net: reintroduce missing rcu_assign_pointer() calls
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / ipmr.c
blobd2aae278de6918ae1b5c8a2749c041a9c7ab29a4
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <linux/types.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/timer.h>
35 #include <linux/mm.h>
36 #include <linux/kernel.h>
37 #include <linux/fcntl.h>
38 #include <linux/stat.h>
39 #include <linux/socket.h>
40 #include <linux/in.h>
41 #include <linux/inet.h>
42 #include <linux/netdevice.h>
43 #include <linux/inetdevice.h>
44 #include <linux/igmp.h>
45 #include <linux/proc_fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/mroute.h>
48 #include <linux/init.h>
49 #include <linux/if_ether.h>
50 #include <linux/slab.h>
51 #include <net/net_namespace.h>
52 #include <net/ip.h>
53 #include <net/protocol.h>
54 #include <linux/skbuff.h>
55 #include <net/route.h>
56 #include <net/sock.h>
57 #include <net/icmp.h>
58 #include <net/udp.h>
59 #include <net/raw.h>
60 #include <linux/notifier.h>
61 #include <linux/if_arp.h>
62 #include <linux/netfilter_ipv4.h>
63 #include <linux/compat.h>
64 #include <linux/export.h>
65 #include <net/ipip.h>
66 #include <net/checksum.h>
67 #include <net/netlink.h>
68 #include <net/fib_rules.h>
70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71 #define CONFIG_IP_PIMSM 1
72 #endif
74 struct mr_table {
75 struct list_head list;
76 #ifdef CONFIG_NET_NS
77 struct net *net;
78 #endif
79 u32 id;
80 struct sock __rcu *mroute_sk;
81 struct timer_list ipmr_expire_timer;
82 struct list_head mfc_unres_queue;
83 struct list_head mfc_cache_array[MFC_LINES];
84 struct vif_device vif_table[MAXVIFS];
85 int maxvif;
86 atomic_t cache_resolve_queue_len;
87 int mroute_do_assert;
88 int mroute_do_pim;
89 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
90 int mroute_reg_vif_num;
91 #endif
94 struct ipmr_rule {
95 struct fib_rule common;
98 struct ipmr_result {
99 struct mr_table *mrt;
102 /* Big lock, protecting vif table, mrt cache and mroute socket state.
103 * Note that the changes are semaphored via rtnl_lock.
106 static DEFINE_RWLOCK(mrt_lock);
109 * Multicast router control variables
112 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
114 /* Special spinlock for queue of unresolved entries */
115 static DEFINE_SPINLOCK(mfc_unres_lock);
117 /* We return to original Alan's scheme. Hash table of resolved
118 * entries is changed only in process context and protected
119 * with weak lock mrt_lock. Queue of unresolved entries is protected
120 * with strong spinlock mfc_unres_lock.
122 * In this case data path is free of exclusive locks at all.
125 static struct kmem_cache *mrt_cachep __read_mostly;
127 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
128 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
129 struct sk_buff *skb, struct mfc_cache *cache,
130 int local);
131 static int ipmr_cache_report(struct mr_table *mrt,
132 struct sk_buff *pkt, vifi_t vifi, int assert);
133 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
134 struct mfc_cache *c, struct rtmsg *rtm);
135 static void ipmr_expire_process(unsigned long arg);
137 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
138 #define ipmr_for_each_table(mrt, net) \
139 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
141 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
143 struct mr_table *mrt;
145 ipmr_for_each_table(mrt, net) {
146 if (mrt->id == id)
147 return mrt;
149 return NULL;
152 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
153 struct mr_table **mrt)
155 struct ipmr_result res;
156 struct fib_lookup_arg arg = { .result = &res, };
157 int err;
159 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
160 flowi4_to_flowi(flp4), 0, &arg);
161 if (err < 0)
162 return err;
163 *mrt = res.mrt;
164 return 0;
167 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
168 int flags, struct fib_lookup_arg *arg)
170 struct ipmr_result *res = arg->result;
171 struct mr_table *mrt;
173 switch (rule->action) {
174 case FR_ACT_TO_TBL:
175 break;
176 case FR_ACT_UNREACHABLE:
177 return -ENETUNREACH;
178 case FR_ACT_PROHIBIT:
179 return -EACCES;
180 case FR_ACT_BLACKHOLE:
181 default:
182 return -EINVAL;
185 mrt = ipmr_get_table(rule->fr_net, rule->table);
186 if (mrt == NULL)
187 return -EAGAIN;
188 res->mrt = mrt;
189 return 0;
192 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
194 return 1;
197 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
198 FRA_GENERIC_POLICY,
201 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
202 struct fib_rule_hdr *frh, struct nlattr **tb)
204 return 0;
207 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
208 struct nlattr **tb)
210 return 1;
213 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
214 struct fib_rule_hdr *frh)
216 frh->dst_len = 0;
217 frh->src_len = 0;
218 frh->tos = 0;
219 return 0;
222 static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
223 .family = RTNL_FAMILY_IPMR,
224 .rule_size = sizeof(struct ipmr_rule),
225 .addr_size = sizeof(u32),
226 .action = ipmr_rule_action,
227 .match = ipmr_rule_match,
228 .configure = ipmr_rule_configure,
229 .compare = ipmr_rule_compare,
230 .default_pref = fib_default_rule_pref,
231 .fill = ipmr_rule_fill,
232 .nlgroup = RTNLGRP_IPV4_RULE,
233 .policy = ipmr_rule_policy,
234 .owner = THIS_MODULE,
237 static int __net_init ipmr_rules_init(struct net *net)
239 struct fib_rules_ops *ops;
240 struct mr_table *mrt;
241 int err;
243 ops = fib_rules_register(&ipmr_rules_ops_template, net);
244 if (IS_ERR(ops))
245 return PTR_ERR(ops);
247 INIT_LIST_HEAD(&net->ipv4.mr_tables);
249 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
250 if (mrt == NULL) {
251 err = -ENOMEM;
252 goto err1;
255 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
256 if (err < 0)
257 goto err2;
259 net->ipv4.mr_rules_ops = ops;
260 return 0;
262 err2:
263 kfree(mrt);
264 err1:
265 fib_rules_unregister(ops);
266 return err;
269 static void __net_exit ipmr_rules_exit(struct net *net)
271 struct mr_table *mrt, *next;
273 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
274 list_del(&mrt->list);
275 kfree(mrt);
277 fib_rules_unregister(net->ipv4.mr_rules_ops);
279 #else
280 #define ipmr_for_each_table(mrt, net) \
281 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
283 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
285 return net->ipv4.mrt;
288 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
289 struct mr_table **mrt)
291 *mrt = net->ipv4.mrt;
292 return 0;
295 static int __net_init ipmr_rules_init(struct net *net)
297 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
298 return net->ipv4.mrt ? 0 : -ENOMEM;
301 static void __net_exit ipmr_rules_exit(struct net *net)
303 kfree(net->ipv4.mrt);
305 #endif
307 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
309 struct mr_table *mrt;
310 unsigned int i;
312 mrt = ipmr_get_table(net, id);
313 if (mrt != NULL)
314 return mrt;
316 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
317 if (mrt == NULL)
318 return NULL;
319 write_pnet(&mrt->net, net);
320 mrt->id = id;
322 /* Forwarding cache */
323 for (i = 0; i < MFC_LINES; i++)
324 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
326 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
328 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
329 (unsigned long)mrt);
331 #ifdef CONFIG_IP_PIMSM
332 mrt->mroute_reg_vif_num = -1;
333 #endif
334 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
335 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
336 #endif
337 return mrt;
340 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
342 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
344 struct net *net = dev_net(dev);
346 dev_close(dev);
348 dev = __dev_get_by_name(net, "tunl0");
349 if (dev) {
350 const struct net_device_ops *ops = dev->netdev_ops;
351 struct ifreq ifr;
352 struct ip_tunnel_parm p;
354 memset(&p, 0, sizeof(p));
355 p.iph.daddr = v->vifc_rmt_addr.s_addr;
356 p.iph.saddr = v->vifc_lcl_addr.s_addr;
357 p.iph.version = 4;
358 p.iph.ihl = 5;
359 p.iph.protocol = IPPROTO_IPIP;
360 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
361 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
363 if (ops->ndo_do_ioctl) {
364 mm_segment_t oldfs = get_fs();
366 set_fs(KERNEL_DS);
367 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
368 set_fs(oldfs);
373 static
374 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
