ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / hrtimer.c
blob2ee0497b42e2fd90115f3095b26449c5b928f3ae
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
47 #include <asm/uaccess.h>
49 /**
50 * ktime_get - get the monotonic time in ktime_t format
52 * returns the time in ktime_t format
54 ktime_t ktime_get(void)
56 struct timespec now;
58 ktime_get_ts(&now);
60 return timespec_to_ktime(now);
62 EXPORT_SYMBOL_GPL(ktime_get);
64 /**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
67 * returns the time in ktime_t format
69 ktime_t ktime_get_real(void)
71 struct timespec now;
73 getnstimeofday(&now);
75 return timespec_to_ktime(now);
78 EXPORT_SYMBOL_GPL(ktime_get_real);
81 * The timer bases:
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
89 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
92 .clock_base =
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
97 .resolution = KTIME_LOW_RES,
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
102 .resolution = KTIME_LOW_RES,
108 * ktime_get_ts - get the monotonic clock in timespec format
109 * @ts: pointer to timespec variable
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
113 * in normalized timespec format in the variable pointed to by @ts.
115 void ktime_get_ts(struct timespec *ts)
117 struct timespec tomono;
118 unsigned long seq;
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
125 } while (read_seqretry(&xtime_lock, seq));
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
130 EXPORT_SYMBOL_GPL(ktime_get_ts);
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
136 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
138 ktime_t xtim, tomono;
139 struct timespec xts, tom;
140 unsigned long seq;
142 do {
143 seq = read_seqbegin(&xtime_lock);
144 xts = current_kernel_time();
145 tom = wall_to_monotonic;
146 } while (read_seqretry(&xtime_lock, seq));
148 xtim = timespec_to_ktime(xts);
149 tomono = timespec_to_ktime(tom);
150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 ktime_add(xtim, tomono);
156 * Helper function to check, whether the timer is running the callback
157 * function
159 static inline int hrtimer_callback_running(struct hrtimer *timer)
161 return timer->state & HRTIMER_STATE_CALLBACK;
165 * Functions and macros which are different for UP/SMP systems are kept in a
166 * single place
168 #ifdef CONFIG_SMP
171 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
172 * means that all timers which are tied to this base via timer->base are
173 * locked, and the base itself is locked too.
175 * So __run_timers/migrate_timers can safely modify all timers which could
176 * be found on the lists/queues.
178 * When the timer's base is locked, and the timer removed from list, it is
179 * possible to set timer->base = NULL and drop the lock: the timer remains
180 * locked.
182 static
183 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
184 unsigned long *flags)
186 struct hrtimer_clock_base *base;
188 for (;;) {
189 base = timer->base;
190 if (likely(base != NULL)) {
191 spin_lock_irqsave(&base->cpu_base->lock, *flags);
192 if (likely(base == timer->base))
193 return base;
194 /* The timer has migrated to another CPU: */
195 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
197 cpu_relax();
202 * Switch the timer base to the current CPU when possible.
204 static inline struct hrtimer_clock_base *
205 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
207 struct hrtimer_clock_base *new_base;
208 struct hrtimer_cpu_base *new_cpu_base;
210 new_cpu_base = &__get_cpu_var(hrtimer_bases);
211 new_base = &new_cpu_base->clock_base[base->index];
213 if (base != new_base) {
215 * We are trying to schedule the timer on the local CPU.
216 * However we can't change timer's base while it is running,
217 * so we keep it on the same CPU. No hassle vs. reprogramming
218 * the event source in the high resolution case. The softirq
219 * code will take care of this when the timer function has
220 * completed. There is no conflict as we hold the lock until
221 * the timer is enqueued.
