(&info->lock);
1164 entry = shmem_swp_alloc(info, idx, sgp);
1165 if (IS_ERR(entry))
1166 error = PTR_ERR(entry);
1167 else {
1168 if (entry->val == swap.val)
1169 error = -ENOMEM;
1170 shmem_swp_unmap(entry);
1172 spin_unlock(&info->lock);
1173 if (error)
1174 goto failed;
1175 goto repeat;
1177 wait_on_page_locked(swappage);
1178 page_cache_release(swappage);
1179 goto repeat;
1182 /* We have to do this with page locked to prevent races */
1183 if (TestSetPageLocked(swappage)) {
1184 shmem_swp_unmap(entry);
1185 spin_unlock(&info->lock);
1186 wait_on_page_locked(swappage);
1187 page_cache_release(swappage);
1188 goto repeat;
1190 if (PageWriteback(swappage)) {
1191 shmem_swp_unmap(entry);
1192 spin_unlock(&info->lock);
1193 wait_on_page_writeback(swappage);
1194 unlock_page(swappage);
1195 page_cache_release(swappage);
1196 goto repeat;
1198 if (!PageUptodate(swappage)) {
1199 shmem_swp_unmap(entry);
1200 spin_unlock(&info->lock);
1201 unlock_page(swappage);
1202 page_cache_release(swappage);
1203 error = -EIO;
1204 goto failed;
1207 if (filepage) {
1208 shmem_swp_set(info, entry, 0);
1209 shmem_swp_unmap(entry);
1210 delete_from_swap_cache(swappage);
1211 spin_unlock(&info->lock);
1212 copy_highpage(filepage, swappage);
1213 unlock_page(swappage);
1214 page_cache_release(swappage);
1215 flush_dcache_page(filepage);
1216 SetPageUptodate(filepage);
1217 set_page_dirty(filepage);
1218 swap_free(swap);
1219 } else if (!(error = move_from_swap_cache(
1220 swappage, idx, mapping))) {
1221 info->flags |= SHMEM_PAGEIN;
1222 shmem_swp_set(info, entry, 0);
1223 shmem_swp_unmap(entry);
1224 spin_unlock(&info->lock);
1225 filepage = swappage;
1226 swap_free(swap);
1227 } else {
1228 shmem_swp_unmap(entry);
1229 spin_unlock(&info->lock);
1230 unlock_page(swappage);
1231 page_cache_release(swappage);
1232 if (error == -ENOMEM) {
1233 /* let kswapd refresh zone for GFP_ATOMICs */
1234 congestion_wait(WRITE, HZ/50);
1236 goto repeat;
1238 } else if (sgp == SGP_READ && !filepage) {
1239 shmem_swp_unmap(entry);
1240 filepage = find_get_page(mapping, idx);
1241 if (filepage &&
1242 (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1243 spin_unlock(&info->lock);
1244 wait_on_page_locked(filepage);
1245 page_cache_release(filepage);
1246 filepage = NULL;
1247 goto repeat;
1249 spin_unlock(&info->lock);
1250 } else {
1251 shmem_swp_unmap(entry);
1252 sbinfo = SHMEM_SB(inode->i_sb);
1253 if (sbinfo->max_blocks) {
1254 spin_lock(&sbinfo->stat_lock);
1255 if (sbinfo->free_blocks == 0 ||
1256 shmem_acct_block(info->flags)) {
1257 spin_unlock(&sbinfo->stat_lock);
1258 spin_unlock(&info->lock);
1259 error = -ENOSPC;
1260 goto failed;
1262 sbinfo->free_blocks--;
1263 inode->i_blocks += BLOCKS_PER_PAGE;
1264 spin_unlock(&sbinfo->stat_lock);
1265 } else if (shmem_acct_block(info->flags)) {
1266 spin_unlock(&info->lock);
1267 error = -ENOSPC;
1268 goto failed;
1271 if (!filepage) {
1272 spin_unlock(&info->lock);
1273 filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1274 info,
1275 idx);
1276 if (!filepage) {
1277 shmem_unacct_blocks(info->flags, 1);
1278 shmem_free_blocks(inode, 1);
1279 error = -ENOMEM;
1280 goto failed;
1283 spin_lock(&info->lock);
1284 entry = shmem_swp_alloc(info, idx, sgp);
1285 if (IS_ERR(entry))
1286 error = PTR_ERR(entry);
1287 else {
1288 swap = *entry;
1289 shmem_swp_unmap(entry);
1291 if (error || swap.val || 0 != add_to_page_cache_lru(
1292 filepage, mapping, idx, GFP_ATOMIC)) {
1293 spin_unlock(&info->lock);
1294 page_cache_release(filepage);
1295 shmem_unacct_blocks(info->flags, 1);
1296 shmem_free_blocks(inode, 1);
1297 filepage = NULL;
1298 if (error)
1299 goto failed;
1300 goto repeat;
1302 info->flags |= SHMEM_PAGEIN;
1305 info->alloced++;
1306 spin_unlock(&info->lock);
1307 clear_highpage(filepage);
1308 flush_dcache_page(filepage);
1309 SetPageUptodate(filepage);
1311 done:
1312 if (*pagep != filepage) {
1313 *pagep = filepage;
1314 if (sgp != SGP_FAULT)
1315 unlock_page(filepage);
1318 return 0;
1320 failed:
1321 if (*pagep != filepage) {
1322 unlock_page(filepage);
1323 page_cache_release(filepage);
1325 return error;
1328 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1330 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1331 int error;
1332 int ret;
1334 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1335 return VM_FAULT_SIGBUS;
1337 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_FAULT, &ret);
1338 if (error)
1339 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1341 mark_page_accessed(vmf->page);
1342 return ret | VM_FAULT_LOCKED;
1345 #ifdef CONFIG_NUMA
1346 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1348 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1349 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1352 struct mempolicy *