376 struct net_device *dev;
378 dev = __dev_get_by_name(net, "tunl0");
380 if (dev) {
381 const struct net_device_ops *ops = dev->netdev_ops;
382 int err;
383 struct ifreq ifr;
384 struct ip_tunnel_parm p;
385 struct in_device *in_dev;
387 memset(&p, 0, sizeof(p));
388 p.iph.daddr = v->vifc_rmt_addr.s_addr;
389 p.iph.saddr = v->vifc_lcl_addr.s_addr;
390 p.iph.version = 4;
391 p.iph.ihl = 5;
392 p.iph.protocol = IPPROTO_IPIP;
393 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
394 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
396 if (ops->ndo_do_ioctl) {
397 mm_segment_t oldfs = get_fs();
399 set_fs(KERNEL_DS);
400 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
401 set_fs(oldfs);
402 } else {
403 err = -EOPNOTSUPP;
405 dev = NULL;
407 if (err == 0 &&
408 (dev = __dev_get_by_name(net, p.name)) != NULL) {
409 dev->flags |= IFF_MULTICAST;
411 in_dev = __in_dev_get_rtnl(dev);
412 if (in_dev == NULL)
413 goto failure;
415 ipv4_devconf_setall(in_dev);
416 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
418 if (dev_open(dev))
419 goto failure;
420 dev_hold(dev);
423 return dev;
425 failure:
426 /* allow the register to be completed before unregistering. */
427 rtnl_unlock();
428 rtnl_lock();
430 unregister_netdevice(dev);
431 return NULL;
434 #ifdef CONFIG_IP_PIMSM
436 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
438 struct net *net = dev_net(dev);
439 struct mr_table *mrt;
440 struct flowi4 fl4 = {
441 .flowi4_oif = dev->ifindex,
442 .flowi4_iif = skb->skb_iif,
443 .flowi4_mark = skb->mark,
445 int err;
447 err = ipmr_fib_lookup(net, &fl4, &mrt);
448 if (err < 0) {
449 kfree_skb(skb);
450 return err;
453 read_lock(&mrt_lock);
454 dev->stats.tx_bytes += skb->len;
455 dev->stats.tx_packets++;
456 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
457 read_unlock(&mrt_lock);
458 kfree_skb(skb);
459 return NETDEV_TX_OK;
462 static const struct net_device_ops reg_vif_netdev_ops = {
463 .ndo_start_xmit = reg_vif_xmit,
466 static void reg_vif_setup(struct net_device *dev)
468 dev->type = ARPHRD_PIMREG;
469 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
470 dev->flags = IFF_NOARP;
471 dev->netdev_ops = &reg_vif_netdev_ops,
472 dev->destructor = free_netdev;
473 dev->features |= NETIF_F_NETNS_LOCAL;
476 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
478 struct net_device *dev;
479 struct in_device *in_dev;
480 char name[IFNAMSIZ];
482 if (mrt->id == RT_TABLE_DEFAULT)
483 sprintf(name, "pimreg");
484 else
485 sprintf(name, "pimreg%u", mrt->id);
487 dev = alloc_netdev(0, name, reg_vif_setup);
489 if (dev == NULL)
490 return NULL;
492 dev_net_set(dev, net);
494 if (register_netdevice(dev)) {
495 free_netdev(dev);
496 return NULL;
498 dev->iflink = 0;
500 rcu_read_lock();
501 in_dev = __in_dev_get_rcu(dev);
502 if (!in_dev) {
503 rcu_read_unlock();
504 goto failure;
507 ipv4_devconf_setall(in_dev);
508 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
509 rcu_read_unlock();
511 if (dev_open(dev))
512 goto failure;
514 dev_hold(dev);
516 return dev;
518 failure:
519 /* allow the register to be completed before unregistering. */
520 rtnl_unlock();
521 rtnl_lock();
523 unregister_netdevice(dev);
524 return NULL;
526 #endif
529 * Delete a VIF entry
530 * @notify: Set to 1, if the caller is a notifier_call
533 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
534 struct list_head *head)
536 struct vif_device *v;
537 struct net_device *dev;
538 struct in_device *in_dev;
540 if (vifi < 0 || vifi >= mrt->maxvif)
541 return -EADDRNOTAVAIL;
543 v = &mrt->vif_table[vifi];
545 write_lock_bh(&mrt_lock);
546 dev = v->dev;
547 v->dev = NULL;
549 if (!dev) {
550 write_unlock_bh(&mrt_lock);
551 return -EADDRNOTAVAIL;
554 #ifdef CONFIG_IP_PIMSM
555 if (vifi == mrt->mroute_reg_vif_num)
556 mrt->mroute_reg_vif_num = -1;
557 #endif
559 if (vifi + 1 == mrt->maxvif) {
560 int tmp;
562 for (tmp = vifi - 1; tmp >= 0; tmp--) {
563 if (VIF_EXISTS(mrt, tmp))
564 break;
566 mrt->maxvif = tmp+1;
569 write_unlock_bh(&mrt_lock);
571 dev_set_allmulti(dev, -1);
573 in_dev = __in_dev_get_rtnl(dev);
574 if (in_dev) {
575 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
576 ip_rt_multicast_event(in_dev);
579 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
580 unregister_netdevice_queue(dev, head);
582 dev_put(dev);
583 return 0;
586 static void ipmr_cache_free_rcu(struct rcu_head *head)
588 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
590 kmem_cache_free(mrt_cachep, c);
593 static inline void ipmr_cache_free(struct mfc_cache *c)
595 call_rcu(&c->rcu, ipmr_cache_free_rcu);
598 /* Destroy an unresolved cache entry, killing queued skbs
599 * and reporting error to netlink readers.
602 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
604 struct net *net = read_pnet(&mrt->net);
605 struct sk_buff *skb;
606 struct nlmsgerr *e;
608 atomic_dec(&mrt->cache_resolve_queue_len);
610 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
611 if (ip_hdr(skb)->version == 0) {
612 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
613 nlh->nlmsg_type = NLMSG_ERROR;
614 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
615 skb_trim(skb, nlh->nlmsg_len);
616 e = NLMSG_DATA(nlh);
617 e->error = -ETIMEDOUT;
618 memset(&e->msg, 0, sizeof(e->msg));
620 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
621 } else {
622 kfree_skb(skb);
626 ipmr_cache_free(c);
630 /* Timer process for the unresolved queue. */
632 static void ipmr_expire_process(unsigned long arg)
634 struct mr_table *mrt = (struct mr_table *)arg;
635 unsigned long now;
636 unsigned long expires;
637 struct mfc_cache *c, *next;
639 if (!spin_trylock(&mfc_unres_lock)) {
640 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
641 return;
644 if (list_empty(&mrt->mfc_unres_queue))
645 goto out;
647 now = jiffies;
648 expires = 10*HZ;
650 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
651 if (time_after(c->mfc_un.unres.expires, now)) {
652 unsigned long interval = c->mfc_un.unres.expires - now;
653 if (interval < expires)
654 expires = interval;
655 continue;
658 list_del(&c->list);
659 ipmr_destroy_unres(mrt, c);
662 if (!list_empty(&mrt->mfc_unres_queue))
663 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
665 out:
666 spin_unlock(&mfc_unres_lock);
669 /* Fill oifs list. It is called under write locked mrt_lock. */
671 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
672 unsigned char *ttls)
674 int vifi;
676 cache->mfc_un.res.minvif = MAXVIFS;
677 cache->mfc_un.res.maxvif = 0;
678 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
680 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
681 if (VIF_EXISTS(mrt, vifi) &&
682 ttls[vifi] && ttls[vifi] < 255) {
683 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
684 if (cache->mfc_un.res.minvif > vifi)
685 cache->mfc_un.res.minvif = vifi;
686 if (cache->mfc_un.res.maxvif <= vifi)
687 cache->mfc_un.res.maxvif = vifi + 1;
692 static int vif_add(struct net *net, struct mr_table *mrt,
693 struct vifctl *vifc, int mrtsock)
695 int vifi = vifc->vifc_vifi;
696 struct vif_device *v = &mrt->vif_table[vifi];
697 struct net_device *dev;
698 struct in_device *in_dev;
699 int err;
701 /* Is vif busy ? */
702 if (VIF_EXISTS(mrt, vifi))
703 return -EADDRINUSE;
705 switch (vifc->vifc_flags) {
706 #ifdef CONFIG_IP_PIMSM
707 case VIFF_REGISTER:
709 * Special Purpose VIF in PIM
710 * All the packets will be sent to the daemon
712 if (mrt->mroute_reg_vif_num >= 0)
713 return -EADDRINUSE;
714 dev = ipmr_reg_vif(net, mrt);
715 if (!dev)
716 return -ENOBUFS;
717 err = dev_set_allmulti(dev, 1);
718 if (err) {
719 unregister_netdevice(dev);
720 dev_put(dev);
721 return err;
723 break;
724 #endif
725 case VIFF_TUNNEL:
726 dev = ipmr_new_tunnel(net, vifc);
727 if (!dev)
728 return -ENOBUFS;
729 err = dev_set_allmulti(dev, 1);
730 if (err) {
731 ipmr_del_tunnel(dev, vifc);
732 dev_put(dev);
733 return err;
735 break;
737 case VIFF_USE_IFINDEX:
738 case 0:
739 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
740 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
741 if (dev && __in_dev_get_rtnl(dev) == NULL) {
742 dev_put(dev);
743 return -EADDRNOTAVAIL;
745 } else {
746 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
748 if (!dev)
749 return -EADDRNOTAVAIL;
750 err = dev_set_allmulti(dev, 1);
751 if (err) {
752 dev_put(dev);
753 return err;
755 break;
756 default:
757 return -EINVAL;