223 if (unlikely(hrtimer_callback_running(timer)))
224 return base;
226 /* See the comment in lock_timer_base() */
227 timer->base = NULL;
228 spin_unlock(&base->cpu_base->lock);
229 spin_lock(&new_base->cpu_base->lock);
230 timer->base = new_base;
232 return new_base;
235 #else /* CONFIG_SMP */
237 static inline struct hrtimer_clock_base *
238 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
240 struct hrtimer_clock_base *base = timer->base;
242 spin_lock_irqsave(&base->cpu_base->lock, *flags);
244 return base;
247 # define switch_hrtimer_base(t, b) (b)
249 #endif /* !CONFIG_SMP */
252 * Functions for the union type storage format of ktime_t which are
253 * too large for inlining:
255 #if BITS_PER_LONG < 64
256 # ifndef CONFIG_KTIME_SCALAR
258 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
259 * @kt: addend
260 * @nsec: the scalar nsec value to add
262 * Returns the sum of kt and nsec in ktime_t format
264 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
266 ktime_t tmp;
268 if (likely(nsec < NSEC_PER_SEC)) {
269 tmp.tv64 = nsec;
270 } else {
271 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
273 tmp = ktime_set((long)nsec, rem);
276 return ktime_add(kt, tmp);
279 EXPORT_SYMBOL_GPL(ktime_add_ns);
280 # endif /* !CONFIG_KTIME_SCALAR */
283 * Divide a ktime value by a nanosecond value
285 unsigned long ktime_divns(const ktime_t kt, s64 div)
287 u64 dclc, inc, dns;
288 int sft = 0;
290 dclc = dns = ktime_to_ns(kt);
291 inc = div;
292 /* Make sure the divisor is less than 2^32: */
293 while (div >> 32) {
294 sft++;
295 div >>= 1;
297 dclc >>= sft;
298 do_div(dclc, (unsigned long) div);
300 return (unsigned long) dclc;
302 #endif /* BITS_PER_LONG >= 64 */
305 * Add two ktime values and do a safety check for overflow:
308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
310 ktime_t res = ktime_add(lhs, rhs);
313 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 * return to user space in a timespec:
316 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
317 res = ktime_set(KTIME_SEC_MAX, 0);
319 return res;
322 /* High resolution timer related functions */
323 #ifdef CONFIG_HIGH_RES_TIMERS
326 * High resolution timer enabled ?
328 static int hrtimer_hres_enabled __read_mostly = 1;
331 * Enable / Disable high resolution mode
333 static int __init setup_hrtimer_hres(char *str)
335 if (!strcmp(str, "off"))
336 hrtimer_hres_enabled = 0;
337 else if (!strcmp(str, "on"))
338 hrtimer_hres_enabled = 1;
339 else
340 return 0;
341 return 1;
344 __setup("highres=", setup_hrtimer_hres);
347 * hrtimer_high_res_enabled - query, if the highres mode is enabled
349 static inline int hrtimer_is_hres_enabled(void)
351 return hrtimer_hres_enabled;
355 * Is the high resolution mode active ?
357 static inline int hrtimer_hres_active(void)
359 return __get_cpu_var(hrtimer_bases).hres_active;
363 * Reprogram the event source with checking both queues for the
364 * next event
365 * Called with interrupts disabled and base->lock held
367 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
369 int i;
370 struct hrtimer_clock_base *base = cpu_base->clock_base;
371 ktime_t expires;
373 cpu_base->expires_next.tv64 = KTIME_MAX;
375 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
376 struct hrtimer *timer;
378 if (!base->first)
379 continue;
380 timer = rb_entry(base->first, struct hrtimer, node);
381 expires = ktime_sub(timer->expires, base->offset);
382 if (expires.tv64 < cpu_base->expires_next.tv64)
383 cpu_base->expires_next = expires;
386 if (cpu_base->expires_next.tv64 != KTIME_MAX)
387 tick_program_event(cpu_base->expires_next, 1);
391 * Shared reprogramming for clock_realtime and clock_monotonic
393 * When a timer is enqueued and expires earlier than the already enqueued
394 * timers, we have to check, whether it expires earlier than the timer for
395 * which the clock event device was armed.
397 * Called with interrupts disabled and base->cpu_base.lock held
399 static int hrtimer_reprogram(struct hrtimer *timer,
400 struct hrtimer_clock_base *base)
402 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
403 ktime_t expires = ktime_sub(timer->expires, base->offset);
404 int res;
407 * When the callback is running, we do not reprogram the clock event
408 * device. The timer callback is either running on a different CPU or
409 * the callback is executed in the hrtimer_interupt context. The
410 * reprogramming is handled either by the softirq, which called the
411 * callback or at the end of the hrtimer_interrupt.
413 if (hrtimer_callback_running(timer))
414 return 0;
416 if (expires.tv64 >= expires_next->tv64)
417 return 0;
420 * Clockevents returns -ETIME, when the event was in the past.
