ACPI: thinkpad-acpi: add development version tag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / ll_rw_blk.c
blob026cf2438d59dbae42b03cfa87d91e492c5a27e4
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
19 #include <linux/mm.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
35 * for max sense size
37 #include <scsi/scsi_cmnd.h>
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(struct request_queue *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
47 * For the allocated request tables
49 static struct kmem_cache *request_cachep;
52 * For queue allocation
54 static struct kmem_cache *requestq_cachep;
57 * For io context allocations
59 static struct kmem_cache *iocontext_cachep;
62 * Controlling structure to kblockd
64 static struct workqueue_struct *kblockd_workqueue;
66 unsigned long blk_max_low_pfn, blk_max_pfn;
68 EXPORT_SYMBOL(blk_max_low_pfn);
69 EXPORT_SYMBOL(blk_max_pfn);
71 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
73 /* Amount of time in which a process may batch requests */
74 #define BLK_BATCH_TIME (HZ/50UL)
76 /* Number of requests a "batching" process may submit */
77 #define BLK_BATCH_REQ 32
80 * Return the threshold (number of used requests) at which the queue is
81 * considered to be congested. It include a little hysteresis to keep the
82 * context switch rate down.
84 static inline int queue_congestion_on_threshold(struct request_queue *q)
86 return q->nr_congestion_on;
90 * The threshold at which a queue is considered to be uncongested
92 static inline int queue_congestion_off_threshold(struct request_queue *q)
94 return q->nr_congestion_off;
97 static void blk_queue_congestion_threshold(struct request_queue *q)
99 int nr;
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
119 * Will return NULL if the request queue cannot be located.
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
133 * blk_queue_prep_rq - set a prepare_request function for queue
134 * @q: queue
135 * @pfn: prepare_request function
137 * It's possible for a queue to register a prepare_request callback which
138 * is invoked before the request is handed to the request_fn. The goal of
139 * the function is to prepare a request for I/O, it can be used to build a
140 * cdb from the request data for instance.
143 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
145 q->prep_rq_fn = pfn;
148 EXPORT_SYMBOL(blk_queue_prep_rq);
151 * blk_queue_merge_bvec - set a merge_bvec function for queue
152 * @q: queue
153 * @mbfn: merge_bvec_fn
155 * Usually queues have static limitations on the max sectors or segments that
156 * we can put in a request. Stacking drivers may have some settings that
157 * are dynamic, and thus we have to query the queue whether it is ok to
158 * add a new bio_vec to a bio at a given offset or not. If the block device
159 * has such limitations, it needs to register a merge_bvec_fn to control
160 * the size of bio's sent to it. Note that a block device *must* allow a
161 * single page to be added to an empty bio. The block device driver may want
162 * to use the bio_split() function to deal with these bio's. By default
163 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
164 * honored.
166 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
168 q->merge_bvec_fn = mbfn;
171 EXPORT_SYMBOL(blk_queue_merge_bvec);
173 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
175 q->softirq_done_fn = fn;
178 EXPORT_SYMBOL(blk_queue_softirq_done);
181 * blk_queue_make_request - define an alternate make_request function for a device
182 * @q: the request queue for the device to be affected
183 * @mfn: the alternate make_request function
185 * Description:
186 * The normal way for &struct bios to be passed to a device
187 * driver is for them to be collected into requests on a request
188 * queue, and then to allow the device driver to select requests
189 * off that queue when it is ready. This works well for many block
190 * devices. However some block devices (typically virtual devices
191 * such as md or lvm) do not benefit from the processing on the
192 * request queue, and are served best by having the requests passed
193 * directly to them. This can be achieved by providing a function
194 * to blk_queue_make_request().
196 * Caveat:
197 * The driver that does this *must* be able to deal appropriately
198 * with buffers in "highmemory". This can be accomplished by either calling
199 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
200 * blk_queue_bounce() to create a buffer in normal memory.
202 void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
205 * set defaults
207 q->nr_requests = BLKDEV_MAX_RQ;
208 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
209 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
210 q->make_request_fn = mfn;
211 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
212 q->backing_dev_info.state = 0;
213 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
214 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
215 blk_queue_hardsect_size(q, 512);
216 blk_queue_dma_alignment(q, 511);
217 blk_queue_congestion_threshold(q);
218 q->nr_batching = BLK_BATCH_REQ;
220 q->unplug_thresh = 4; /* hmm */
221 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
222 if (q->unplug_delay == 0)
223 q->unplug_delay = 1;
225 INIT_WORK(&q->unplug_work, blk_unplug_work);
227 q->unplug_timer.function = blk_unplug_timeout;
228 q->unplug_timer.data = (unsigned long)q;
231 * by default assume old behaviour and bounce for any highmem page
233 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
236 EXPORT_SYMBOL(blk_queue_make_request);
238 static void rq_init(struct request_queue *q, struct request *rq)
240 INIT_LIST_HEAD(&rq->queuelist);
241 INIT_LIST_HEAD(&rq->donelist);
243 rq->errors = 0;
244 rq->bio = rq->biotail = NULL;
245 INIT_HLIST_NODE(&rq->hash);
246 RB_CLEAR_NODE(&rq->rb_node);
247 rq->ioprio = 0;
248 rq->buffer = NULL;
249 rq->ref_count = 1;
250 rq->q = q;
251 rq->special = NULL;
252 rq->data_len = 0;
253 rq->data = NULL;
254 rq->nr_phys_segments = 0;
255 rq->sense = NULL;
256 rq->end_io = NULL;
257 rq->end_io_data = NULL;
258 rq->completion_data = NULL;
259 rq->next_rq = NULL;
263 * blk_queue_ordered - does this queue support ordered writes
264 * @q: the request queue
265 * @ordered: one of QUEUE_ORDERED_*
266 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
268 * Description:
269 * For journalled file systems, doing ordered writes on a commit
270 * block instead of explicitly doing wait_on_buffer (which is bad
271 * for performance) can be a big win. Block drivers supporting this
272 * feature should call this function and indicate so.
275 int blk_queue_ordered(struct request_queue *q, unsigned ordered,
276 prepare_flush_fn *prepare_flush_fn)
278 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
279 prepare_flush_fn == NULL) {
280 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
281 return -EINVAL;
284 if (ordered != QUEUE_ORDERED_NONE &&
285 ordered != QUEUE_ORDERED_DRAIN &&
286 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
287 ordered != QUEUE_ORDERED_DRAIN_FUA &&
288 ordered != QUEUE_ORDERED_TAG &&
289 ordered != QUEUE_ORDERED_TAG_FLUSH &&
290 ordered != QUEUE_ORDERED_TAG_FUA) {
291 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
292 return -EINVAL;
295 q->ordered = ordered;
296 q->next_ordered = ordered;
297 q->prepare_flush_fn = prepare_flush_fn;
299 return 0;
302 EXPORT_SYMBOL(blk_queue_ordered);
305 * blk_queue_issue_flush_fn - set function for issuing a flush
306 * @q: the request queue
307 * @iff: the function to be called issuing the flush
309 * Description:
310 * If a driver supports issuing a flush command, the support is notified
311 * to the block layer by defining it through this call.
314 void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
316 q->issue_flush_fn = iff;
319 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
322 * Cache flushing for ordered writes handling
324 inline unsigned blk_ordered_cur_seq(struct request_queue *q)
326 if (!q->ordseq)
327 return 0;
328 return 1 << ffz(q->ordseq);
331 unsigned blk_ordered_req_seq(struct request *rq)
333 struct request_queue *q = rq->q;
335 BUG_ON(q->ordseq == 0);
337 if (rq == &q->pre_flush_rq)
338 return QUEUE_ORDSEQ_PREFLUSH;
339 if (rq == &q->bar_rq)
340 return QUEUE_ORDSEQ_BAR;
341 if (rq == &q->post_flush_rq)
342 return QUEUE_ORDSEQ_POSTFLUSH;
345 * !fs requests don't need to follow barrier ordering. Always
346 * put them at the front. This fixes the following deadlock.
348 * http://thread.gmane.org/gmane.linux.kernel/537473
350 if (!blk_fs_request(rq))
351 return QUEUE_ORDSEQ_DRAIN;
353 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
354 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
355 return QUEUE_ORDSEQ_DRAIN;
356 else
357 return QUEUE_ORDSEQ_DONE;
360 void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
362 struct request *rq;
363 int uptodate;
365 if (error && !q->orderr)
366 q->orderr = error;
368 BUG_ON(q->ordseq & seq);
369 q->ordseq |= seq;
371 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
372 return;
375 * Okay, sequence complete.
377 rq = q->orig_bar_rq;
378 uptodate = q->orderr ? q->orderr : 1;
380 q->ordseq = 0;
382 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
383 end_that_request_last(rq, uptodate);
386 static void pre_flush_end_io(struct request *rq, int error)
388 elv_completed_request(rq->q, rq);
389 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
392 static void bar_end_io(struct request *rq, int error)
394 elv_completed_request(rq->q, rq);
395 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
398 static void post_flush_end_io(struct request *rq, int error)
400 elv_completed_request(rq->q, rq);
401 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
404 static void queue_flush(struct request_queue *q, unsigned which)
406 struct request *rq;
407 rq_end_io_fn *end_io;
409 if (which == QUEUE_ORDERED_PREFLUSH) {
410 rq = &q->pre_flush_rq;
411 end_io = pre_flush_end_io;
412 } else {
413 rq = &q->post_flush_rq;
414 end_io = post_flush_end_io;
417 rq->cmd_flags = REQ_HARDBARRIER;
418 rq_init(q, rq);
419 rq->elevator_private = NULL;
420 rq->elevator_private2 = NULL;
421 rq->rq_disk = q->bar_rq.rq_disk;
422 rq->end_io = end_io;
423 q->prepare_flush_fn(q, rq);
425 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
428 static inline struct request *start_ordered(struct request_queue *q,
429 struct request *rq)
431 q->bi_size = 0;
432 q->orderr = 0;
433 q->ordered = q->next_ordered;
434 q->ordseq |= QUEUE_ORDSEQ_STARTED;
437 * Prep proxy barrier request.
439 blkdev_dequeue_request(rq);
440 q->orig_bar_rq = rq;
441 rq = &q->bar_rq;
442 rq->cmd_flags = 0;
443 rq_init(q, rq);
444 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
445 rq->cmd_flags |= REQ_RW;
446 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
447 rq->elevator_private = NULL;
448 rq->elevator_private2 = NULL;
449 init_request_from_bio(rq, q->orig_bar_rq->bio);
450 rq->end_io = bar_end_io;
453 * Queue ordered sequence. As we stack them at the head, we
454 * need to queue in reverse order. Note that we rely on that
455 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
456 * request gets inbetween ordered sequence.
458 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
459 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
460 else
461 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
463 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
465 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
466 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
467 rq = &q->pre_flush_rq;
468 } else
469 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
471 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
472 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
473 else
474 rq = NULL;
476 return rq;
479 int blk_do_ordered(struct request_queue *q, struct request **rqp)
481 struct request *rq = *rqp;
482 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
484 if (!q->ordseq) {
485 if (!is_barrier)
486 return 1;
488 if (q->next_ordered != QUEUE_ORDERED_NONE) {
489 *rqp = start_ordered(q, rq);
490 return 1;
491 } else {
493 * This can happen when the queue switches to
494 * ORDERED_NONE while this request is on it.
496 blkdev_dequeue_request(rq);
497 end_that_request_first(rq, -EOPNOTSUPP,
498 rq->hard_nr_sectors);
499 end_that_request_last(rq, -EOPNOTSUPP);
500 *rqp = NULL;
501 return 0;
506 * Ordered sequence in progress
509 /* Special requests are not subject to ordering rules. */
510 if (!blk_fs_request(rq) &&
511 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
512 return 1;
514 if (q->ordered & QUEUE_ORDERED_TAG) {
515 /* Ordered by tag. Blocking the next barrier is enough. */
516 if (is_barrier && rq != &q->bar_rq)
517 *rqp = NULL;
518 } else {
519 /* Ordered by draining. Wait for turn. */
520 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
521 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
522 *rqp = NULL;
525 return 1;
528 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
530 struct request_queue *q = bio->bi_private;
533 * This is dry run, restore bio_sector and size. We'll finish
534 * this request again with the original bi_end_io after an
535 * error occurs or post flush is complete.
537 q->bi_size += bytes;
539 if (bio->bi_size)
540 return 1;
542 /* Reset bio */
543 set_bit(BIO_UPTODATE, &bio->bi_flags);
544 bio->bi_size = q->bi_size;
545 bio->bi_sector -= (q->bi_size >> 9);
546 q->bi_size = 0;
548 return 0;
551 static int ordered_bio_endio(struct request *rq, struct bio *bio,
552 unsigned int nbytes, int error)
554 struct request_queue *q = rq->q;
555 bio_end_io_t *endio;
556 void *private;
558 if (&q->bar_rq != rq)
559 return 0;
562 * Okay, this is the barrier request in progress, dry finish it.
564 if (error && !q->orderr)
565 q->orderr = error;
567 endio = bio->bi_end_io;
568 private = bio->bi_private;
569 bio->bi_end_io = flush_dry_bio_endio;
570 bio->bi_private = q;
572 bio_endio(bio, nbytes, error);
574 bio->bi_end_io = endio;
575 bio->bi_private = private;
577 return 1;
581 * blk_queue_bounce_limit - set bounce buffer limit for queue
582 * @q: the request queue for the device
583 * @dma_addr: bus address limit
585 * Description:
586 * Different hardware can have different requirements as to what pages
587 * it can do I/O directly to. A low level driver can call
588 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
589 * buffers for doing I/O to pages residing above @page.