1353 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1355 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1356 unsigned long idx;
1358 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1359 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1361 #endif
1363 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1365 struct inode *inode = file->f_path.dentry->d_inode;
1366 struct shmem_inode_info *info = SHMEM_I(inode);
1367 int retval = -ENOMEM;
1369 spin_lock(&info->lock);
1370 if (lock && !(info->flags & VM_LOCKED)) {
1371 if (!user_shm_lock(inode->i_size, user))
1372 goto out_nomem;
1373 info->flags |= VM_LOCKED;
1375 if (!lock && (info->flags & VM_LOCKED) && user) {
1376 user_shm_unlock(inode->i_size, user);
1377 info->flags &= ~VM_LOCKED;
1379 retval = 0;
1380 out_nomem:
1381 spin_unlock(&info->lock);
1382 return retval;
1385 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1387 file_accessed(file);
1388 vma->vm_ops = &shmem_vm_ops;
1389 vma->vm_flags |= VM_CAN_NONLINEAR;
1390 return 0;
1393 static struct inode *
1394 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1396 struct inode *inode;
1397 struct shmem_inode_info *info;
1398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1400 if (sbinfo->max_inodes) {
1401 spin_lock(&sbinfo->stat_lock);
1402 if (!sbinfo->free_inodes) {
1403 spin_unlock(&sbinfo->stat_lock);
1404 return NULL;
1406 sbinfo->free_inodes--;
1407 spin_unlock(&sbinfo->stat_lock);
1410 inode = new_inode(sb);
1411 if (inode) {
1412 inode->i_mode = mode;
1413 inode->i_uid = current->fsuid;
1414 inode->i_gid = current->fsgid;
1415 inode->i_blocks = 0;
1416 inode->i_mapping->a_ops = &shmem_aops;
1417 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1418 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1419 inode->i_generation = get_seconds();
1420 info = SHMEM_I(inode);
1421 memset(info, 0, (char *)inode - (char *)info);
1422 spin_lock_init(&info->lock);
1423 INIT_LIST_HEAD(&info->swaplist);
1425 switch (mode & S_IFMT) {
1426 default:
1427 inode->i_op = &shmem_special_inode_operations;
1428 init_special_inode(inode, mode, dev);
1429 break;
1430 case S_IFREG:
1431 inode->i_op = &shmem_inode_operations;
1432 inode->i_fop = &shmem_file_operations;
1433 mpol_shared_policy_init(&info->policy, sbinfo->policy,
1434 &sbinfo->policy_nodes);
1435 break;
1436 case S_IFDIR:
1437 inc_nlink(inode);
1438 /* Some things misbehave if size == 0 on a directory */
1439 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1440 inode->i_op = &shmem_dir_inode_operations;
1441 inode->i_fop = &simple_dir_operations;
1442 break;
1443 case S_IFLNK:
1445 * Must not load anything in the rbtree,
1446 * mpol_free_shared_policy will not be called.
1448 mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1449 NULL);
1450 break;
1452 } else if (sbinfo->max_inodes) {
1453 spin_lock(&sbinfo->stat_lock);
1454 sbinfo->free_inodes++;
1455 spin_unlock(&sbinfo->stat_lock);
1457 return inode;
1460 #ifdef CONFIG_TMPFS
1461 static const struct inode_operations shmem_symlink_inode_operations;
1462 static const struct inode_operations shmem_symlink_inline_operations;
1465 * Normally tmpfs avoids the use of shmem_readpage and shmem_prepare_write;
1466 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1467 * below the loop driver, in the generic fashion that many filesystems support.
1469 static int shmem_readpage(struct file *file, struct page *page)
1471 struct inode *inode = page->mapping->host;
1472 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1473 unlock_page(page);
1474 return error;
1477 static int
1478 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1480 struct inode *inode = page->mapping->host;
1481 return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1484 static ssize_t
1485 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1487 struct inode *inode = file->f_path.dentry->d_inode;
1488 loff_t pos;
1489 unsigned long written;
1490 ssize_t err;
1492 if ((ssize_t) count < 0)
1493 return -EINVAL;
1495 if (!access_ok(VERIFY_READ, buf, count))
1496 return -EFAULT;
1498 mutex_lock(&inode->i_mutex);
1500 pos = *ppos;
1501 written = 0;
1503 err = generic_write_checks(file, &pos, &count, 0);
1504 if (err || !count)
1505 goto out;
1507 err = remove_suid(file->f_path.dentry);
1508 if (err)
1509 goto out;
1511 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1513 do {
1514 struct page *page = NULL;
1515 unsigned long bytes, index, offset;
1516 char *kaddr;
1517 int left;
1519 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1520 index = pos >> PAGE_CACHE_SHIFT;
1521 bytes = PAGE_CACHE_SIZE - offset;
1522 if (bytes > count)
1523 bytes = count;
1526 * We don't hold page lock across copy from user -
1527 * what would it guard against? - so no deadlock here.