760 in_dev = __in_dev_get_rtnl(dev);
761 if (!in_dev) {
762 dev_put(dev);
763 return -EADDRNOTAVAIL;
765 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
766 ip_rt_multicast_event(in_dev);
768 /* Fill in the VIF structures */
770 v->rate_limit = vifc->vifc_rate_limit;
771 v->local = vifc->vifc_lcl_addr.s_addr;
772 v->remote = vifc->vifc_rmt_addr.s_addr;
773 v->flags = vifc->vifc_flags;
774 if (!mrtsock)
775 v->flags |= VIFF_STATIC;
776 v->threshold = vifc->vifc_threshold;
777 v->bytes_in = 0;
778 v->bytes_out = 0;
779 v->pkt_in = 0;
780 v->pkt_out = 0;
781 v->link = dev->ifindex;
782 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
783 v->link = dev->iflink;
785 /* And finish update writing critical data */
786 write_lock_bh(&mrt_lock);
787 v->dev = dev;
788 #ifdef CONFIG_IP_PIMSM
789 if (v->flags & VIFF_REGISTER)
790 mrt->mroute_reg_vif_num = vifi;
791 #endif
792 if (vifi+1 > mrt->maxvif)
793 mrt->maxvif = vifi+1;
794 write_unlock_bh(&mrt_lock);
795 return 0;
798 /* called with rcu_read_lock() */
799 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
800 __be32 origin,
801 __be32 mcastgrp)
803 int line = MFC_HASH(mcastgrp, origin);
804 struct mfc_cache *c;
806 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
807 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
808 return c;
810 return NULL;
814 * Allocate a multicast cache entry
816 static struct mfc_cache *ipmr_cache_alloc(void)
818 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
820 if (c)
821 c->mfc_un.res.minvif = MAXVIFS;
822 return c;
825 static struct mfc_cache *ipmr_cache_alloc_unres(void)
827 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
829 if (c) {
830 skb_queue_head_init(&c->mfc_un.unres.unresolved);
831 c->mfc_un.unres.expires = jiffies + 10*HZ;
833 return c;
837 * A cache entry has gone into a resolved state from queued
840 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
841 struct mfc_cache *uc, struct mfc_cache *c)
843 struct sk_buff *skb;
844 struct nlmsgerr *e;
846 /* Play the pending entries through our router */
848 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
849 if (ip_hdr(skb)->version == 0) {
850 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
852 if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
853 nlh->nlmsg_len = skb_tail_pointer(skb) -
854 (u8 *)nlh;
855 } else {
856 nlh->nlmsg_type = NLMSG_ERROR;
857 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
858 skb_trim(skb, nlh->nlmsg_len);
859 e = NLMSG_DATA(nlh);
860 e->error = -EMSGSIZE;
861 memset(&e->msg, 0, sizeof(e->msg));
864 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
865 } else {
866 ip_mr_forward(net, mrt, skb, c, 0);
872 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
873 * expects the following bizarre scheme.
875 * Called under mrt_lock.
878 static int ipmr_cache_report(struct mr_table *mrt,
879 struct sk_buff *pkt, vifi_t vifi, int assert)
881 struct sk_buff *skb;
882 const int ihl = ip_hdrlen(pkt);
883 struct igmphdr *igmp;
884 struct igmpmsg *msg;
885 struct sock *mroute_sk;
886 int ret;
888 #ifdef CONFIG_IP_PIMSM
889 if (assert == IGMPMSG_WHOLEPKT)
890 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
891 else
892 #endif
893 skb = alloc_skb(128, GFP_ATOMIC);
895 if (!skb)
896 return -ENOBUFS;
898 #ifdef CONFIG_IP_PIMSM
899 if (assert == IGMPMSG_WHOLEPKT) {
900 /* Ugly, but we have no choice with this interface.
901 * Duplicate old header, fix ihl, length etc.
902 * And all this only to mangle msg->im_msgtype and
903 * to set msg->im_mbz to "mbz" :-)
905 skb_push(skb, sizeof(struct iphdr));
906 skb_reset_network_header(skb);
907 skb_reset_transport_header(skb);
908 msg = (struct igmpmsg *)skb_network_header(skb);
909 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
910 msg->im_msgtype = IGMPMSG_WHOLEPKT;
911 msg->im_mbz = 0;
912 msg->im_vif = mrt->mroute_reg_vif_num;
913 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
914 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
915 sizeof(struct iphdr));
916 } else
917 #endif
920 /* Copy the IP header */
922 skb->network_header = skb->tail;
923 skb_put(skb, ihl);
924 skb_copy_to_linear_data(skb, pkt->data, ihl);
925 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
926 msg = (struct igmpmsg *)skb_network_header(skb);
927 msg->im_vif = vifi;
928 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
930 /* Add our header */
932 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
933 igmp->type =
934 msg->im_msgtype = assert;
935 igmp->code = 0;
936 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
937 skb->transport_header = skb->network_header;
940 rcu_read_lock();
941 mroute_sk = rcu_dereference(mrt->mroute_sk);
942 if (mroute_sk == NULL) {
943 rcu_read_unlock();
944 kfree_skb(skb);
945 return -EINVAL;
948 /* Deliver to mrouted */
950 ret = sock_queue_rcv_skb(mroute_sk, skb);
951 rcu_read_unlock();
952 if (ret < 0) {
953 if (net_ratelimit())
954 printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
955 kfree_skb(skb);
958 return ret;
962 * Queue a packet for resolution. It gets locked cache entry!
965 static int
966 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
968 bool found = false;
969 int err;
970 struct mfc_cache *c;
971 const struct iphdr *iph = ip_hdr(skb);
973 spin_lock_bh(&mfc_unres_lock);
974 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
975 if (c->mfc_mcastgrp == iph->daddr &&
976 c->mfc_origin == iph->saddr) {
977 found = true;
978 break;
982 if (!found) {
983 /* Create a new entry if allowable */
985 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
986 (c = ipmr_cache_alloc_unres()) == NULL) {
987 spin_unlock_bh(&mfc_unres_lock);
989 kfree_skb(skb);
990 return -ENOBUFS;
993 /* Fill in the new cache entry */
995 c->mfc_parent = -1;
996 c->mfc_origin = iph->saddr;
997 c->mfc_mcastgrp = iph->daddr;
999 /* Reflect first query at mrouted. */
1001 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1002 if (err < 0) {
1003 /* If the report failed throw the cache entry
1004 out - Brad Parker
1006 spin_unlock_bh(&mfc_unres_lock);
1008 ipmr_cache_free(c);
1009 kfree_skb(skb);
1010 return err;
1013 atomic_inc(&mrt->cache_resolve_queue_len);
1014 list_add(&c->list, &mrt->mfc_unres_queue);
1016 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1017 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1020 /* See if we can append the packet */
1022 if (c->mfc_un.unres.unresolved.qlen > 3) {
1023 kfree_skb(skb);
1024 err = -ENOBUFS;
1025 } else {
1026 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1027 err = 0;
1030 spin_unlock_bh(&mfc_unres_lock);
1031 return err;
1035 * MFC cache manipulation by user space mroute daemon
1038 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1040 int line;
1041 struct mfc_cache *c, *next;
1043 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1045 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1046 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1047 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1048 list_del_rcu(&c->list);
1050 ipmr_cache_free(c);
1051 return 0;
1054 return -ENOENT;
1057 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1058 struct mfcctl *mfc, int mrtsock)
1060 bool found = false;
1061 int line;
1062 struct mfc_cache *uc, *c;
1064 if (mfc->mfcc_parent >= MAXVIFS)
1065 return -ENFILE;
1067 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1069 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1070 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1071 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1072 found = true;
1073 break;
1077 if (found) {
1078 write_lock_bh(&mrt_lock);
1079 c->mfc_parent = mfc->mfcc_parent;
1080 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1081 if (!mrtsock)
1082 c->mfc_flags |= MFC_STATIC;
1083 write_unlock_bh(&mrt_lock);
1084 return 0;
1087 if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1088 return -EINVAL;
1090 c = ipmr_cache_alloc();
1091 if (c == NULL)
1092 return -ENOMEM;
1094 c->mfc_origin = mfc->mfcc_origin.s_addr;
1095 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1096 c->mfc_parent = mfc->mfcc_parent;
1097 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1098 if (!mrtsock)
1099 c->mfc_flags |= MFC_STATIC;
1101 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1104 * Check to see if we resolved a queued list. If so we
1105 * need to send on the frames and tidy up.