591 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
593 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
594 int dma = 0;
596 q->bounce_gfp = GFP_NOIO;
597 #if BITS_PER_LONG == 64
598 /* Assume anything <= 4GB can be handled by IOMMU.
599 Actually some IOMMUs can handle everything, but I don't
600 know of a way to test this here. */
601 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
602 dma = 1;
603 q->bounce_pfn = max_low_pfn;
604 #else
605 if (bounce_pfn < blk_max_low_pfn)
606 dma = 1;
607 q->bounce_pfn = bounce_pfn;
608 #endif
609 if (dma) {
610 init_emergency_isa_pool();
611 q->bounce_gfp = GFP_NOIO | GFP_DMA;
612 q->bounce_pfn = bounce_pfn;
616 EXPORT_SYMBOL(blk_queue_bounce_limit);
619 * blk_queue_max_sectors - set max sectors for a request for this queue
620 * @q: the request queue for the device
621 * @max_sectors: max sectors in the usual 512b unit
623 * Description:
624 * Enables a low level driver to set an upper limit on the size of
625 * received requests.
627 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
629 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
630 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
634 if (BLK_DEF_MAX_SECTORS > max_sectors)
635 q->max_hw_sectors = q->max_sectors = max_sectors;
636 else {
637 q->max_sectors = BLK_DEF_MAX_SECTORS;
638 q->max_hw_sectors = max_sectors;
642 EXPORT_SYMBOL(blk_queue_max_sectors);
645 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
646 * @q: the request queue for the device
647 * @max_segments: max number of segments
649 * Description:
650 * Enables a low level driver to set an upper limit on the number of
651 * physical data segments in a request. This would be the largest sized
652 * scatter list the driver could handle.
654 void blk_queue_max_phys_segments(struct request_queue *q,
655 unsigned short max_segments)
657 if (!max_segments) {
658 max_segments = 1;
659 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
662 q->max_phys_segments = max_segments;
665 EXPORT_SYMBOL(blk_queue_max_phys_segments);
668 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
669 * @q: the request queue for the device
670 * @max_segments: max number of segments
672 * Description:
673 * Enables a low level driver to set an upper limit on the number of
674 * hw data segments in a request. This would be the largest number of
675 * address/length pairs the host adapter can actually give as once
676 * to the device.
678 void blk_queue_max_hw_segments(struct request_queue *q,
679 unsigned short max_segments)
681 if (!max_segments) {
682 max_segments = 1;
683 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
686 q->max_hw_segments = max_segments;
689 EXPORT_SYMBOL(blk_queue_max_hw_segments);
692 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
693 * @q: the request queue for the device
694 * @max_size: max size of segment in bytes
696 * Description:
697 * Enables a low level driver to set an upper limit on the size of a
698 * coalesced segment
700 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
702 if (max_size < PAGE_CACHE_SIZE) {
703 max_size = PAGE_CACHE_SIZE;
704 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
707 q->max_segment_size = max_size;
710 EXPORT_SYMBOL(blk_queue_max_segment_size);
713 * blk_queue_hardsect_size - set hardware sector size for the queue
714 * @q: the request queue for the device
715 * @size: the hardware sector size, in bytes
717 * Description:
718 * This should typically be set to the lowest possible sector size
719 * that the hardware can operate on (possible without reverting to
720 * even internal read-modify-write operations). Usually the default
721 * of 512 covers most hardware.
723 void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
725 q->hardsect_size = size;
728 EXPORT_SYMBOL(blk_queue_hardsect_size);
731 * Returns the minimum that is _not_ zero, unless both are zero.
733 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
736 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
737 * @t: the stacking driver (top)
738 * @b: the underlying device (bottom)
740 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
742 /* zero is "infinity" */
743 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
744 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
746 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
747 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
748 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
749 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
750 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
751 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
754 EXPORT_SYMBOL(blk_queue_stack_limits);
757 * blk_queue_segment_boundary - set boundary rules for segment merging
758 * @q: the request queue for the device
759 * @mask: the memory boundary mask
761 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
763 if (mask < PAGE_CACHE_SIZE - 1) {
764 mask = PAGE_CACHE_SIZE - 1;
765 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
768 q->seg_boundary_mask = mask;
771 EXPORT_SYMBOL(blk_queue_segment_boundary);
774 * blk_queue_dma_alignment - set dma length and memory alignment
775 * @q: the request queue for the device
776 * @mask: alignment mask
778 * description:
779 * set required memory and length aligment for direct dma transactions.
780 * this is used when buiding direct io requests for the queue.
783 void blk_queue_dma_alignment(struct request_queue *q, int mask)
785 q->dma_alignment = mask;
788 EXPORT_SYMBOL(blk_queue_dma_alignment);
791 * blk_queue_find_tag - find a request by its tag and queue
792 * @q: The request queue for the device
793 * @tag: The tag of the request
795 * Notes:
796 * Should be used when a device returns a tag and you want to match
797 * it with a request.
799 * no locks need be held.
801 struct request *blk_queue_find_tag(struct request_queue *q, int tag)
803 return blk_map_queue_find_tag(q->queue_tags, tag);
806 EXPORT_SYMBOL(blk_queue_find_tag);
809 * __blk_free_tags - release a given set of tag maintenance info
810 * @bqt: the tag map to free
812 * Tries to free the specified @bqt@. Returns true if it was
813 * actually freed and false if there are still references using it
815 static int __blk_free_tags(struct blk_queue_tag *bqt)
817 int retval;
819 retval = atomic_dec_and_test(&bqt->refcnt);
820 if (retval) {
821 BUG_ON(bqt->busy);
823 kfree(bqt->tag_index);
824 bqt->tag_index = NULL;
826 kfree(bqt->tag_map);
827 bqt->tag_map = NULL;
829 kfree(bqt);
833 return retval;
837 * __blk_queue_free_tags - release tag maintenance info
838 * @q: the request queue for the device
840 * Notes:
841 * blk_cleanup_queue() will take care of calling this function, if tagging
842 * has been used. So there's no need to call this directly.
844 static void __blk_queue_free_tags(struct request_queue *q)
846 struct blk_queue_tag *bqt = q->queue_tags;
848 if (!bqt)
849 return;
851 __blk_free_tags(bqt);
853 q->queue_tags = NULL;
854 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
859 * blk_free_tags - release a given set of tag maintenance info
860 * @bqt: the tag map to free
862 * For externally managed @bqt@ frees the map. Callers of this
863 * function must guarantee to have released all the queues that
864 * might have been using this tag map.
866 void blk_free_tags(struct blk_queue_tag *bqt)
868 if (unlikely(!__blk_free_tags(bqt)))
869 BUG();
871 EXPORT_SYMBOL(blk_free_tags);
874 * blk_queue_free_tags - release tag maintenance info
875 * @q: the request queue for the device
877 * Notes:
878 * This is used to disabled tagged queuing to a device, yet leave
879 * queue in function.
881 void blk_queue_free_tags(struct request_queue *q)
883 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
886 EXPORT_SYMBOL(blk_queue_free_tags);
888 static int
889 init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
891 struct request **tag_index;
892 unsigned long *tag_map;
893 int nr_ulongs;
895 if (q && depth > q->nr_requests * 2) {
896 depth = q->nr_requests * 2;
897 printk(KERN_ERR "%s: adjusted depth to %d\n",
898 __FUNCTION__, depth);
901 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
902 if (!tag_index)
903 goto fail;
905 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
906 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
907 if (!tag_map)
908 goto fail;
910 tags->real_max_depth = depth;
911 tags->max_depth = depth;
912 tags->tag_index = tag_index;
913 tags->tag_map = tag_map;
915 return 0;
916 fail:
917 kfree(tag_index);
918 return -ENOMEM;
921 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
922 int depth)
924 struct blk_queue_tag *tags;
926 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
927 if (!tags)
928 goto fail;
930 if (init_tag_map(q, tags, depth))
931 goto fail;
933 tags->busy = 0;
934 atomic_set(&tags->refcnt, 1);
935 return tags;
936 fail:
937 kfree(tags);
938 return NULL;
942 * blk_init_tags - initialize the tag info for an external tag map
943 * @depth: the maximum queue depth supported
944 * @tags: the tag to use
946 struct blk_queue_tag *blk_init_tags(int depth)
948 return __blk_queue_init_tags(NULL, depth);
950 EXPORT_SYMBOL(blk_init_tags);
953 * blk_queue_init_tags - initialize the queue tag info
954 * @q: the request queue for the device
955 * @depth: the maximum queue depth supported
956 * @tags: the tag to use
958 int blk_queue_init_tags(struct request_queue *q, int depth,
959 struct blk_queue_tag *tags)
961 int rc;
963 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
965 if (!tags && !q->queue_tags) {
966 tags = __blk_queue_init_tags(q, depth);
968 if (!tags)
969 goto fail;
970 } else if (q->queue_tags) {
971 if ((rc = blk_queue_resize_tags(q, depth)))
972 return rc;
973 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
974 return 0;
975 } else
976 atomic_inc(&tags->refcnt);
979 * assign it, all done
981 q->queue_tags = tags;
982 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
983 INIT_LIST_HEAD(&q->tag_busy_list);
984 return 0;
985 fail:
986 kfree(tags);
987 return -ENOMEM;
990 EXPORT_SYMBOL(blk_queue_init_tags);
993 * blk_queue_resize_tags - change the queueing depth
994 * @q: the request queue for the device
995 * @new_depth: the new max command queueing depth
997 * Notes:
998 * Must be called with the queue lock held.
1000 int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1002 struct blk_queue_tag *bqt = q->queue_tags;
1003 struct request **tag_index;
1004 unsigned long *tag_map;
1005 int max_depth, nr_ulongs;
1007 if (!bqt)
1008 return -ENXIO;
1011 * if we already have large enough real_max_depth. just
1012 * adjust max_depth. *NOTE* as requests with tag value
1013 * between new_depth and real_max_depth can be in-flight, tag
1014 * map can not be shrunk blindly here.
1016 if (new_depth <= bqt->real_max_depth) {
1017 bqt->max_depth = new_depth;
1018 return 0;
1022 * Currently cannot replace a shared tag map with a new
1023 * one, so error out if this is the case
1025 if (atomic_read(&bqt->refcnt) != 1)
1026 return -EBUSY;
1029 * save the old state info, so we can copy it back
1031 tag_index = bqt->tag_index;
1032 tag_map = bqt->tag_map;
1033 max_depth = bqt->real_max_depth;
1035 if (init_tag_map(q, bqt, new_depth))
1036 return -ENOMEM;
1038 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1039 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1040 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1042 kfree(tag_index);
1043 kfree(tag_map);
1044 return 0;
1047 EXPORT_SYMBOL(blk_queue_resize_tags);
1050 * blk_queue_end_tag - end tag operations for a request
1051 * @q: the request queue for the device
1052 * @rq: the request that has completed
1054 * Description:
1055 * Typically called when end_that_request_first() returns 0, meaning
1056 * all transfers have been done for a request. It's important to call
1057 * this function before end_that_request_last(), as that will put the
1058 * request back on the free list thus corrupting the internal tag list.
1060 * Notes:
1061 * queue lock must be held.
1063 void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1065 struct blk_queue_tag *bqt = q->queue_tags;
1066 int tag = rq->tag;
1068 BUG_ON(tag == -1);
1070 if (unlikely(tag >= bqt->real_max_depth))
1072 * This can happen after tag depth has been reduced.
1073 * FIXME: how about a warning or info message here?
1075 return;
1077 list_del_init(&rq->queuelist);
1078 rq->cmd_flags &= ~REQ_QUEUED;
1079 rq->tag = -1;
1081 if (unlikely(bqt->tag_index[tag] == NULL))
1082 printk(KERN_ERR "%s: tag %d is missing\n",
1083 __FUNCTION__, tag);
1085 bqt->tag_index[tag] = NULL;
1088 * We use test_and_clear_bit's memory ordering properties here.
1089 * The tag_map bit acts as a lock for tag_index[bit], so we need
1090 * a barrer before clearing the bit (precisely: release semantics).
1091 * Could use clear_bit_unlock when it is merged.
1093 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1094 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1095 __FUNCTION__, tag);
1096 return;
1099 bqt->busy--;
1102 EXPORT_SYMBOL(blk_queue_end_tag);
1105 * blk_queue_start_tag - find a free tag and assign it
1106 * @q: the request queue for the device
1107 * @rq: the block request that needs tagging
1109 * Description:
1110 * This can either be used as a stand-alone helper, or possibly be
1111 * assigned as the queue &prep_rq_fn (in which case &struct request
1112 * automagically gets a tag assigned). Note that this function
1113 * assumes that any type of request can be queued! if this is not
1114 * true for your device, you must check the request type before
1115 * calling this function. The request will also be removed from
1116 * the request queue, so it's the drivers responsibility to readd
1117 * it if it should need to be restarted for some reason.
1119 * Notes:
1120 * queue lock must be held.