1528 * But it still may be a good idea to prefault below.
1531 err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1532 if (err)
1533 break;
1535 left = bytes;
1536 if (PageHighMem(page)) {
1537 volatile unsigned char dummy;
1538 __get_user(dummy, buf);
1539 __get_user(dummy, buf + bytes - 1);
1541 kaddr = kmap_atomic(page, KM_USER0);
1542 left = __copy_from_user_inatomic(kaddr + offset,
1543 buf, bytes);
1544 kunmap_atomic(kaddr, KM_USER0);
1546 if (left) {
1547 kaddr = kmap(page);
1548 left = __copy_from_user(kaddr + offset, buf, bytes);
1549 kunmap(page);
1552 written += bytes;
1553 count -= bytes;
1554 pos += bytes;
1555 buf += bytes;
1556 if (pos > inode->i_size)
1557 i_size_write(inode, pos);
1559 flush_dcache_page(page);
1560 set_page_dirty(page);
1561 mark_page_accessed(page);
1562 page_cache_release(page);
1564 if (left) {
1565 pos -= left;
1566 written -= left;
1567 err = -EFAULT;
1568 break;
1572 * Our dirty pages are not counted in nr_dirty,
1573 * and we do not attempt to balance dirty pages.
1576 cond_resched();
1577 } while (count);
1579 *ppos = pos;
1580 if (written)
1581 err = written;
1582 out:
1583 mutex_unlock(&inode->i_mutex);
1584 return err;
1587 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1589 struct inode *inode = filp->f_path.dentry->d_inode;
1590 struct address_space *mapping = inode->i_mapping;
1591 unsigned long index, offset;
1593 index = *ppos >> PAGE_CACHE_SHIFT;
1594 offset = *ppos & ~PAGE_CACHE_MASK;
1596 for (;;) {
1597 struct page *page = NULL;
1598 unsigned long end_index, nr, ret;
1599 loff_t i_size = i_size_read(inode);
1601 end_index = i_size >> PAGE_CACHE_SHIFT;
1602 if (index > end_index)
1603 break;
1604 if (index == end_index) {
1605 nr = i_size & ~PAGE_CACHE_MASK;
1606 if (nr <= offset)
1607 break;
1610 desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1611 if (desc->error) {
1612 if (desc->error == -EINVAL)
1613 desc->error = 0;
1614 break;
1618 * We must evaluate after, since reads (unlike writes)
1619 * are called without i_mutex protection against truncate
1621 nr = PAGE_CACHE_SIZE;
1622 i_size = i_size_read(inode);
1623 end_index = i_size >> PAGE_CACHE_SHIFT;
1624 if (index == end_index) {
1625 nr = i_size & ~PAGE_CACHE_MASK;
1626 if (nr <= offset) {
1627 if (page)
1628 page_cache_release(page);
1629 break;
1632 nr -= offset;
1634 if (page) {
1636 * If users can be writing to this page using arbitrary
1637 * virtual addresses, take care about potential aliasing
1638 * before reading the page on the kernel side.
1640 if (mapping_writably_mapped(mapping))
1641 flush_dcache_page(page);
1643 * Mark the page accessed if we read the beginning.
1645 if (!offset)
1646 mark_page_accessed(page);
1647 } else {
1648 page = ZERO_PAGE(0);
1649 page_cache_get(page);
1653 * Ok, we have the page, and it's up-to-date, so
1654 * now we can copy it to user space...
1656 * The actor routine returns how many bytes were actually used..
1657 * NOTE! This may not be the same as how much of a user buffer
1658 * we filled up (we may be padding etc), so we can only update
1659 * "pos" here (the actor routine has to update the user buffer
1660 * pointers and the remaining count).
1662 ret = actor(desc, page, offset, nr);
1663 offset += ret;
1664 index += offset >> PAGE_CACHE_SHIFT;
1665 offset &= ~PAGE_CACHE_MASK;
1667 page_cache_release(page);
1668 if (ret != nr || !desc->count)
1669 break;
1671 cond_resched();
1674 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1675 file_accessed(filp);
1678 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1680 read_descriptor_t desc;
1682 if ((ssize_t) count < 0)
1683 return -EINVAL;
1684 if (!access_ok(VERIFY_WRITE, buf, count))
1685 return -EFAULT;
1686 if (!count)
1687 return 0;
1689 desc.written = 0;
1690 desc.count = count;
1691 desc.arg.buf = buf;
1692 desc.error = 0;
1694 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1695 if (desc.written)
1696 return desc.written;
1697 return desc.error;
1700 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1702 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1704 buf->f_type = TMPFS_MAGIC;
1705 buf->f_bsize = PAGE_CACHE_SIZE;
1706 buf->f_namelen = NAME_MAX;
1707 spin_lock(&sbinfo->stat_lock);
1708 if (sbinfo->max_blocks) {
1709 buf->f_blocks = sbinfo->max_blocks;
1710 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1712 if (sbinfo->max_inodes) {
1713 buf->f_files = sbinfo->max_inodes;
1714 buf->f_ffree = sbinfo->free_inodes;
1716 /* else leave those fields 0 like simple_statfs */
1717 spin_unlock(&sbinfo->stat_lock);
1718 return 0;
1722 * File creation. Allocate an inode, and we're done..