422 res = tick_program_event(expires, 0);
423 if (!IS_ERR_VALUE(res))
424 *expires_next = expires;
425 return res;
430 * Retrigger next event is called after clock was set
432 * Called with interrupts disabled via on_each_cpu()
434 static void retrigger_next_event(void *arg)
436 struct hrtimer_cpu_base *base;
437 struct timespec realtime_offset;
438 unsigned long seq;
440 if (!hrtimer_hres_active())
441 return;
443 do {
444 seq = read_seqbegin(&xtime_lock);
445 set_normalized_timespec(&realtime_offset,
446 -wall_to_monotonic.tv_sec,
447 -wall_to_monotonic.tv_nsec);
448 } while (read_seqretry(&xtime_lock, seq));
450 base = &__get_cpu_var(hrtimer_bases);
452 /* Adjust CLOCK_REALTIME offset */
453 spin_lock(&base->lock);
454 base->clock_base[CLOCK_REALTIME].offset =
455 timespec_to_ktime(realtime_offset);
457 hrtimer_force_reprogram(base);
458 spin_unlock(&base->lock);
462 * Clock realtime was set
464 * Change the offset of the realtime clock vs. the monotonic
465 * clock.
467 * We might have to reprogram the high resolution timer interrupt. On
468 * SMP we call the architecture specific code to retrigger _all_ high
469 * resolution timer interrupts. On UP we just disable interrupts and
470 * call the high resolution interrupt code.
472 void clock_was_set(void)
474 /* Retrigger the CPU local events everywhere */
475 on_each_cpu(retrigger_next_event, NULL, 0, 1);
479 * During resume we might have to reprogram the high resolution timer
480 * interrupt (on the local CPU):
482 void hres_timers_resume(void)
484 WARN_ON_ONCE(num_online_cpus() > 1);
486 /* Retrigger the CPU local events: */
487 retrigger_next_event(NULL);
491 * Check, whether the timer is on the callback pending list
493 static inline int hrtimer_cb_pending(const struct hrtimer *timer)
495 return timer->state & HRTIMER_STATE_PENDING;
499 * Remove a timer from the callback pending list
501 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
503 list_del_init(&timer->cb_entry);
507 * Initialize the high resolution related parts of cpu_base
509 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
511 base->expires_next.tv64 = KTIME_MAX;
512 base->hres_active = 0;
513 INIT_LIST_HEAD(&base->cb_pending);
517 * Initialize the high resolution related parts of a hrtimer
519 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
521 INIT_LIST_HEAD(&timer->cb_entry);
525 * When High resolution timers are active, try to reprogram. Note, that in case
526 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
527 * check happens. The timer gets enqueued into the rbtree. The reprogramming
528 * and expiry check is done in the hrtimer_interrupt or in the softirq.
530 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
531 struct hrtimer_clock_base *base)
533 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
535 /* Timer is expired, act upon the callback mode */
536 switch(timer->cb_mode) {
537 case HRTIMER_CB_IRQSAFE_NO_RESTART:
539 * We can call the callback from here. No restart
540 * happens, so no danger of recursion
542 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
543 return 1;
544 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
546 * This is solely for the sched tick emulation with
547 * dynamic tick support to ensure that we do not
548 * restart the tick right on the edge and end up with
549 * the tick timer in the softirq ! The calling site
550 * takes care of this.
552 return 1;
553 case HRTIMER_CB_IRQSAFE:
554 case HRTIMER_CB_SOFTIRQ:
556 * Move everything else into the softirq pending list !
558 list_add_tail(&timer->cb_entry,
559 &base->cpu_base->cb_pending);
560 timer->state = HRTIMER_STATE_PENDING;
561 raise_softirq(HRTIMER_SOFTIRQ);
562 return 1;
563 default:
564 BUG();
567 return 0;
571 * Switch to high resolution mode
573 static int hrtimer_switch_to_hres(void)
575 int cpu = smp_processor_id();
576 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
577 unsigned long flags;
579 if (base->hres_active)
580 return 1;
582 local_irq_save(flags);
584 if (tick_init_highres()) {
585 local_irq_restore(flags);
586 printk(KERN_WARNING "Could not switch to high resolution "
587 "mode on CPU %d\n", cpu);
588 return 0;
590 base->hres_active = 1;
591 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
592 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
594 tick_setup_sched_timer();
596 /* "Retrigger" the interrupt to get things going */
597 retrigger_next_event(NULL);
598 local_irq_restore(flags);
599 printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
600 smp_processor_id());
601 return 1;
604 #else
606 static inline int hrtimer_hres_active(void) { return 0; }
607 static inline int hrtimer_is_hres_enabled(void) { return 0; }
608 static inline int hrtimer_switch_to_hres(void) { return 0; }
609 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
610 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
611 struct hrtimer_clock_base *base)
613 return 0;
615 static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
616 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
617 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
618 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
620 #endif /* CONFIG_HIGH_RES_TIMERS */
622 #ifdef CONFIG_TIMER_STATS
623 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
625 if (timer->start_site)
626 return;
628 timer->start_site = addr;
629 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
630 timer->start_pid = current->pid;
632 #endif
635 * Counterpart to lock_timer_base above:
637 static inline
638 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
640 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
644 * hrtimer_forward - forward the timer expiry
645 * @timer: hrtimer to forward
646 * @now: forward past this time
647 * @interval: the interval to forward
649 * Forward the timer expiry so it will expire in the future.
