thinkpad-acpi: fix CONFIG_THINKPAD_ACPI_HOTKEY_POLL build problem
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob0d3d47fe3de7aba73fe99889ae2ee5ca797c3a21
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
127 #ifdef CONFIG_SMP
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
149 #endif
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
195 if (!overrun)
196 break;
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
224 ktime_t now;
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 return;
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 unsigned long delta;
235 ktime_t soft, hard;
237 if (hrtimer_active(&rt_b->rt_period_timer))
238 break;
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
249 spin_unlock(&rt_b->rt_runtime_lock);
252 #ifdef CONFIG_RT_GROUP_SCHED
253 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
255 hrtimer_cancel(&rt_b->rt_period_timer);
257 #endif
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
263 static DEFINE_MUTEX(sched_domains_mutex);
265 #ifdef CONFIG_GROUP_SCHED
267 #include <linux/cgroup.h>
269 struct cfs_rq;
271 static LIST_HEAD(task_groups);
273 /* task group related information */
274 struct task_group {
275 #ifdef CONFIG_CGROUP_SCHED
276 struct cgroup_subsys_state css;
277 #endif
279 #ifdef CONFIG_USER_SCHED
280 uid_t uid;
281 #endif
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
289 #endif
291 #ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
295 struct rt_bandwidth rt_bandwidth;
296 #endif
298 struct rcu_head rcu;
299 struct list_head list;
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
306 #ifdef CONFIG_USER_SCHED
308 /* Helper function to pass uid information to create_sched_user() */
309 void set_tg_uid(struct user_struct *user)
311 user->tg->uid = user->uid;
315 * Root task group.
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
319 struct task_group root_task_group;
321 #ifdef CONFIG_FAIR_GROUP_SCHED
322 /* Default task group's sched entity on each cpu */
323 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324 /* Default task group's cfs_rq on each cpu */
325 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 #ifdef CONFIG_RT_GROUP_SCHED
329 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331 #endif /* CONFIG_RT_GROUP_SCHED */
332 #else /* !CONFIG_USER_SCHED */
333 #define root_task_group init_task_group
334 #endif /* CONFIG_USER_SCHED */
336 /* task_group_lock serializes add/remove of task groups and also changes to
337 * a task group's cpu shares.
339 static DEFINE_SPINLOCK(task_group_lock);
341 #ifdef CONFIG_SMP
342 static int root_task_group_empty(void)
344 return list_empty(&root_task_group.children);
346 #endif
348 #ifdef CONFIG_FAIR_GROUP_SCHED
349 #ifdef CONFIG_USER_SCHED
350 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
351 #else /* !CONFIG_USER_SCHED */
352 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
353 #endif /* CONFIG_USER_SCHED */
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
363 #define MIN_SHARES 2
364 #define MAX_SHARES (1UL << 18)
366 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
367 #endif
369 /* Default task group.
370 * Every task in system belong to this group at bootup.
372 struct task_group init_task_group;
374 /* return group to which a task belongs */
375 static inline struct task_group *task_group(struct task_struct *p)
377 struct task_group *tg;
379 #ifdef CONFIG_USER_SCHED
380 rcu_read_lock();
381 tg = __task_cred(p)->user->tg;
382 rcu_read_unlock();
383 #elif defined(CONFIG_CGROUP_SCHED)
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
386 #else
387 tg = &init_task_group;
388 #endif
389 return tg;
392 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
393 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
398 #endif
400 #ifdef CONFIG_RT_GROUP_SCHED
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
403 #endif
406 #else
408 #ifdef CONFIG_SMP
409 static int root_task_group_empty(void)
411 return 1;
413 #endif
415 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 static inline struct task_group *task_group(struct task_struct *p)
418 return NULL;
421 #endif /* CONFIG_GROUP_SCHED */
423 /* CFS-related fields in a runqueue */
424 struct cfs_rq {
425 struct load_weight load;
426 unsigned long nr_running;
428 u64 exec_clock;
429 u64 min_vruntime;
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
434 struct list_head tasks;
435 struct list_head *balance_iterator;
438 * 'curr' points to currently running entity on this cfs_rq.
439 * It is set to NULL otherwise (i.e when none are currently running).
441 struct sched_entity *curr, *next, *last;
443 unsigned int nr_spread_over;
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
459 #ifdef CONFIG_SMP
461 * the part of load.weight contributed by tasks
463 unsigned long task_weight;
466 * h_load = weight * f(tg)
468 * Where f(tg) is the recursive weight fraction assigned to
469 * this group.
471 unsigned long h_load;
474 * this cpu's part of tg->shares
476 unsigned long shares;
479 * load.weight at the time we set shares
481 unsigned long rq_weight;
482 #endif
483 #endif
486 /* Real-Time classes' related field in a runqueue: */
487 struct rt_rq {
488 struct rt_prio_array active;
489 unsigned long rt_nr_running;
490 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
491 struct {
492 int curr; /* highest queued rt task prio */
493 #ifdef CONFIG_SMP
494 int next; /* next highest */
495 #endif
496 } highest_prio;
497 #endif
498 #ifdef CONFIG_SMP
499 unsigned long rt_nr_migratory;
500 unsigned long rt_nr_total;
501 int overloaded;
502 struct plist_head pushable_tasks;
503 #endif
504 int rt_throttled;
505 u64 rt_time;
506 u64 rt_runtime;
507 /* Nests inside the rq lock: */
508 spinlock_t rt_runtime_lock;
510 #ifdef CONFIG_RT_GROUP_SCHED
511 unsigned long rt_nr_boosted;
513 struct rq *rq;
514 struct list_head leaf_rt_rq_list;
515 struct task_group *tg;
516 struct sched_rt_entity *rt_se;
517 #endif
520 #ifdef CONFIG_SMP
523 * We add the notion of a root-domain which will be used to define per-domain
524 * variables. Each exclusive cpuset essentially defines an island domain by
525 * fully partitioning the member cpus from any other cpuset. Whenever a new
526 * exclusive cpuset is created, we also create and attach a new root-domain
527 * object.
530 struct root_domain {
531 atomic_t refcount;
532 cpumask_var_t span;
533 cpumask_var_t online;
536 * The "RT overload" flag: it gets set if a CPU has more than
537 * one runnable RT task.
539 cpumask_var_t rto_mask;
540 atomic_t rto_count;
541 #ifdef CONFIG_SMP
542 struct cpupri cpupri;
543 #endif
544 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
546 * Preferred wake up cpu nominated by sched_mc balance that will be
547 * used when most cpus are idle in the system indicating overall very
548 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
550 unsigned int sched_mc_preferred_wakeup_cpu;
551 #endif
555 * By default the system creates a single root-domain with all cpus as
556 * members (mimicking the global state we have today).
558 static struct root_domain def_root_domain;
560 #endif
563 * This is the main, per-CPU runqueue data structure.
565 * Locking rule: those places that want to lock multiple runqueues
566 * (such as the load balancing or the thread migration code), lock
567 * acquire operations must be ordered by ascending &runqueue.
569 struct rq {
570 /* runqueue lock: */
571 spinlock_t lock;
574 * nr_running and cpu_load should be in the same cacheline because
575 * remote CPUs use both these fields when doing load calculation.
577 unsigned long nr_running;
578 #define CPU_LOAD_IDX_MAX 5
579 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
580 #ifdef CONFIG_NO_HZ
581 unsigned long last_tick_seen;
582 unsigned char in_nohz_recently;
583 #endif
584 /* capture load from *all* tasks on this cpu: */
585 struct load_weight load;
586 unsigned long nr_load_updates;
587 u64 nr_switches;
589 struct cfs_rq cfs;
590 struct rt_rq rt;
592 #ifdef CONFIG_FAIR_GROUP_SCHED
593 /* list of leaf cfs_rq on this cpu: */
594 struct list_head leaf_cfs_rq_list;
595 #endif
596 #ifdef CONFIG_RT_GROUP_SCHED
597 struct list_head leaf_rt_rq_list;
598 #endif
601 * This is part of a global counter where only the total sum
602 * over all CPUs matters. A task can increase this counter on
603 * one CPU and if it got migrated afterwards it may decrease
604 * it on another CPU. Always updated under the runqueue lock:
606 unsigned long nr_uninterruptible;
608 struct task_struct *curr, *idle;
609 unsigned long next_balance;
610 struct mm_struct *prev_mm;
612 u64 clock;
614 atomic_t nr_iowait;
616 #ifdef CONFIG_SMP
617 struct root_domain *rd;
618 struct sched_domain *sd;
620 unsigned char idle_at_tick;
621 /* For active balancing */
622 int active_balance;
623 int push_cpu;
624 /* cpu of this runqueue: */
625 int cpu;
626 int online;
628 unsigned long avg_load_per_task;
630 struct task_struct *migration_thread;
631 struct list_head migration_queue;
632 #endif
634 #ifdef CONFIG_SCHED_HRTICK
635 #ifdef CONFIG_SMP
636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd;
638 #endif
639 struct hrtimer hrtick_timer;
640 #endif
642 #ifdef CONFIG_SCHEDSTATS
643 /* latency stats */
644 struct sched_info rq_sched_info;
645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
648 /* sys_sched_yield() stats */
649 unsigned int yld_count;
651 /* schedule() stats */
652 unsigned int sched_switch;
653 unsigned int sched_count;
654 unsigned int sched_goidle;
656 /* try_to_wake_up() stats */
657 unsigned int ttwu_count;
658 unsigned int ttwu_local;
660 /* BKL stats */
661 unsigned int bkl_count;
662 #endif
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
667 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
672 static inline int cpu_of(struct rq *rq)
674 #ifdef CONFIG_SMP
675 return rq->cpu;
676 #else
677 return 0;
678 #endif
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683 * See detach_destroy_domains: synchronize_sched for details.
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
688 #define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692 #define this_rq() (&__get_cpu_var(runqueues))
693 #define task_rq(p) cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
696 static inline void update_rq_clock(struct rq *rq)
698 rq->clock = sched_clock_cpu(cpu_of(rq));
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly
706 #else
707 # define const_debug static const
708 #endif
711 * runqueue_is_locked
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
717 int runqueue_is_locked(void)
719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu);
721 int ret;
723 ret = spin_is_locked(&rq->lock);
724 put_cpu();
725 return ret;
729 * Debugging: various feature bits
732 #define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
735 enum {
736 #include "sched_features.h"
739 #undef SCHED_FEAT
741 #define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
744 const_debug unsigned int sysctl_sched_features =
745 #include "sched_features.h"
748 #undef SCHED_FEAT
750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled) \
752 #name ,
754 static __read_mostly char *sched_feat_names[] = {
755 #include "sched_features.h"
756 NULL
759 #undef SCHED_FEAT
761 static int sched_feat_show(struct seq_file *m, void *v)
763 int i;
765 for (i = 0; sched_feat_names[i]; i++) {
766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]);
770 seq_puts(m, "\n");
772 return 0;
775 static ssize_t
776 sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos)
779 char buf[64];
780 char *cmp = buf;
781 int neg = 0;
782 int i;
784 if (cnt > 63)
785 cnt = 63;
787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT;
790 buf[cnt] = 0;
792 if (strncmp(buf, "NO_", 3) == 0) {
793 neg = 1;
794 cmp += 3;
797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]);
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg)
802 sysctl_sched_features &= ~(1UL << i);
803 else
804 sysctl_sched_features |= (1UL << i);
805 break;
809 if (!sched_feat_names[i])
810 return -EINVAL;
812 filp->f_pos += cnt;
814 return cnt;
817 static int sched_feat_open(struct inode *inode, struct file *filp)
819 return single_open(filp, sched_feat_show, NULL);
822 static struct file_operations sched_feat_fops = {
823 .open = sched_feat_open,
824 .write = sched_feat_write,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
830 static __init int sched_init_debug(void)
832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops);
835 return 0;
837 late_initcall(sched_init_debug);
839 #endif
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
847 const_debug unsigned int sysctl_sched_nr_migrate = 32;
850 * ratelimit for updating the group shares.
851 * default: 0.25ms
853 unsigned int sysctl_sched_shares_ratelimit = 250000;
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4
860 unsigned int sysctl_sched_shares_thresh = 4;
863 * period over which we measure -rt task cpu usage in us.