1724 static int
1725 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1727 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1728 int error = -ENOSPC;
1730 if (inode) {
1731 error = security_inode_init_security(inode, dir, NULL, NULL,
1732 NULL);
1733 if (error) {
1734 if (error != -EOPNOTSUPP) {
1735 iput(inode);
1736 return error;
1739 error = shmem_acl_init(inode, dir);
1740 if (error) {
1741 iput(inode);
1742 return error;
1744 if (dir->i_mode & S_ISGID) {
1745 inode->i_gid = dir->i_gid;
1746 if (S_ISDIR(mode))
1747 inode->i_mode |= S_ISGID;
1749 dir->i_size += BOGO_DIRENT_SIZE;
1750 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1751 d_instantiate(dentry, inode);
1752 dget(dentry); /* Extra count - pin the dentry in core */
1754 return error;
1757 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1759 int error;
1761 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1762 return error;
1763 inc_nlink(dir);
1764 return 0;
1767 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1768 struct nameidata *nd)
1770 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1774 * Link a file..
1776 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1778 struct inode *inode = old_dentry->d_inode;
1779 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1782 * No ordinary (disk based) filesystem counts links as inodes;
1783 * but each new link needs a new dentry, pinning lowmem, and
1784 * tmpfs dentries cannot be pruned until they are unlinked.
1786 if (sbinfo->max_inodes) {
1787 spin_lock(&sbinfo->stat_lock);
1788 if (!sbinfo->free_inodes) {
1789 spin_unlock(&sbinfo->stat_lock);
1790 return -ENOSPC;
1792 sbinfo->free_inodes--;
1793 spin_unlock(&sbinfo->stat_lock);
1796 dir->i_size += BOGO_DIRENT_SIZE;
1797 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1798 inc_nlink(inode);
1799 atomic_inc(&inode->i_count); /* New dentry reference */
1800 dget(dentry); /* Extra pinning count for the created dentry */
1801 d_instantiate(dentry, inode);
1802 return 0;
1805 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1807 struct inode *inode = dentry->d_inode;
1809 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1810 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1811 if (sbinfo->max_inodes) {
1812 spin_lock(&sbinfo->stat_lock);
1813 sbinfo->free_inodes++;
1814 spin_unlock(&sbinfo->stat_lock);
1818 dir->i_size -= BOGO_DIRENT_SIZE;
1819 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1820 drop_nlink(inode);
1821 dput(dentry); /* Undo the count from "create" - this does all the work */
1822 return 0;
1825 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1827 if (!simple_empty(dentry))
1828 return -ENOTEMPTY;
1830 drop_nlink(dentry->d_inode);
1831 drop_nlink(dir);
1832 return shmem_unlink(dir, dentry);
1836 * The VFS layer already does all the dentry stuff for rename,
1837 * we just have to decrement the usage count for the target if
1838 * it exists so that the VFS layer correctly free's it when it
1839 * gets overwritten.