650 * Returns the number of overruns.
652 unsigned long
653 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
655 unsigned long orun = 1;
656 ktime_t delta;
658 delta = ktime_sub(now, timer->expires);
660 if (delta.tv64 < 0)
661 return 0;
663 if (interval.tv64 < timer->base->resolution.tv64)
664 interval.tv64 = timer->base->resolution.tv64;
666 if (unlikely(delta.tv64 >= interval.tv64)) {
667 s64 incr = ktime_to_ns(interval);
669 orun = ktime_divns(delta, incr);
670 timer->expires = ktime_add_ns(timer->expires, incr * orun);
671 if (timer->expires.tv64 > now.tv64)
672 return orun;
674 * This (and the ktime_add() below) is the
675 * correction for exact:
677 orun++;
679 timer->expires = ktime_add_safe(timer->expires, interval);
681 return orun;
683 EXPORT_SYMBOL_GPL(hrtimer_forward);
686 * enqueue_hrtimer - internal function to (re)start a timer
688 * The timer is inserted in expiry order. Insertion into the
689 * red black tree is O(log(n)). Must hold the base lock.
691 static void enqueue_hrtimer(struct hrtimer *timer,
692 struct hrtimer_clock_base *base, int reprogram)
694 struct rb_node **link = &base->active.rb_node;
695 struct rb_node *parent = NULL;
696 struct hrtimer *entry;
697 int leftmost = 1;
700 * Find the right place in the rbtree:
702 while (*link) {
703 parent = *link;
704 entry = rb_entry(parent, struct hrtimer, node);
706 * We dont care about collisions. Nodes with
707 * the same expiry time stay together.
709 if (timer->expires.tv64 < entry->expires.tv64) {
710 link = &(*link)->rb_left;
711 } else {
712 link = &(*link)->rb_right;
713 leftmost = 0;
718 * Insert the timer to the rbtree and check whether it
719 * replaces the first pending timer
721 if (leftmost) {
723 * Reprogram the clock event device. When the timer is already
724 * expired hrtimer_enqueue_reprogram has either called the
725 * callback or added it to the pending list and raised the
726 * softirq.
728 * This is a NOP for !HIGHRES
730 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
731 return;
733 base->first = &timer->node;
736 rb_link_node(&timer->node, parent, link);
737 rb_insert_color(&timer->node, &base->active);
739 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
740 * state of a possibly running callback.
742 timer->state |= HRTIMER_STATE_ENQUEUED;
746 * __remove_hrtimer - internal function to remove a timer
748 * Caller must hold the base lock.
750 * High resolution timer mode reprograms the clock event device when the
751 * timer is the one which expires next. The caller can disable this by setting
752 * reprogram to zero. This is useful, when the context does a reprogramming
753 * anyway (e.g. timer interrupt)
755 static void __remove_hrtimer(struct hrtimer *timer,
756 struct hrtimer_clock_base *base,
757 unsigned long newstate, int reprogram)
759 /* High res. callback list. NOP for !HIGHRES */
760 if (hrtimer_cb_pending(timer))
761 hrtimer_remove_cb_pending(timer);
762 else {
764 * Remove the timer from the rbtree and replace the
765 * first entry pointer if necessary.
767 if (base->first == &timer->node) {
768 base->first = rb_next(&timer->node);
769 /* Reprogram the clock event device. if enabled */
770 if (reprogram && hrtimer_hres_active())
771 hrtimer_force_reprogram(base->cpu_base);
773 rb_erase(&timer->node, &base->active);
775 timer->state = newstate;
779 * remove hrtimer, called with base lock held
781 static inline int
782 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
784 if (hrtimer_is_queued(timer)) {
785 int reprogram;
788 * Remove the timer and force reprogramming when high
789 * resolution mode is active and the timer is on the current
790 * CPU. If we remove a timer on another CPU, reprogramming is
791 * skipped. The interrupt event on this CPU is fired and
792 * reprogramming happens in the interrupt handler. This is a
793 * rare case and less expensive than a smp call.