864 * default: 1s
866 unsigned int sysctl_sched_rt_period = 1000000;
868 static __read_mostly int scheduler_running;
871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s
874 int sysctl_sched_rt_runtime = 950000;
876 static inline u64 global_rt_period(void)
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
881 static inline u64 global_rt_runtime(void)
883 if (sysctl_sched_rt_runtime < 0)
884 return RUNTIME_INF;
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next) do { } while (0)
891 #endif
892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev) do { } while (0)
894 #endif
896 static inline int task_current(struct rq *rq, struct task_struct *p)
898 return rq->curr == p;
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq *rq, struct task_struct *p)
904 return task_current(rq, p);
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
911 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
913 #ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current;
916 #endif
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current:
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
924 spin_unlock_irq(&rq->lock);
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq *rq, struct task_struct *p)
930 #ifdef CONFIG_SMP
931 return p->oncpu;
932 #else
933 return task_current(rq, p);
934 #endif
937 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
939 #ifdef CONFIG_SMP
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
943 * here.
945 next->oncpu = 1;
946 #endif
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock);
949 #else
950 spin_unlock(&rq->lock);
951 #endif
954 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
956 #ifdef CONFIG_SMP
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
960 * finished.
962 smp_wmb();
963 prev->oncpu = 0;
964 #endif
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable();
967 #endif
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
975 static inline struct rq *__task_rq_lock(struct task_struct *p)
976 __acquires(rq->lock)
978 for (;;) {
979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
983 spin_unlock(&rq->lock);
988 * task_rq_lock - lock the runqueue a given task resides on and disable
989 * interrupts. Note the ordering: we can safely lookup the task_rq without
990 * explicitly disabling preemption.
992 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
993 __acquires(rq->lock)
995 struct rq *rq;
997 for (;;) {
998 local_irq_save(*flags);
999 rq = task_rq(p);
1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p)))
1002 return rq;
1003 spin_unlock_irqrestore(&rq->lock, *flags);
1007 void task_rq_unlock_wait(struct task_struct *p)
1009 struct rq *rq = task_rq(p);
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock);
1015 static void __task_rq_unlock(struct rq *rq)
1016 __releases(rq->lock)
1018 spin_unlock(&rq->lock);
1021 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1022 __releases(rq->lock)
1024 spin_unlock_irqrestore(&rq->lock, *flags);
1028 * this_rq_lock - lock this runqueue and disable interrupts.
1030 static struct rq *this_rq_lock(void)
1031 __acquires(rq->lock)
1033 struct rq *rq;
1035 local_irq_disable();
1036 rq = this_rq();
1037 spin_lock(&rq->lock);
1039 return rq;
1042 #ifdef CONFIG_SCHED_HRTICK
1044 * Use HR-timers to deliver accurate preemption points.
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event.
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock.
1055 * Use hrtick when:
1056 * - enabled by features
1057 * - hrtimer is actually high res
1059 static inline int hrtick_enabled(struct rq *rq)
1061 if (!sched_feat(HRTICK))
1062 return 0;
1063 if (!cpu_active(cpu_of(rq)))
1064 return 0;
1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1068 static void hrtick_clear(struct rq *rq)
1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer);
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1078 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1084 spin_lock(&rq->lock);
1085 update_rq_clock(rq);
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock);
1089 return HRTIMER_NORESTART;
1092 #ifdef CONFIG_SMP
1094 * called from hardirq (IPI) context
1096 static void __hrtick_start(void *arg)
1098 struct rq *rq = arg;
1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock);
1107 * Called to set the hrtick timer state.
1109 * called with rq->lock held and irqs disabled
1111 static void hrtick_start(struct rq *rq, u64 delay)
1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1116 hrtimer_set_expires(timer, time);
1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) {
1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 rq->hrtick_csd_pending = 1;
1126 static int
1127 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1129 int cpu = (int)(long)hcpu;
1131 switch (action) {
1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN:
1138 hrtick_clear(cpu_rq(cpu));
1139 return NOTIFY_OK;
1142 return NOTIFY_DONE;
1145 static __init void init_hrtick(void)
1147 hotcpu_notifier(hotplug_hrtick, 0);
1149 #else
1151 * Called to set the hrtick timer state.
1153 * called with rq->lock held and irqs disabled
1155 static void hrtick_start(struct rq *rq, u64 delay)
1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158 HRTIMER_MODE_REL, 0);
1161 static inline void init_hrtick(void)
1164 #endif /* CONFIG_SMP */
1166 static void init_rq_hrtick(struct rq *rq)
1168 #ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0;
1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq;
1174 #endif
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick;
1179 #else /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq *rq)
1184 static inline void init_rq_hrtick(struct rq *rq)
1188 static inline void init_hrtick(void)
1191 #endif /* CONFIG_SCHED_HRTICK */
1194 * resched_task - mark a task 'to be rescheduled now'.
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU.
1200 #ifdef CONFIG_SMP
1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204 #endif
1206 static void resched_task(struct task_struct *p)
1208 int cpu;
1210 assert_spin_locked(&task_rq(p)->lock);
1212 if (test_tsk_need_resched(p))
1213 return;
1215 set_tsk_need_resched(p);
1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id())
1219 return;
1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb();
1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu);
1227 static void resched_cpu(int cpu)
1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags;
1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return;
1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags);
1238 #ifdef CONFIG_NO_HZ
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1249 void wake_up_idle_cpu(int cpu)
1251 struct rq *rq = cpu_rq(cpu);
1253 if (cpu == smp_processor_id())
1254 return;
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1263 if (rq->curr != rq->idle)
1264 return;
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1271 set_tsk_need_resched(rq->idle);
1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu);
1278 #endif /* CONFIG_NO_HZ */
1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct *p)
1283 assert_spin_locked(&task_rq(p)->lock);
1284 set_tsk_need_resched(p);
1286 #endif /* CONFIG_SMP */
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1294 #define WMULT_SHIFT 32
1297 * Shift right and round:
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1302 * delta *= weight / lw
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1308 u64 tmp;
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1318 tmp = (u64)delta_exec * weight;
1320 * Check whether we'd overflow the 64-bit multiplication:
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1403 struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1409 #ifdef CONFIG_SMP
1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
1420 #endif
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1427 CPUACCT_STAT_NSTATS,
1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1442 update_load_add(&rq->load, load);
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1447 update_load_sub(&rq->load, load);
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *);
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1459 struct task_group *parent, *child;
1460 int ret;
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464 down:
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1473 continue;
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
1483 out_unlock:
1484 rcu_read_unlock();
1486 return ret;
1489 static int tg_nop(struct task_group *tg, void *data)
1491 return 0;
1493 #endif
1495 #ifdef CONFIG_SMP
1496 static unsigned long source_load(int cpu, int type);
1497 static unsigned long target_load(int cpu, int type);
1498 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1500 static unsigned long cpu_avg_load_per_task(int cpu)
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running;
1507 else
1508 rq->avg_load_per_task = 0;
1510 return rq->avg_load_per_task;
1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1515 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1518 * Calculate and set the cpu's group shares.
1520 static void
1521 update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight)
1524 unsigned long shares;
1525 unsigned long rq_weight;
1527 if (!tg->se[cpu])
1528 return;
1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1535 * \Sum rq_weight
1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags;
1546 spin_lock_irqsave(&rq->lock, flags);
1547 tg->cfs_rq[cpu]->shares = shares;
1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags);
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
1559 static int tg_shares_up(struct task_group *tg, void *data)
1561 unsigned long weight, rq_weight = 0;
1562 unsigned long shares = 0;
1563 struct sched_domain *sd = data;
1564 int i;
1566 for_each_cpu(i, sched_domain_span(sd)) {
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight)
1574 weight = NICE_0_LOAD;
1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight;
1578 shares += tg->cfs_rq[i]->shares;
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
1587 for_each_cpu(i, sched_domain_span(sd))
1588 update_group_shares_cpu(tg, i, shares, rq_weight);
1590 return 0;
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
1598 static int tg_load_down(struct task_group *tg, void *data)
1600 unsigned long load;
1601 long cpu = (long)data;
1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight;
1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1611 tg->cfs_rq[cpu]->h_load = load;
1613 return 0;
1616 static void update_shares(struct sched_domain *sd)
1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update;
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now;
1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
1627 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1629 spin_unlock(&rq->lock);
1630 update_shares(sd);
1631 spin_lock(&rq->lock);
1634 static void update_h_load(long cpu)
1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1639 #else
1641 static inline void update_shares(struct sched_domain *sd)
1645 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1649 #endif
1651 #ifdef CONFIG_PREEMPT
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
1661 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest);
1669 return 1;
1672 #else
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1680 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock)
1685 int ret = 0;
1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1;
1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1696 return ret;
1699 #endif /* CONFIG_PREEMPT */
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1704 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1);
1712 return _double_lock_balance(this_rq, busiest);
1715 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock)
1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1721 #endif
1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1726 #ifdef CONFIG_SMP
1727 cfs_rq->shares = shares;
1728 #endif
1730 #endif
1732 #include "sched_stats.h"
1733 #include "sched_idletask.c"
1734 #include "sched_fair.c"
1735 #include "sched_rt.c"
1736 #ifdef CONFIG_SCHED_DEBUG
1737 # include "sched_debug.c"
1738 #endif
1740 #define sched_class_highest (&rt_sched_class)
1741 #define for_each_class(class) \
1742 for (class = sched_class_highest; class; class = class->next)
1744 static void inc_nr_running(struct rq *rq)
1746 rq->nr_running++;
1749 static void dec_nr_running(struct rq *rq)
1751 rq->nr_running--;
1754 static void set_load_weight(struct task_struct *p)
1756 if (task_has_rt_policy(p)) {
1757 p->se.load.weight = prio_to_weight[0] * 2;
1758 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1759 return;
1763 * SCHED_IDLE tasks get minimal weight:
1765 if (p->policy == SCHED_IDLE) {
1766 p->se.load.weight = WEIGHT_IDLEPRIO;
1767 p->se.load.inv_weight = WMULT_IDLEPRIO;
1768 return;
1771 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1772 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1775 static void update_avg(u64 *avg, u64 sample)
1777 s64 diff = sample - *avg;
1778 *avg += diff >> 3;
1781 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1783 if (wakeup)
1784 p->se.start_runtime = p->se.sum_exec_runtime;
1786 sched_info_queued(p);
1787 p->sched_class->enqueue_task(rq, p, wakeup);
1788 p->se.on_rq = 1;
1791 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1793 if (sleep) {
1794 if (p->se.last_wakeup) {
1795 update_avg(&p->se.avg_overlap,
1796 p->se.sum_exec_runtime - p->se.last_wakeup);
1797 p->se.last_wakeup = 0;
1798 } else {
1799 update_avg(&p->se.avg_wakeup,
1800 sysctl_sched_wakeup_granularity);
1804 sched_info_dequeued(p);
1805 p->sched_class->dequeue_task(rq, p, sleep);
1806 p->se.on_rq = 0;
1810 * __normal_prio - return the priority that is based on the static prio
1812 static inline int __normal_prio(struct task_struct *p)
1814 return p->static_prio;
1818 * Calculate the expected normal priority: i.e. priority
1819 * without taking RT-inheritance into account. Might be
1820 * boosted by interactivity modifiers. Changes upon fork,
1821 * setprio syscalls, and whenever the interactivity
1822 * estimator recalculates.
1824 static inline int normal_prio(struct task_struct *p)
1826 int prio;
1828 if (task_has_rt_policy(p))
1829 prio = MAX_RT_PRIO-1 - p->rt_priority;
1830 else
1831 prio = __normal_prio(p);
1832 return prio;
1836 * Calculate the current priority, i.e. the priority
1837 * taken into account by the scheduler. This value might
1838 * be boosted by RT tasks, or might be boosted by
1839 * interactivity modifiers. Will be RT if the task got
1840 * RT-boosted. If not then it returns p->normal_prio.
1842 static int effective_prio(struct task_struct *p)
1844 p->normal_prio = normal_prio(p);
1846 * If we are RT tasks or we were boosted to RT priority,
1847 * keep the priority unchanged. Otherwise, update priority
1848 * to the normal priority:
1850 if (!rt_prio(p->prio))
1851 return p->normal_prio;
1852 return p->prio;
1856 * activate_task - move a task to the runqueue.