1841 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1843 struct inode *inode = old_dentry->d_inode;
1844 int they_are_dirs = S_ISDIR(inode->i_mode);
1846 if (!simple_empty(new_dentry))
1847 return -ENOTEMPTY;
1849 if (new_dentry->d_inode) {
1850 (void) shmem_unlink(new_dir, new_dentry);
1851 if (they_are_dirs)
1852 drop_nlink(old_dir);
1853 } else if (they_are_dirs) {
1854 drop_nlink(old_dir);
1855 inc_nlink(new_dir);
1858 old_dir->i_size -= BOGO_DIRENT_SIZE;
1859 new_dir->i_size += BOGO_DIRENT_SIZE;
1860 old_dir->i_ctime = old_dir->i_mtime =
1861 new_dir->i_ctime = new_dir->i_mtime =
1862 inode->i_ctime = CURRENT_TIME;
1863 return 0;
1866 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1868 int error;
1869 int len;
1870 struct inode *inode;
1871 struct page *page = NULL;
1872 char *kaddr;
1873 struct shmem_inode_info *info;
1875 len = strlen(symname) + 1;
1876 if (len > PAGE_CACHE_SIZE)
1877 return -ENAMETOOLONG;
1879 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1880 if (!inode)
1881 return -ENOSPC;
1883 error = security_inode_init_security(inode, dir, NULL, NULL,
1884 NULL);
1885 if (error) {
1886 if (error != -EOPNOTSUPP) {
1887 iput(inode);
1888 return error;
1890 error = 0;
1893 info = SHMEM_I(inode);
1894 inode->i_size = len-1;
1895 if (len <= (char *)inode - (char *)info) {
1896 /* do it inline */
1897 memcpy(info, symname, len);
1898 inode->i_op = &shmem_symlink_inline_operations;
1899 } else {
1900 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1901 if (error) {
1902 iput(inode);
1903 return error;
1905 inode->i_op = &shmem_symlink_inode_operations;
1906 kaddr = kmap_atomic(page, KM_USER0);
1907 memcpy(kaddr, symname, len);
1908 kunmap_atomic(kaddr, KM_USER0);
1909 set_page_dirty(page);
1910 page_cache_release(page);
1912 if (dir->i_mode & S_ISGID)
1913 inode->i_gid = dir->i_gid;
1914 dir->i_size += BOGO_DIRENT_SIZE;
1915 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1916 d_instantiate(dentry, inode);
1917 dget(dentry);
1918 return 0;
1921 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1923 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1924 return NULL;
1927 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1929 struct page *page = NULL;
1930 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1931 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1932 return page;
1935 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1937 if (!IS_ERR(nd_get_link(nd))) {
1938 struct page *page = cookie;
1939 kunmap(page);
1940 mark_page_accessed(page);
1941 page_cache_release(page);
1945 static const struct inode_operations shmem_symlink_inline_operations = {
1946 .readlink = generic_readlink,
1947 .follow_link = shmem_follow_link_inline,
1950 static const struct inode_operations shmem_symlink_inode_operations = {
1951 .truncate = shmem_truncate,
1952 .readlink = generic_readlink,
1953 .follow_link = shmem_follow_link,
1954 .put_link = shmem_put_link,
1957 #ifdef CONFIG_TMPFS_POSIX_ACL
1959 * Superblocks without xattr inode operations will get security.* xattr
1960 * support from the VFS "for free". As soon as we have any other xattrs
1961 * like ACLs, we also need to implement the security.* handlers at
1962 * filesystem level, though.
1965 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1966 size_t list_len, const char *name,
1967 size_t name_len)
1969 return security_inode_listsecurity(inode, list, list_len);
1972 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1973 void *buffer, size_t size)
1975 if (strcmp(name, "") == 0)
1976 return -EINVAL;
1977 return security_inode_getsecurity(inode, name, buffer, size,
1978 -EOPNOTSUPP);
1981 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1982 const void *value, size_t size, int flags)
1984 if (strcmp(name, "") == 0)
1985 return -EINVAL;
1986 return security_inode_setsecurity(inode, name, value, size, flags);
1989 static struct xattr_handler shmem_xattr_security_handler = {
1990 .prefix = XATTR_SECURITY_PREFIX,
1991 .list = shmem_xattr_security_list,
1992 .get = shmem_xattr_security_get,
1993 .set = shmem_xattr_security_set,
1996 static struct xattr_handler *shmem_xattr_handlers[] = {
1997 &shmem_xattr_acl_access_handler,
1998 &shmem_xattr_acl_default_handler,
1999 &shmem_xattr_security_handler,
2000 NULL
2002 #endif
2004 static struct dentry *shmem_get_parent(struct dentry *child)
2006 return ERR_PTR(-ESTALE);
2009 static int shmem_match(struct inode *ino, void *vfh)
2011 __u32 *fh = vfh;
2012 __u64 inum = fh[2];
2013 inum = (inum << 32) | fh[1];
2014 return ino->i_ino == inum && fh[0] == ino->i_generation;
2017 static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
2019 struct dentry *de = NULL;
2020 struct inode *inode;
2021 __u32 *fh = vfh;
2022 __u64 inum = fh[2];
2023 inum = (inum << 32) | fh[1];
2025 inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
2026 if (inode) {
2027 de = d_find_alias(inode);
2028 iput(inode);
2031 return de? de: ERR_PTR(-ESTALE);
2034 static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
2035 int len, int type,
2036 int (*acceptable)(void *context, struct dentry *de),
2037 void *context)
2039 if (len < 3)
2040 return ERR_PTR(-ESTALE);
2042 return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2043 context);
2046 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2047 int connectable)
2049 struct inode *inode = dentry->d_inode;
2051 if (*len < 3)
2052 return 255;
2054 if (hlist_unhashed(&inode->i_hash)) {
2055 /* Unfortunately insert_inode_hash is not idempotent,
2056 * so as we hash inodes here rather than at creation
2057 * time, we need a lock to ensure we only try
2058 * to do it once
2060 static DEFINE_SPINLOCK(lock);
2061 spin_lock(&lock);
2062 if (hlist_unhashed(&inode->i_hash))
2063 __insert_inode_hash(inode,
2064 inode->i_ino + inode->i_generation);
2065 spin_unlock(&lock);
2068 fh[0] = inode->i_generation;
2069 fh[1] = inode->i_ino;
2070 fh[2] = ((__u64)inode->i_ino) >> 32;
2072 *len = 3;
2073 return 1;
2076 static struct export_operations shmem_export_ops = {
2077 .get_parent = shmem_get_parent,
2078 .get_dentry = shmem_get_dentry,
2079 .encode_fh = shmem_encode_fh,
2080 .decode_fh = shmem_decode_fh,
2083 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2084 gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2085 int *policy, nodemask_t *policy_nodes)
2087 char *this_char, *value, *rest;
2089 while (options != NULL) {
2090 this_char = options;
2091 for (;;) {
2093 * NUL-terminate this option: unfortunately,
2094 * mount options form a comma-separated list,
2095 * but mpol's nodelist may also contain commas.