795 timer_stats_hrtimer_clear_start_info(timer);
796 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
797 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
798 reprogram);
799 return 1;
801 return 0;
805 * hrtimer_start - (re)start an relative timer on the current CPU
806 * @timer: the timer to be added
807 * @tim: expiry time
808 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
810 * Returns:
811 * 0 on success
812 * 1 when the timer was active
815 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
817 struct hrtimer_clock_base *base, *new_base;
818 unsigned long flags;
819 int ret;
821 base = lock_hrtimer_base(timer, &flags);
823 /* Remove an active timer from the queue: */
824 ret = remove_hrtimer(timer, base);
826 /* Switch the timer base, if necessary: */
827 new_base = switch_hrtimer_base(timer, base);
829 if (mode == HRTIMER_MODE_REL) {
830 tim = ktime_add_safe(tim, new_base->get_time());
832 * CONFIG_TIME_LOW_RES is a temporary way for architectures
833 * to signal that they simply return xtime in
834 * do_gettimeoffset(). In this case we want to round up by
835 * resolution when starting a relative timer, to avoid short
836 * timeouts. This will go away with the GTOD framework.
838 #ifdef CONFIG_TIME_LOW_RES
839 tim = ktime_add_safe(tim, base->resolution);
840 #endif
842 timer->expires = tim;
844 timer_stats_hrtimer_set_start_info(timer);
847 * Only allow reprogramming if the new base is on this CPU.
848 * (it might still be on another CPU if the timer was pending)
850 enqueue_hrtimer(timer, new_base,
851 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
853 unlock_hrtimer_base(timer, &flags);
855 return ret;
857 EXPORT_SYMBOL_GPL(hrtimer_start);
860 * hrtimer_try_to_cancel - try to deactivate a timer
861 * @timer: hrtimer to stop
863 * Returns:
864 * 0 when the timer was not active
865 * 1 when the timer was active
866 * -1 when the timer is currently excuting the callback function and
867 * cannot be stopped
869 int hrtimer_try_to_cancel(struct hrtimer *timer)
871 struct hrtimer_clock_base *base;
872 unsigned long flags;
873 int ret = -1;
875 base = lock_hrtimer_base(timer, &flags);
877 if (!hrtimer_callback_running(timer))
878 ret = remove_hrtimer(timer, base);
880 unlock_hrtimer_base(timer, &flags);
882 return ret;
885 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
888 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
889 * @timer: the timer to be cancelled
891 * Returns:
892 * 0 when the timer was not active
893 * 1 when the timer was active
895 int hrtimer_cancel(struct hrtimer *timer)
897 for (;;) {
898 int ret = hrtimer_try_to_cancel(timer);
900 if (ret >= 0)
901 return ret;
902 cpu_relax();
905 EXPORT_SYMBOL_GPL(hrtimer_cancel);
908 * hrtimer_get_remaining - get remaining time for the timer
909 * @timer: the timer to read
911 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
913 struct hrtimer_clock_base *base;
914 unsigned long flags;
915 ktime_t rem;
917 base = lock_hrtimer_base(timer, &flags);
918 rem = ktime_sub(timer->expires, base->get_time());
919 unlock_hrtimer_base(timer, &flags);
921 return rem;
923 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
925 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
927 * hrtimer_get_next_event - get the time until next expiry event
929 * Returns the delta to the next expiry event or KTIME_MAX if no timer
930 * is pending.