1122 int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1124 struct blk_queue_tag *bqt = q->queue_tags;
1125 int tag;
1127 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1128 printk(KERN_ERR
1129 "%s: request %p for device [%s] already tagged %d",
1130 __FUNCTION__, rq,
1131 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1132 BUG();
1136 * Protect against shared tag maps, as we may not have exclusive
1137 * access to the tag map.
1139 do {
1140 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1141 if (tag >= bqt->max_depth)
1142 return 1;
1144 } while (test_and_set_bit(tag, bqt->tag_map));
1146 * We rely on test_and_set_bit providing lock memory ordering semantics
1147 * (could use test_and_set_bit_lock when it is merged).
1150 rq->cmd_flags |= REQ_QUEUED;
1151 rq->tag = tag;
1152 bqt->tag_index[tag] = rq;
1153 blkdev_dequeue_request(rq);
1154 list_add(&rq->queuelist, &q->tag_busy_list);
1155 bqt->busy++;
1156 return 0;
1159 EXPORT_SYMBOL(blk_queue_start_tag);
1162 * blk_queue_invalidate_tags - invalidate all pending tags
1163 * @q: the request queue for the device
1165 * Description:
1166 * Hardware conditions may dictate a need to stop all pending requests.
1167 * In this case, we will safely clear the block side of the tag queue and
1168 * readd all requests to the request queue in the right order.
1170 * Notes:
1171 * queue lock must be held.
1173 void blk_queue_invalidate_tags(struct request_queue *q)
1175 struct list_head *tmp, *n;
1176 struct request *rq;
1178 list_for_each_safe(tmp, n, &q->tag_busy_list) {
1179 rq = list_entry_rq(tmp);
1181 if (rq->tag == -1) {
1182 printk(KERN_ERR
1183 "%s: bad tag found on list\n", __FUNCTION__);
1184 list_del_init(&rq->queuelist);
1185 rq->cmd_flags &= ~REQ_QUEUED;
1186 } else
1187 blk_queue_end_tag(q, rq);
1189 rq->cmd_flags &= ~REQ_STARTED;
1190 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1194 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1196 void blk_dump_rq_flags(struct request *rq, char *msg)
1198 int bit;
1200 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1201 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1202 rq->cmd_flags);
1204 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1205 rq->nr_sectors,
1206 rq->current_nr_sectors);
1207 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1209 if (blk_pc_request(rq)) {
1210 printk("cdb: ");
1211 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1212 printk("%02x ", rq->cmd[bit]);
1213 printk("\n");
1217 EXPORT_SYMBOL(blk_dump_rq_flags);
1219 void blk_recount_segments(struct request_queue *q, struct bio *bio)
1221 struct bio_vec *bv, *bvprv = NULL;
1222 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1223 int high, highprv = 1;
1225 if (unlikely(!bio->bi_io_vec))
1226 return;
1228 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1229 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1230 bio_for_each_segment(bv, bio, i) {
1232 * the trick here is making sure that a high page is never
1233 * considered part of another segment, since that might
1234 * change with the bounce page.
1236 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1237 if (high || highprv)
1238 goto new_hw_segment;
1239 if (cluster) {
1240 if (seg_size + bv->bv_len > q->max_segment_size)
1241 goto new_segment;
1242 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1243 goto new_segment;
1244 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1245 goto new_segment;
1246 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1247 goto new_hw_segment;
1249 seg_size += bv->bv_len;
1250 hw_seg_size += bv->bv_len;
1251 bvprv = bv;
1252 continue;
1254 new_segment:
1255 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1256 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1257 hw_seg_size += bv->bv_len;
1258 } else {
1259 new_hw_segment:
1260 if (hw_seg_size > bio->bi_hw_front_size)
1261 bio->bi_hw_front_size = hw_seg_size;
1262 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1263 nr_hw_segs++;
1266 nr_phys_segs++;
1267 bvprv = bv;
1268 seg_size = bv->bv_len;
1269 highprv = high;
1271 if (hw_seg_size > bio->bi_hw_back_size)
1272 bio->bi_hw_back_size = hw_seg_size;
1273 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1274 bio->bi_hw_front_size = hw_seg_size;
1275 bio->bi_phys_segments = nr_phys_segs;
1276 bio->bi_hw_segments = nr_hw_segs;
1277 bio->bi_flags |= (1 << BIO_SEG_VALID);
1279 EXPORT_SYMBOL(blk_recount_segments);
1281 static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1282 struct bio *nxt)
1284 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1285 return 0;
1287 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1288 return 0;
1289 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1290 return 0;
1293 * bio and nxt are contigous in memory, check if the queue allows
1294 * these two to be merged into one
1296 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1297 return 1;
1299 return 0;
1302 static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1303 struct bio *nxt)
1305 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1306 blk_recount_segments(q, bio);
1307 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1308 blk_recount_segments(q, nxt);
1309 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1310 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1311 return 0;
1312 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1313 return 0;
1315 return 1;
1319 * map a request to scatterlist, return number of sg entries setup. Caller
1320 * must make sure sg can hold rq->nr_phys_segments entries
1322 int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1323 struct scatterlist *sg)
1325 struct bio_vec *bvec, *bvprv;
1326 struct bio *bio;
1327 int nsegs, i, cluster;
1329 nsegs = 0;
1330 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1333 * for each bio in rq
1335 bvprv = NULL;
1336 rq_for_each_bio(bio, rq) {
1338 * for each segment in bio
1340 bio_for_each_segment(bvec, bio, i) {
1341 int nbytes = bvec->bv_len;
1343 if (bvprv && cluster) {
1344 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1345 goto new_segment;
1347 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1348 goto new_segment;
1349 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1350 goto new_segment;
1352 sg[nsegs - 1].length += nbytes;
1353 } else {
1354 new_segment:
1355 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1356 sg[nsegs].page = bvec->bv_page;
1357 sg[nsegs].length = nbytes;
1358 sg[nsegs].offset = bvec->bv_offset;
1360 nsegs++;
1362 bvprv = bvec;
1363 } /* segments in bio */
1364 } /* bios in rq */
1366 return nsegs;
1369 EXPORT_SYMBOL(blk_rq_map_sg);
1372 * the standard queue merge functions, can be overridden with device
1373 * specific ones if so desired
1376 static inline int ll_new_mergeable(struct request_queue *q,
1377 struct request *req,
1378 struct bio *bio)
1380 int nr_phys_segs = bio_phys_segments(q, bio);
1382 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1383 req->cmd_flags |= REQ_NOMERGE;
1384 if (req == q->last_merge)
1385 q->last_merge = NULL;
1386 return 0;
1390 * A hw segment is just getting larger, bump just the phys
1391 * counter.
1393 req->nr_phys_segments += nr_phys_segs;
1394 return 1;
1397 static inline int ll_new_hw_segment(struct request_queue *q,
1398 struct request *req,
1399 struct bio *bio)
1401 int nr_hw_segs = bio_hw_segments(q, bio);
1402 int nr_phys_segs = bio_phys_segments(q, bio);
1404 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1405 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1406 req->cmd_flags |= REQ_NOMERGE;
1407 if (req == q->last_merge)
1408 q->last_merge = NULL;
1409 return 0;
1413 * This will form the start of a new hw segment. Bump both
1414 * counters.
1416 req->nr_hw_segments += nr_hw_segs;
1417 req->nr_phys_segments += nr_phys_segs;
1418 return 1;
1421 int ll_back_merge_fn(struct request_queue *q, struct request *req, struct bio *bio)
1423 unsigned short max_sectors;
1424 int len;
1426 if (unlikely(blk_pc_request(req)))
1427 max_sectors = q->max_hw_sectors;
1428 else
1429 max_sectors = q->max_sectors;
1431 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1432 req->cmd_flags |= REQ_NOMERGE;
1433 if (req == q->last_merge)
1434 q->last_merge = NULL;
1435 return 0;
1437 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1438 blk_recount_segments(q, req->biotail);
1439 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1440 blk_recount_segments(q, bio);
1441 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1442 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1443 !BIOVEC_VIRT_OVERSIZE(len)) {
1444 int mergeable = ll_new_mergeable(q, req, bio);
1446 if (mergeable) {
1447 if (req->nr_hw_segments == 1)
1448 req->bio->bi_hw_front_size = len;
1449 if (bio->bi_hw_segments == 1)
1450 bio->bi_hw_back_size = len;
1452 return mergeable;
1455 return ll_new_hw_segment(q, req, bio);
1457 EXPORT_SYMBOL(ll_back_merge_fn);
1459 static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1460 struct bio *bio)
1462 unsigned short max_sectors;
1463 int len;
1465 if (unlikely(blk_pc_request(req)))
1466 max_sectors = q->max_hw_sectors;
1467 else
1468 max_sectors = q->max_sectors;
1471 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1472 req->cmd_flags |= REQ_NOMERGE;
1473 if (req == q->last_merge)
1474 q->last_merge = NULL;
1475 return 0;
1477 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1478 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1479 blk_recount_segments(q, bio);
1480 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1481 blk_recount_segments(q, req->bio);
1482 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1483 !BIOVEC_VIRT_OVERSIZE(len)) {
1484 int mergeable = ll_new_mergeable(q, req, bio);
1486 if (mergeable) {
1487 if (bio->bi_hw_segments == 1)
1488 bio->bi_hw_front_size = len;
1489 if (req->nr_hw_segments == 1)
1490 req->biotail->bi_hw_back_size = len;
1492 return mergeable;
1495 return ll_new_hw_segment(q, req, bio);
1498 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1499 struct request *next)
1501 int total_phys_segments;
1502 int total_hw_segments;
1505 * First check if the either of the requests are re-queued
1506 * requests. Can't merge them if they are.
1508 if (req->special || next->special)
1509 return 0;
1512 * Will it become too large?
1514 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1515 return 0;
1517 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1518 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1519 total_phys_segments--;
1521 if (total_phys_segments > q->max_phys_segments)
1522 return 0;
1524 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1525 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1526 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1528 * propagate the combined length to the end of the requests
1530 if (req->nr_hw_segments == 1)
1531 req->bio->bi_hw_front_size = len;
1532 if (next->nr_hw_segments == 1)
1533 next->biotail->bi_hw_back_size = len;
1534 total_hw_segments--;
1537 if (total_hw_segments > q->max_hw_segments)
1538 return 0;
1540 /* Merge is OK... */
1541 req->nr_phys_segments = total_phys_segments;
1542 req->nr_hw_segments = total_hw_segments;
1543 return 1;
1547 * "plug" the device if there are no outstanding requests: this will
1548 * force the transfer to start only after we have put all the requests
1549 * on the list.
1551 * This is called with interrupts off and no requests on the queue and
1552 * with the queue lock held.
1554 void blk_plug_device(struct request_queue *q)
1556 WARN_ON(!irqs_disabled());
1559 * don't plug a stopped queue, it must be paired with blk_start_queue()
1560 * which will restart the queueing
1562 if (blk_queue_stopped(q))
1563 return;
1565 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1566 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1567 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1571 EXPORT_SYMBOL(blk_plug_device);
1574 * remove the queue from the plugged list, if present. called with
1575 * queue lock held and interrupts disabled.
1577 int blk_remove_plug(struct request_queue *q)
1579 WARN_ON(!irqs_disabled());
1581 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1582 return 0;
1584 del_timer(&q->unplug_timer);
1585 return 1;
1588 EXPORT_SYMBOL(blk_remove_plug);
1591 * remove the plug and let it rip..
1593 void __generic_unplug_device(struct request_queue *q)
1595 if (unlikely(blk_queue_stopped(q)))
1596 return;
1598 if (!blk_remove_plug(q))
1599 return;
1601 q->request_fn(q);
1603 EXPORT_SYMBOL(__generic_unplug_device);
1606 * generic_unplug_device - fire a request queue
1607 * @q: The &struct request_queue in question
1609 * Description:
1610 * Linux uses plugging to build bigger requests queues before letting
1611 * the device have at them. If a queue is plugged, the I/O scheduler
1612 * is still adding and merging requests on the queue. Once the queue
1613 * gets unplugged, the request_fn defined for the queue is invoked and
1614 * transfers started.
1616 void generic_unplug_device(struct request_queue *q)
1618 spin_lock_irq(q->queue_lock);
1619 __generic_unplug_device(q);
1620 spin_unlock_irq(q->queue_lock);
1622 EXPORT_SYMBOL(generic_unplug_device);
1624 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1625 struct page *page)
1627 struct request_queue *q = bdi->unplug_io_data;
1630 * devices don't necessarily have an ->unplug_fn defined
1632 if (q->unplug_fn) {
1633 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1634 q->rq.count[READ] + q->rq.count[WRITE]);
1636 q->unplug_fn(q);
1640 static void blk_unplug_work(struct work_struct *work)
1642 struct request_queue *q =
1643 container_of(work, struct request_queue, unplug_work);
1645 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1646 q->rq.count[READ] + q->rq.count[WRITE]);
1648 q->unplug_fn(q);
1651 static void blk_unplug_timeout(unsigned long data)
1653 struct request_queue *q = (struct request_queue *)data;
1655 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1656 q->rq.count[READ] + q->rq.count[WRITE]);
1658 kblockd_schedule_work(&q->unplug_work);
1662 * blk_start_queue - restart a previously stopped queue
1663 * @q: The &struct request_queue in question
1665 * Description:
1666 * blk_start_queue() will clear the stop flag on the queue, and call
1667 * the request_fn for the queue if it was in a stopped state when
1668 * entered. Also see blk_stop_queue(). Queue lock must be held.