2097 options = strchr(options, ',');
2098 if (options == NULL)
2099 break;
2100 options++;
2101 if (!isdigit(*options)) {
2102 options[-1] = '\0';
2103 break;
2106 if (!*this_char)
2107 continue;
2108 if ((value = strchr(this_char,'=')) != NULL) {
2109 *value++ = 0;
2110 } else {
2111 printk(KERN_ERR
2112 "tmpfs: No value for mount option '%s'\n",
2113 this_char);
2114 return 1;
2117 if (!strcmp(this_char,"size")) {
2118 unsigned long long size;
2119 size = memparse(value,&rest);
2120 if (*rest == '%') {
2121 size <<= PAGE_SHIFT;
2122 size *= totalram_pages;
2123 do_div(size, 100);
2124 rest++;
2126 if (*rest)
2127 goto bad_val;
2128 *blocks = size >> PAGE_CACHE_SHIFT;
2129 } else if (!strcmp(this_char,"nr_blocks")) {
2130 *blocks = memparse(value,&rest);
2131 if (*rest)
2132 goto bad_val;
2133 } else if (!strcmp(this_char,"nr_inodes")) {
2134 *inodes = memparse(value,&rest);
2135 if (*rest)
2136 goto bad_val;
2137 } else if (!strcmp(this_char,"mode")) {
2138 if (!mode)
2139 continue;
2140 *mode = simple_strtoul(value,&rest,8);
2141 if (*rest)
2142 goto bad_val;
2143 } else if (!strcmp(this_char,"uid")) {
2144 if (!uid)
2145 continue;
2146 *uid = simple_strtoul(value,&rest,0);
2147 if (*rest)
2148 goto bad_val;
2149 } else if (!strcmp(this_char,"gid")) {
2150 if (!gid)
2151 continue;
2152 *gid = simple_strtoul(value,&rest,0);
2153 if (*rest)
2154 goto bad_val;
2155 } else if (!strcmp(this_char,"mpol")) {
2156 if (shmem_parse_mpol(value,policy,policy_nodes))
2157 goto bad_val;
2158 } else {
2159 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2160 this_char);
2161 return 1;
2164 return 0;
2166 bad_val:
2167 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2168 value, this_char);
2169 return 1;
2173 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2175 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2176 unsigned long max_blocks = sbinfo->max_blocks;
2177 unsigned long max_inodes = sbinfo->max_inodes;
2178 int policy = sbinfo->policy;
2179 nodemask_t policy_nodes = sbinfo->policy_nodes;
2180 unsigned long blocks;
2181 unsigned long inodes;
2182 int error = -EINVAL;
2184 if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2185 &max_inodes, &policy, &policy_nodes))
2186 return error;
2188 spin_lock(&sbinfo->stat_lock);
2189 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2190 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2191 if (max_blocks < blocks)
2192 goto out;
2193 if (max_inodes < inodes)
2194 goto out;
2196 * Those tests also disallow limited->unlimited while any are in
2197 * use, so i_blocks will always be zero when max_blocks is zero;
2198 * but we must separately disallow unlimited->limited, because
2199 * in that case we have no record of how much is already in use.
2201 if (max_blocks && !sbinfo->max_blocks)
2202 goto out;
2203 if (max_inodes && !sbinfo->max_inodes)
2204 goto out;
2206 error = 0;
2207 sbinfo->max_blocks = max_blocks;
2208 sbinfo->free_blocks = max_blocks - blocks;
2209 sbinfo->max_inodes = max_inodes;
2210 sbinfo->free_inodes = max_inodes - inodes;
2211 sbinfo->policy = policy;
2212 sbinfo->policy_nodes = policy_nodes;
2213 out:
2214 spin_unlock(&sbinfo->stat_lock);
2215 return error;
2217 #endif
2219 static void shmem_put_super(struct super_block *sb)
2221 kfree(sb->s_fs_info);
2222 sb->s_fs_info = NULL;
2225 static int shmem_fill_super(struct super_block *sb,
2226 void *data, int silent)
2228 struct inode *inode;
2229 struct dentry *root;
2230 int mode = S_IRWXUGO | S_ISVTX;
2231 uid_t uid = current->fsuid;
2232 gid_t gid = current->fsgid;
2233 int err = -ENOMEM;
2234 struct shmem_sb_info *sbinfo;
2235 unsigned long blocks = 0;
2236 unsigned long inodes = 0;
2237 int policy = MPOL_DEFAULT;
2238 nodemask_t policy_nodes = node_online_map;
2240 #ifdef CONFIG_TMPFS
2242 * Per default we only allow half of the physical ram per
2243 * tmpfs instance, limiting inodes to one per page of lowmem;
2244 * but the internal instance is left unlimited.