1858 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1860 if (task_contributes_to_load(p))
1861 rq->nr_uninterruptible--;
1863 enqueue_task(rq, p, wakeup);
1864 inc_nr_running(rq);
1868 * deactivate_task - remove a task from the runqueue.
1870 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1872 if (task_contributes_to_load(p))
1873 rq->nr_uninterruptible++;
1875 dequeue_task(rq, p, sleep);
1876 dec_nr_running(rq);
1880 * task_curr - is this task currently executing on a CPU?
1881 * @p: the task in question.
1883 inline int task_curr(const struct task_struct *p)
1885 return cpu_curr(task_cpu(p)) == p;
1888 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1890 set_task_rq(p, cpu);
1891 #ifdef CONFIG_SMP
1893 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1894 * successfuly executed on another CPU. We must ensure that updates of
1895 * per-task data have been completed by this moment.
1897 smp_wmb();
1898 task_thread_info(p)->cpu = cpu;
1899 #endif
1902 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1903 const struct sched_class *prev_class,
1904 int oldprio, int running)
1906 if (prev_class != p->sched_class) {
1907 if (prev_class->switched_from)
1908 prev_class->switched_from(rq, p, running);
1909 p->sched_class->switched_to(rq, p, running);
1910 } else
1911 p->sched_class->prio_changed(rq, p, oldprio, running);
1914 #ifdef CONFIG_SMP
1916 /* Used instead of source_load when we know the type == 0 */
1917 static unsigned long weighted_cpuload(const int cpu)
1919 return cpu_rq(cpu)->load.weight;
1923 * Is this task likely cache-hot:
1925 static int
1926 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1928 s64 delta;
1931 * Buddy candidates are cache hot:
1933 if (sched_feat(CACHE_HOT_BUDDY) &&
1934 (&p->se == cfs_rq_of(&p->se)->next ||
1935 &p->se == cfs_rq_of(&p->se)->last))
1936 return 1;
1938 if (p->sched_class != &fair_sched_class)
1939 return 0;
1941 if (sysctl_sched_migration_cost == -1)
1942 return 1;
1943 if (sysctl_sched_migration_cost == 0)
1944 return 0;
1946 delta = now - p->se.exec_start;
1948 return delta < (s64)sysctl_sched_migration_cost;
1952 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1954 int old_cpu = task_cpu(p);
1955 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1956 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1957 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1958 u64 clock_offset;
1960 clock_offset = old_rq->clock - new_rq->clock;
1962 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1964 #ifdef CONFIG_SCHEDSTATS
1965 if (p->se.wait_start)
1966 p->se.wait_start -= clock_offset;
1967 if (p->se.sleep_start)
1968 p->se.sleep_start -= clock_offset;
1969 if (p->se.block_start)
1970 p->se.block_start -= clock_offset;
1971 if (old_cpu != new_cpu) {
1972 schedstat_inc(p, se.nr_migrations);
1973 if (task_hot(p, old_rq->clock, NULL))
1974 schedstat_inc(p, se.nr_forced2_migrations);
1976 #endif
1977 p->se.vruntime -= old_cfsrq->min_vruntime -
1978 new_cfsrq->min_vruntime;
1980 __set_task_cpu(p, new_cpu);
1983 struct migration_req {
1984 struct list_head list;
1986 struct task_struct *task;
1987 int dest_cpu;
1989 struct completion done;
1993 * The task's runqueue lock must be held.
1994 * Returns true if you have to wait for migration thread.
1996 static int
1997 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1999 struct rq *rq = task_rq(p);
2002 * If the task is not on a runqueue (and not running), then
2003 * it is sufficient to simply update the task's cpu field.
2005 if (!p->se.on_rq && !task_running(rq, p)) {
2006 set_task_cpu(p, dest_cpu);
2007 return 0;
2010 init_completion(&req->done);
2011 req->task = p;
2012 req->dest_cpu = dest_cpu;
2013 list_add(&req->list, &rq->migration_queue);
2015 return 1;
2019 * wait_task_inactive - wait for a thread to unschedule.
2021 * If @match_state is nonzero, it's the @p->state value just checked and
2022 * not expected to change. If it changes, i.e. @p might have woken up,
2023 * then return zero. When we succeed in waiting for @p to be off its CPU,
2024 * we return a positive number (its total switch count). If a second call
2025 * a short while later returns the same number, the caller can be sure that
2026 * @p has remained unscheduled the whole time.
2028 * The caller must ensure that the task *will* unschedule sometime soon,
2029 * else this function might spin for a *long* time. This function can't
2030 * be called with interrupts off, or it may introduce deadlock with
2031 * smp_call_function() if an IPI is sent by the same process we are
2032 * waiting to become inactive.
2034 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2036 unsigned long flags;
2037 int running, on_rq;
2038 unsigned long ncsw;
2039 struct rq *rq;
2041 for (;;) {
2043 * We do the initial early heuristics without holding
2044 * any task-queue locks at all. We'll only try to get
2045 * the runqueue lock when things look like they will
2046 * work out!
2048 rq = task_rq(p);
2051 * If the task is actively running on another CPU
2052 * still, just relax and busy-wait without holding
2053 * any locks.
2055 * NOTE! Since we don't hold any locks, it's not
2056 * even sure that "rq" stays as the right runqueue!
2057 * But we don't care, since "task_running()" will
2058 * return false if the runqueue has changed and p
2059 * is actually now running somewhere else!
2061 while (task_running(rq, p)) {
2062 if (match_state && unlikely(p->state != match_state))
2063 return 0;
2064 cpu_relax();
2068 * Ok, time to look more closely! We need the rq
2069 * lock now, to be *sure*. If we're wrong, we'll
2070 * just go back and repeat.
2072 rq = task_rq_lock(p, &flags);
2073 trace_sched_wait_task(rq, p);
2074 running = task_running(rq, p);
2075 on_rq = p->se.on_rq;
2076 ncsw = 0;
2077 if (!match_state || p->state == match_state)
2078 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2079 task_rq_unlock(rq, &flags);
2082 * If it changed from the expected state, bail out now.
2084 if (unlikely(!ncsw))
2085 break;
2088 * Was it really running after all now that we
2089 * checked with the proper locks actually held?
2091 * Oops. Go back and try again..
2093 if (unlikely(running)) {
2094 cpu_relax();
2095 continue;
2099 * It's not enough that it's not actively running,
2100 * it must be off the runqueue _entirely_, and not
2101 * preempted!
2103 * So if it was still runnable (but just not actively
2104 * running right now), it's preempted, and we should
2105 * yield - it could be a while.
2107 if (unlikely(on_rq)) {
2108 schedule_timeout_uninterruptible(1);
2109 continue;
2113 * Ahh, all good. It wasn't running, and it wasn't
2114 * runnable, which means that it will never become
2115 * running in the future either. We're all done!
2117 break;
2120 return ncsw;
2123 /***
2124 * kick_process - kick a running thread to enter/exit the kernel
2125 * @p: the to-be-kicked thread
2127 * Cause a process which is running on another CPU to enter
2128 * kernel-mode, without any delay. (to get signals handled.)
2130 * NOTE: this function doesnt have to take the runqueue lock,
2131 * because all it wants to ensure is that the remote task enters
2132 * the kernel. If the IPI races and the task has been migrated
2133 * to another CPU then no harm is done and the purpose has been
2134 * achieved as well.
2136 void kick_process(struct task_struct *p)
2138 int cpu;
2140 preempt_disable();
2141 cpu = task_cpu(p);
2142 if ((cpu != smp_processor_id()) && task_curr(p))
2143 smp_send_reschedule(cpu);
2144 preempt_enable();
2148 * Return a low guess at the load of a migration-source cpu weighted
2149 * according to the scheduling class and "nice" value.
2151 * We want to under-estimate the load of migration sources, to
2152 * balance conservatively.
2154 static unsigned long source_load(int cpu, int type)
2156 struct rq *rq = cpu_rq(cpu);
2157 unsigned long total = weighted_cpuload(cpu);
2159 if (type == 0 || !sched_feat(LB_BIAS))
2160 return total;
2162 return min(rq->cpu_load[type-1], total);
2166 * Return a high guess at the load of a migration-target cpu weighted
2167 * according to the scheduling class and "nice" value.
2169 static unsigned long target_load(int cpu, int type)
2171 struct rq *rq = cpu_rq(cpu);
2172 unsigned long total = weighted_cpuload(cpu);
2174 if (type == 0 || !sched_feat(LB_BIAS))
2175 return total;
2177 return max(rq->cpu_load[type-1], total);
2181 * find_idlest_group finds and returns the least busy CPU group within the
2182 * domain.
2184 static struct sched_group *
2185 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2187 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2188 unsigned long min_load = ULONG_MAX, this_load = 0;
2189 int load_idx = sd->forkexec_idx;
2190 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2192 do {
2193 unsigned long load, avg_load;
2194 int local_group;
2195 int i;
2197 /* Skip over this group if it has no CPUs allowed */
2198 if (!cpumask_intersects(sched_group_cpus(group),
2199 &p->cpus_allowed))
2200 continue;
2202 local_group = cpumask_test_cpu(this_cpu,
2203 sched_group_cpus(group));
2205 /* Tally up the load of all CPUs in the group */
2206 avg_load = 0;
2208 for_each_cpu(i, sched_group_cpus(group)) {
2209 /* Bias balancing toward cpus of our domain */
2210 if (local_group)
2211 load = source_load(i, load_idx);
2212 else
2213 load = target_load(i, load_idx);
2215 avg_load += load;
2218 /* Adjust by relative CPU power of the group */
2219 avg_load = sg_div_cpu_power(group,
2220 avg_load * SCHED_LOAD_SCALE);
2222 if (local_group) {
2223 this_load = avg_load;
2224 this = group;
2225 } else if (avg_load < min_load) {
2226 min_load = avg_load;
2227 idlest = group;
2229 } while (group = group->next, group != sd->groups);
2231 if (!idlest || 100*this_load < imbalance*min_load)
2232 return NULL;
2233 return idlest;
2237 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2239 static int
2240 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2242 unsigned long load, min_load = ULONG_MAX;
2243 int idlest = -1;
2244 int i;
2246 /* Traverse only the allowed CPUs */
2247 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2248 load = weighted_cpuload(i);
2250 if (load < min_load || (load == min_load && i == this_cpu)) {
2251 min_load = load;
2252 idlest = i;
2256 return idlest;
2260 * sched_balance_self: balance the current task (running on cpu) in domains
2261 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2262 * SD_BALANCE_EXEC.
2264 * Balance, ie. select the least loaded group.
2266 * Returns the target CPU number, or the same CPU if no balancing is needed.
2268 * preempt must be disabled.
2270 static int sched_balance_self(int cpu, int flag)
2272 struct task_struct *t = current;
2273 struct sched_domain *tmp, *sd = NULL;
2275 for_each_domain(cpu, tmp) {
2277 * If power savings logic is enabled for a domain, stop there.
2279 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2280 break;
2281 if (tmp->flags & flag)
2282 sd = tmp;
2285 if (sd)
2286 update_shares(sd);
2288 while (sd) {
2289 struct sched_group *group;
2290 int new_cpu, weight;
2292 if (!(sd->flags & flag)) {
2293 sd = sd->child;
2294 continue;
2297 group = find_idlest_group(sd, t, cpu);
2298 if (!group) {
2299 sd = sd->child;
2300 continue;
2303 new_cpu = find_idlest_cpu(group, t, cpu);
2304 if (new_cpu == -1 || new_cpu == cpu) {
2305 /* Now try balancing at a lower domain level of cpu */
2306 sd = sd->child;
2307 continue;
2310 /* Now try balancing at a lower domain level of new_cpu */
2311 cpu = new_cpu;
2312 weight = cpumask_weight(sched_domain_span(sd));
2313 sd = NULL;
2314 for_each_domain(cpu, tmp) {
2315 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2316 break;
2317 if (tmp->flags & flag)
2318 sd = tmp;
2320 /* while loop will break here if sd == NULL */
2323 return cpu;
2326 #endif /* CONFIG_SMP */
2328 /***
2329 * try_to_wake_up - wake up a thread
2330 * @p: the to-be-woken-up thread
2331 * @state: the mask of task states that can be woken
2332 * @sync: do a synchronous wakeup?
2334 * Put it on the run-queue if it's not already there. The "current"
2335 * thread is always on the run-queue (except when the actual
2336 * re-schedule is in progress), and as such you're allowed to do
2337 * the simpler "current->state = TASK_RUNNING" to mark yourself
2338 * runnable without the overhead of this.