1670 void blk_start_queue(struct request_queue *q)
1672 WARN_ON(!irqs_disabled());
1674 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1677 * one level of recursion is ok and is much faster than kicking
1678 * the unplug handling
1680 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1681 q->request_fn(q);
1682 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1683 } else {
1684 blk_plug_device(q);
1685 kblockd_schedule_work(&q->unplug_work);
1689 EXPORT_SYMBOL(blk_start_queue);
1692 * blk_stop_queue - stop a queue
1693 * @q: The &struct request_queue in question
1695 * Description:
1696 * The Linux block layer assumes that a block driver will consume all
1697 * entries on the request queue when the request_fn strategy is called.
1698 * Often this will not happen, because of hardware limitations (queue
1699 * depth settings). If a device driver gets a 'queue full' response,
1700 * or if it simply chooses not to queue more I/O at one point, it can
1701 * call this function to prevent the request_fn from being called until
1702 * the driver has signalled it's ready to go again. This happens by calling
1703 * blk_start_queue() to restart queue operations. Queue lock must be held.
1705 void blk_stop_queue(struct request_queue *q)
1707 blk_remove_plug(q);
1708 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1710 EXPORT_SYMBOL(blk_stop_queue);
1713 * blk_sync_queue - cancel any pending callbacks on a queue
1714 * @q: the queue
1716 * Description:
1717 * The block layer may perform asynchronous callback activity
1718 * on a queue, such as calling the unplug function after a timeout.
1719 * A block device may call blk_sync_queue to ensure that any
1720 * such activity is cancelled, thus allowing it to release resources
1721 * that the callbacks might use. The caller must already have made sure
1722 * that its ->make_request_fn will not re-add plugging prior to calling
1723 * this function.
1726 void blk_sync_queue(struct request_queue *q)
1728 del_timer_sync(&q->unplug_timer);
1730 EXPORT_SYMBOL(blk_sync_queue);
1733 * blk_run_queue - run a single device queue
1734 * @q: The queue to run
1736 void blk_run_queue(struct request_queue *q)
1738 unsigned long flags;
1740 spin_lock_irqsave(q->queue_lock, flags);
1741 blk_remove_plug(q);
1744 * Only recurse once to avoid overrunning the stack, let the unplug
1745 * handling reinvoke the handler shortly if we already got there.
1747 if (!elv_queue_empty(q)) {
1748 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1749 q->request_fn(q);
1750 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1751 } else {
1752 blk_plug_device(q);
1753 kblockd_schedule_work(&q->unplug_work);
1757 spin_unlock_irqrestore(q->queue_lock, flags);
1759 EXPORT_SYMBOL(blk_run_queue);
1762 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1763 * @kobj: the kobj belonging of the request queue to be released
1765 * Description:
1766 * blk_cleanup_queue is the pair to blk_init_queue() or
1767 * blk_queue_make_request(). It should be called when a request queue is
1768 * being released; typically when a block device is being de-registered.
1769 * Currently, its primary task it to free all the &struct request
1770 * structures that were allocated to the queue and the queue itself.
1772 * Caveat:
1773 * Hopefully the low level driver will have finished any
1774 * outstanding requests first...
1776 static void blk_release_queue(struct kobject *kobj)
1778 struct request_queue *q =
1779 container_of(kobj, struct request_queue, kobj);
1780 struct request_list *rl = &q->rq;
1782 blk_sync_queue(q);
1784 if (rl->rq_pool)
1785 mempool_destroy(rl->rq_pool);
1787 if (q->queue_tags)
1788 __blk_queue_free_tags(q);
1790 blk_trace_shutdown(q);
1792 kmem_cache_free(requestq_cachep, q);
1795 void blk_put_queue(struct request_queue *q)
1797 kobject_put(&q->kobj);
1799 EXPORT_SYMBOL(blk_put_queue);
1801 void blk_cleanup_queue(struct request_queue * q)
1803 mutex_lock(&q->sysfs_lock);
1804 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1805 mutex_unlock(&q->sysfs_lock);
1807 if (q->elevator)
1808 elevator_exit(q->elevator);
1810 blk_put_queue(q);
1813 EXPORT_SYMBOL(blk_cleanup_queue);
1815 static int blk_init_free_list(struct request_queue *q)
1817 struct request_list *rl = &q->rq;
1819 rl->count[READ] = rl->count[WRITE] = 0;
1820 rl->starved[READ] = rl->starved[WRITE] = 0;
1821 rl->elvpriv = 0;
1822 init_waitqueue_head(&rl->wait[READ]);
1823 init_waitqueue_head(&rl->wait[WRITE]);
1825 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1826 mempool_free_slab, request_cachep, q->node);
1828 if (!rl->rq_pool)
1829 return -ENOMEM;
1831 return 0;
1834 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1836 return blk_alloc_queue_node(gfp_mask, -1);
1838 EXPORT_SYMBOL(blk_alloc_queue);
1840 static struct kobj_type queue_ktype;
1842 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1844 struct request_queue *q;
1846 q = kmem_cache_alloc_node(requestq_cachep,
1847 gfp_mask | __GFP_ZERO, node_id);
1848 if (!q)
1849 return NULL;
1851 init_timer(&q->unplug_timer);
1853 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1854 q->kobj.ktype = &queue_ktype;
1855 kobject_init(&q->kobj);
1857 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1858 q->backing_dev_info.unplug_io_data = q;
1860 mutex_init(&q->sysfs_lock);
1862 return q;
1864 EXPORT_SYMBOL(blk_alloc_queue_node);
1867 * blk_init_queue - prepare a request queue for use with a block device
1868 * @rfn: The function to be called to process requests that have been
1869 * placed on the queue.
1870 * @lock: Request queue spin lock
1872 * Description:
1873 * If a block device wishes to use the standard request handling procedures,
1874 * which sorts requests and coalesces adjacent requests, then it must
1875 * call blk_init_queue(). The function @rfn will be called when there
1876 * are requests on the queue that need to be processed. If the device
1877 * supports plugging, then @rfn may not be called immediately when requests
1878 * are available on the queue, but may be called at some time later instead.
1879 * Plugged queues are generally unplugged when a buffer belonging to one
1880 * of the requests on the queue is needed, or due to memory pressure.
1882 * @rfn is not required, or even expected, to remove all requests off the
1883 * queue, but only as many as it can handle at a time. If it does leave
1884 * requests on the queue, it is responsible for arranging that the requests
1885 * get dealt with eventually.
1887 * The queue spin lock must be held while manipulating the requests on the
1888 * request queue; this lock will be taken also from interrupt context, so irq
1889 * disabling is needed for it.
1891 * Function returns a pointer to the initialized request queue, or NULL if
1892 * it didn't succeed.
1894 * Note:
1895 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1896 * when the block device is deactivated (such as at module unload).
1899 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1901 return blk_init_queue_node(rfn, lock, -1);
1903 EXPORT_SYMBOL(blk_init_queue);
1905 struct request_queue *
1906 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1908 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1910 if (!q)
1911 return NULL;
1913 q->node = node_id;
1914 if (blk_init_free_list(q)) {
1915 kmem_cache_free(requestq_cachep, q);
1916 return NULL;
1920 * if caller didn't supply a lock, they get per-queue locking with
1921 * our embedded lock
1923 if (!lock) {
1924 spin_lock_init(&q->__queue_lock);
1925 lock = &q->__queue_lock;
1928 q->request_fn = rfn;
1929 q->prep_rq_fn = NULL;
1930 q->unplug_fn = generic_unplug_device;
1931 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1932 q->queue_lock = lock;
1934 blk_queue_segment_boundary(q, 0xffffffff);
1936 blk_queue_make_request(q, __make_request);
1937 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1939 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1940 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1942 q->sg_reserved_size = INT_MAX;
1945 * all done
1947 if (!elevator_init(q, NULL)) {
1948 blk_queue_congestion_threshold(q);
1949 return q;
1952 blk_put_queue(q);
1953 return NULL;
1955 EXPORT_SYMBOL(blk_init_queue_node);
1957 int blk_get_queue(struct request_queue *q)
1959 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1960 kobject_get(&q->kobj);
1961 return 0;
1964 return 1;
1967 EXPORT_SYMBOL(blk_get_queue);
1969 static inline void blk_free_request(struct request_queue *q, struct request *rq)
1971 if (rq->cmd_flags & REQ_ELVPRIV)
1972 elv_put_request(q, rq);
1973 mempool_free(rq, q->rq.rq_pool);
1976 static struct request *
1977 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1979 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1981 if (!rq)
1982 return NULL;
1985 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1986 * see bio.h and blkdev.h
1988 rq->cmd_flags = rw | REQ_ALLOCED;
1990 if (priv) {
1991 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1992 mempool_free(rq, q->rq.rq_pool);
1993 return NULL;
1995 rq->cmd_flags |= REQ_ELVPRIV;
1998 return rq;
2002 * ioc_batching returns true if the ioc is a valid batching request and
2003 * should be given priority access to a request.
2005 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
2007 if (!ioc)
2008 return 0;
2011 * Make sure the process is able to allocate at least 1 request
2012 * even if the batch times out, otherwise we could theoretically
2013 * lose wakeups.
2015 return ioc->nr_batch_requests == q->nr_batching ||
2016 (ioc->nr_batch_requests > 0
2017 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2021 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2022 * will cause the process to be a "batcher" on all queues in the system. This
2023 * is the behaviour we want though - once it gets a wakeup it should be given
2024 * a nice run.
2026 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
2028 if (!ioc || ioc_batching(q, ioc))
2029 return;
2031 ioc->nr_batch_requests = q->nr_batching;
2032 ioc->last_waited = jiffies;
2035 static void __freed_request(struct request_queue *q, int rw)
2037 struct request_list *rl = &q->rq;
2039 if (rl->count[rw] < queue_congestion_off_threshold(q))
2040 blk_clear_queue_congested(q, rw);
2042 if (rl->count[rw] + 1 <= q->nr_requests) {
2043 if (waitqueue_active(&rl->wait[rw]))
2044 wake_up(&rl->wait[rw]);
2046 blk_clear_queue_full(q, rw);
2051 * A request has just been released. Account for it, update the full and
2052 * congestion status, wake up any waiters. Called under q->queue_lock.
2054 static void freed_request(struct request_queue *q, int rw, int priv)
2056 struct request_list *rl = &q->rq;
2058 rl->count[rw]--;
2059 if (priv)
2060 rl->elvpriv--;
2062 __freed_request(q, rw);
2064 if (unlikely(rl->starved[rw ^ 1]))
2065 __freed_request(q, rw ^ 1);
2068 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2070 * Get a free request, queue_lock must be held.
2071 * Returns NULL on failure, with queue_lock held.
2072 * Returns !NULL on success, with queue_lock *not held*.
2074 static struct request *get_request(struct request_queue *q, int rw_flags,
2075 struct bio *bio, gfp_t gfp_mask)
2077 struct request *rq = NULL;
2078 struct request_list *rl = &q->rq;
2079 struct io_context *ioc = NULL;
2080 const int rw = rw_flags & 0x01;
2081 int may_queue, priv;
2083 may_queue = elv_may_queue(q, rw_flags);
2084 if (may_queue == ELV_MQUEUE_NO)
2085 goto rq_starved;
2087 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2088 if (rl->count[rw]+1 >= q->nr_requests) {
2089 ioc = current_io_context(GFP_ATOMIC, q->node);
2091 * The queue will fill after this allocation, so set
2092 * it as full, and mark this process as "batching".
2093 * This process will be allowed to complete a batch of
2094 * requests, others will be blocked.
2096 if (!blk_queue_full(q, rw)) {
2097 ioc_set_batching(q, ioc);
2098 blk_set_queue_full(q, rw);
2099 } else {
2100 if (may_queue != ELV_MQUEUE_MUST
2101 && !ioc_batching(q, ioc)) {
2103 * The queue is full and the allocating
2104 * process is not a "batcher", and not
2105 * exempted by the IO scheduler
2107 goto out;
2111 blk_set_queue_congested(q, rw);
2115 * Only allow batching queuers to allocate up to 50% over the defined
2116 * limit of requests, otherwise we could have thousands of requests
2117 * allocated with any setting of ->nr_requests
2119 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2120 goto out;
2122 rl->count[rw]++;
2123 rl->starved[rw] = 0;
2125 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2126 if (priv)
2127 rl->elvpriv++;
2129 spin_unlock_irq(q->queue_lock);
2131 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2132 if (unlikely(!rq)) {
2134 * Allocation failed presumably due to memory. Undo anything
2135 * we might have messed up.
2137 * Allocating task should really be put onto the front of the
2138 * wait queue, but this is pretty rare.
2140 spin_lock_irq(q->queue_lock);
2141 freed_request(q, rw, priv);
2144 * in the very unlikely event that allocation failed and no
2145 * requests for this direction was pending, mark us starved
2146 * so that freeing of a request in the other direction will
2147 * notice us. another possible fix would be to split the
2148 * rq mempool into READ and WRITE
2150 rq_starved:
2151 if (unlikely(rl->count[rw] == 0))
2152 rl->starved[rw] = 1;
2154 goto out;
2158 * ioc may be NULL here, and ioc_batching will be false. That's
2159 * OK, if the queue is under the request limit then requests need
2160 * not count toward the nr_batch_requests limit. There will always
2161 * be some limit enforced by BLK_BATCH_TIME.