932 ktime_t hrtimer_get_next_event(void)
934 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
935 struct hrtimer_clock_base *base = cpu_base->clock_base;
936 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
937 unsigned long flags;
938 int i;
940 spin_lock_irqsave(&cpu_base->lock, flags);
942 if (!hrtimer_hres_active()) {
943 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
944 struct hrtimer *timer;
946 if (!base->first)
947 continue;
949 timer = rb_entry(base->first, struct hrtimer, node);
950 delta.tv64 = timer->expires.tv64;
951 delta = ktime_sub(delta, base->get_time());
952 if (delta.tv64 < mindelta.tv64)
953 mindelta.tv64 = delta.tv64;
957 spin_unlock_irqrestore(&cpu_base->lock, flags);
959 if (mindelta.tv64 < 0)
960 mindelta.tv64 = 0;
961 return mindelta;
963 #endif
966 * hrtimer_init - initialize a timer to the given clock
967 * @timer: the timer to be initialized
968 * @clock_id: the clock to be used
969 * @mode: timer mode abs/rel
971 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
972 enum hrtimer_mode mode)
974 struct hrtimer_cpu_base *cpu_base;
976 memset(timer, 0, sizeof(struct hrtimer));
978 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
980 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
981 clock_id = CLOCK_MONOTONIC;
983 timer->base = &cpu_base->clock_base[clock_id];
984 hrtimer_init_timer_hres(timer);
986 #ifdef CONFIG_TIMER_STATS
987 timer->start_site = NULL;
988 timer->start_pid = -1;
989 memset(timer->start_comm, 0, TASK_COMM_LEN);
990 #endif
992 EXPORT_SYMBOL_GPL(hrtimer_init);
995 * hrtimer_get_res - get the timer resolution for a clock
996 * @which_clock: which clock to query
997 * @tp: pointer to timespec variable to store the resolution
999 * Store the resolution of the clock selected by @which_clock in the
1000 * variable pointed to by @tp.
1002 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1004 struct hrtimer_cpu_base *cpu_base;
1006 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1007 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1009 return 0;
1011 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1013 #ifdef CONFIG_HIGH_RES_TIMERS
1016 * High resolution timer interrupt
1017 * Called with interrupts disabled
1019 void hrtimer_interrupt(struct clock_event_device *dev)
1021 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1022 struct hrtimer_clock_base *base;
1023 ktime_t expires_next, now;
1024 int i, raise = 0;
1026 BUG_ON(!cpu_base->hres_active);
1027 cpu_base->nr_events++;
1028 dev->next_event.tv64 = KTIME_MAX;
1030 retry:
1031 now = ktime_get();
1033 expires_next.tv64 = KTIME_MAX;
1035 base = cpu_base->clock_base;
1037 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1038 ktime_t basenow;
1039 struct rb_node *node;
1041 spin_lock(&cpu_base->lock);
1043 basenow = ktime_add(now, base->offset);
1045 while ((node = base->first)) {
1046 struct hrtimer *timer;
1048 timer = rb_entry(node, struct hrtimer, node);
1050 if (basenow.tv64 < timer->expires.tv64) {
1051 ktime_t expires;
1053 expires = ktime_sub(timer->expires,
1054 base->offset);
1055 if (expires.tv64 < expires_next.tv64)
1056 expires_next = expires;
1057 break;
1060 /* Move softirq callbacks to the pending list */
1061 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1062 __remove_hrtimer(timer, base,
1063 HRTIMER_STATE_PENDING, 0);
1064 list_add_tail(&timer->cb_entry,
1065 &base->cpu_base->cb_pending);
1066 raise = 1;
1067 continue;
1070 __remove_hrtimer(timer, base,
1071 HRTIMER_STATE_CALLBACK, 0);
1072 timer_stats_account_hrtimer(timer);
1075 * Note: We clear the CALLBACK bit after
1076 * enqueue_hrtimer to avoid reprogramming of
1077 * the event hardware. This happens at the end
1078 * of this function anyway.
1080 if (timer->function(timer) != HRTIMER_NORESTART) {
1081 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1082 enqueue_hrtimer(timer, base, 0);
1084 timer->state &= ~HRTIMER_STATE_CALLBACK;
1086 spin_unlock(&cpu_base->lock);
1087 base++;
1090 cpu_base->expires_next = expires_next;
1092 /* Reprogramming necessary ? */
1093 if (expires_next.tv64 != KTIME_MAX) {
1094 if (tick_program_event(expires_next, 0))
1095 goto retry;
1098 /* Raise softirq ? */
1099 if (raise)
1100 raise_softirq(HRTIMER_SOFTIRQ);
1103 static void run_hrtimer_softirq(struct softirq_action *h)
1105 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1107 spin_lock_irq(&cpu_base->lock);
1109 while (!list_empty(&cpu_base->cb_pending)) {
1110 enum hrtimer_restart (*fn)(struct hrtimer *);
1111 struct hrtimer *timer;
1112 int restart;
1114 timer = list_entry(cpu_base->cb_pending.next,
1115 struct hrtimer, cb_entry);
1117 timer_stats_account_hrtimer(timer);
1119 fn = timer->function;
1120 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1121 spin_unlock_irq(&cpu_base->lock);
1123 restart = fn(timer);
1125 spin_lock_irq(&cpu_base->lock);
1127 timer->state &= ~HRTIMER_STATE_CALLBACK;
1128 if (restart == HRTIMER_RESTART) {
1129 BUG_ON(hrtimer_active(timer));
1131 * Enqueue the timer, allow reprogramming of the event
1132 * device
1134 enqueue_hrtimer(timer, timer->base, 1);
1135 } else if (hrtimer_active(timer)) {
1137 * If the timer was rearmed on another CPU, reprogram
1138 * the event device.