1107 found = false;
1108 spin_lock_bh(&mfc_unres_lock);
1109 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1110 if (uc->mfc_origin == c->mfc_origin &&
1111 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1112 list_del(&uc->list);
1113 atomic_dec(&mrt->cache_resolve_queue_len);
1114 found = true;
1115 break;
1118 if (list_empty(&mrt->mfc_unres_queue))
1119 del_timer(&mrt->ipmr_expire_timer);
1120 spin_unlock_bh(&mfc_unres_lock);
1122 if (found) {
1123 ipmr_cache_resolve(net, mrt, uc, c);
1124 ipmr_cache_free(uc);
1126 return 0;
1130 * Close the multicast socket, and clear the vif tables etc
1133 static void mroute_clean_tables(struct mr_table *mrt)
1135 int i;
1136 LIST_HEAD(list);
1137 struct mfc_cache *c, *next;
1139 /* Shut down all active vif entries */
1141 for (i = 0; i < mrt->maxvif; i++) {
1142 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1143 vif_delete(mrt, i, 0, &list);
1145 unregister_netdevice_many(&list);
1147 /* Wipe the cache */
1149 for (i = 0; i < MFC_LINES; i++) {
1150 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1151 if (c->mfc_flags & MFC_STATIC)
1152 continue;
1153 list_del_rcu(&c->list);
1154 ipmr_cache_free(c);
1158 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1159 spin_lock_bh(&mfc_unres_lock);
1160 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1161 list_del(&c->list);
1162 ipmr_destroy_unres(mrt, c);
1164 spin_unlock_bh(&mfc_unres_lock);
1168 /* called from ip_ra_control(), before an RCU grace period,
1169 * we dont need to call synchronize_rcu() here
1171 static void mrtsock_destruct(struct sock *sk)
1173 struct net *net = sock_net(sk);
1174 struct mr_table *mrt;
1176 rtnl_lock();
1177 ipmr_for_each_table(mrt, net) {
1178 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1179 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1180 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1181 mroute_clean_tables(mrt);
1184 rtnl_unlock();
1188 * Socket options and virtual interface manipulation. The whole
1189 * virtual interface system is a complete heap, but unfortunately
1190 * that's how BSD mrouted happens to think. Maybe one day with a proper
1191 * MOSPF/PIM router set up we can clean this up.
1194 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1196 int ret;
1197 struct vifctl vif;
1198 struct mfcctl mfc;
1199 struct net *net = sock_net(sk);
1200 struct mr_table *mrt;
1202 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1203 if (mrt == NULL)
1204 return -ENOENT;
1206 if (optname != MRT_INIT) {
1207 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1208 !capable(CAP_NET_ADMIN))
1209 return -EACCES;
1212 switch (optname) {
1213 case MRT_INIT:
1214 if (sk->sk_type != SOCK_RAW ||
1215 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1216 return -EOPNOTSUPP;
1217 if (optlen != sizeof(int))
1218 return -ENOPROTOOPT;
1220 rtnl_lock();
1221 if (rtnl_dereference(mrt->mroute_sk)) {
1222 rtnl_unlock();
1223 return -EADDRINUSE;
1226 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1227 if (ret == 0) {
1228 rcu_assign_pointer(mrt->mroute_sk, sk);
1229 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1231 rtnl_unlock();
1232 return ret;
1233 case MRT_DONE:
1234 if (sk != rcu_access_pointer(mrt->mroute_sk))
1235 return -EACCES;
1236 return ip_ra_control(sk, 0, NULL);
1237 case MRT_ADD_VIF:
1238 case MRT_DEL_VIF:
1239 if (optlen != sizeof(vif))
1240 return -EINVAL;
1241 if (copy_from_user(&vif, optval, sizeof(vif)))
1242 return -EFAULT;
1243 if (vif.vifc_vifi >= MAXVIFS)
1244 return -ENFILE;
1245 rtnl_lock();
1246 if (optname == MRT_ADD_VIF) {
1247 ret = vif_add(net, mrt, &vif,
1248 sk == rtnl_dereference(mrt->mroute_sk));
1249 } else {
1250 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1252 rtnl_unlock();
1253 return ret;
1256 * Manipulate the forwarding caches. These live
1257 * in a sort of kernel/user symbiosis.
1259 case MRT_ADD_MFC:
1260 case MRT_DEL_MFC:
1261 if (optlen != sizeof(mfc))
1262 return -EINVAL;
1263 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1264 return -EFAULT;
1265 rtnl_lock();
1266 if (optname == MRT_DEL_MFC)
1267 ret = ipmr_mfc_delete(mrt, &mfc);
1268 else
1269 ret = ipmr_mfc_add(net, mrt, &mfc,
1270 sk == rtnl_dereference(mrt->mroute_sk));
1271 rtnl_unlock();
1272 return ret;
1274 * Control PIM assert.
1276 case MRT_ASSERT:
1278 int v;
1279 if (get_user(v, (int __user *)optval))
1280 return -EFAULT;
1281 mrt->mroute_do_assert = (v) ? 1 : 0;
1282 return 0;
1284 #ifdef CONFIG_IP_PIMSM
1285 case MRT_PIM:
1287 int v;
1289 if (get_user(v, (int __user *)optval))
1290 return -EFAULT;
1291 v = (v) ? 1 : 0;
1293 rtnl_lock();
1294 ret = 0;
1295 if (v != mrt->mroute_do_pim) {
1296 mrt->mroute_do_pim = v;
1297 mrt->mroute_do_assert = v;
1299 rtnl_unlock();
1300 return ret;
1302 #endif
1303 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1304 case MRT_TABLE:
1306 u32 v;
1308 if (optlen != sizeof(u32))
1309 return -EINVAL;
1310 if (get_user(v, (u32 __user *)optval))
1311 return -EFAULT;
1313 rtnl_lock();
1314 ret = 0;
1315 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1316 ret = -EBUSY;
1317 } else {
1318 if (!ipmr_new_table(net, v))
1319 ret = -ENOMEM;
1320 raw_sk(sk)->ipmr_table = v;
1322 rtnl_unlock();
1323 return ret;
1325 #endif
1327 * Spurious command, or MRT_VERSION which you cannot
1328 * set.
1330 default:
1331 return -ENOPROTOOPT;
1336 * Getsock opt support for the multicast routing system.
1339 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1341 int olr;
1342 int val;
1343 struct net *net = sock_net(sk);
1344 struct mr_table *mrt;
1346 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1347 if (mrt == NULL)
1348 return -ENOENT;
1350 if (optname != MRT_VERSION &&
1351 #ifdef CONFIG_IP_PIMSM
1352 optname != MRT_PIM &&
1353 #endif
1354 optname != MRT_ASSERT)
1355 return -ENOPROTOOPT;
1357 if (get_user(olr, optlen))
1358 return -EFAULT;
1360 olr = min_t(unsigned int, olr, sizeof(int));
1361 if (olr < 0)
1362 return -EINVAL;
1364 if (put_user(olr, optlen))
1365 return -EFAULT;
1366 if (optname == MRT_VERSION)
1367 val = 0x0305;
1368 #ifdef CONFIG_IP_PIMSM
1369 else if (optname == MRT_PIM)
1370 val = mrt->mroute_do_pim;
1371 #endif
1372 else
1373 val = mrt->mroute_do_assert;
1374 if (copy_to_user(optval, &val, olr))
1375 return -EFAULT;
1376 return 0;
1380 * The IP multicast ioctl support routines.