2246 if (!(sb->s_flags & MS_NOUSER)) {
2247 blocks = totalram_pages / 2;
2248 inodes = totalram_pages - totalhigh_pages;
2249 if (inodes > blocks)
2250 inodes = blocks;
2251 if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2252 &inodes, &policy, &policy_nodes))
2253 return -EINVAL;
2255 sb->s_export_op = &shmem_export_ops;
2256 #else
2257 sb->s_flags |= MS_NOUSER;
2258 #endif
2260 /* Round up to L1_CACHE_BYTES to resist false sharing */
2261 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2262 L1_CACHE_BYTES), GFP_KERNEL);
2263 if (!sbinfo)
2264 return -ENOMEM;
2266 spin_lock_init(&sbinfo->stat_lock);
2267 sbinfo->max_blocks = blocks;
2268 sbinfo->free_blocks = blocks;
2269 sbinfo->max_inodes = inodes;
2270 sbinfo->free_inodes = inodes;
2271 sbinfo->policy = policy;
2272 sbinfo->policy_nodes = policy_nodes;
2274 sb->s_fs_info = sbinfo;
2275 sb->s_maxbytes = SHMEM_MAX_BYTES;
2276 sb->s_blocksize = PAGE_CACHE_SIZE;
2277 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2278 sb->s_magic = TMPFS_MAGIC;
2279 sb->s_op = &shmem_ops;
2280 sb->s_time_gran = 1;
2281 #ifdef CONFIG_TMPFS_POSIX_ACL
2282 sb->s_xattr = shmem_xattr_handlers;
2283 sb->s_flags |= MS_POSIXACL;
2284 #endif
2286 inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2287 if (!inode)
2288 goto failed;
2289 inode->i_uid = uid;
2290 inode->i_gid = gid;
2291 root = d_alloc_root(inode);
2292 if (!root)
2293 goto failed_iput;
2294 sb->s_root = root;
2295 return 0;
2297 failed_iput:
2298 iput(inode);
2299 failed:
2300 shmem_put_super(sb);
2301 return err;
2304 static struct kmem_cache *shmem_inode_cachep;
2306 static struct inode *shmem_alloc_inode(struct super_block *sb)
2308 struct shmem_inode_info *p;
2309 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2310 if (!p)
2311 return NULL;
2312 return &p->vfs_inode;
2315 static void shmem_destroy_inode(struct inode *inode)
2317 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2318 /* only struct inode is valid if it's an inline symlink */
2319 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2321 shmem_acl_destroy_inode(inode);
2322 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2325 static void init_once(void *foo, struct kmem_cache *cachep,
2326 unsigned long flags)
2328 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2330 inode_init_once(&p->vfs_inode);
2331 #ifdef CONFIG_TMPFS_POSIX_ACL
2332 p->i_acl = NULL;
2333 p->i_default_acl = NULL;
2334 #endif
2337 static int init_inodecache(void)
2339 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2340 sizeof(struct shmem_inode_info),
2341 0, 0, init_once);
2342 if (shmem_inode_cachep == NULL)
2343 return -ENOMEM;
2344 return 0;
2347 static void destroy_inodecache(void)
2349 kmem_cache_destroy(shmem_inode_cachep);
2352 static const struct address_space_operations shmem_aops = {
2353 .writepage = shmem_writepage,
2354 .set_page_dirty = __set_page_dirty_no_writeback,
2355 #ifdef CONFIG_TMPFS
2356 .readpage = shmem_readpage,
2357 .prepare_write = shmem_prepare_write,
2358 .commit_write = simple_commit_write,
2359 #endif
2360 .migratepage = migrate_page,
2363 static const struct file_operations shmem_file_operations = {
2364 .mmap = shmem_mmap,
2365 #ifdef CONFIG_TMPFS
2366 .llseek = generic_file_llseek,
2367 .read = shmem_file_read,
2368 .write = shmem_file_write,
2369 .fsync = simple_sync_file,
2370 .splice_read = generic_file_splice_read,
2371 .splice_write = generic_file_splice_write,
2372 #endif
2375 static const struct inode_operations shmem_inode_operations = {
2376 .truncate = shmem_truncate,
2377 .setattr = shmem_notify_change,
2378 .truncate_range = shmem_truncate_range,
2379 #ifdef CONFIG_TMPFS_POSIX_ACL
2380 .setxattr = generic_setxattr,
2381 .getxattr = generic_getxattr,
2382 .listxattr = generic_listxattr,
2383 .removexattr = generic_removexattr,
2384 .permission = shmem_permission,
2385 #endif
2389 static const struct inode_operations shmem_dir_inode_operations = {
2390 #ifdef CONFIG_TMPFS
2391 .create = shmem_create,
2392 .lookup = simple_lookup,
2393 .link = shmem_link,
2394 .unlink = shmem_unlink,
2395 .symlink = shmem_symlink,
2396 .mkdir = shmem_mkdir,
2397 .rmdir = shmem_rmdir,
2398 .mknod = shmem_mknod,
2399 .rename = shmem_rename,
2400 #endif