2163 if (ioc_batching(q, ioc))
2164 ioc->nr_batch_requests--;
2166 rq_init(q, rq);
2168 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2169 out:
2170 return rq;
2174 * No available requests for this queue, unplug the device and wait for some
2175 * requests to become available.
2177 * Called with q->queue_lock held, and returns with it unlocked.
2179 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
2180 struct bio *bio)
2182 const int rw = rw_flags & 0x01;
2183 struct request *rq;
2185 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2186 while (!rq) {
2187 DEFINE_WAIT(wait);
2188 struct request_list *rl = &q->rq;
2190 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2191 TASK_UNINTERRUPTIBLE);
2193 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2195 if (!rq) {
2196 struct io_context *ioc;
2198 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2200 __generic_unplug_device(q);
2201 spin_unlock_irq(q->queue_lock);
2202 io_schedule();
2205 * After sleeping, we become a "batching" process and
2206 * will be able to allocate at least one request, and
2207 * up to a big batch of them for a small period time.
2208 * See ioc_batching, ioc_set_batching
2210 ioc = current_io_context(GFP_NOIO, q->node);
2211 ioc_set_batching(q, ioc);
2213 spin_lock_irq(q->queue_lock);
2215 finish_wait(&rl->wait[rw], &wait);
2218 return rq;
2221 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
2223 struct request *rq;
2225 BUG_ON(rw != READ && rw != WRITE);
2227 spin_lock_irq(q->queue_lock);
2228 if (gfp_mask & __GFP_WAIT) {
2229 rq = get_request_wait(q, rw, NULL);
2230 } else {
2231 rq = get_request(q, rw, NULL, gfp_mask);
2232 if (!rq)
2233 spin_unlock_irq(q->queue_lock);
2235 /* q->queue_lock is unlocked at this point */
2237 return rq;
2239 EXPORT_SYMBOL(blk_get_request);
2242 * blk_start_queueing - initiate dispatch of requests to device
2243 * @q: request queue to kick into gear
2245 * This is basically a helper to remove the need to know whether a queue
2246 * is plugged or not if someone just wants to initiate dispatch of requests
2247 * for this queue.
2249 * The queue lock must be held with interrupts disabled.
2251 void blk_start_queueing(struct request_queue *q)
2253 if (!blk_queue_plugged(q))
2254 q->request_fn(q);
2255 else
2256 __generic_unplug_device(q);
2258 EXPORT_SYMBOL(blk_start_queueing);
2261 * blk_requeue_request - put a request back on queue
2262 * @q: request queue where request should be inserted
2263 * @rq: request to be inserted
2265 * Description:
2266 * Drivers often keep queueing requests until the hardware cannot accept
2267 * more, when that condition happens we need to put the request back
2268 * on the queue. Must be called with queue lock held.
2270 void blk_requeue_request(struct request_queue *q, struct request *rq)
2272 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2274 if (blk_rq_tagged(rq))
2275 blk_queue_end_tag(q, rq);
2277 elv_requeue_request(q, rq);
2280 EXPORT_SYMBOL(blk_requeue_request);
2283 * blk_insert_request - insert a special request in to a request queue
2284 * @q: request queue where request should be inserted
2285 * @rq: request to be inserted
2286 * @at_head: insert request at head or tail of queue
2287 * @data: private data
2289 * Description:
2290 * Many block devices need to execute commands asynchronously, so they don't
2291 * block the whole kernel from preemption during request execution. This is
2292 * accomplished normally by inserting aritficial requests tagged as
2293 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2294 * scheduled for actual execution by the request queue.
2296 * We have the option of inserting the head or the tail of the queue.
2297 * Typically we use the tail for new ioctls and so forth. We use the head
2298 * of the queue for things like a QUEUE_FULL message from a device, or a
2299 * host that is unable to accept a particular command.
2301 void blk_insert_request(struct request_queue *q, struct request *rq,
2302 int at_head, void *data)
2304 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2305 unsigned long flags;
2308 * tell I/O scheduler that this isn't a regular read/write (ie it
2309 * must not attempt merges on this) and that it acts as a soft
2310 * barrier
2312 rq->cmd_type = REQ_TYPE_SPECIAL;
2313 rq->cmd_flags |= REQ_SOFTBARRIER;
2315 rq->special = data;
2317 spin_lock_irqsave(q->queue_lock, flags);
2320 * If command is tagged, release the tag
2322 if (blk_rq_tagged(rq))
2323 blk_queue_end_tag(q, rq);
2325 drive_stat_acct(rq, rq->nr_sectors, 1);
2326 __elv_add_request(q, rq, where, 0);
2327 blk_start_queueing(q);
2328 spin_unlock_irqrestore(q->queue_lock, flags);
2331 EXPORT_SYMBOL(blk_insert_request);
2333 static int __blk_rq_unmap_user(struct bio *bio)
2335 int ret = 0;
2337 if (bio) {
2338 if (bio_flagged(bio, BIO_USER_MAPPED))
2339 bio_unmap_user(bio);
2340 else
2341 ret = bio_uncopy_user(bio);
2344 return ret;
2347 static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
2348 void __user *ubuf, unsigned int len)
2350 unsigned long uaddr;
2351 struct bio *bio, *orig_bio;
2352 int reading, ret;
2354 reading = rq_data_dir(rq) == READ;
2357 * if alignment requirement is satisfied, map in user pages for
2358 * direct dma. else, set up kernel bounce buffers
2360 uaddr = (unsigned long) ubuf;
2361 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2362 bio = bio_map_user(q, NULL, uaddr, len, reading);
2363 else
2364 bio = bio_copy_user(q, uaddr, len, reading);
2366 if (IS_ERR(bio))
2367 return PTR_ERR(bio);
2369 orig_bio = bio;
2370 blk_queue_bounce(q, &bio);
2373 * We link the bounce buffer in and could have to traverse it
2374 * later so we have to get a ref to prevent it from being freed
2376 bio_get(bio);
2378 if (!rq->bio)
2379 blk_rq_bio_prep(q, rq, bio);
2380 else if (!ll_back_merge_fn(q, rq, bio)) {
2381 ret = -EINVAL;
2382 goto unmap_bio;
2383 } else {
2384 rq->biotail->bi_next = bio;
2385 rq->biotail = bio;
2387 rq->data_len += bio->bi_size;
2390 return bio->bi_size;
2392 unmap_bio:
2393 /* if it was boucned we must call the end io function */
2394 bio_endio(bio, bio->bi_size, 0);
2395 __blk_rq_unmap_user(orig_bio);
2396 bio_put(bio);
2397 return ret;
2401 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2402 * @q: request queue where request should be inserted
2403 * @rq: request structure to fill
2404 * @ubuf: the user buffer
2405 * @len: length of user data
2407 * Description:
2408 * Data will be mapped directly for zero copy io, if possible. Otherwise
2409 * a kernel bounce buffer is used.
2411 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2412 * still in process context.
2414 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2415 * before being submitted to the device, as pages mapped may be out of
2416 * reach. It's the callers responsibility to make sure this happens. The
2417 * original bio must be passed back in to blk_rq_unmap_user() for proper
2418 * unmapping.
2420 int blk_rq_map_user(struct request_queue *q, struct request *rq,
2421 void __user *ubuf, unsigned long len)
2423 unsigned long bytes_read = 0;
2424 struct bio *bio = NULL;
2425 int ret;
2427 if (len > (q->max_hw_sectors << 9))
2428 return -EINVAL;
2429 if (!len || !ubuf)
2430 return -EINVAL;
2432 while (bytes_read != len) {
2433 unsigned long map_len, end, start;
2435 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2436 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2437 >> PAGE_SHIFT;
2438 start = (unsigned long)ubuf >> PAGE_SHIFT;
2441 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2442 * pages. If this happens we just lower the requested
2443 * mapping len by a page so that we can fit
2445 if (end - start > BIO_MAX_PAGES)
2446 map_len -= PAGE_SIZE;
2448 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2449 if (ret < 0)
2450 goto unmap_rq;
2451 if (!bio)
2452 bio = rq->bio;
2453 bytes_read += ret;
2454 ubuf += ret;
2457 rq->buffer = rq->data = NULL;
2458 return 0;
2459 unmap_rq:
2460 blk_rq_unmap_user(bio);
2461 return ret;
2464 EXPORT_SYMBOL(blk_rq_map_user);
2467 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2468 * @q: request queue where request should be inserted
2469 * @rq: request to map data to
2470 * @iov: pointer to the iovec
2471 * @iov_count: number of elements in the iovec
2472 * @len: I/O byte count
2474 * Description:
2475 * Data will be mapped directly for zero copy io, if possible. Otherwise
2476 * a kernel bounce buffer is used.
2478 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2479 * still in process context.
2481 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2482 * before being submitted to the device, as pages mapped may be out of
2483 * reach. It's the callers responsibility to make sure this happens. The
2484 * original bio must be passed back in to blk_rq_unmap_user() for proper
2485 * unmapping.
2487 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
2488 struct sg_iovec *iov, int iov_count, unsigned int len)
2490 struct bio *bio;
2492 if (!iov || iov_count <= 0)
2493 return -EINVAL;
2495 /* we don't allow misaligned data like bio_map_user() does. If the
2496 * user is using sg, they're expected to know the alignment constraints
2497 * and respect them accordingly */
2498 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2499 if (IS_ERR(bio))
2500 return PTR_ERR(bio);
2502 if (bio->bi_size != len) {
2503 bio_endio(bio, bio->bi_size, 0);
2504 bio_unmap_user(bio);
2505 return -EINVAL;
2508 bio_get(bio);
2509 blk_rq_bio_prep(q, rq, bio);
2510 rq->buffer = rq->data = NULL;
2511 return 0;
2514 EXPORT_SYMBOL(blk_rq_map_user_iov);
2517 * blk_rq_unmap_user - unmap a request with user data
2518 * @bio: start of bio list
2520 * Description:
2521 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2522 * supply the original rq->bio from the blk_rq_map_user() return, since
2523 * the io completion may have changed rq->bio.
2525 int blk_rq_unmap_user(struct bio *bio)
2527 struct bio *mapped_bio;
2528 int ret = 0, ret2;
2530 while (bio) {
2531 mapped_bio = bio;
2532 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2533 mapped_bio = bio->bi_private;
2535 ret2 = __blk_rq_unmap_user(mapped_bio);
2536 if (ret2 && !ret)
2537 ret = ret2;
2539 mapped_bio = bio;
2540 bio = bio->bi_next;
2541 bio_put(mapped_bio);
2544 return ret;
2547 EXPORT_SYMBOL(blk_rq_unmap_user);
2550 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2551 * @q: request queue where request should be inserted
2552 * @rq: request to fill
2553 * @kbuf: the kernel buffer
2554 * @len: length of user data
2555 * @gfp_mask: memory allocation flags
2557 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
2558 unsigned int len, gfp_t gfp_mask)
2560 struct bio *bio;
2562 if (len > (q->max_hw_sectors << 9))
2563 return -EINVAL;
2564 if (!len || !kbuf)
2565 return -EINVAL;
2567 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2568 if (IS_ERR(bio))
2569 return PTR_ERR(bio);
2571 if (rq_data_dir(rq) == WRITE)
2572 bio->bi_rw |= (1 << BIO_RW);
2574 blk_rq_bio_prep(q, rq, bio);
2575 blk_queue_bounce(q, &rq->bio);
2576 rq->buffer = rq->data = NULL;
2577 return 0;
2580 EXPORT_SYMBOL(blk_rq_map_kern);
2583 * blk_execute_rq_nowait - insert a request into queue for execution
2584 * @q: queue to insert the request in
2585 * @bd_disk: matching gendisk
2586 * @rq: request to insert
2587 * @at_head: insert request at head or tail of queue
2588 * @done: I/O completion handler
2590 * Description:
2591 * Insert a fully prepared request at the back of the io scheduler queue
2592 * for execution. Don't wait for completion.
2594 void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
2595 struct request *rq, int at_head,
2596 rq_end_io_fn *done)
2598 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2600 rq->rq_disk = bd_disk;
2601 rq->cmd_flags |= REQ_NOMERGE;
2602 rq->end_io = done;
2603 WARN_ON(irqs_disabled());
2604 spin_lock_irq(q->queue_lock);
2605 __elv_add_request(q, rq, where, 1);
2606 __generic_unplug_device(q);
2607 spin_unlock_irq(q->queue_lock);
2609 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2612 * blk_execute_rq - insert a request into queue for execution
2613 * @q: queue to insert the request in
2614 * @bd_disk: matching gendisk
2615 * @rq: request to insert
2616 * @at_head: insert request at head or tail of queue
2618 * Description:
2619 * Insert a fully prepared request at the back of the io scheduler queue
2620 * for execution and wait for completion.