1383 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1385 struct sioc_sg_req sr;
1386 struct sioc_vif_req vr;
1387 struct vif_device *vif;
1388 struct mfc_cache *c;
1389 struct net *net = sock_net(sk);
1390 struct mr_table *mrt;
1392 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1393 if (mrt == NULL)
1394 return -ENOENT;
1396 switch (cmd) {
1397 case SIOCGETVIFCNT:
1398 if (copy_from_user(&vr, arg, sizeof(vr)))
1399 return -EFAULT;
1400 if (vr.vifi >= mrt->maxvif)
1401 return -EINVAL;
1402 read_lock(&mrt_lock);
1403 vif = &mrt->vif_table[vr.vifi];
1404 if (VIF_EXISTS(mrt, vr.vifi)) {
1405 vr.icount = vif->pkt_in;
1406 vr.ocount = vif->pkt_out;
1407 vr.ibytes = vif->bytes_in;
1408 vr.obytes = vif->bytes_out;
1409 read_unlock(&mrt_lock);
1411 if (copy_to_user(arg, &vr, sizeof(vr)))
1412 return -EFAULT;
1413 return 0;
1415 read_unlock(&mrt_lock);
1416 return -EADDRNOTAVAIL;
1417 case SIOCGETSGCNT:
1418 if (copy_from_user(&sr, arg, sizeof(sr)))
1419 return -EFAULT;
1421 rcu_read_lock();
1422 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1423 if (c) {
1424 sr.pktcnt = c->mfc_un.res.pkt;
1425 sr.bytecnt = c->mfc_un.res.bytes;
1426 sr.wrong_if = c->mfc_un.res.wrong_if;
1427 rcu_read_unlock();
1429 if (copy_to_user(arg, &sr, sizeof(sr)))
1430 return -EFAULT;
1431 return 0;
1433 rcu_read_unlock();
1434 return -EADDRNOTAVAIL;
1435 default:
1436 return -ENOIOCTLCMD;
1440 #ifdef CONFIG_COMPAT
1441 struct compat_sioc_sg_req {
1442 struct in_addr src;
1443 struct in_addr grp;
1444 compat_ulong_t pktcnt;
1445 compat_ulong_t bytecnt;
1446 compat_ulong_t wrong_if;
1449 struct compat_sioc_vif_req {
1450 vifi_t vifi; /* Which iface */
1451 compat_ulong_t icount;
1452 compat_ulong_t ocount;
1453 compat_ulong_t ibytes;
1454 compat_ulong_t obytes;
1457 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1459 struct compat_sioc_sg_req sr;
1460 struct compat_sioc_vif_req vr;
1461 struct vif_device *vif;
1462 struct mfc_cache *c;
1463 struct net *net = sock_net(sk);
1464 struct mr_table *mrt;
1466 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1467 if (mrt == NULL)
1468 return -ENOENT;
1470 switch (cmd) {
1471 case SIOCGETVIFCNT:
1472 if (copy_from_user(&vr, arg, sizeof(vr)))
1473 return -EFAULT;
1474 if (vr.vifi >= mrt->maxvif)
1475 return -EINVAL;
1476 read_lock(&mrt_lock);
1477 vif = &mrt->vif_table[vr.vifi];
1478 if (VIF_EXISTS(mrt, vr.vifi)) {
1479 vr.icount = vif->pkt_in;
1480 vr.ocount = vif->pkt_out;
1481 vr.ibytes = vif->bytes_in;
1482 vr.obytes = vif->bytes_out;
1483 read_unlock(&mrt_lock);
1485 if (copy_to_user(arg, &vr, sizeof(vr)))
1486 return -EFAULT;
1487 return 0;
1489 read_unlock(&mrt_lock);
1490 return -EADDRNOTAVAIL;
1491 case SIOCGETSGCNT:
1492 if (copy_from_user(&sr, arg, sizeof(sr)))
1493 return -EFAULT;
1495 rcu_read_lock();
1496 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1497 if (c) {
1498 sr.pktcnt = c->mfc_un.res.pkt;
1499 sr.bytecnt = c->mfc_un.res.bytes;
1500 sr.wrong_if = c->mfc_un.res.wrong_if;
1501 rcu_read_unlock();
1503 if (copy_to_user(arg, &sr, sizeof(sr)))
1504 return -EFAULT;
1505 return 0;
1507 rcu_read_unlock();
1508 return -EADDRNOTAVAIL;
1509 default:
1510 return -ENOIOCTLCMD;
1513 #endif
1516 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1518 struct net_device *dev = ptr;
1519 struct net *net = dev_net(dev);
1520 struct mr_table *mrt;
1521 struct vif_device *v;
1522 int ct;
1523 LIST_HEAD(list);
1525 if (event != NETDEV_UNREGISTER)
1526 return NOTIFY_DONE;
1528 ipmr_for_each_table(mrt, net) {
1529 v = &mrt->vif_table[0];
1530 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1531 if (v->dev == dev)
1532 vif_delete(mrt, ct, 1, &list);
1535 unregister_netdevice_many(&list);
1536 return NOTIFY_DONE;
1540 static struct notifier_block ip_mr_notifier = {
1541 .notifier_call = ipmr_device_event,
1545 * Encapsulate a packet by attaching a valid IPIP header to it.
1546 * This avoids tunnel drivers and other mess and gives us the speed so
1547 * important for multicast video.
1550 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1552 struct iphdr *iph;
1553 const struct iphdr *old_iph = ip_hdr(skb);
1555 skb_push(skb, sizeof(struct iphdr));
1556 skb->transport_header = skb->network_header;
1557 skb_reset_network_header(skb);
1558 iph = ip_hdr(skb);
1560 iph->version = 4;
1561 iph->tos = old_iph->tos;
1562 iph->ttl = old_iph->ttl;
1563 iph->frag_off = 0;
1564 iph->daddr = daddr;
1565 iph->saddr = saddr;
1566 iph->protocol = IPPROTO_IPIP;
1567 iph->ihl = 5;
1568 iph->tot_len = htons(skb->len);
1569 ip_select_ident(iph, skb_dst(skb), NULL);
1570 ip_send_check(iph);
1572 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1573 nf_reset(skb);
1576 static inline int ipmr_forward_finish(struct sk_buff *skb)
1578 struct ip_options *opt = &(IPCB(skb)->opt);
1580 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1582 if (unlikely(opt->optlen))
1583 ip_forward_options(skb);
1585 return dst_output(skb);
1589 * Processing handlers for ipmr_forward
1592 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1593 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1595 const struct iphdr *iph = ip_hdr(skb);
1596 struct vif_device *vif = &mrt->vif_table[vifi];
1597 struct net_device *dev;
1598 struct rtable *rt;
1599 struct flowi4 fl4;
1600 int encap = 0;
1602 if (vif->dev == NULL)
1603 goto out_free;
1605 #ifdef CONFIG_IP_PIMSM
1606 if (vif->flags & VIFF_REGISTER) {
1607 vif->pkt_out++;
1608 vif->bytes_out += skb->len;
1609 vif->dev->stats.tx_bytes += skb->len;
1610 vif->dev->stats.tx_packets++;
1611 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1612 goto out_free;
1614 #endif
1616 if (vif->flags & VIFF_TUNNEL) {
1617 rt = ip_route_output_ports(net, &fl4, NULL,
1618 vif->remote, vif->local,
1619 0, 0,
1620 IPPROTO_IPIP,
1621 RT_TOS(iph->tos), vif->link);
1622 if (IS_ERR(rt))
1623 goto out_free;
1624 encap = sizeof(struct iphdr);
1625 } else {
1626 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1627 0, 0,
1628 IPPROTO_IPIP,
1629 RT_TOS(iph->tos), vif->link);
1630 if (IS_ERR(rt))
1631 goto out_free;
1634 dev = rt->dst.dev;
1636 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1637 /* Do not fragment multicasts. Alas, IPv4 does not
1638 * allow to send ICMP, so that packets will disappear
1639 * to blackhole.