1140 if (timer->base->first == &timer->node)
1141 hrtimer_reprogram(timer, timer->base);
1144 spin_unlock_irq(&cpu_base->lock);
1147 #endif /* CONFIG_HIGH_RES_TIMERS */
1150 * Expire the per base hrtimer-queue:
1152 static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1153 int index)
1155 struct rb_node *node;
1156 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1158 if (!base->first)
1159 return;
1161 if (base->get_softirq_time)
1162 base->softirq_time = base->get_softirq_time();
1164 spin_lock_irq(&cpu_base->lock);
1166 while ((node = base->first)) {
1167 struct hrtimer *timer;
1168 enum hrtimer_restart (*fn)(struct hrtimer *);
1169 int restart;
1171 timer = rb_entry(node, struct hrtimer, node);
1172 if (base->softirq_time.tv64 <= timer->expires.tv64)
1173 break;
1175 #ifdef CONFIG_HIGH_RES_TIMERS
1176 WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
1177 #endif
1178 timer_stats_account_hrtimer(timer);
1180 fn = timer->function;
1181 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1182 spin_unlock_irq(&cpu_base->lock);
1184 restart = fn(timer);
1186 spin_lock_irq(&cpu_base->lock);
1188 timer->state &= ~HRTIMER_STATE_CALLBACK;
1189 if (restart != HRTIMER_NORESTART) {
1190 BUG_ON(hrtimer_active(timer));
1191 enqueue_hrtimer(timer, base, 0);
1194 spin_unlock_irq(&cpu_base->lock);
1198 * Called from timer softirq every jiffy, expire hrtimers:
1200 * For HRT its the fall back code to run the softirq in the timer
1201 * softirq context in case the hrtimer initialization failed or has
1202 * not been done yet.
1204 void hrtimer_run_queues(void)
1206 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1207 int i;
1209 if (hrtimer_hres_active())
1210 return;
1213 * This _is_ ugly: We have to check in the softirq context,
1214 * whether we can switch to highres and / or nohz mode. The
1215 * clocksource switch happens in the timer interrupt with
1216 * xtime_lock held. Notification from there only sets the
1217 * check bit in the tick_oneshot code, otherwise we might
1218 * deadlock vs. xtime_lock.
1220 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1221 if (hrtimer_switch_to_hres())
1222 return;
1224 hrtimer_get_softirq_time(cpu_base);
1226 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1227 run_hrtimer_queue(cpu_base, i);
1231 * Sleep related functions:
1233 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1235 struct hrtimer_sleeper *t =
1236 container_of(timer, struct hrtimer_sleeper, timer);
1237 struct task_struct *task = t->task;
1239 t->task = NULL;
1240 if (task)
1241 wake_up_process(task);
1243 return HRTIMER_NORESTART;
1246 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1248 sl->timer.function = hrtimer_wakeup;
1249 sl->task = task;
1250 #ifdef CONFIG_HIGH_RES_TIMERS
1251 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1252 #endif
1255 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1257 hrtimer_init_sleeper(t, current);
1259 do {
1260 set_current_state(TASK_INTERRUPTIBLE);
1261 hrtimer_start(&t->timer, t->timer.expires, mode);
1263 if (likely(t->task))
1264 schedule();
1266 hrtimer_cancel(&t->timer);
1267 mode = HRTIMER_MODE_ABS;
1269 } while (t->task && !signal_pending(current));
1271 return t->task == NULL;
1274 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1276 struct hrtimer_sleeper t;
1277 struct timespec __user *rmtp;
1278 struct timespec tu;
1279 ktime_t time;
1281 restart->fn = do_no_restart_syscall;
1283 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1284 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1286 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1287 return 0;
1289 rmtp = (struct timespec __user *) restart->arg1;
1290 if (rmtp) {
1291 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1292 if (time.tv64 <= 0)
1293 return 0;
1294 tu = ktime_to_timespec(time);
1295 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1296 return -EFAULT;
1299 restart->fn = hrtimer_nanosleep_restart;