2340 * returns failure only if the task is already active.
2342 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2344 int cpu, orig_cpu, this_cpu, success = 0;
2345 unsigned long flags;
2346 long old_state;
2347 struct rq *rq;
2349 if (!sched_feat(SYNC_WAKEUPS))
2350 sync = 0;
2352 #ifdef CONFIG_SMP
2353 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2354 struct sched_domain *sd;
2356 this_cpu = raw_smp_processor_id();
2357 cpu = task_cpu(p);
2359 for_each_domain(this_cpu, sd) {
2360 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2361 update_shares(sd);
2362 break;
2366 #endif
2368 smp_wmb();
2369 rq = task_rq_lock(p, &flags);
2370 update_rq_clock(rq);
2371 old_state = p->state;
2372 if (!(old_state & state))
2373 goto out;
2375 if (p->se.on_rq)
2376 goto out_running;
2378 cpu = task_cpu(p);
2379 orig_cpu = cpu;
2380 this_cpu = smp_processor_id();
2382 #ifdef CONFIG_SMP
2383 if (unlikely(task_running(rq, p)))
2384 goto out_activate;
2386 cpu = p->sched_class->select_task_rq(p, sync);
2387 if (cpu != orig_cpu) {
2388 set_task_cpu(p, cpu);
2389 task_rq_unlock(rq, &flags);
2390 /* might preempt at this point */
2391 rq = task_rq_lock(p, &flags);
2392 old_state = p->state;
2393 if (!(old_state & state))
2394 goto out;
2395 if (p->se.on_rq)
2396 goto out_running;
2398 this_cpu = smp_processor_id();
2399 cpu = task_cpu(p);
2402 #ifdef CONFIG_SCHEDSTATS
2403 schedstat_inc(rq, ttwu_count);
2404 if (cpu == this_cpu)
2405 schedstat_inc(rq, ttwu_local);
2406 else {
2407 struct sched_domain *sd;
2408 for_each_domain(this_cpu, sd) {
2409 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2410 schedstat_inc(sd, ttwu_wake_remote);
2411 break;
2415 #endif /* CONFIG_SCHEDSTATS */
2417 out_activate:
2418 #endif /* CONFIG_SMP */
2419 schedstat_inc(p, se.nr_wakeups);
2420 if (sync)
2421 schedstat_inc(p, se.nr_wakeups_sync);
2422 if (orig_cpu != cpu)
2423 schedstat_inc(p, se.nr_wakeups_migrate);
2424 if (cpu == this_cpu)
2425 schedstat_inc(p, se.nr_wakeups_local);
2426 else
2427 schedstat_inc(p, se.nr_wakeups_remote);
2428 activate_task(rq, p, 1);
2429 success = 1;
2432 * Only attribute actual wakeups done by this task.
2434 if (!in_interrupt()) {
2435 struct sched_entity *se = &current->se;
2436 u64 sample = se->sum_exec_runtime;
2438 if (se->last_wakeup)
2439 sample -= se->last_wakeup;
2440 else
2441 sample -= se->start_runtime;
2442 update_avg(&se->avg_wakeup, sample);
2444 se->last_wakeup = se->sum_exec_runtime;
2447 out_running:
2448 trace_sched_wakeup(rq, p, success);
2449 check_preempt_curr(rq, p, sync);
2451 p->state = TASK_RUNNING;
2452 #ifdef CONFIG_SMP
2453 if (p->sched_class->task_wake_up)
2454 p->sched_class->task_wake_up(rq, p);
2455 #endif
2456 out:
2457 task_rq_unlock(rq, &flags);
2459 return success;
2462 int wake_up_process(struct task_struct *p)
2464 return try_to_wake_up(p, TASK_ALL, 0);
2466 EXPORT_SYMBOL(wake_up_process);
2468 int wake_up_state(struct task_struct *p, unsigned int state)
2470 return try_to_wake_up(p, state, 0);
2474 * Perform scheduler related setup for a newly forked process p.
2475 * p is forked by current.
2477 * __sched_fork() is basic setup used by init_idle() too:
2479 static void __sched_fork(struct task_struct *p)
2481 p->se.exec_start = 0;
2482 p->se.sum_exec_runtime = 0;
2483 p->se.prev_sum_exec_runtime = 0;
2484 p->se.last_wakeup = 0;
2485 p->se.avg_overlap = 0;
2486 p->se.start_runtime = 0;
2487 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2489 #ifdef CONFIG_SCHEDSTATS
2490 p->se.wait_start = 0;
2491 p->se.sum_sleep_runtime = 0;
2492 p->se.sleep_start = 0;
2493 p->se.block_start = 0;
2494 p->se.sleep_max = 0;
2495 p->se.block_max = 0;
2496 p->se.exec_max = 0;
2497 p->se.slice_max = 0;
2498 p->se.wait_max = 0;
2499 #endif
2501 INIT_LIST_HEAD(&p->rt.run_list);
2502 p->se.on_rq = 0;
2503 INIT_LIST_HEAD(&p->se.group_node);
2505 #ifdef CONFIG_PREEMPT_NOTIFIERS
2506 INIT_HLIST_HEAD(&p->preempt_notifiers);
2507 #endif
2510 * We mark the process as running here, but have not actually
2511 * inserted it onto the runqueue yet. This guarantees that
2512 * nobody will actually run it, and a signal or other external
2513 * event cannot wake it up and insert it on the runqueue either.
2515 p->state = TASK_RUNNING;
2519 * fork()/clone()-time setup:
2521 void sched_fork(struct task_struct *p, int clone_flags)
2523 int cpu = get_cpu();
2525 __sched_fork(p);
2527 #ifdef CONFIG_SMP
2528 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2529 #endif
2530 set_task_cpu(p, cpu);
2533 * Make sure we do not leak PI boosting priority to the child:
2535 p->prio = current->normal_prio;
2536 if (!rt_prio(p->prio))
2537 p->sched_class = &fair_sched_class;
2539 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2540 if (likely(sched_info_on()))
2541 memset(&p->sched_info, 0, sizeof(p->sched_info));
2542 #endif
2543 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2544 p->oncpu = 0;
2545 #endif
2546 #ifdef CONFIG_PREEMPT
2547 /* Want to start with kernel preemption disabled. */
2548 task_thread_info(p)->preempt_count = 1;
2549 #endif
2550 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2552 put_cpu();
2556 * wake_up_new_task - wake up a newly created task for the first time.
2558 * This function will do some initial scheduler statistics housekeeping
2559 * that must be done for every newly created context, then puts the task
2560 * on the runqueue and wakes it.
2562 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2564 unsigned long flags;
2565 struct rq *rq;
2567 rq = task_rq_lock(p, &flags);
2568 BUG_ON(p->state != TASK_RUNNING);
2569 update_rq_clock(rq);
2571 p->prio = effective_prio(p);
2573 if (!p->sched_class->task_new || !current->se.on_rq) {
2574 activate_task(rq, p, 0);
2575 } else {
2577 * Let the scheduling class do new task startup
2578 * management (if any):
2580 p->sched_class->task_new(rq, p);
2581 inc_nr_running(rq);
2583 trace_sched_wakeup_new(rq, p, 1);
2584 check_preempt_curr(rq, p, 0);
2585 #ifdef CONFIG_SMP
2586 if (p->sched_class->task_wake_up)
2587 p->sched_class->task_wake_up(rq, p);
2588 #endif
2589 task_rq_unlock(rq, &flags);
2592 #ifdef CONFIG_PREEMPT_NOTIFIERS
2595 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2596 * @notifier: notifier struct to register
2598 void preempt_notifier_register(struct preempt_notifier *notifier)
2600 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2602 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2605 * preempt_notifier_unregister - no longer interested in preemption notifications
2606 * @notifier: notifier struct to unregister
2608 * This is safe to call from within a preemption notifier.
2610 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2612 hlist_del(&notifier->link);
2614 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2616 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618 struct preempt_notifier *notifier;
2619 struct hlist_node *node;
2621 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2622 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2625 static void
2626 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2627 struct task_struct *next)
2629 struct preempt_notifier *notifier;
2630 struct hlist_node *node;
2632 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2633 notifier->ops->sched_out(notifier, next);
2636 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2638 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2642 static void
2643 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2644 struct task_struct *next)
2648 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2651 * prepare_task_switch - prepare to switch tasks
2652 * @rq: the runqueue preparing to switch
2653 * @prev: the current task that is being switched out
2654 * @next: the task we are going to switch to.
2656 * This is called with the rq lock held and interrupts off. It must
2657 * be paired with a subsequent finish_task_switch after the context
2658 * switch.
2660 * prepare_task_switch sets up locking and calls architecture specific
2661 * hooks.
2663 static inline void
2664 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2665 struct task_struct *next)
2667 fire_sched_out_preempt_notifiers(prev, next);
2668 prepare_lock_switch(rq, next);
2669 prepare_arch_switch(next);
2673 * finish_task_switch - clean up after a task-switch
2674 * @rq: runqueue associated with task-switch
2675 * @prev: the thread we just switched away from.
2677 * finish_task_switch must be called after the context switch, paired
2678 * with a prepare_task_switch call before the context switch.
2679 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2680 * and do any other architecture-specific cleanup actions.
2682 * Note that we may have delayed dropping an mm in context_switch(). If
2683 * so, we finish that here outside of the runqueue lock. (Doing it
2684 * with the lock held can cause deadlocks; see schedule() for
2685 * details.)
2687 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2688 __releases(rq->lock)
2690 struct mm_struct *mm = rq->prev_mm;
2691 long prev_state;
2692 #ifdef CONFIG_SMP
2693 int post_schedule = 0;
2695 if (current->sched_class->needs_post_schedule)
2696 post_schedule = current->sched_class->needs_post_schedule(rq);
2697 #endif
2699 rq->prev_mm = NULL;
2702 * A task struct has one reference for the use as "current".
2703 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2704 * schedule one last time. The schedule call will never return, and
2705 * the scheduled task must drop that reference.
2706 * The test for TASK_DEAD must occur while the runqueue locks are
2707 * still held, otherwise prev could be scheduled on another cpu, die
2708 * there before we look at prev->state, and then the reference would
2709 * be dropped twice.
2710 * Manfred Spraul <manfred@colorfullife.com>
2712 prev_state = prev->state;
2713 finish_arch_switch(prev);
2714 finish_lock_switch(rq, prev);
2715 #ifdef CONFIG_SMP
2716 if (post_schedule)
2717 current->sched_class->post_schedule(rq);
2718 #endif
2720 fire_sched_in_preempt_notifiers(current);
2721 if (mm)
2722 mmdrop(mm);
2723 if (unlikely(prev_state == TASK_DEAD)) {
2725 * Remove function-return probe instances associated with this
2726 * task and put them back on the free list.
2728 kprobe_flush_task(prev);
2729 put_task_struct(prev);
2734 * schedule_tail - first thing a freshly forked thread must call.
2735 * @prev: the thread we just switched away from.
2737 asmlinkage void schedule_tail(struct task_struct *prev)
2738 __releases(rq->lock)
2740 struct rq *rq = this_rq();
2742 finish_task_switch(rq, prev);
2743 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2744 /* In this case, finish_task_switch does not reenable preemption */
2745 preempt_enable();
2746 #endif
2747 if (current->set_child_tid)
2748 put_user(task_pid_vnr(current), current->set_child_tid);
2752 * context_switch - switch to the new MM and the new
2753 * thread's register state.
2755 static inline void
2756 context_switch(struct rq *rq, struct task_struct *prev,
2757 struct task_struct *next)
2759 struct mm_struct *mm, *oldmm;
2761 prepare_task_switch(rq, prev, next);
2762 trace_sched_switch(rq, prev, next);
2763 mm = next->mm;
2764 oldmm = prev->active_mm;
2766 * For paravirt, this is coupled with an exit in switch_to to
2767 * combine the page table reload and the switch backend into
2768 * one hypercall.