2622 int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
2623 struct request *rq, int at_head)
2625 DECLARE_COMPLETION_ONSTACK(wait);
2626 char sense[SCSI_SENSE_BUFFERSIZE];
2627 int err = 0;
2630 * we need an extra reference to the request, so we can look at
2631 * it after io completion
2633 rq->ref_count++;
2635 if (!rq->sense) {
2636 memset(sense, 0, sizeof(sense));
2637 rq->sense = sense;
2638 rq->sense_len = 0;
2641 rq->end_io_data = &wait;
2642 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2643 wait_for_completion(&wait);
2645 if (rq->errors)
2646 err = -EIO;
2648 return err;
2651 EXPORT_SYMBOL(blk_execute_rq);
2654 * blkdev_issue_flush - queue a flush
2655 * @bdev: blockdev to issue flush for
2656 * @error_sector: error sector
2658 * Description:
2659 * Issue a flush for the block device in question. Caller can supply
2660 * room for storing the error offset in case of a flush error, if they
2661 * wish to. Caller must run wait_for_completion() on its own.
2663 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2665 struct request_queue *q;
2667 if (bdev->bd_disk == NULL)
2668 return -ENXIO;
2670 q = bdev_get_queue(bdev);
2671 if (!q)
2672 return -ENXIO;
2673 if (!q->issue_flush_fn)
2674 return -EOPNOTSUPP;
2676 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2679 EXPORT_SYMBOL(blkdev_issue_flush);
2681 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2683 int rw = rq_data_dir(rq);
2685 if (!blk_fs_request(rq) || !rq->rq_disk)
2686 return;
2688 if (!new_io) {
2689 __disk_stat_inc(rq->rq_disk, merges[rw]);
2690 } else {
2691 disk_round_stats(rq->rq_disk);
2692 rq->rq_disk->in_flight++;
2697 * add-request adds a request to the linked list.
2698 * queue lock is held and interrupts disabled, as we muck with the
2699 * request queue list.
2701 static inline void add_request(struct request_queue * q, struct request * req)
2703 drive_stat_acct(req, req->nr_sectors, 1);
2706 * elevator indicated where it wants this request to be
2707 * inserted at elevator_merge time
2709 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2713 * disk_round_stats() - Round off the performance stats on a struct
2714 * disk_stats.
2716 * The average IO queue length and utilisation statistics are maintained
2717 * by observing the current state of the queue length and the amount of
2718 * time it has been in this state for.
2720 * Normally, that accounting is done on IO completion, but that can result
2721 * in more than a second's worth of IO being accounted for within any one
2722 * second, leading to >100% utilisation. To deal with that, we call this
2723 * function to do a round-off before returning the results when reading
2724 * /proc/diskstats. This accounts immediately for all queue usage up to
2725 * the current jiffies and restarts the counters again.
2727 void disk_round_stats(struct gendisk *disk)
2729 unsigned long now = jiffies;
2731 if (now == disk->stamp)
2732 return;
2734 if (disk->in_flight) {
2735 __disk_stat_add(disk, time_in_queue,
2736 disk->in_flight * (now - disk->stamp));
2737 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2739 disk->stamp = now;
2742 EXPORT_SYMBOL_GPL(disk_round_stats);
2745 * queue lock must be held
2747 void __blk_put_request(struct request_queue *q, struct request *req)
2749 if (unlikely(!q))
2750 return;
2751 if (unlikely(--req->ref_count))
2752 return;
2754 elv_completed_request(q, req);
2757 * Request may not have originated from ll_rw_blk. if not,
2758 * it didn't come out of our reserved rq pools
2760 if (req->cmd_flags & REQ_ALLOCED) {
2761 int rw = rq_data_dir(req);
2762 int priv = req->cmd_flags & REQ_ELVPRIV;
2764 BUG_ON(!list_empty(&req->queuelist));
2765 BUG_ON(!hlist_unhashed(&req->hash));
2767 blk_free_request(q, req);
2768 freed_request(q, rw, priv);
2772 EXPORT_SYMBOL_GPL(__blk_put_request);
2774 void blk_put_request(struct request *req)
2776 unsigned long flags;
2777 struct request_queue *q = req->q;
2780 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2781 * following if (q) test.
2783 if (q) {
2784 spin_lock_irqsave(q->queue_lock, flags);
2785 __blk_put_request(q, req);
2786 spin_unlock_irqrestore(q->queue_lock, flags);
2790 EXPORT_SYMBOL(blk_put_request);
2793 * blk_end_sync_rq - executes a completion event on a request
2794 * @rq: request to complete
2795 * @error: end io status of the request
2797 void blk_end_sync_rq(struct request *rq, int error)
2799 struct completion *waiting = rq->end_io_data;
2801 rq->end_io_data = NULL;
2802 __blk_put_request(rq->q, rq);
2805 * complete last, if this is a stack request the process (and thus
2806 * the rq pointer) could be invalid right after this complete()
2808 complete(waiting);
2810 EXPORT_SYMBOL(blk_end_sync_rq);
2813 * Has to be called with the request spinlock acquired
2815 static int attempt_merge(struct request_queue *q, struct request *req,
2816 struct request *next)
2818 if (!rq_mergeable(req) || !rq_mergeable(next))
2819 return 0;
2822 * not contiguous
2824 if (req->sector + req->nr_sectors != next->sector)
2825 return 0;
2827 if (rq_data_dir(req) != rq_data_dir(next)
2828 || req->rq_disk != next->rq_disk
2829 || next->special)
2830 return 0;
2833 * If we are allowed to merge, then append bio list
2834 * from next to rq and release next. merge_requests_fn
2835 * will have updated segment counts, update sector
2836 * counts here.
2838 if (!ll_merge_requests_fn(q, req, next))
2839 return 0;
2842 * At this point we have either done a back merge
2843 * or front merge. We need the smaller start_time of
2844 * the merged requests to be the current request
2845 * for accounting purposes.
2847 if (time_after(req->start_time, next->start_time))
2848 req->start_time = next->start_time;
2850 req->biotail->bi_next = next->bio;
2851 req->biotail = next->biotail;
2853 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2855 elv_merge_requests(q, req, next);
2857 if (req->rq_disk) {
2858 disk_round_stats(req->rq_disk);
2859 req->rq_disk->in_flight--;
2862 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2864 __blk_put_request(q, next);
2865 return 1;
2868 static inline int attempt_back_merge(struct request_queue *q,
2869 struct request *rq)
2871 struct request *next = elv_latter_request(q, rq);
2873 if (next)
2874 return attempt_merge(q, rq, next);
2876 return 0;
2879 static inline int attempt_front_merge(struct request_queue *q,
2880 struct request *rq)
2882 struct request *prev = elv_former_request(q, rq);
2884 if (prev)
2885 return attempt_merge(q, prev, rq);
2887 return 0;
2890 static void init_request_from_bio(struct request *req, struct bio *bio)
2892 req->cmd_type = REQ_TYPE_FS;
2895 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2897 if (bio_rw_ahead(bio) || bio_failfast(bio))
2898 req->cmd_flags |= REQ_FAILFAST;
2901 * REQ_BARRIER implies no merging, but lets make it explicit
2903 if (unlikely(bio_barrier(bio)))
2904 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2906 if (bio_sync(bio))
2907 req->cmd_flags |= REQ_RW_SYNC;
2908 if (bio_rw_meta(bio))
2909 req->cmd_flags |= REQ_RW_META;
2911 req->errors = 0;
2912 req->hard_sector = req->sector = bio->bi_sector;
2913 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2914 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2915 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2916 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2917 req->buffer = bio_data(bio); /* see ->buffer comment above */
2918 req->bio = req->biotail = bio;
2919 req->ioprio = bio_prio(bio);
2920 req->rq_disk = bio->bi_bdev->bd_disk;
2921 req->start_time = jiffies;
2924 static int __make_request(struct request_queue *q, struct bio *bio)
2926 struct request *req;
2927 int el_ret, nr_sectors, barrier, err;
2928 const unsigned short prio = bio_prio(bio);
2929 const int sync = bio_sync(bio);
2930 int rw_flags;
2932 nr_sectors = bio_sectors(bio);
2935 * low level driver can indicate that it wants pages above a
2936 * certain limit bounced to low memory (ie for highmem, or even
2937 * ISA dma in theory)
2939 blk_queue_bounce(q, &bio);
2941 barrier = bio_barrier(bio);
2942 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2943 err = -EOPNOTSUPP;
2944 goto end_io;
2947 spin_lock_irq(q->queue_lock);
2949 if (unlikely(barrier) || elv_queue_empty(q))
2950 goto get_rq;
2952 el_ret = elv_merge(q, &req, bio);
2953 switch (el_ret) {
2954 case ELEVATOR_BACK_MERGE:
2955 BUG_ON(!rq_mergeable(req));
2957 if (!ll_back_merge_fn(q, req, bio))
2958 break;
2960 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2962 req->biotail->bi_next = bio;
2963 req->biotail = bio;
2964 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2965 req->ioprio = ioprio_best(req->ioprio, prio);
2966 drive_stat_acct(req, nr_sectors, 0);
2967 if (!attempt_back_merge(q, req))
2968 elv_merged_request(q, req, el_ret);
2969 goto out;
2971 case ELEVATOR_FRONT_MERGE:
2972 BUG_ON(!rq_mergeable(req));
2974 if (!ll_front_merge_fn(q, req, bio))
2975 break;
2977 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2979 bio->bi_next = req->bio;
2980 req->bio = bio;
2983 * may not be valid. if the low level driver said
2984 * it didn't need a bounce buffer then it better
2985 * not touch req->buffer either...
2987 req->buffer = bio_data(bio);
2988 req->current_nr_sectors = bio_cur_sectors(bio);
2989 req->hard_cur_sectors = req->current_nr_sectors;
2990 req->sector = req->hard_sector = bio->bi_sector;
2991 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2992 req->ioprio = ioprio_best(req->ioprio, prio);
2993 drive_stat_acct(req, nr_sectors, 0);
2994 if (!attempt_front_merge(q, req))
2995 elv_merged_request(q, req, el_ret);
2996 goto out;
2998 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2999 default:
3003 get_rq:
3005 * This sync check and mask will be re-done in init_request_from_bio(),
3006 * but we need to set it earlier to expose the sync flag to the
3007 * rq allocator and io schedulers.
3009 rw_flags = bio_data_dir(bio);
3010 if (sync)
3011 rw_flags |= REQ_RW_SYNC;
3014 * Grab a free request. This is might sleep but can not fail.
3015 * Returns with the queue unlocked.
3017 req = get_request_wait(q, rw_flags, bio);
3020 * After dropping the lock and possibly sleeping here, our request
3021 * may now be mergeable after it had proven unmergeable (above).
3022 * We don't worry about that case for efficiency. It won't happen
3023 * often, and the elevators are able to handle it.
3025 init_request_from_bio(req, bio);
3027 spin_lock_irq(q->queue_lock);
3028 if (elv_queue_empty(q))
3029 blk_plug_device(q);
3030 add_request(q, req);
3031 out:
3032 if (sync)
3033 __generic_unplug_device(q);
3035 spin_unlock_irq(q->queue_lock);
3036 return 0;
3038 end_io:
3039 bio_endio(bio, nr_sectors << 9, err);
3040 return 0;
3044 * If bio->bi_dev is a partition, remap the location
3046 static inline void blk_partition_remap(struct bio *bio)
3048 struct block_device *bdev = bio->bi_bdev;
3050 if (bdev != bdev->bd_contains) {
3051 struct hd_struct *p = bdev->bd_part;
3052 const int rw = bio_data_dir(bio);
3054 p->sectors[rw] += bio_sectors(bio);
3055 p->ios[rw]++;
3057 bio->bi_sector += p->start_sect;
3058 bio->bi_bdev = bdev->bd_contains;
3060 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3061 bdev->bd_dev, bio->bi_sector,
3062 bio->bi_sector - p->start_sect);
3066 static void handle_bad_sector(struct bio *bio)
3068 char b[BDEVNAME_SIZE];
3070 printk(KERN_INFO "attempt to access beyond end of device\n");
3071 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3072 bdevname(bio->bi_bdev, b),
3073 bio->bi_rw,
3074 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3075 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3077 set_bit(BIO_EOF, &bio->bi_flags);
3080 #ifdef CONFIG_FAIL_MAKE_REQUEST
3082 static DECLARE_FAULT_ATTR(fail_make_request);
3084 static int __init setup_fail_make_request(char *str)
3086 return setup_fault_attr(&fail_make_request, str);
3088 __setup("fail_make_request=", setup_fail_make_request);
3090 static int should_fail_request(struct bio *bio)
3092 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3093 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3094 return should_fail(&fail_make_request, bio->bi_size);
3096 return 0;
3099 static int __init fail_make_request_debugfs(void)
3101 return init_fault_attr_dentries(&fail_make_request,
3102 "fail_make_request");
3105 late_initcall(fail_make_request_debugfs);
3107 #else /* CONFIG_FAIL_MAKE_REQUEST */
3109 static inline int should_fail_request(struct bio *bio)
3111 return 0;
3114 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3117 * generic_make_request: hand a buffer to its device driver for I/O
3118 * @bio: The bio describing the location in memory and on the device.
3120 * generic_make_request() is used to make I/O requests of block
3121 * devices. It is passed a &struct bio, which describes the I/O that needs
3122 * to be done.
3124 * generic_make_request() does not return any status. The
3125 * success/failure status of the request, along with notification of
3126 * completion, is delivered asynchronously through the bio->bi_end_io
3127 * function described (one day) else where.
3129 * The caller of generic_make_request must make sure that bi_io_vec
3130 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3131 * set to describe the device address, and the
3132 * bi_end_io and optionally bi_private are set to describe how
3133 * completion notification should be signaled.