1642 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1643 ip_rt_put(rt);
1644 goto out_free;
1647 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1649 if (skb_cow(skb, encap)) {
1650 ip_rt_put(rt);
1651 goto out_free;
1654 vif->pkt_out++;
1655 vif->bytes_out += skb->len;
1657 skb_dst_drop(skb);
1658 skb_dst_set(skb, &rt->dst);
1659 ip_decrease_ttl(ip_hdr(skb));
1661 /* FIXME: forward and output firewalls used to be called here.
1662 * What do we do with netfilter? -- RR
1664 if (vif->flags & VIFF_TUNNEL) {
1665 ip_encap(skb, vif->local, vif->remote);
1666 /* FIXME: extra output firewall step used to be here. --RR */
1667 vif->dev->stats.tx_packets++;
1668 vif->dev->stats.tx_bytes += skb->len;
1671 IPCB(skb)->flags |= IPSKB_FORWARDED;
1674 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1675 * not only before forwarding, but after forwarding on all output
1676 * interfaces. It is clear, if mrouter runs a multicasting
1677 * program, it should receive packets not depending to what interface
1678 * program is joined.
1679 * If we will not make it, the program will have to join on all
1680 * interfaces. On the other hand, multihoming host (or router, but
1681 * not mrouter) cannot join to more than one interface - it will
1682 * result in receiving multiple packets.
1684 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1685 ipmr_forward_finish);
1686 return;
1688 out_free:
1689 kfree_skb(skb);
1692 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1694 int ct;
1696 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1697 if (mrt->vif_table[ct].dev == dev)
1698 break;
1700 return ct;
1703 /* "local" means that we should preserve one skb (for local delivery) */
1705 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1706 struct sk_buff *skb, struct mfc_cache *cache,
1707 int local)
1709 int psend = -1;
1710 int vif, ct;
1712 vif = cache->mfc_parent;
1713 cache->mfc_un.res.pkt++;
1714 cache->mfc_un.res.bytes += skb->len;
1717 * Wrong interface: drop packet and (maybe) send PIM assert.
1719 if (mrt->vif_table[vif].dev != skb->dev) {
1720 int true_vifi;
1722 if (rt_is_output_route(skb_rtable(skb))) {
1723 /* It is our own packet, looped back.
1724 * Very complicated situation...
1726 * The best workaround until routing daemons will be
1727 * fixed is not to redistribute packet, if it was
1728 * send through wrong interface. It means, that
1729 * multicast applications WILL NOT work for
1730 * (S,G), which have default multicast route pointing
1731 * to wrong oif. In any case, it is not a good
1732 * idea to use multicasting applications on router.
1734 goto dont_forward;
1737 cache->mfc_un.res.wrong_if++;
1738 true_vifi = ipmr_find_vif(mrt, skb->dev);
1740 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1741 /* pimsm uses asserts, when switching from RPT to SPT,
1742 * so that we cannot check that packet arrived on an oif.
1743 * It is bad, but otherwise we would need to move pretty
1744 * large chunk of pimd to kernel. Ough... --ANK
1746 (mrt->mroute_do_pim ||
1747 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1748 time_after(jiffies,
1749 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1750 cache->mfc_un.res.last_assert = jiffies;
1751 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1753 goto dont_forward;
1756 mrt->vif_table[vif].pkt_in++;
1757 mrt->vif_table[vif].bytes_in += skb->len;
1760 * Forward the frame
1762 for (ct = cache->mfc_un.res.maxvif - 1;
1763 ct >= cache->mfc_un.res.minvif; ct--) {
1764 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1765 if (psend != -1) {
1766 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1768 if (skb2)
1769 ipmr_queue_xmit(net, mrt, skb2, cache,
1770 psend);
1772 psend = ct;
1775 if (psend != -1) {
1776 if (local) {
1777 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1779 if (skb2)
1780 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1781 } else {
1782 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1783 return 0;
1787 dont_forward:
1788 if (!local)
1789 kfree_skb(skb);
1790 return 0;
1793 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1795 struct rtable *rt = skb_rtable(skb);
1796 struct iphdr *iph = ip_hdr(skb);
1797 struct flowi4 fl4 = {
1798 .daddr = iph->daddr,
1799 .saddr = iph->saddr,
1800 .flowi4_tos = RT_TOS(iph->tos),
1801 .flowi4_oif = rt->rt_oif,
1802 .flowi4_iif = rt->rt_iif,
1803 .flowi4_mark = rt->rt_mark,
1805 struct mr_table *mrt;
1806 int err;
1808 err = ipmr_fib_lookup(net, &fl4, &mrt);
1809 if (err)
1810 return ERR_PTR(err);
1811 return mrt;
1815 * Multicast packets for forwarding arrive here
1816 * Called with rcu_read_lock();
1819 int ip_mr_input(struct sk_buff *skb)
1821 struct mfc_cache *cache;
1822 struct net *net = dev_net(skb->dev);
1823 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1824 struct mr_table *mrt;
1826 /* Packet is looped back after forward, it should not be
1827 * forwarded second time, but still can be delivered locally.
1829 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1830 goto dont_forward;
1832 mrt = ipmr_rt_fib_lookup(net, skb);
1833 if (IS_ERR(mrt)) {
1834 kfree_skb(skb);
1835 return PTR_ERR(mrt);
1837 if (!local) {
1838 if (IPCB(skb)->opt.router_alert) {
1839 if (ip_call_ra_chain(skb))
1840 return 0;
1841 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1842 /* IGMPv1 (and broken IGMPv2 implementations sort of
1843 * Cisco IOS <= 11.2(8)) do not put router alert
1844 * option to IGMP packets destined to routable
1845 * groups. It is very bad, because it means
1846 * that we can forward NO IGMP messages.
1848 struct sock *mroute_sk;
1850 mroute_sk = rcu_dereference(mrt->mroute_sk);
1851 if (mroute_sk) {
1852 nf_reset(skb);
1853 raw_rcv(mroute_sk, skb);
1854 return 0;
1859 /* already under rcu_read_lock() */
1860 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1863 * No usable cache entry
1865 if (cache == NULL) {
1866 int vif;
1868 if (local) {
1869 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1870 ip_local_deliver(skb);
1871 if (skb2 == NULL)
1872 return -ENOBUFS;
1873 skb = skb2;
1876 read_lock(&mrt_lock);
1877 vif = ipmr_find_vif(mrt, skb->dev);
1878 if (vif >= 0) {
1879 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1880 read_unlock(&mrt_lock);
1882 return err2;
1884 read_unlock(&mrt_lock);
1885 kfree_skb(skb);
1886 return -ENODEV;
1889 read_lock(&mrt_lock);
1890 ip_mr_forward(net, mrt, skb, cache, local);
1891 read_unlock(&mrt_lock);
1893 if (local)
1894 return ip_local_deliver(skb);
1896 return 0;
1898 dont_forward:
1899 if (local)
1900 return ip_local_deliver(skb);
1901 kfree_skb(skb);
1902 return 0;
1905 #ifdef CONFIG_IP_PIMSM
1906 /* called with rcu_read_lock() */
1907 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1908 unsigned int pimlen)
1910 struct net_device *reg_dev = NULL;
1911 struct iphdr *encap;
1913 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1915 * Check that:
1916 * a. packet is really sent to a multicast group
1917 * b. packet is not a NULL-REGISTER
1918 * c. packet is not truncated
1920 if (!ipv4_is_multicast(encap->daddr) ||
1921 encap->tot_len == 0 ||
1922 ntohs(encap->tot_len) + pimlen > skb->len)
1923 return 1;
1925 read_lock(&mrt_lock);
1926 if (mrt->mroute_reg_vif_num >= 0)
1927 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1928 read_unlock(&mrt_lock);
1930 if (reg_dev == NULL)
1931 return 1;
1933 skb->mac_header = skb->network_header;
1934 skb_pull(skb, (u8 *)encap - skb->data);
1935 skb_reset_network_header(skb);