2401 #ifdef CONFIG_TMPFS_POSIX_ACL
2402 .setattr = shmem_notify_change,
2403 .setxattr = generic_setxattr,
2404 .getxattr = generic_getxattr,
2405 .listxattr = generic_listxattr,
2406 .removexattr = generic_removexattr,
2407 .permission = shmem_permission,
2408 #endif
2411 static const struct inode_operations shmem_special_inode_operations = {
2412 #ifdef CONFIG_TMPFS_POSIX_ACL
2413 .setattr = shmem_notify_change,
2414 .setxattr = generic_setxattr,
2415 .getxattr = generic_getxattr,
2416 .listxattr = generic_listxattr,
2417 .removexattr = generic_removexattr,
2418 .permission = shmem_permission,
2419 #endif
2422 static const struct super_operations shmem_ops = {
2423 .alloc_inode = shmem_alloc_inode,
2424 .destroy_inode = shmem_destroy_inode,
2425 #ifdef CONFIG_TMPFS
2426 .statfs = shmem_statfs,
2427 .remount_fs = shmem_remount_fs,
2428 #endif
2429 .delete_inode = shmem_delete_inode,
2430 .drop_inode = generic_delete_inode,
2431 .put_super = shmem_put_super,
2434 static struct vm_operations_struct shmem_vm_ops = {
2435 .fault = shmem_fault,
2436 #ifdef CONFIG_NUMA
2437 .set_policy = shmem_set_policy,
2438 .get_policy = shmem_get_policy,
2439 #endif
2443 static int shmem_get_sb(struct file_system_type *fs_type,
2444 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2446 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2449 static struct file_system_type tmpfs_fs_type = {
2450 .owner = THIS_MODULE,
2451 .name = "tmpfs",
2452 .get_sb = shmem_get_sb,
2453 .kill_sb = kill_litter_super,
2455 static struct vfsmount *shm_mnt;
2457 static int __init init_tmpfs(void)
2459 int error;
2461 error = init_inodecache();
2462 if (error)
2463 goto out3;
2465 error = register_filesystem(&tmpfs_fs_type);
2466 if (error) {
2467 printk(KERN_ERR "Could not register tmpfs\n");
2468 goto out2;
2471 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2472 tmpfs_fs_type.name, NULL);
2473 if (IS_ERR(shm_mnt)) {
2474 error = PTR_ERR(shm_mnt);
2475 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2476 goto out1;
2478 return 0;
2480 out1:
2481 unregister_filesystem(&tmpfs_fs_type);
2482 out2:
2483 destroy_inodecache();
2484 out3:
2485 shm_mnt = ERR_PTR(error);
2486 return error;
2488 module_init(init_tmpfs)
2491 * shmem_file_setup - get an unlinked file living in tmpfs
2493 * @name: name for dentry (to be seen in /proc/<pid>/maps
2494 * @size: size to be set for the file
2497 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2499 int error;
2500 struct file *file;
2501 struct inode *inode;
2502 struct dentry *dentry, *root;
2503 struct qstr this;
2505 if (IS_ERR(shm_mnt))
2506 return (void *)shm_mnt;
2508 if (size < 0 || size > SHMEM_MAX_BYTES)
2509 return ERR_PTR(-EINVAL);
2511 if (shmem_acct_size(flags, size))
2512 return ERR_PTR(-ENOMEM);
2514 error = -ENOMEM;
2515 this.name = name;
2516 this.len = strlen(name);
2517 this.hash = 0; /* will go */
2518 root = shm_mnt->mnt_root;
2519 dentry = d_alloc(root, &this);
2520 if (!dentry)
2521 goto put_memory;
2523 error = -ENFILE;
2524 file = get_empty_filp();
2525 if (!file)
2526 goto put_dentry;
2528 error = -ENOSPC;
2529 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2530 if (!inode)
2531 goto close_file;
2533 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2534 d_instantiate(dentry, inode);
2535 inode->i_size = size;
2536 inode->i_nlink = 0; /* It is unlinked */
2537 file->f_path.mnt = mntget(shm_mnt);
2538 file->f_path.dentry = dentry;
2539 file->f_mapping = inode->i_mapping;
2540 file->f_op = &shmem_file_operations;
2541 file->f_mode = FMODE_WRITE | FMODE_READ;
2542 return file;
2544 close_file:
2545 put_filp(file);
2546 put_dentry:
2547 dput(dentry);
2548 put_memory:
2549 shmem_unacct_size(flags, size);
2550 return ERR_PTR(error);
2554 * shmem_zero_setup - setup a shared anonymous mapping
2556 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2558 int shmem_zero_setup(struct vm_area_struct *vma)
2560 struct file *file;
2561 loff_t size = vma->vm_end - vma->vm_start;
2563 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2564 if (IS_ERR(file))
2565 return PTR_ERR(file);
2567 if (vma->vm_file)
2568 fput(vma->vm_file);
2569 vma->vm_file = file;
2570 vma->vm_ops = &shmem_vm_ops;
2571 return 0;