3135 * generic_make_request and the drivers it calls may use bi_next if this
3136 * bio happens to be merged with someone else, and may change bi_dev and
3137 * bi_sector for remaps as it sees fit. So the values of these fields
3138 * should NOT be depended on after the call to generic_make_request.
3140 static inline void __generic_make_request(struct bio *bio)
3142 struct request_queue *q;
3143 sector_t maxsector;
3144 sector_t old_sector;
3145 int ret, nr_sectors = bio_sectors(bio);
3146 dev_t old_dev;
3148 might_sleep();
3149 /* Test device or partition size, when known. */
3150 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3151 if (maxsector) {
3152 sector_t sector = bio->bi_sector;
3154 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3156 * This may well happen - the kernel calls bread()
3157 * without checking the size of the device, e.g., when
3158 * mounting a device.
3160 handle_bad_sector(bio);
3161 goto end_io;
3166 * Resolve the mapping until finished. (drivers are
3167 * still free to implement/resolve their own stacking
3168 * by explicitly returning 0)
3170 * NOTE: we don't repeat the blk_size check for each new device.
3171 * Stacking drivers are expected to know what they are doing.
3173 old_sector = -1;
3174 old_dev = 0;
3175 do {
3176 char b[BDEVNAME_SIZE];
3178 q = bdev_get_queue(bio->bi_bdev);
3179 if (!q) {
3180 printk(KERN_ERR
3181 "generic_make_request: Trying to access "
3182 "nonexistent block-device %s (%Lu)\n",
3183 bdevname(bio->bi_bdev, b),
3184 (long long) bio->bi_sector);
3185 end_io:
3186 bio_endio(bio, bio->bi_size, -EIO);
3187 break;
3190 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3191 printk("bio too big device %s (%u > %u)\n",
3192 bdevname(bio->bi_bdev, b),
3193 bio_sectors(bio),
3194 q->max_hw_sectors);
3195 goto end_io;
3198 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3199 goto end_io;
3201 if (should_fail_request(bio))
3202 goto end_io;
3205 * If this device has partitions, remap block n
3206 * of partition p to block n+start(p) of the disk.
3208 blk_partition_remap(bio);
3210 if (old_sector != -1)
3211 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3212 old_sector);
3214 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3216 old_sector = bio->bi_sector;
3217 old_dev = bio->bi_bdev->bd_dev;
3219 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3220 if (maxsector) {
3221 sector_t sector = bio->bi_sector;
3223 if (maxsector < nr_sectors ||
3224 maxsector - nr_sectors < sector) {
3226 * This may well happen - partitions are not
3227 * checked to make sure they are within the size
3228 * of the whole device.
3230 handle_bad_sector(bio);
3231 goto end_io;
3235 ret = q->make_request_fn(q, bio);
3236 } while (ret);
3240 * We only want one ->make_request_fn to be active at a time,
3241 * else stack usage with stacked devices could be a problem.
3242 * So use current->bio_{list,tail} to keep a list of requests
3243 * submited by a make_request_fn function.
3244 * current->bio_tail is also used as a flag to say if
3245 * generic_make_request is currently active in this task or not.
3246 * If it is NULL, then no make_request is active. If it is non-NULL,
3247 * then a make_request is active, and new requests should be added
3248 * at the tail
3250 void generic_make_request(struct bio *bio)
3252 if (current->bio_tail) {
3253 /* make_request is active */
3254 *(current->bio_tail) = bio;
3255 bio->bi_next = NULL;
3256 current->bio_tail = &bio->bi_next;
3257 return;
3259 /* following loop may be a bit non-obvious, and so deserves some
3260 * explanation.
3261 * Before entering the loop, bio->bi_next is NULL (as all callers
3262 * ensure that) so we have a list with a single bio.
3263 * We pretend that we have just taken it off a longer list, so
3264 * we assign bio_list to the next (which is NULL) and bio_tail
3265 * to &bio_list, thus initialising the bio_list of new bios to be
3266 * added. __generic_make_request may indeed add some more bios
3267 * through a recursive call to generic_make_request. If it
3268 * did, we find a non-NULL value in bio_list and re-enter the loop
3269 * from the top. In this case we really did just take the bio
3270 * of the top of the list (no pretending) and so fixup bio_list and
3271 * bio_tail or bi_next, and call into __generic_make_request again.
3273 * The loop was structured like this to make only one call to
3274 * __generic_make_request (which is important as it is large and
3275 * inlined) and to keep the structure simple.
3277 BUG_ON(bio->bi_next);
3278 do {
3279 current->bio_list = bio->bi_next;
3280 if (bio->bi_next == NULL)
3281 current->bio_tail = &current->bio_list;
3282 else
3283 bio->bi_next = NULL;
3284 __generic_make_request(bio);
3285 bio = current->bio_list;
3286 } while (bio);
3287 current->bio_tail = NULL; /* deactivate */
3290 EXPORT_SYMBOL(generic_make_request);
3293 * submit_bio: submit a bio to the block device layer for I/O
3294 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3295 * @bio: The &struct bio which describes the I/O
3297 * submit_bio() is very similar in purpose to generic_make_request(), and
3298 * uses that function to do most of the work. Both are fairly rough
3299 * interfaces, @bio must be presetup and ready for I/O.
3302 void submit_bio(int rw, struct bio *bio)
3304 int count = bio_sectors(bio);
3306 BIO_BUG_ON(!bio->bi_size);
3307 BIO_BUG_ON(!bio->bi_io_vec);
3308 bio->bi_rw |= rw;
3309 if (rw & WRITE) {
3310 count_vm_events(PGPGOUT, count);
3311 } else {
3312 task_io_account_read(bio->bi_size);
3313 count_vm_events(PGPGIN, count);
3316 if (unlikely(block_dump)) {
3317 char b[BDEVNAME_SIZE];
3318 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3319 current->comm, current->pid,
3320 (rw & WRITE) ? "WRITE" : "READ",
3321 (unsigned long long)bio->bi_sector,
3322 bdevname(bio->bi_bdev,b));
3325 generic_make_request(bio);
3328 EXPORT_SYMBOL(submit_bio);
3330 static void blk_recalc_rq_segments(struct request *rq)
3332 struct bio *bio, *prevbio = NULL;
3333 int nr_phys_segs, nr_hw_segs;
3334 unsigned int phys_size, hw_size;
3335 struct request_queue *q = rq->q;
3337 if (!rq->bio)
3338 return;
3340 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3341 rq_for_each_bio(bio, rq) {
3342 /* Force bio hw/phys segs to be recalculated. */
3343 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3345 nr_phys_segs += bio_phys_segments(q, bio);
3346 nr_hw_segs += bio_hw_segments(q, bio);
3347 if (prevbio) {
3348 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3349 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3351 if (blk_phys_contig_segment(q, prevbio, bio) &&
3352 pseg <= q->max_segment_size) {
3353 nr_phys_segs--;
3354 phys_size += prevbio->bi_size + bio->bi_size;
3355 } else
3356 phys_size = 0;
3358 if (blk_hw_contig_segment(q, prevbio, bio) &&
3359 hseg <= q->max_segment_size) {
3360 nr_hw_segs--;
3361 hw_size += prevbio->bi_size + bio->bi_size;
3362 } else
3363 hw_size = 0;
3365 prevbio = bio;
3368 rq->nr_phys_segments = nr_phys_segs;
3369 rq->nr_hw_segments = nr_hw_segs;
3372 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3374 if (blk_fs_request(rq)) {
3375 rq->hard_sector += nsect;
3376 rq->hard_nr_sectors -= nsect;
3379 * Move the I/O submission pointers ahead if required.
3381 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3382 (rq->sector <= rq->hard_sector)) {
3383 rq->sector = rq->hard_sector;
3384 rq->nr_sectors = rq->hard_nr_sectors;
3385 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3386 rq->current_nr_sectors = rq->hard_cur_sectors;
3387 rq->buffer = bio_data(rq->bio);
3391 * if total number of sectors is less than the first segment
3392 * size, something has gone terribly wrong
3394 if (rq->nr_sectors < rq->current_nr_sectors) {
3395 printk("blk: request botched\n");
3396 rq->nr_sectors = rq->current_nr_sectors;
3401 static int __end_that_request_first(struct request *req, int uptodate,
3402 int nr_bytes)
3404 int total_bytes, bio_nbytes, error, next_idx = 0;
3405 struct bio *bio;
3407 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3410 * extend uptodate bool to allow < 0 value to be direct io error
3412 error = 0;
3413 if (end_io_error(uptodate))
3414 error = !uptodate ? -EIO : uptodate;
3417 * for a REQ_BLOCK_PC request, we want to carry any eventual
3418 * sense key with us all the way through
3420 if (!blk_pc_request(req))
3421 req->errors = 0;
3423 if (!uptodate) {
3424 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3425 printk("end_request: I/O error, dev %s, sector %llu\n",
3426 req->rq_disk ? req->rq_disk->disk_name : "?",
3427 (unsigned long long)req->sector);
3430 if (blk_fs_request(req) && req->rq_disk) {
3431 const int rw = rq_data_dir(req);
3433 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3436 total_bytes = bio_nbytes = 0;
3437 while ((bio = req->bio) != NULL) {
3438 int nbytes;
3440 if (nr_bytes >= bio->bi_size) {
3441 req->bio = bio->bi_next;
3442 nbytes = bio->bi_size;
3443 if (!ordered_bio_endio(req, bio, nbytes, error))
3444 bio_endio(bio, nbytes, error);
3445 next_idx = 0;
3446 bio_nbytes = 0;
3447 } else {
3448 int idx = bio->bi_idx + next_idx;
3450 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3451 blk_dump_rq_flags(req, "__end_that");
3452 printk("%s: bio idx %d >= vcnt %d\n",
3453 __FUNCTION__,
3454 bio->bi_idx, bio->bi_vcnt);
3455 break;
3458 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3459 BIO_BUG_ON(nbytes > bio->bi_size);
3462 * not a complete bvec done
3464 if (unlikely(nbytes > nr_bytes)) {
3465 bio_nbytes += nr_bytes;
3466 total_bytes += nr_bytes;
3467 break;
3471 * advance to the next vector
3473 next_idx++;
3474 bio_nbytes += nbytes;
3477 total_bytes += nbytes;
3478 nr_bytes -= nbytes;
3480 if ((bio = req->bio)) {
3482 * end more in this run, or just return 'not-done'
3484 if (unlikely(nr_bytes <= 0))
3485 break;
3490 * completely done
3492 if (!req->bio)
3493 return 0;
3496 * if the request wasn't completed, update state
3498 if (bio_nbytes) {
3499 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3500 bio_endio(bio, bio_nbytes, error);
3501 bio->bi_idx += next_idx;
3502 bio_iovec(bio)->bv_offset += nr_bytes;
3503 bio_iovec(bio)->bv_len -= nr_bytes;
3506 blk_recalc_rq_sectors(req, total_bytes >> 9);
3507 blk_recalc_rq_segments(req);
3508 return 1;
3512 * end_that_request_first - end I/O on a request
3513 * @req: the request being processed
3514 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3515 * @nr_sectors: number of sectors to end I/O on
3517 * Description:
3518 * Ends I/O on a number of sectors attached to @req, and sets it up
3519 * for the next range of segments (if any) in the cluster.
3521 * Return:
3522 * 0 - we are done with this request, call end_that_request_last()
3523 * 1 - still buffers pending for this request
3525 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3527 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3530 EXPORT_SYMBOL(end_that_request_first);
3533 * end_that_request_chunk - end I/O on a request
3534 * @req: the request being processed
3535 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3536 * @nr_bytes: number of bytes to complete
3538 * Description:
3539 * Ends I/O on a number of bytes attached to @req, and sets it up
3540 * for the next range of segments (if any). Like end_that_request_first(),
3541 * but deals with bytes instead of sectors.
3543 * Return:
3544 * 0 - we are done with this request, call end_that_request_last()
3545 * 1 - still buffers pending for this request
3547 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3549 return __end_that_request_first(req, uptodate, nr_bytes);
3552 EXPORT_SYMBOL(end_that_request_chunk);
3555 * splice the completion data to a local structure and hand off to
3556 * process_completion_queue() to complete the requests
3558 static void blk_done_softirq(struct softirq_action *h)
3560 struct list_head *cpu_list, local_list;
3562 local_irq_disable();
3563 cpu_list = &__get_cpu_var(blk_cpu_done);
3564 list_replace_init(cpu_list, &local_list);
3565 local_irq_enable();
3567 while (!list_empty(&local_list)) {
3568 struct request *rq = list_entry(local_list.next, struct request, donelist);
3570 list_del_init(&rq->donelist);
3571 rq->q->softirq_done_fn(rq);
3575 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3576 void *hcpu)
3579 * If a CPU goes away, splice its entries to the current CPU
3580 * and trigger a run of the softirq
3582 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3583 int cpu = (unsigned long) hcpu;
3585 local_irq_disable();
3586 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3587 &__get_cpu_var(blk_cpu_done));
3588 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3589 local_irq_enable();
3592 return NOTIFY_OK;
3596 static struct notifier_block __devinitdata blk_cpu_notifier = {
3597 .notifier_call = blk_cpu_notify,
3601 * blk_complete_request - end I/O on a request
3602 * @req: the request being processed
3604 * Description:
3605 * Ends all I/O on a request. It does not handle partial completions,
3606 * unless the driver actually implements this in its completion callback
3607 * through requeueing. Theh actual completion happens out-of-order,
3608 * through a softirq handler. The user must have registered a completion
3609 * callback through blk_queue_softirq_done().