1936 skb->protocol = htons(ETH_P_IP);
1937 skb->ip_summed = CHECKSUM_NONE;
1938 skb->pkt_type = PACKET_HOST;
1940 skb_tunnel_rx(skb, reg_dev);
1942 netif_rx(skb);
1944 return NET_RX_SUCCESS;
1946 #endif
1948 #ifdef CONFIG_IP_PIMSM_V1
1950 * Handle IGMP messages of PIMv1
1953 int pim_rcv_v1(struct sk_buff *skb)
1955 struct igmphdr *pim;
1956 struct net *net = dev_net(skb->dev);
1957 struct mr_table *mrt;
1959 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1960 goto drop;
1962 pim = igmp_hdr(skb);
1964 mrt = ipmr_rt_fib_lookup(net, skb);
1965 if (IS_ERR(mrt))
1966 goto drop;
1967 if (!mrt->mroute_do_pim ||
1968 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1969 goto drop;
1971 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1972 drop:
1973 kfree_skb(skb);
1975 return 0;
1977 #endif
1979 #ifdef CONFIG_IP_PIMSM_V2
1980 static int pim_rcv(struct sk_buff *skb)
1982 struct pimreghdr *pim;
1983 struct net *net = dev_net(skb->dev);
1984 struct mr_table *mrt;
1986 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1987 goto drop;
1989 pim = (struct pimreghdr *)skb_transport_header(skb);
1990 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1991 (pim->flags & PIM_NULL_REGISTER) ||
1992 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1993 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1994 goto drop;
1996 mrt = ipmr_rt_fib_lookup(net, skb);
1997 if (IS_ERR(mrt))
1998 goto drop;
1999 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2000 drop:
2001 kfree_skb(skb);
2003 return 0;
2005 #endif
2007 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2008 struct mfc_cache *c, struct rtmsg *rtm)
2010 int ct;
2011 struct rtnexthop *nhp;
2012 u8 *b = skb_tail_pointer(skb);
2013 struct rtattr *mp_head;
2015 /* If cache is unresolved, don't try to parse IIF and OIF */
2016 if (c->mfc_parent >= MAXVIFS)
2017 return -ENOENT;
2019 if (VIF_EXISTS(mrt, c->mfc_parent))
2020 RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2022 mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2024 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2025 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2026 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2027 goto rtattr_failure;
2028 nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2029 nhp->rtnh_flags = 0;
2030 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2031 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2032 nhp->rtnh_len = sizeof(*nhp);
2035 mp_head->rta_type = RTA_MULTIPATH;
2036 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2037 rtm->rtm_type = RTN_MULTICAST;
2038 return 1;
2040 rtattr_failure:
2041 nlmsg_trim(skb, b);
2042 return -EMSGSIZE;
2045 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2046 __be32 saddr, __be32 daddr,
2047 struct rtmsg *rtm, int nowait)
2049 struct mfc_cache *cache;
2050 struct mr_table *mrt;
2051 int err;
2053 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2054 if (mrt == NULL)
2055 return -ENOENT;
2057 rcu_read_lock();
2058 cache = ipmr_cache_find(mrt, saddr, daddr);
2060 if (cache == NULL) {
2061 struct sk_buff *skb2;
2062 struct iphdr *iph;
2063 struct net_device *dev;
2064 int vif = -1;
2066 if (nowait) {
2067 rcu_read_unlock();
2068 return -EAGAIN;
2071 dev = skb->dev;
2072 read_lock(&mrt_lock);
2073 if (dev)
2074 vif = ipmr_find_vif(mrt, dev);
2075 if (vif < 0) {
2076 read_unlock(&mrt_lock);
2077 rcu_read_unlock();
2078 return -ENODEV;
2080 skb2 = skb_clone(skb, GFP_ATOMIC);
2081 if (!skb2) {
2082 read_unlock(&mrt_lock);
2083 rcu_read_unlock();
2084 return -ENOMEM;
2087 skb_push(skb2, sizeof(struct iphdr));
2088 skb_reset_network_header(skb2);
2089 iph = ip_hdr(skb2);
2090 iph->ihl = sizeof(struct iphdr) >> 2;
2091 iph->saddr = saddr;
2092 iph->daddr = daddr;
2093 iph->version = 0;
2094 err = ipmr_cache_unresolved(mrt, vif, skb2);
2095 read_unlock(&mrt_lock);
2096 rcu_read_unlock();
2097 return err;
2100 read_lock(&mrt_lock);
2101 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2102 cache->mfc_flags |= MFC_NOTIFY;
2103 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2104 read_unlock(&mrt_lock);
2105 rcu_read_unlock();
2106 return err;
2109 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2110 u32 pid, u32 seq, struct mfc_cache *c)
2112 struct nlmsghdr *nlh;
2113 struct rtmsg *rtm;
2115 nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2116 if (nlh == NULL)
2117 return -EMSGSIZE;
2119 rtm = nlmsg_data(nlh);
2120 rtm->rtm_family = RTNL_FAMILY_IPMR;
2121 rtm->rtm_dst_len = 32;
2122 rtm->rtm_src_len = 32;
2123 rtm->rtm_tos = 0;
2124 rtm->rtm_table = mrt->id;
2125 NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
2126 rtm->rtm_type = RTN_MULTICAST;
2127 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2128 rtm->rtm_protocol = RTPROT_UNSPEC;
2129 rtm->rtm_flags = 0;
2131 NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
2132 NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
2134 if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2135 goto nla_put_failure;
2137 return nlmsg_end(skb, nlh);
2139 nla_put_failure:
2140 nlmsg_cancel(skb, nlh);
2141 return -EMSGSIZE;
2144 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2146 struct net *net = sock_net(skb->sk);
2147 struct mr_table *mrt;
2148 struct mfc_cache *mfc;
2149 unsigned int t = 0, s_t;
2150 unsigned int h = 0, s_h;
2151 unsigned int e = 0, s_e;
2153 s_t = cb->args[0];
2154 s_h = cb->args[1];
2155 s_e = cb->args[2];
2157 rcu_read_lock();
2158 ipmr_for_each_table(mrt, net) {
2159 if (t < s_t)
2160 goto next_table;
2161 if (t > s_t)
2162 s_h = 0;
2163 for (h = s_h; h < MFC_LINES; h++) {
2164 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2165 if (e < s_e)
2166 goto next_entry;
2167 if (ipmr_fill_mroute(mrt, skb,
2168 NETLINK_CB(cb->skb).pid,
2169 cb->nlh->nlmsg_seq,
2170 mfc) < 0)
2171 goto done;
2172 next_entry:
2173 e++;
2175 e = s_e = 0;
2177 s_h = 0;
2178 next_table:
2179 t++;
2181 done:
2182 rcu_read_unlock();
2184 cb->args[2] = e;
2185 cb->args[1] = h;
2186 cb->args[0] = t;
2188 return skb->len;
2191 #ifdef CONFIG_PROC_FS
2193 * The /proc interfaces to multicast routing :
2194 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2196 struct ipmr_vif_iter {
2197 struct seq_net_private p;
2198 struct mr_table *mrt;
2199 int ct;
2202 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2203 struct ipmr_vif_iter *iter,
2204 loff_t pos)
2206 struct mr_table *mrt = iter->mrt;
2208 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2209 if (!VIF_EXISTS(mrt, iter->ct))
2210 continue;
2211 if (pos-- == 0)
2212 return &mrt->vif_table[iter->ct];
2214 return NULL;
2217 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2218 __acquires(mrt_lock)
2220 struct ipmr_vif_iter *iter = seq->private;
2221 struct net *net = seq_file_net(seq);
2222 struct mr_table *mrt;
2224 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2225 if (mrt == NULL)
2226 return ERR_PTR(-ENOENT);
2228 iter->mrt = mrt;
2230 read_lock(&mrt_lock);
2231 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2232 : SEQ_START_TOKEN;
2235 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2237 struct ipmr_vif_iter *iter = seq->private;
2238 struct net *net = seq_file_net(seq);
2239 struct mr_table *mrt = iter->mrt;
2241 ++*pos;
2242 if (v == SEQ_START_TOKEN)
2243 return ipmr_vif_seq_idx(net, iter, 0);
2245 while (++iter->ct < mrt->maxvif) {
2246 if (!VIF_EXISTS(mrt, iter->ct))
2247 continue;
2248 return &mrt->vif_table[iter->ct];
2250 return NULL;