2770 arch_enter_lazy_cpu_mode();
2772 if (unlikely(!mm)) {
2773 next->active_mm = oldmm;
2774 atomic_inc(&oldmm->mm_count);
2775 enter_lazy_tlb(oldmm, next);
2776 } else
2777 switch_mm(oldmm, mm, next);
2779 if (unlikely(!prev->mm)) {
2780 prev->active_mm = NULL;
2781 rq->prev_mm = oldmm;
2784 * Since the runqueue lock will be released by the next
2785 * task (which is an invalid locking op but in the case
2786 * of the scheduler it's an obvious special-case), so we
2787 * do an early lockdep release here:
2789 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2790 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2791 #endif
2793 /* Here we just switch the register state and the stack. */
2794 switch_to(prev, next, prev);
2796 barrier();
2798 * this_rq must be evaluated again because prev may have moved
2799 * CPUs since it called schedule(), thus the 'rq' on its stack
2800 * frame will be invalid.
2802 finish_task_switch(this_rq(), prev);
2806 * nr_running, nr_uninterruptible and nr_context_switches:
2808 * externally visible scheduler statistics: current number of runnable
2809 * threads, current number of uninterruptible-sleeping threads, total
2810 * number of context switches performed since bootup.
2812 unsigned long nr_running(void)
2814 unsigned long i, sum = 0;
2816 for_each_online_cpu(i)
2817 sum += cpu_rq(i)->nr_running;
2819 return sum;
2822 unsigned long nr_uninterruptible(void)
2824 unsigned long i, sum = 0;
2826 for_each_possible_cpu(i)
2827 sum += cpu_rq(i)->nr_uninterruptible;
2830 * Since we read the counters lockless, it might be slightly
2831 * inaccurate. Do not allow it to go below zero though:
2833 if (unlikely((long)sum < 0))
2834 sum = 0;
2836 return sum;
2839 unsigned long long nr_context_switches(void)
2841 int i;
2842 unsigned long long sum = 0;
2844 for_each_possible_cpu(i)
2845 sum += cpu_rq(i)->nr_switches;
2847 return sum;
2850 unsigned long nr_iowait(void)
2852 unsigned long i, sum = 0;
2854 for_each_possible_cpu(i)
2855 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2857 return sum;
2860 unsigned long nr_active(void)
2862 unsigned long i, running = 0, uninterruptible = 0;
2864 for_each_online_cpu(i) {
2865 running += cpu_rq(i)->nr_running;
2866 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2869 if (unlikely((long)uninterruptible < 0))
2870 uninterruptible = 0;
2872 return running + uninterruptible;
2876 * Update rq->cpu_load[] statistics. This function is usually called every
2877 * scheduler tick (TICK_NSEC).
2879 static void update_cpu_load(struct rq *this_rq)
2881 unsigned long this_load = this_rq->load.weight;
2882 int i, scale;
2884 this_rq->nr_load_updates++;
2886 /* Update our load: */
2887 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2888 unsigned long old_load, new_load;
2890 /* scale is effectively 1 << i now, and >> i divides by scale */
2892 old_load = this_rq->cpu_load[i];
2893 new_load = this_load;
2895 * Round up the averaging division if load is increasing. This
2896 * prevents us from getting stuck on 9 if the load is 10, for
2897 * example.
2899 if (new_load > old_load)
2900 new_load += scale-1;
2901 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2905 #ifdef CONFIG_SMP
2908 * double_rq_lock - safely lock two runqueues
2910 * Note this does not disable interrupts like task_rq_lock,
2911 * you need to do so manually before calling.
2913 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2914 __acquires(rq1->lock)
2915 __acquires(rq2->lock)
2917 BUG_ON(!irqs_disabled());
2918 if (rq1 == rq2) {
2919 spin_lock(&rq1->lock);
2920 __acquire(rq2->lock); /* Fake it out ;) */
2921 } else {
2922 if (rq1 < rq2) {
2923 spin_lock(&rq1->lock);
2924 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2925 } else {
2926 spin_lock(&rq2->lock);
2927 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2930 update_rq_clock(rq1);
2931 update_rq_clock(rq2);
2935 * double_rq_unlock - safely unlock two runqueues
2937 * Note this does not restore interrupts like task_rq_unlock,
2938 * you need to do so manually after calling.
2940 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2941 __releases(rq1->lock)
2942 __releases(rq2->lock)
2944 spin_unlock(&rq1->lock);
2945 if (rq1 != rq2)
2946 spin_unlock(&rq2->lock);
2947 else
2948 __release(rq2->lock);
2952 * If dest_cpu is allowed for this process, migrate the task to it.
2953 * This is accomplished by forcing the cpu_allowed mask to only
2954 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2955 * the cpu_allowed mask is restored.
2957 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2959 struct migration_req req;
2960 unsigned long flags;
2961 struct rq *rq;
2963 rq = task_rq_lock(p, &flags);
2964 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2965 || unlikely(!cpu_active(dest_cpu)))
2966 goto out;
2968 /* force the process onto the specified CPU */
2969 if (migrate_task(p, dest_cpu, &req)) {
2970 /* Need to wait for migration thread (might exit: take ref). */
2971 struct task_struct *mt = rq->migration_thread;
2973 get_task_struct(mt);
2974 task_rq_unlock(rq, &flags);
2975 wake_up_process(mt);
2976 put_task_struct(mt);
2977 wait_for_completion(&req.done);
2979 return;
2981 out:
2982 task_rq_unlock(rq, &flags);
2986 * sched_exec - execve() is a valuable balancing opportunity, because at
2987 * this point the task has the smallest effective memory and cache footprint.
2989 void sched_exec(void)
2991 int new_cpu, this_cpu = get_cpu();
2992 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2993 put_cpu();
2994 if (new_cpu != this_cpu)
2995 sched_migrate_task(current, new_cpu);
2999 * pull_task - move a task from a remote runqueue to the local runqueue.
3000 * Both runqueues must be locked.
3002 static void pull_task(struct rq *src_rq, struct task_struct *p,
3003 struct rq *this_rq, int this_cpu)
3005 deactivate_task(src_rq, p, 0);
3006 set_task_cpu(p, this_cpu);
3007 activate_task(this_rq, p, 0);
3009 * Note that idle threads have a prio of MAX_PRIO, for this test
3010 * to be always true for them.
3012 check_preempt_curr(this_rq, p, 0);
3016 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3018 static
3019 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3020 struct sched_domain *sd, enum cpu_idle_type idle,
3021 int *all_pinned)
3023 int tsk_cache_hot = 0;
3025 * We do not migrate tasks that are:
3026 * 1) running (obviously), or
3027 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3028 * 3) are cache-hot on their current CPU.
3030 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3031 schedstat_inc(p, se.nr_failed_migrations_affine);
3032 return 0;
3034 *all_pinned = 0;
3036 if (task_running(rq, p)) {
3037 schedstat_inc(p, se.nr_failed_migrations_running);
3038 return 0;
3042 * Aggressive migration if:
3043 * 1) task is cache cold, or
3044 * 2) too many balance attempts have failed.
3047 tsk_cache_hot = task_hot(p, rq->clock, sd);
3048 if (!tsk_cache_hot ||
3049 sd->nr_balance_failed > sd->cache_nice_tries) {
3050 #ifdef CONFIG_SCHEDSTATS
3051 if (tsk_cache_hot) {
3052 schedstat_inc(sd, lb_hot_gained[idle]);
3053 schedstat_inc(p, se.nr_forced_migrations);
3055 #endif
3056 return 1;
3059 if (tsk_cache_hot) {
3060 schedstat_inc(p, se.nr_failed_migrations_hot);
3061 return 0;
3063 return 1;
3066 static unsigned long
3067 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3068 unsigned long max_load_move, struct sched_domain *sd,
3069 enum cpu_idle_type idle, int *all_pinned,
3070 int *this_best_prio, struct rq_iterator *iterator)
3072 int loops = 0, pulled = 0, pinned = 0;
3073 struct task_struct *p;
3074 long rem_load_move = max_load_move;
3076 if (max_load_move == 0)
3077 goto out;
3079 pinned = 1;
3082 * Start the load-balancing iterator:
3084 p = iterator->start(iterator->arg);
3085 next:
3086 if (!p || loops++ > sysctl_sched_nr_migrate)
3087 goto out;
3089 if ((p->se.load.weight >> 1) > rem_load_move ||
3090 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3091 p = iterator->next(iterator->arg);
3092 goto next;
3095 pull_task(busiest, p, this_rq, this_cpu);
3096 pulled++;
3097 rem_load_move -= p->se.load.weight;
3099 #ifdef CONFIG_PREEMPT
3101 * NEWIDLE balancing is a source of latency, so preemptible kernels
3102 * will stop after the first task is pulled to minimize the critical
3103 * section.
3105 if (idle == CPU_NEWLY_IDLE)
3106 goto out;
3107 #endif
3110 * We only want to steal up to the prescribed amount of weighted load.
3112 if (rem_load_move > 0) {
3113 if (p->prio < *this_best_prio)
3114 *this_best_prio = p->prio;
3115 p = iterator->next(iterator->arg);
3116 goto next;
3118 out:
3120 * Right now, this is one of only two places pull_task() is called,
3121 * so we can safely collect pull_task() stats here rather than
3122 * inside pull_task().
3124 schedstat_add(sd, lb_gained[idle], pulled);
3126 if (all_pinned)
3127 *all_pinned = pinned;
3129 return max_load_move - rem_load_move;
3133 * move_tasks tries to move up to max_load_move weighted load from busiest to
3134 * this_rq, as part of a balancing operation within domain "sd".
3135 * Returns 1 if successful and 0 otherwise.
3137 * Called with both runqueues locked.
3139 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3140 unsigned long max_load_move,
3141 struct sched_domain *sd, enum cpu_idle_type idle,
3142 int *all_pinned)
3144 const struct sched_class *class = sched_class_highest;
3145 unsigned long total_load_moved = 0;
3146 int this_best_prio = this_rq->curr->prio;
3148 do {
3149 total_load_moved +=
3150 class->load_balance(this_rq, this_cpu, busiest,
3151 max_load_move - total_load_moved,
3152 sd, idle, all_pinned, &this_best_prio);
3153 class = class->next;
3155 #ifdef CONFIG_PREEMPT
3157 * NEWIDLE balancing is a source of latency, so preemptible
3158 * kernels will stop after the first task is pulled to minimize
3159 * the critical section.
3161 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3162 break;
3163 #endif
3164 } while (class && max_load_move > total_load_moved);
3166 return total_load_moved > 0;
3169 static int
3170 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3171 struct sched_domain *sd, enum cpu_idle_type idle,
3172 struct rq_iterator *iterator)
3174 struct task_struct *p = iterator->start(iterator->arg);
3175 int pinned = 0;
3177 while (p) {
3178 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3179 pull_task(busiest, p, this_rq, this_cpu);
3181 * Right now, this is only the second place pull_task()
3182 * is called, so we can safely collect pull_task()
3183 * stats here rather than inside pull_task().
3185 schedstat_inc(sd, lb_gained[idle]);
3187 return 1;
3189 p = iterator->next(iterator->arg);
3192 return 0;
3196 * move_one_task tries to move exactly one task from busiest to this_rq, as
3197 * part of active balancing operations within "domain".
3198 * Returns 1 if successful and 0 otherwise.
3200 * Called with both runqueues locked.
3202 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3203 struct sched_domain *sd, enum cpu_idle_type idle)
3205 const struct sched_class *class;
3207 for (class = sched_class_highest; class; class = class->next)
3208 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3209 return 1;
3211 return 0;
3213 /********** Helpers for find_busiest_group ************************/
3215 * sd_lb_stats - Structure to store the statistics of a sched_domain
3216 * during load balancing.
3218 struct sd_lb_stats {
3219 struct sched_group *busiest; /* Busiest group in this sd */
3220 struct sched_group *this; /* Local group in this sd */
3221 unsigned long total_load; /* Total load of all groups in sd */
3222 unsigned long total_pwr; /* Total power of all groups in sd */
3223 unsigned long avg_load; /* Average load across all groups in sd */
3225 /** Statistics of this group */
3226 unsigned long this_load;
3227 unsigned long this_load_per_task;
3228 unsigned long this_nr_running;
3230 /* Statistics of the busiest group */
3231 unsigned long max_load;
3232 unsigned long busiest_load_per_task;
3233 unsigned long busiest_nr_running;
3235 int group_imb; /* Is there imbalance in this sd */
3236 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3237 int power_savings_balance; /* Is powersave balance needed for this sd */
3238 struct sched_group *group_min; /* Least loaded group in sd */
3239 struct sched_group *group_leader; /* Group which relieves group_min */
3240 unsigned long min_load_per_task; /* load_per_task in group_min */
3241 unsigned long leader_nr_running; /* Nr running of group_leader */
3242 unsigned long min_nr_running; /* Nr running of group_min */
3243 #endif
3247 * sg_lb_stats - stats of a sched_group required for load_balancing
3249 struct sg_lb_stats {
3250 unsigned long avg_load; /*Avg load across the CPUs of the group */
3251 unsigned long group_load; /* Total load over the CPUs of the group */
3252 unsigned long sum_nr_running; /* Nr tasks running in the group */
3253 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3254 unsigned long group_capacity;
3255 int group_imb; /* Is there an imbalance in the group ? */
3259 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3260 * @group: The group whose first cpu is to be returned.