3612 void blk_complete_request(struct request *req)
3614 struct list_head *cpu_list;
3615 unsigned long flags;
3617 BUG_ON(!req->q->softirq_done_fn);
3619 local_irq_save(flags);
3621 cpu_list = &__get_cpu_var(blk_cpu_done);
3622 list_add_tail(&req->donelist, cpu_list);
3623 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3625 local_irq_restore(flags);
3628 EXPORT_SYMBOL(blk_complete_request);
3631 * queue lock must be held
3633 void end_that_request_last(struct request *req, int uptodate)
3635 struct gendisk *disk = req->rq_disk;
3636 int error;
3639 * extend uptodate bool to allow < 0 value to be direct io error
3641 error = 0;
3642 if (end_io_error(uptodate))
3643 error = !uptodate ? -EIO : uptodate;
3645 if (unlikely(laptop_mode) && blk_fs_request(req))
3646 laptop_io_completion();
3649 * Account IO completion. bar_rq isn't accounted as a normal
3650 * IO on queueing nor completion. Accounting the containing
3651 * request is enough.
3653 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3654 unsigned long duration = jiffies - req->start_time;
3655 const int rw = rq_data_dir(req);
3657 __disk_stat_inc(disk, ios[rw]);
3658 __disk_stat_add(disk, ticks[rw], duration);
3659 disk_round_stats(disk);
3660 disk->in_flight--;
3662 if (req->end_io)
3663 req->end_io(req, error);
3664 else
3665 __blk_put_request(req->q, req);
3668 EXPORT_SYMBOL(end_that_request_last);
3670 void end_request(struct request *req, int uptodate)
3672 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3673 add_disk_randomness(req->rq_disk);
3674 blkdev_dequeue_request(req);
3675 end_that_request_last(req, uptodate);
3679 EXPORT_SYMBOL(end_request);
3681 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3682 struct bio *bio)
3684 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3685 rq->cmd_flags |= (bio->bi_rw & 3);
3687 rq->nr_phys_segments = bio_phys_segments(q, bio);
3688 rq->nr_hw_segments = bio_hw_segments(q, bio);
3689 rq->current_nr_sectors = bio_cur_sectors(bio);
3690 rq->hard_cur_sectors = rq->current_nr_sectors;
3691 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3692 rq->buffer = bio_data(bio);
3693 rq->data_len = bio->bi_size;
3695 rq->bio = rq->biotail = bio;
3698 EXPORT_SYMBOL(blk_rq_bio_prep);
3700 int kblockd_schedule_work(struct work_struct *work)
3702 return queue_work(kblockd_workqueue, work);
3705 EXPORT_SYMBOL(kblockd_schedule_work);
3707 void kblockd_flush_work(struct work_struct *work)
3709 cancel_work_sync(work);
3711 EXPORT_SYMBOL(kblockd_flush_work);
3713 int __init blk_dev_init(void)
3715 int i;
3717 kblockd_workqueue = create_workqueue("kblockd");
3718 if (!kblockd_workqueue)
3719 panic("Failed to create kblockd\n");
3721 request_cachep = kmem_cache_create("blkdev_requests",
3722 sizeof(struct request), 0, SLAB_PANIC, NULL);
3724 requestq_cachep = kmem_cache_create("blkdev_queue",
3725 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3727 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3728 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
3730 for_each_possible_cpu(i)
3731 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3733 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3734 register_hotcpu_notifier(&blk_cpu_notifier);
3736 blk_max_low_pfn = max_low_pfn - 1;
3737 blk_max_pfn = max_pfn - 1;
3739 return 0;
3743 * IO Context helper functions
3745 void put_io_context(struct io_context *ioc)
3747 if (ioc == NULL)
3748 return;
3750 BUG_ON(atomic_read(&ioc->refcount) == 0);
3752 if (atomic_dec_and_test(&ioc->refcount)) {
3753 struct cfq_io_context *cic;
3755 rcu_read_lock();
3756 if (ioc->aic && ioc->aic->dtor)
3757 ioc->aic->dtor(ioc->aic);
3758 if (ioc->cic_root.rb_node != NULL) {
3759 struct rb_node *n = rb_first(&ioc->cic_root);
3761 cic = rb_entry(n, struct cfq_io_context, rb_node);
3762 cic->dtor(ioc);
3764 rcu_read_unlock();
3766 kmem_cache_free(iocontext_cachep, ioc);
3769 EXPORT_SYMBOL(put_io_context);
3771 /* Called by the exitting task */
3772 void exit_io_context(void)
3774 struct io_context *ioc;
3775 struct cfq_io_context *cic;
3777 task_lock(current);
3778 ioc = current->io_context;
3779 current->io_context = NULL;
3780 task_unlock(current);
3782 ioc->task = NULL;
3783 if (ioc->aic && ioc->aic->exit)
3784 ioc->aic->exit(ioc->aic);
3785 if (ioc->cic_root.rb_node != NULL) {
3786 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3787 cic->exit(ioc);
3790 put_io_context(ioc);
3794 * If the current task has no IO context then create one and initialise it.
3795 * Otherwise, return its existing IO context.
3797 * This returned IO context doesn't have a specifically elevated refcount,
3798 * but since the current task itself holds a reference, the context can be
3799 * used in general code, so long as it stays within `current` context.
3801 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3803 struct task_struct *tsk = current;
3804 struct io_context *ret;
3806 ret = tsk->io_context;
3807 if (likely(ret))
3808 return ret;
3810 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3811 if (ret) {
3812 atomic_set(&ret->refcount, 1);
3813 ret->task = current;
3814 ret->ioprio_changed = 0;
3815 ret->last_waited = jiffies; /* doesn't matter... */
3816 ret->nr_batch_requests = 0; /* because this is 0 */
3817 ret->aic = NULL;
3818 ret->cic_root.rb_node = NULL;
3819 ret->ioc_data = NULL;
3820 /* make sure set_task_ioprio() sees the settings above */
3821 smp_wmb();
3822 tsk->io_context = ret;
3825 return ret;
3829 * If the current task has no IO context then create one and initialise it.
3830 * If it does have a context, take a ref on it.
3832 * This is always called in the context of the task which submitted the I/O.
3834 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3836 struct io_context *ret;
3837 ret = current_io_context(gfp_flags, node);
3838 if (likely(ret))
3839 atomic_inc(&ret->refcount);
3840 return ret;
3842 EXPORT_SYMBOL(get_io_context);
3844 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3846 struct io_context *src = *psrc;
3847 struct io_context *dst = *pdst;
3849 if (src) {
3850 BUG_ON(atomic_read(&src->refcount) == 0);
3851 atomic_inc(&src->refcount);
3852 put_io_context(dst);
3853 *pdst = src;
3856 EXPORT_SYMBOL(copy_io_context);
3858 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3860 struct io_context *temp;
3861 temp = *ioc1;
3862 *ioc1 = *ioc2;
3863 *ioc2 = temp;
3865 EXPORT_SYMBOL(swap_io_context);
3868 * sysfs parts below
3870 struct queue_sysfs_entry {
3871 struct attribute attr;
3872 ssize_t (*show)(struct request_queue *, char *);
3873 ssize_t (*store)(struct request_queue *, const char *, size_t);
3876 static ssize_t
3877 queue_var_show(unsigned int var, char *page)
3879 return sprintf(page, "%d\n", var);
3882 static ssize_t
3883 queue_var_store(unsigned long *var, const char *page, size_t count)
3885 char *p = (char *) page;
3887 *var = simple_strtoul(p, &p, 10);
3888 return count;
3891 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3893 return queue_var_show(q->nr_requests, (page));
3896 static ssize_t
3897 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3899 struct request_list *rl = &q->rq;
3900 unsigned long nr;
3901 int ret = queue_var_store(&nr, page, count);
3902 if (nr < BLKDEV_MIN_RQ)
3903 nr = BLKDEV_MIN_RQ;
3905 spin_lock_irq(q->queue_lock);
3906 q->nr_requests = nr;
3907 blk_queue_congestion_threshold(q);
3909 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3910 blk_set_queue_congested(q, READ);
3911 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3912 blk_clear_queue_congested(q, READ);
3914 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3915 blk_set_queue_congested(q, WRITE);
3916 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3917 blk_clear_queue_congested(q, WRITE);
3919 if (rl->count[READ] >= q->nr_requests) {
3920 blk_set_queue_full(q, READ);
3921 } else if (rl->count[READ]+1 <= q->nr_requests) {
3922 blk_clear_queue_full(q, READ);
3923 wake_up(&rl->wait[READ]);
3926 if (rl->count[WRITE] >= q->nr_requests) {
3927 blk_set_queue_full(q, WRITE);
3928 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3929 blk_clear_queue_full(q, WRITE);
3930 wake_up(&rl->wait[WRITE]);
3932 spin_unlock_irq(q->queue_lock);
3933 return ret;
3936 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3938 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3940 return queue_var_show(ra_kb, (page));
3943 static ssize_t
3944 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3946 unsigned long ra_kb;
3947 ssize_t ret = queue_var_store(&ra_kb, page, count);
3949 spin_lock_irq(q->queue_lock);
3950 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3951 spin_unlock_irq(q->queue_lock);
3953 return ret;
3956 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3958 int max_sectors_kb = q->max_sectors >> 1;
3960 return queue_var_show(max_sectors_kb, (page));
3963 static ssize_t
3964 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3966 unsigned long max_sectors_kb,
3967 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3968 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3969 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3970 int ra_kb;
3972 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3973 return -EINVAL;
3975 * Take the queue lock to update the readahead and max_sectors
3976 * values synchronously:
3978 spin_lock_irq(q->queue_lock);
3980 * Trim readahead window as well, if necessary:
3982 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3983 if (ra_kb > max_sectors_kb)
3984 q->backing_dev_info.ra_pages =
3985 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3987 q->max_sectors = max_sectors_kb << 1;
3988 spin_unlock_irq(q->queue_lock);
3990 return ret;
3993 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3995 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3997 return queue_var_show(max_hw_sectors_kb, (page));
4001 static struct queue_sysfs_entry queue_requests_entry = {
4002 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4003 .show = queue_requests_show,
4004 .store = queue_requests_store,
4007 static struct queue_sysfs_entry queue_ra_entry = {
4008 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4009 .show = queue_ra_show,
4010 .store = queue_ra_store,
4013 static struct queue_sysfs_entry queue_max_sectors_entry = {
4014 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4015 .show = queue_max_sectors_show,
4016 .store = queue_max_sectors_store,
4019 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4020 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4021 .show = queue_max_hw_sectors_show,
4024 static struct queue_sysfs_entry queue_iosched_entry = {
4025 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4026 .show = elv_iosched_show,
4027 .store = elv_iosched_store,
4030 static struct attribute *default_attrs[] = {
4031 &queue_requests_entry.attr,
4032 &queue_ra_entry.attr,
4033 &queue_max_hw_sectors_entry.attr,
4034 &queue_max_sectors_entry.attr,
4035 &queue_iosched_entry.attr,
4036 NULL,
4039 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4041 static ssize_t
4042 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4044 struct queue_sysfs_entry *entry = to_queue(attr);
4045 struct request_queue *q =
4046 container_of(kobj, struct request_queue, kobj);
4047 ssize_t res;
4049 if (!entry->show)
4050 return -EIO;
4051 mutex_lock(&q->sysfs_lock);
4052 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4053 mutex_unlock(&q->sysfs_lock);
4054 return -ENOENT;
4056 res = entry->show(q, page);
4057 mutex_unlock(&q->sysfs_lock);
4058 return res;
4061 static ssize_t
4062 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4063 const char *page, size_t length)
4065 struct queue_sysfs_entry *entry = to_queue(attr);
4066 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
4068 ssize_t res;
4070 if (!entry->store)
4071 return -EIO;
4072 mutex_lock(&q->sysfs_lock);
4073 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4074 mutex_unlock(&q->sysfs_lock);
4075 return -ENOENT;
4077 res = entry->store(q, page, length);
4078 mutex_unlock(&q->sysfs_lock);
4079 return res;
4082 static struct sysfs_ops queue_sysfs_ops = {
4083 .show = queue_attr_show,
4084 .store = queue_attr_store,
4087 static struct kobj_type queue_ktype = {
4088 .sysfs_ops = &queue_sysfs_ops,
4089 .default_attrs = default_attrs,
4090 .release = blk_release_queue,
4093 int blk_register_queue(struct gendisk *disk)
4095 int ret;
4097 struct request_queue *q = disk->queue;
4099 if (!q || !q->request_fn)
4100 return -ENXIO;
4102 q->kobj.parent = kobject_get(&disk->kobj);
4104 ret = kobject_add(&q->kobj);
4105 if (ret < 0)
4106 return ret;
4108 kobject_uevent(&q->kobj, KOBJ_ADD);
4110 ret = elv_register_queue(q);
4111 if (ret) {
4112 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4113 kobject_del(&q->kobj);
4114 return ret;
4117 return 0;
4120 void blk_unregister_queue(struct gendisk *disk)
4122 struct request_queue *q = disk->queue;
4124 if (q && q->request_fn) {
4125 elv_unregister_queue(q);
4127 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4128 kobject_del(&q->kobj);
4129 kobject_put(&disk->kobj);