1301 /* The other values in restart are already filled in */
1302 return -ERESTART_RESTARTBLOCK;
1305 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1306 const enum hrtimer_mode mode, const clockid_t clockid)
1308 struct restart_block *restart;
1309 struct hrtimer_sleeper t;
1310 struct timespec tu;
1311 ktime_t rem;
1313 hrtimer_init(&t.timer, clockid, mode);
1314 t.timer.expires = timespec_to_ktime(*rqtp);
1315 if (do_nanosleep(&t, mode))
1316 return 0;
1318 /* Absolute timers do not update the rmtp value and restart: */
1319 if (mode == HRTIMER_MODE_ABS)
1320 return -ERESTARTNOHAND;
1322 if (rmtp) {
1323 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1324 if (rem.tv64 <= 0)
1325 return 0;
1326 tu = ktime_to_timespec(rem);
1327 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1328 return -EFAULT;
1331 restart = &current_thread_info()->restart_block;
1332 restart->fn = hrtimer_nanosleep_restart;
1333 restart->arg0 = (unsigned long) t.timer.base->index;
1334 restart->arg1 = (unsigned long) rmtp;
1335 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1336 restart->arg3 = t.timer.expires.tv64 >> 32;
1338 return -ERESTART_RESTARTBLOCK;
1341 asmlinkage long
1342 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1344 struct timespec tu;
1346 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1347 return -EFAULT;
1349 if (!timespec_valid(&tu))
1350 return -EINVAL;
1352 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1356 * Functions related to boot-time initialization:
1358 static void __devinit init_hrtimers_cpu(int cpu)
1360 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1361 int i;
1363 spin_lock_init(&cpu_base->lock);
1364 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1366 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1367 cpu_base->clock_base[i].cpu_base = cpu_base;
1369 hrtimer_init_hres(cpu_base);
1372 #ifdef CONFIG_HOTPLUG_CPU
1374 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1375 struct hrtimer_clock_base *new_base)
1377 struct hrtimer *timer;
1378 struct rb_node *node;
1380 while ((node = rb_first(&old_base->active))) {
1381 timer = rb_entry(node, struct hrtimer, node);
1382 BUG_ON(hrtimer_callback_running(timer));
1383 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1384 timer->base = new_base;
1386 * Enqueue the timer. Allow reprogramming of the event device
1388 enqueue_hrtimer(timer, new_base, 1);
1392 static void migrate_hrtimers(int cpu)
1394 struct hrtimer_cpu_base *old_base, *new_base;
1395 int i;
1397 BUG_ON(cpu_online(cpu));
1398 old_base = &per_cpu(hrtimer_bases, cpu);
1399 new_base = &get_cpu_var(hrtimer_bases);
1401 tick_cancel_sched_timer(cpu);
1403 local_irq_disable();
1404 double_spin_lock(&new_base->lock, &old_base->lock,
1405 smp_processor_id() < cpu);
1407 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1408 migrate_hrtimer_list(&old_base->clock_base[i],
1409 &new_base->clock_base[i]);
1412 double_spin_unlock(&new_base->lock, &old_base->lock,
1413 smp_processor_id() < cpu);
1414 local_irq_enable();
1415 put_cpu_var(hrtimer_bases);
1417 #endif /* CONFIG_HOTPLUG_CPU */
1419 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1420 unsigned long action, void *hcpu)
1422 unsigned int cpu = (long)hcpu;
1424 switch (action) {
1426 case CPU_UP_PREPARE:
1427 case CPU_UP_PREPARE_FROZEN:
1428 init_hrtimers_cpu(cpu);
1429 break;
1431 #ifdef CONFIG_HOTPLUG_CPU
1432 case CPU_DEAD:
1433 case CPU_DEAD_FROZEN:
1434 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1435 migrate_hrtimers(cpu);
1436 break;
1437 #endif
1439 default:
1440 break;
1443 return NOTIFY_OK;
1446 static struct notifier_block __cpuinitdata hrtimers_nb = {
1447 .notifier_call = hrtimer_cpu_notify,
1450 void __init hrtimers_init(void)
1452 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1453 (void *)(long)smp_processor_id());
1454 register_cpu_notifier(&hrtimers_nb);
1455 #ifdef CONFIG_HIGH_RES_TIMERS
1456 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1457 #endif