3262 static inline unsigned int group_first_cpu(struct sched_group *group)
3264 return cpumask_first(sched_group_cpus(group));
3268 * get_sd_load_idx - Obtain the load index for a given sched domain.
3269 * @sd: The sched_domain whose load_idx is to be obtained.
3270 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3272 static inline int get_sd_load_idx(struct sched_domain *sd,
3273 enum cpu_idle_type idle)
3275 int load_idx;
3277 switch (idle) {
3278 case CPU_NOT_IDLE:
3279 load_idx = sd->busy_idx;
3280 break;
3282 case CPU_NEWLY_IDLE:
3283 load_idx = sd->newidle_idx;
3284 break;
3285 default:
3286 load_idx = sd->idle_idx;
3287 break;
3290 return load_idx;
3294 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3296 * init_sd_power_savings_stats - Initialize power savings statistics for
3297 * the given sched_domain, during load balancing.
3299 * @sd: Sched domain whose power-savings statistics are to be initialized.
3300 * @sds: Variable containing the statistics for sd.
3301 * @idle: Idle status of the CPU at which we're performing load-balancing.
3303 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3304 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3307 * Busy processors will not participate in power savings
3308 * balance.
3310 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3311 sds->power_savings_balance = 0;
3312 else {
3313 sds->power_savings_balance = 1;
3314 sds->min_nr_running = ULONG_MAX;
3315 sds->leader_nr_running = 0;
3320 * update_sd_power_savings_stats - Update the power saving stats for a
3321 * sched_domain while performing load balancing.
3323 * @group: sched_group belonging to the sched_domain under consideration.
3324 * @sds: Variable containing the statistics of the sched_domain
3325 * @local_group: Does group contain the CPU for which we're performing
3326 * load balancing ?
3327 * @sgs: Variable containing the statistics of the group.
3329 static inline void update_sd_power_savings_stats(struct sched_group *group,
3330 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3333 if (!sds->power_savings_balance)
3334 return;
3337 * If the local group is idle or completely loaded
3338 * no need to do power savings balance at this domain
3340 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3341 !sds->this_nr_running))
3342 sds->power_savings_balance = 0;
3345 * If a group is already running at full capacity or idle,
3346 * don't include that group in power savings calculations
3348 if (!sds->power_savings_balance ||
3349 sgs->sum_nr_running >= sgs->group_capacity ||
3350 !sgs->sum_nr_running)
3351 return;
3354 * Calculate the group which has the least non-idle load.
3355 * This is the group from where we need to pick up the load
3356 * for saving power
3358 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3359 (sgs->sum_nr_running == sds->min_nr_running &&
3360 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3361 sds->group_min = group;
3362 sds->min_nr_running = sgs->sum_nr_running;
3363 sds->min_load_per_task = sgs->sum_weighted_load /
3364 sgs->sum_nr_running;
3368 * Calculate the group which is almost near its
3369 * capacity but still has some space to pick up some load
3370 * from other group and save more power
3372 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3373 return;
3375 if (sgs->sum_nr_running > sds->leader_nr_running ||
3376 (sgs->sum_nr_running == sds->leader_nr_running &&
3377 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3378 sds->group_leader = group;
3379 sds->leader_nr_running = sgs->sum_nr_running;
3384 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3385 * @sds: Variable containing the statistics of the sched_domain
3386 * under consideration.
3387 * @this_cpu: Cpu at which we're currently performing load-balancing.
3388 * @imbalance: Variable to store the imbalance.
3390 * Description:
3391 * Check if we have potential to perform some power-savings balance.
3392 * If yes, set the busiest group to be the least loaded group in the
3393 * sched_domain, so that it's CPUs can be put to idle.
3395 * Returns 1 if there is potential to perform power-savings balance.
3396 * Else returns 0.
3398 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3399 int this_cpu, unsigned long *imbalance)
3401 if (!sds->power_savings_balance)
3402 return 0;
3404 if (sds->this != sds->group_leader ||
3405 sds->group_leader == sds->group_min)
3406 return 0;
3408 *imbalance = sds->min_load_per_task;
3409 sds->busiest = sds->group_min;
3411 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3412 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3413 group_first_cpu(sds->group_leader);
3416 return 1;
3419 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3420 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3421 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3423 return;
3426 static inline void update_sd_power_savings_stats(struct sched_group *group,
3427 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3429 return;
3432 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3433 int this_cpu, unsigned long *imbalance)
3435 return 0;
3437 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3441 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3442 * @group: sched_group whose statistics are to be updated.
3443 * @this_cpu: Cpu for which load balance is currently performed.
3444 * @idle: Idle status of this_cpu
3445 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3446 * @sd_idle: Idle status of the sched_domain containing group.
3447 * @local_group: Does group contain this_cpu.
3448 * @cpus: Set of cpus considered for load balancing.
3449 * @balance: Should we balance.
3450 * @sgs: variable to hold the statistics for this group.
3452 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3453 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3454 int local_group, const struct cpumask *cpus,
3455 int *balance, struct sg_lb_stats *sgs)
3457 unsigned long load, max_cpu_load, min_cpu_load;
3458 int i;
3459 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3460 unsigned long sum_avg_load_per_task;
3461 unsigned long avg_load_per_task;
3463 if (local_group)
3464 balance_cpu = group_first_cpu(group);
3466 /* Tally up the load of all CPUs in the group */
3467 sum_avg_load_per_task = avg_load_per_task = 0;
3468 max_cpu_load = 0;
3469 min_cpu_load = ~0UL;
3471 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3472 struct rq *rq = cpu_rq(i);
3474 if (*sd_idle && rq->nr_running)
3475 *sd_idle = 0;
3477 /* Bias balancing toward cpus of our domain */
3478 if (local_group) {
3479 if (idle_cpu(i) && !first_idle_cpu) {
3480 first_idle_cpu = 1;
3481 balance_cpu = i;
3484 load = target_load(i, load_idx);
3485 } else {
3486 load = source_load(i, load_idx);
3487 if (load > max_cpu_load)
3488 max_cpu_load = load;
3489 if (min_cpu_load > load)
3490 min_cpu_load = load;
3493 sgs->group_load += load;
3494 sgs->sum_nr_running += rq->nr_running;
3495 sgs->sum_weighted_load += weighted_cpuload(i);
3497 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3501 * First idle cpu or the first cpu(busiest) in this sched group
3502 * is eligible for doing load balancing at this and above
3503 * domains. In the newly idle case, we will allow all the cpu's
3504 * to do the newly idle load balance.
3506 if (idle != CPU_NEWLY_IDLE && local_group &&
3507 balance_cpu != this_cpu && balance) {
3508 *balance = 0;
3509 return;
3512 /* Adjust by relative CPU power of the group */
3513 sgs->avg_load = sg_div_cpu_power(group,
3514 sgs->group_load * SCHED_LOAD_SCALE);
3518 * Consider the group unbalanced when the imbalance is larger
3519 * than the average weight of two tasks.
3521 * APZ: with cgroup the avg task weight can vary wildly and
3522 * might not be a suitable number - should we keep a
3523 * normalized nr_running number somewhere that negates
3524 * the hierarchy?
3526 avg_load_per_task = sg_div_cpu_power(group,
3527 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3529 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3530 sgs->group_imb = 1;
3532 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3537 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3538 * @sd: sched_domain whose statistics are to be updated.
3539 * @this_cpu: Cpu for which load balance is currently performed.
3540 * @idle: Idle status of this_cpu
3541 * @sd_idle: Idle status of the sched_domain containing group.
3542 * @cpus: Set of cpus considered for load balancing.
3543 * @balance: Should we balance.
3544 * @sds: variable to hold the statistics for this sched_domain.
3546 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3547 enum cpu_idle_type idle, int *sd_idle,
3548 const struct cpumask *cpus, int *balance,
3549 struct sd_lb_stats *sds)
3551 struct sched_group *group = sd->groups;
3552 struct sg_lb_stats sgs;
3553 int load_idx;
3555 init_sd_power_savings_stats(sd, sds, idle);
3556 load_idx = get_sd_load_idx(sd, idle);
3558 do {
3559 int local_group;
3561 local_group = cpumask_test_cpu(this_cpu,
3562 sched_group_cpus(group));
3563 memset(&sgs, 0, sizeof(sgs));
3564 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3565 local_group, cpus, balance, &sgs);
3567 if (local_group && balance && !(*balance))
3568 return;
3570 sds->total_load += sgs.group_load;
3571 sds->total_pwr += group->__cpu_power;
3573 if (local_group) {
3574 sds->this_load = sgs.avg_load;
3575 sds->this = group;
3576 sds->this_nr_running = sgs.sum_nr_running;
3577 sds->this_load_per_task = sgs.sum_weighted_load;
3578 } else if (sgs.avg_load > sds->max_load &&
3579 (sgs.sum_nr_running > sgs.group_capacity ||
3580 sgs.group_imb)) {
3581 sds->max_load = sgs.avg_load;
3582 sds->busiest = group;
3583 sds->busiest_nr_running = sgs.sum_nr_running;
3584 sds->busiest_load_per_task = sgs.sum_weighted_load;
3585 sds->group_imb = sgs.group_imb;
3588 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3589 group = group->next;
3590 } while (group != sd->groups);
3595 * fix_small_imbalance - Calculate the minor imbalance that exists
3596 * amongst the groups of a sched_domain, during
3597 * load balancing.
3598 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3599 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3600 * @imbalance: Variable to store the imbalance.
3602 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3603 int this_cpu, unsigned long *imbalance)
3605 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3606 unsigned int imbn = 2;
3608 if (sds->this_nr_running) {
3609 sds->this_load_per_task /= sds->this_nr_running;
3610 if (sds->busiest_load_per_task >
3611 sds->this_load_per_task)
3612 imbn = 1;
3613 } else
3614 sds->this_load_per_task =
3615 cpu_avg_load_per_task(this_cpu);
3617 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3618 sds->busiest_load_per_task * imbn) {
3619 *imbalance = sds->busiest_load_per_task;
3620 return;
3624 * OK, we don't have enough imbalance to justify moving tasks,
3625 * however we may be able to increase total CPU power used by
3626 * moving them.
3629 pwr_now += sds->busiest->__cpu_power *
3630 min(sds->busiest_load_per_task, sds->max_load);
3631 pwr_now += sds->this->__cpu_power *
3632 min(sds->this_load_per_task, sds->this_load);
3633 pwr_now /= SCHED_LOAD_SCALE;
3635 /* Amount of load we'd subtract */
3636 tmp = sg_div_cpu_power(sds->busiest,
3637 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3638 if (sds->max_load > tmp)
3639 pwr_move += sds->busiest->__cpu_power *
3640 min(sds->busiest_load_per_task, sds->max_load - tmp);
3642 /* Amount of load we'd add */
3643 if (sds->max_load * sds->busiest->__cpu_power <
3644 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3645 tmp = sg_div_cpu_power(sds->this,
3646 sds->max_load * sds->busiest->__cpu_power);
3647 else
3648 tmp = sg_div_cpu_power(sds->this,
3649 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3650 pwr_move += sds->this->__cpu_power *
3651 min(sds->this_load_per_task, sds->this_load + tmp);
3652 pwr_move /= SCHED_LOAD_SCALE;
3654 /* Move if we gain throughput */
3655 if (pwr_move > pwr_now)
3656 *imbalance = sds->busiest_load_per_task;
3660 * calculate_imbalance - Calculate the amount of imbalance present within the
3661 * groups of a given sched_domain during load balance.
3662 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3663 * @this_cpu: Cpu for which currently load balance is being performed.
3664 * @imbalance: The variable to store the imbalance.