2253 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2254 __releases(mrt_lock)
2256 read_unlock(&mrt_lock);
2259 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2261 struct ipmr_vif_iter *iter = seq->private;
2262 struct mr_table *mrt = iter->mrt;
2264 if (v == SEQ_START_TOKEN) {
2265 seq_puts(seq,
2266 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2267 } else {
2268 const struct vif_device *vif = v;
2269 const char *name = vif->dev ? vif->dev->name : "none";
2271 seq_printf(seq,
2272 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2273 vif - mrt->vif_table,
2274 name, vif->bytes_in, vif->pkt_in,
2275 vif->bytes_out, vif->pkt_out,
2276 vif->flags, vif->local, vif->remote);
2278 return 0;
2281 static const struct seq_operations ipmr_vif_seq_ops = {
2282 .start = ipmr_vif_seq_start,
2283 .next = ipmr_vif_seq_next,
2284 .stop = ipmr_vif_seq_stop,
2285 .show = ipmr_vif_seq_show,
2288 static int ipmr_vif_open(struct inode *inode, struct file *file)
2290 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2291 sizeof(struct ipmr_vif_iter));
2294 static const struct file_operations ipmr_vif_fops = {
2295 .owner = THIS_MODULE,
2296 .open = ipmr_vif_open,
2297 .read = seq_read,
2298 .llseek = seq_lseek,
2299 .release = seq_release_net,
2302 struct ipmr_mfc_iter {
2303 struct seq_net_private p;
2304 struct mr_table *mrt;
2305 struct list_head *cache;
2306 int ct;
2310 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2311 struct ipmr_mfc_iter *it, loff_t pos)
2313 struct mr_table *mrt = it->mrt;
2314 struct mfc_cache *mfc;
2316 rcu_read_lock();
2317 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2318 it->cache = &mrt->mfc_cache_array[it->ct];
2319 list_for_each_entry_rcu(mfc, it->cache, list)
2320 if (pos-- == 0)
2321 return mfc;
2323 rcu_read_unlock();
2325 spin_lock_bh(&mfc_unres_lock);
2326 it->cache = &mrt->mfc_unres_queue;
2327 list_for_each_entry(mfc, it->cache, list)
2328 if (pos-- == 0)
2329 return mfc;
2330 spin_unlock_bh(&mfc_unres_lock);
2332 it->cache = NULL;
2333 return NULL;
2337 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2339 struct ipmr_mfc_iter *it = seq->private;
2340 struct net *net = seq_file_net(seq);
2341 struct mr_table *mrt;
2343 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2344 if (mrt == NULL)
2345 return ERR_PTR(-ENOENT);
2347 it->mrt = mrt;
2348 it->cache = NULL;
2349 it->ct = 0;
2350 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2351 : SEQ_START_TOKEN;
2354 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2356 struct mfc_cache *mfc = v;
2357 struct ipmr_mfc_iter *it = seq->private;
2358 struct net *net = seq_file_net(seq);
2359 struct mr_table *mrt = it->mrt;
2361 ++*pos;
2363 if (v == SEQ_START_TOKEN)
2364 return ipmr_mfc_seq_idx(net, seq->private, 0);
2366 if (mfc->list.next != it->cache)
2367 return list_entry(mfc->list.next, struct mfc_cache, list);
2369 if (it->cache == &mrt->mfc_unres_queue)
2370 goto end_of_list;
2372 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2374 while (++it->ct < MFC_LINES) {
2375 it->cache = &mrt->mfc_cache_array[it->ct];
2376 if (list_empty(it->cache))
2377 continue;
2378 return list_first_entry(it->cache, struct mfc_cache, list);
2381 /* exhausted cache_array, show unresolved */
2382 rcu_read_unlock();
2383 it->cache = &mrt->mfc_unres_queue;
2384 it->ct = 0;
2386 spin_lock_bh(&mfc_unres_lock);
2387 if (!list_empty(it->cache))
2388 return list_first_entry(it->cache, struct mfc_cache, list);
2390 end_of_list:
2391 spin_unlock_bh(&mfc_unres_lock);
2392 it->cache = NULL;
2394 return NULL;
2397 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2399 struct ipmr_mfc_iter *it = seq->private;
2400 struct mr_table *mrt = it->mrt;
2402 if (it->cache == &mrt->mfc_unres_queue)
2403 spin_unlock_bh(&mfc_unres_lock);
2404 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2405 rcu_read_unlock();
2408 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2410 int n;
2412 if (v == SEQ_START_TOKEN) {
2413 seq_puts(seq,
2414 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2415 } else {
2416 const struct mfc_cache *mfc = v;
2417 const struct ipmr_mfc_iter *it = seq->private;
2418 const struct mr_table *mrt = it->mrt;
2420 seq_printf(seq, "%08X %08X %-3hd",
2421 (__force u32) mfc->mfc_mcastgrp,
2422 (__force u32) mfc->mfc_origin,
2423 mfc->mfc_parent);
2425 if (it->cache != &mrt->mfc_unres_queue) {
2426 seq_printf(seq, " %8lu %8lu %8lu",
2427 mfc->mfc_un.res.pkt,
2428 mfc->mfc_un.res.bytes,
2429 mfc->mfc_un.res.wrong_if);
2430 for (n = mfc->mfc_un.res.minvif;
2431 n < mfc->mfc_un.res.maxvif; n++) {
2432 if (VIF_EXISTS(mrt, n) &&
2433 mfc->mfc_un.res.ttls[n] < 255)
2434 seq_printf(seq,
2435 " %2d:%-3d",
2436 n, mfc->mfc_un.res.ttls[n]);
2438 } else {
2439 /* unresolved mfc_caches don't contain
2440 * pkt, bytes and wrong_if values
2442 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2444 seq_putc(seq, '\n');
2446 return 0;
2449 static const struct seq_operations ipmr_mfc_seq_ops = {
2450 .start = ipmr_mfc_seq_start,
2451 .next = ipmr_mfc_seq_next,
2452 .stop = ipmr_mfc_seq_stop,
2453 .show = ipmr_mfc_seq_show,
2456 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2458 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2459 sizeof(struct ipmr_mfc_iter));
2462 static const struct file_operations ipmr_mfc_fops = {
2463 .owner = THIS_MODULE,
2464 .open = ipmr_mfc_open,
2465 .read = seq_read,
2466 .llseek = seq_lseek,
2467 .release = seq_release_net,
2469 #endif
2471 #ifdef CONFIG_IP_PIMSM_V2
2472 static const struct net_protocol pim_protocol = {
2473 .handler = pim_rcv,
2474 .netns_ok = 1,
2476 #endif
2480 * Setup for IP multicast routing
2482 static int __net_init ipmr_net_init(struct net *net)
2484 int err;
2486 err = ipmr_rules_init(net);
2487 if (err < 0)
2488 goto fail;
2490 #ifdef CONFIG_PROC_FS
2491 err = -ENOMEM;
2492 if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2493 goto proc_vif_fail;
2494 if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2495 goto proc_cache_fail;
2496 #endif
2497 return 0;
2499 #ifdef CONFIG_PROC_FS
2500 proc_cache_fail:
2501 proc_net_remove(net, "ip_mr_vif");
2502 proc_vif_fail:
2503 ipmr_rules_exit(net);
2504 #endif
2505 fail:
2506 return err;
2509 static void __net_exit ipmr_net_exit(struct net *net)
2511 #ifdef CONFIG_PROC_FS
2512 proc_net_remove(net, "ip_mr_cache");
2513 proc_net_remove(net, "ip_mr_vif");
2514 #endif
2515 ipmr_rules_exit(net);
2518 static struct pernet_operations ipmr_net_ops = {
2519 .init = ipmr_net_init,
2520 .exit = ipmr_net_exit,
2523 int __init ip_mr_init(void)
2525 int err;
2527 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2528 sizeof(struct mfc_cache),
2529 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2530 NULL);
2531 if (!mrt_cachep)
2532 return -ENOMEM;
2534 err = register_pernet_subsys(&ipmr_net_ops);
2535 if (err)
2536 goto reg_pernet_fail;
2538 err = register_netdevice_notifier(&ip_mr_notifier);
2539 if (err)
2540 goto reg_notif_fail;
2541 #ifdef CONFIG_IP_PIMSM_V2
2542 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2543 printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
2544 err = -EAGAIN;
2545 goto add_proto_fail;
2547 #endif
2548 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2549 NULL, ipmr_rtm_dumproute, NULL);
2550 return 0;
2552 #ifdef CONFIG_IP_PIMSM_V2
2553 add_proto_fail:
2554 unregister_netdevice_notifier(&ip_mr_notifier);
2555 #endif
2556 reg_notif_fail:
2557 unregister_pernet_subsys(&ipmr_net_ops);
2558 reg_pernet_fail:
2559 kmem_cache_destroy(mrt_cachep);
2560 return err;