3666 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3667 unsigned long *imbalance)
3669 unsigned long max_pull;
3671 * In the presence of smp nice balancing, certain scenarios can have
3672 * max load less than avg load(as we skip the groups at or below
3673 * its cpu_power, while calculating max_load..)
3675 if (sds->max_load < sds->avg_load) {
3676 *imbalance = 0;
3677 return fix_small_imbalance(sds, this_cpu, imbalance);
3680 /* Don't want to pull so many tasks that a group would go idle */
3681 max_pull = min(sds->max_load - sds->avg_load,
3682 sds->max_load - sds->busiest_load_per_task);
3684 /* How much load to actually move to equalise the imbalance */
3685 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3686 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3687 / SCHED_LOAD_SCALE;
3690 * if *imbalance is less than the average load per runnable task
3691 * there is no gaurantee that any tasks will be moved so we'll have
3692 * a think about bumping its value to force at least one task to be
3693 * moved
3695 if (*imbalance < sds->busiest_load_per_task)
3696 return fix_small_imbalance(sds, this_cpu, imbalance);
3699 /******* find_busiest_group() helpers end here *********************/
3702 * find_busiest_group - Returns the busiest group within the sched_domain
3703 * if there is an imbalance. If there isn't an imbalance, and
3704 * the user has opted for power-savings, it returns a group whose
3705 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3706 * such a group exists.
3708 * Also calculates the amount of weighted load which should be moved
3709 * to restore balance.
3711 * @sd: The sched_domain whose busiest group is to be returned.
3712 * @this_cpu: The cpu for which load balancing is currently being performed.
3713 * @imbalance: Variable which stores amount of weighted load which should
3714 * be moved to restore balance/put a group to idle.
3715 * @idle: The idle status of this_cpu.
3716 * @sd_idle: The idleness of sd
3717 * @cpus: The set of CPUs under consideration for load-balancing.
3718 * @balance: Pointer to a variable indicating if this_cpu
3719 * is the appropriate cpu to perform load balancing at this_level.
3721 * Returns: - the busiest group if imbalance exists.
3722 * - If no imbalance and user has opted for power-savings balance,
3723 * return the least loaded group whose CPUs can be
3724 * put to idle by rebalancing its tasks onto our group.
3726 static struct sched_group *
3727 find_busiest_group(struct sched_domain *sd, int this_cpu,
3728 unsigned long *imbalance, enum cpu_idle_type idle,
3729 int *sd_idle, const struct cpumask *cpus, int *balance)
3731 struct sd_lb_stats sds;
3733 memset(&sds, 0, sizeof(sds));
3736 * Compute the various statistics relavent for load balancing at
3737 * this level.
3739 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3740 balance, &sds);
3742 /* Cases where imbalance does not exist from POV of this_cpu */
3743 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3744 * at this level.
3745 * 2) There is no busy sibling group to pull from.
3746 * 3) This group is the busiest group.
3747 * 4) This group is more busy than the avg busieness at this
3748 * sched_domain.
3749 * 5) The imbalance is within the specified limit.
3750 * 6) Any rebalance would lead to ping-pong
3752 if (balance && !(*balance))
3753 goto ret;
3755 if (!sds.busiest || sds.busiest_nr_running == 0)
3756 goto out_balanced;
3758 if (sds.this_load >= sds.max_load)
3759 goto out_balanced;
3761 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3763 if (sds.this_load >= sds.avg_load)
3764 goto out_balanced;
3766 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3767 goto out_balanced;
3769 sds.busiest_load_per_task /= sds.busiest_nr_running;
3770 if (sds.group_imb)
3771 sds.busiest_load_per_task =
3772 min(sds.busiest_load_per_task, sds.avg_load);
3775 * We're trying to get all the cpus to the average_load, so we don't
3776 * want to push ourselves above the average load, nor do we wish to
3777 * reduce the max loaded cpu below the average load, as either of these
3778 * actions would just result in more rebalancing later, and ping-pong
3779 * tasks around. Thus we look for the minimum possible imbalance.
3780 * Negative imbalances (*we* are more loaded than anyone else) will
3781 * be counted as no imbalance for these purposes -- we can't fix that
3782 * by pulling tasks to us. Be careful of negative numbers as they'll
3783 * appear as very large values with unsigned longs.
3785 if (sds.max_load <= sds.busiest_load_per_task)
3786 goto out_balanced;
3788 /* Looks like there is an imbalance. Compute it */
3789 calculate_imbalance(&sds, this_cpu, imbalance);
3790 return sds.busiest;
3792 out_balanced:
3794 * There is no obvious imbalance. But check if we can do some balancing
3795 * to save power.
3797 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3798 return sds.busiest;
3799 ret:
3800 *imbalance = 0;
3801 return NULL;
3805 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3807 static struct rq *
3808 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3809 unsigned long imbalance, const struct cpumask *cpus)
3811 struct rq *busiest = NULL, *rq;
3812 unsigned long max_load = 0;
3813 int i;
3815 for_each_cpu(i, sched_group_cpus(group)) {
3816 unsigned long wl;
3818 if (!cpumask_test_cpu(i, cpus))
3819 continue;
3821 rq = cpu_rq(i);
3822 wl = weighted_cpuload(i);
3824 if (rq->nr_running == 1 && wl > imbalance)
3825 continue;
3827 if (wl > max_load) {
3828 max_load = wl;
3829 busiest = rq;
3833 return busiest;
3837 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3838 * so long as it is large enough.
3840 #define MAX_PINNED_INTERVAL 512
3842 /* Working cpumask for load_balance and load_balance_newidle. */
3843 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3846 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3847 * tasks if there is an imbalance.
3849 static int load_balance(int this_cpu, struct rq *this_rq,
3850 struct sched_domain *sd, enum cpu_idle_type idle,
3851 int *balance)
3853 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3854 struct sched_group *group;
3855 unsigned long imbalance;
3856 struct rq *busiest;
3857 unsigned long flags;
3858 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3860 cpumask_setall(cpus);
3863 * When power savings policy is enabled for the parent domain, idle
3864 * sibling can pick up load irrespective of busy siblings. In this case,
3865 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3866 * portraying it as CPU_NOT_IDLE.
3868 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3869 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3870 sd_idle = 1;
3872 schedstat_inc(sd, lb_count[idle]);
3874 redo:
3875 update_shares(sd);
3876 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3877 cpus, balance);
3879 if (*balance == 0)
3880 goto out_balanced;
3882 if (!group) {
3883 schedstat_inc(sd, lb_nobusyg[idle]);
3884 goto out_balanced;
3887 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3888 if (!busiest) {
3889 schedstat_inc(sd, lb_nobusyq[idle]);
3890 goto out_balanced;
3893 BUG_ON(busiest == this_rq);
3895 schedstat_add(sd, lb_imbalance[idle], imbalance);
3897 ld_moved = 0;
3898 if (busiest->nr_running > 1) {
3900 * Attempt to move tasks. If find_busiest_group has found
3901 * an imbalance but busiest->nr_running <= 1, the group is
3902 * still unbalanced. ld_moved simply stays zero, so it is
3903 * correctly treated as an imbalance.
3905 local_irq_save(flags);
3906 double_rq_lock(this_rq, busiest);
3907 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3908 imbalance, sd, idle, &all_pinned);
3909 double_rq_unlock(this_rq, busiest);
3910 local_irq_restore(flags);
3913 * some other cpu did the load balance for us.
3915 if (ld_moved && this_cpu != smp_processor_id())
3916 resched_cpu(this_cpu);
3918 /* All tasks on this runqueue were pinned by CPU affinity */
3919 if (unlikely(all_pinned)) {
3920 cpumask_clear_cpu(cpu_of(busiest), cpus);
3921 if (!cpumask_empty(cpus))
3922 goto redo;
3923 goto out_balanced;
3927 if (!ld_moved) {
3928 schedstat_inc(sd, lb_failed[idle]);
3929 sd->nr_balance_failed++;
3931 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3933 spin_lock_irqsave(&busiest->lock, flags);
3935 /* don't kick the migration_thread, if the curr
3936 * task on busiest cpu can't be moved to this_cpu
3938 if (!cpumask_test_cpu(this_cpu,
3939 &busiest->curr->cpus_allowed)) {
3940 spin_unlock_irqrestore(&busiest->lock, flags);
3941 all_pinned = 1;
3942 goto out_one_pinned;
3945 if (!busiest->active_balance) {
3946 busiest->active_balance = 1;
3947 busiest->push_cpu = this_cpu;
3948 active_balance = 1;
3950 spin_unlock_irqrestore(&busiest->lock, flags);
3951 if (active_balance)
3952 wake_up_process(busiest->migration_thread);
3955 * We've kicked active balancing, reset the failure
3956 * counter.
3958 sd->nr_balance_failed = sd->cache_nice_tries+1;
3960 } else
3961 sd->nr_balance_failed = 0;
3963 if (likely(!active_balance)) {
3964 /* We were unbalanced, so reset the balancing interval */
3965 sd->balance_interval = sd->min_interval;
3966 } else {
3968 * If we've begun active balancing, start to back off. This
3969 * case may not be covered by the all_pinned logic if there
3970 * is only 1 task on the busy runqueue (because we don't call
3971 * move_tasks).
3973 if (sd->balance_interval < sd->max_interval)
3974 sd->balance_interval *= 2;
3977 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3978 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3979 ld_moved = -1;
3981 goto out;
3983 out_balanced:
3984 schedstat_inc(sd, lb_balanced[idle]);
3986 sd->nr_balance_failed = 0;
3988 out_one_pinned:
3989 /* tune up the balancing interval */
3990 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3991 (sd->balance_interval < sd->max_interval))
3992 sd->balance_interval *= 2;
3994 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3995 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3996 ld_moved = -1;
3997 else
3998 ld_moved = 0;
3999 out:
4000 if (ld_moved)
4001 update_shares(sd);
4002 return ld_moved;
4006 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4007 * tasks if there is an imbalance.
4009 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4010 * this_rq is locked.
4012 static int
4013 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4015 struct sched_group *group;
4016 struct rq *busiest = NULL;
4017 unsigned long imbalance;
4018 int ld_moved = 0;
4019 int sd_idle = 0;
4020 int all_pinned = 0;
4021 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4023 cpumask_setall(cpus);
4026 * When power savings policy is enabled for the parent domain, idle
4027 * sibling can pick up load irrespective of busy siblings. In this case,
4028 * let the state of idle sibling percolate up as IDLE, instead of
4029 * portraying it as CPU_NOT_IDLE.
4031 if (sd->flags & SD_SHARE_CPUPOWER &&
4032 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4033 sd_idle = 1;
4035 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4036 redo:
4037 update_shares_locked(this_rq, sd);
4038 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4039 &sd_idle, cpus, NULL);
4040 if (!group) {
4041 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4042 goto out_balanced;
4045 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4046 if (!busiest) {
4047 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4048 goto out_balanced;
4051 BUG_ON(busiest == this_rq);
4053 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4055 ld_moved = 0;
4056 if (busiest->nr_running > 1) {
4057 /* Attempt to move tasks */
4058 double_lock_balance(this_rq, busiest);
4059 /* this_rq->clock is already updated */
4060 update_rq_clock(busiest);
4061 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4062 imbalance, sd, CPU_NEWLY_IDLE,
4063 &all_pinned);
4064 double_unlock_balance(this_rq, busiest);
4066 if (unlikely(all_pinned)) {
4067 cpumask_clear_cpu(cpu_of(busiest), cpus);
4068 if (!cpumask_empty(cpus))
4069 goto redo;
4073 if (!ld_moved) {
4074 int active_balance = 0;
4076 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4077 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4078 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4079 return -1;
4081 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4082 return -1;
4084 if (sd->nr_balance_failed++ < 2)
4085 return -1;
4088 * The only task running in a non-idle cpu can be moved to this
4089 * cpu in an attempt to completely freeup the other CPU
4090 * package. The same method used to move task in load_balance()
4091 * have been extended for load_balance_newidle() to speedup
4092 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4094 * The package power saving logic comes from
4095 * find_busiest_group(). If there are no imbalance, then
4096 * f_b_g() will return NULL. However when sched_mc={1,2} then
4097 * f_b_g() will select a group from which a running task may be
4098 * pulled to this cpu in order to make the other package idle.
4099 * If there is no opportunity to make a package idle and if
4100 * there are no imbalance, then f_b_g() will return NULL and no
4101 * action will be taken in load_balance_newidle().
4103 * Under normal task pull operation due to imbalance, there
4104 * will be more than one task in the source run queue and
4105 * move_tasks() will succeed. ld_moved will be true and this
4106 * active balance code will not be triggered.
4109 /* Lock busiest in correct order while this_rq is held */
4110 double_lock_balance(this_rq, busiest);
4113 * don't kick the migration_thread, if the curr
4114 * task on busiest cpu can't be moved to this_cpu
4116 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4117 double_unlock_balance(this_rq, busiest);
4118 all_pinned = 1;
4119 return ld_moved;
4122 if (!busiest->active_balance) {
4123 busiest->active_balance = 1;
4124 busiest->push_cpu = this_cpu;
4125 active_balance = 1;
4128 double_unlock_balance(this_rq, busiest);
4130 * Should not call ttwu while holding a rq->lock
4132 spin_unlock(&this_rq->lock);
4133 if (active_balance)
4134 wake_up_process(busiest->migration_thread);
4135 spin_lock(&this_rq->lock);
4137 } else
4138 sd->nr_balance_failed = 0;
4140 update_shares_locked(this_rq, sd);
4141 return ld_moved;
4143 out_balanced:
4144 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4145 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4146 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4147 return -1;
4148 sd->nr_balance_failed = 0;
4150 return 0;
4154 * idle_balance is called by schedule() if this_cpu is about to become
4155 * idle. Attempts to pull tasks from other CPUs.
4157 static void idle_balance(int this_cpu, struct rq *this_rq)
4159 struct sched_domain *sd;
4160 int pulled_task = 0;
4161 unsigned long next_balance = jiffies + HZ;
4163 for_each_domain(this_cpu, sd) {
4164 unsigned long interval;
4166 if (!(sd->flags & SD_LOAD_BALANCE))
4167 continue;
4169 if (sd->flags & SD_BALANCE_NEWIDLE)
4170 /* If we've pulled tasks over stop searching: */
4171 pulled_task = load_balance_newidle(this_cpu, this_rq,
4172 sd);
4174 interval = msecs_to_jiffies(sd->balance_interval);
4175 if (time_after(next_balance, sd->last_balance + interval))
4176 next_balance = sd->last_balance + interval;
4177 if (pulled_task)
4178 break;
4180 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4182 * We are going idle. next_balance may be set based on
4183 * a busy processor. So reset next_balance.
4185 this_rq->next_balance = next_balance;
4190 * active_load_balance is run by migration threads. It pushes running tasks
4191 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4192 * running on each physical CPU where possible, and avoids physical /
4193 * logical imbalances.
4195 * Called with busiest_rq locked.
4197 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4199 int target_cpu = busiest_rq->push_cpu;
4200 struct sched_domain *sd;
4201 struct rq *target_rq;
4203 /* Is there any task to move? */
4204 if (busiest_rq->nr_running <= 1)
4205 return;
4207 target_rq = cpu_rq(target_cpu);
4210 * This condition is "impossible", if it occurs
4211 * we need to fix it. Originally reported by
4212 * Bjorn Helgaas on a 128-cpu setup.
4214 BUG_ON(busiest_rq == target_rq);
4216 /* move a task from busiest_rq to target_rq */
4217 double_lock_balance(busiest_rq, target_rq);
4218 update_rq_clock(busiest_rq);
4219 update_rq_clock(target_rq);
4221 /* Search for an sd spanning us and the target CPU. */
4222 for_each_domain(target_cpu, sd) {
4223 if ((sd->flags & SD_LOAD_BALANCE) &&
4224 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4225 break;
4228 if (likely(sd)) {
4229 schedstat_inc(sd, alb_count);
4231 if (move_one_task(target_rq, target_cpu, busiest_rq,
4232 sd, CPU_IDLE))
4233 schedstat_inc(sd, alb_pushed);
4234 else
4235 schedstat_inc(sd, alb_failed);
4237 double_unlock_balance(busiest_rq, target_rq);
4240 #ifdef CONFIG_NO_HZ
4241 static struct {
4242 atomic_t load_balancer;
4243 cpumask_var_t cpu_mask;
4244 } nohz ____cacheline_aligned = {
4245 .load_balancer = ATOMIC_INIT(-1),
4249 * This routine will try to nominate the ilb (idle load balancing)
4250 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4251 * load balancing on behalf of all those cpus. If all the cpus in the system
4252 * go into this tickless mode, then there will be no ilb owner (as there is
4253 * no need for one) and all the cpus will sleep till the next wakeup event
4254 * arrives...
4256 * For the ilb owner, tick is not stopped. And this tick will be used
4257 * for idle load balancing. ilb owner will still be part of
4258 * nohz.cpu_mask..
4260 * While stopping the tick, this cpu will become the ilb owner if there
4261 * is no other owner. And will be the owner till that cpu becomes busy
4262 * or if all cpus in the system stop their ticks at which point
4263 * there is no need for ilb owner.
4265 * When the ilb owner becomes busy, it nominates another owner, during the
4266 * next busy scheduler_tick()
4268 int select_nohz_load_balancer(int stop_tick)
4270 int cpu = smp_processor_id();
4272 if (stop_tick) {
4273 cpu_rq(cpu)->in_nohz_recently = 1;
4275 if (!cpu_active(cpu)) {
4276 if (atomic_read(&nohz.load_balancer) != cpu)
4277 return 0;
4280 * If we are going offline and still the leader,
4281 * give up!
4283 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4284 BUG();
4286 return 0;
4289 cpumask_set_cpu(cpu, nohz.cpu_mask);
4291 /* time for ilb owner also to sleep */
4292 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4293 if (atomic_read(&nohz.load_balancer) == cpu)
4294 atomic_set(&nohz.load_balancer, -1);
4295 return 0;
4298 if (atomic_read(&nohz.load_balancer) == -1) {
4299 /* make me the ilb owner */
4300 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4301 return 1;
4302 } else if (atomic_read(&nohz.load_balancer) == cpu)
4303 return 1;
4304 } else {
4305 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4306 return 0;
4308 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4310 if (atomic_read(&nohz.load_balancer) == cpu)
4311 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4312 BUG();
4314 return 0;
4316 #endif
4318 static DEFINE_SPINLOCK(balancing);
4321 * It checks each scheduling domain to see if it is due to be balanced,
4322 * and initiates a balancing operation if so.
4324 * Balancing parameters are set up in arch_init_sched_domains.
4326 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4328 int balance = 1;
4329 struct rq *rq = cpu_rq(cpu);
4330 unsigned long interval;
4331 struct sched_domain *sd;
4332 /* Earliest time when we have to do rebalance again */
4333 unsigned long next_balance = jiffies + 60*HZ;
4334 int update_next_balance = 0;
4335 int need_serialize;
4337 for_each_domain(cpu, sd) {
4338 if (!(sd->flags & SD_LOAD_BALANCE))
4339 continue;
4341 interval = sd->balance_interval;
4342 if (idle != CPU_IDLE)
4343 interval *= sd->busy_factor;
4345 /* scale ms to jiffies */
4346 interval = msecs_to_jiffies(interval);
4347 if (unlikely(!interval))
4348 interval = 1;
4349 if (interval > HZ*NR_CPUS/10)
4350 interval = HZ*NR_CPUS/10;
4352 need_serialize = sd->flags & SD_SERIALIZE;
4354 if (need_serialize) {
4355 if (!spin_trylock(&balancing))
4356 goto out;
4359 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4360 if (load_balance(cpu, rq, sd, idle, &balance)) {
4362 * We've pulled tasks over so either we're no
4363 * longer idle, or one of our SMT siblings is
4364 * not idle.
4366 idle = CPU_NOT_IDLE;
4368 sd->last_balance = jiffies;
4370 if (need_serialize)
4371 spin_unlock(&balancing);
4372 out:
4373 if (time_after(next_balance, sd->last_balance + interval)) {
4374 next_balance = sd->last_balance + interval;
4375 update_next_balance = 1;
4379 * Stop the load balance at this level. There is another
4380 * CPU in our sched group which is doing load balancing more
4381 * actively.
4383 if (!balance)
4384 break;
4388 * next_balance will be updated only when there is a need.
4389 * When the cpu is attached to null domain for ex, it will not be
4390 * updated.
4392 if (likely(update_next_balance))
4393 rq->next_balance = next_balance;
4397 * run_rebalance_domains is triggered when needed from the scheduler tick.
4398 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4399 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4401 static void run_rebalance_domains(struct softirq_action *h)
4403 int this_cpu = smp_processor_id();
4404 struct rq *this_rq = cpu_rq(this_cpu);
4405 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4406 CPU_IDLE : CPU_NOT_IDLE;
4408 rebalance_domains(this_cpu, idle);
4410 #ifdef CONFIG_NO_HZ
4412 * If this cpu is the owner for idle load balancing, then do the
4413 * balancing on behalf of the other idle cpus whose ticks are
4414 * stopped.
4416 if (this_rq->idle_at_tick &&
4417 atomic_read(&nohz.load_balancer) == this_cpu) {
4418 struct rq *rq;
4419 int balance_cpu;
4421 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4422 if (balance_cpu == this_cpu)
4423 continue;
4426 * If this cpu gets work to do, stop the load balancing
4427 * work being done for other cpus. Next load
4428 * balancing owner will pick it up.
4430 if (need_resched())
4431 break;
4433 rebalance_domains(balance_cpu, CPU_IDLE);
4435 rq = cpu_rq(balance_cpu);
4436 if (time_after(this_rq->next_balance, rq->next_balance))
4437 this_rq->next_balance = rq->next_balance;
4440 #endif
4443 static inline int on_null_domain(int cpu)
4445 return !rcu_dereference(cpu_rq(cpu)->sd);
4449 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4451 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4452 * idle load balancing owner or decide to stop the periodic load balancing,
4453 * if the whole system is idle.
4455 static inline void trigger_load_balance(struct rq *rq, int cpu)
4457 #ifdef CONFIG_NO_HZ
4459 * If we were in the nohz mode recently and busy at the current
4460 * scheduler tick, then check if we need to nominate new idle
4461 * load balancer.
4463 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4464 rq->in_nohz_recently = 0;
4466 if (atomic_read(&nohz.load_balancer) == cpu) {
4467 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4468 atomic_set(&nohz.load_balancer, -1);
4471 if (atomic_read(&nohz.load_balancer) == -1) {
4473 * simple selection for now: Nominate the
4474 * first cpu in the nohz list to be the next
4475 * ilb owner.
4477 * TBD: Traverse the sched domains and nominate
4478 * the nearest cpu in the nohz.cpu_mask.
4480 int ilb = cpumask_first(nohz.cpu_mask);
4482 if (ilb < nr_cpu_ids)
4483 resched_cpu(ilb);
4488 * If this cpu is idle and doing idle load balancing for all the
4489 * cpus with ticks stopped, is it time for that to stop?
4491 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4492 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4493 resched_cpu(cpu);
4494 return;
4498 * If this cpu is idle and the idle load balancing is done by
4499 * someone else, then no need raise the SCHED_SOFTIRQ
4501 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4502 cpumask_test_cpu(cpu, nohz.cpu_mask))
4503 return;
4504 #endif
4505 /* Don't need to rebalance while attached to NULL domain */
4506 if (time_after_eq(jiffies, rq->next_balance) &&
4507 likely(!on_null_domain(cpu)))
4508 raise_softirq(SCHED_SOFTIRQ);
4511 #else /* CONFIG_SMP */
4514 * on UP we do not need to balance between CPUs:
4516 static inline void idle_balance(int cpu, struct rq *rq)
4520 #endif
4522 DEFINE_PER_CPU(struct kernel_stat, kstat);
4524 EXPORT_PER_CPU_SYMBOL(kstat);
4527 * Return any ns on the sched_clock that have not yet been accounted in
4528 * @p in case that task is currently running.
4530 * Called with task_rq_lock() held on @rq.
4532 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4534 u64 ns = 0;
4536 if (task_current(rq, p)) {
4537 update_rq_clock(rq);
4538 ns = rq->clock - p->se.exec_start;
4539 if ((s64)ns < 0)
4540 ns = 0;
4543 return ns;
4546 unsigned long long task_delta_exec(struct task_struct *p)
4548 unsigned long flags;
4549 struct rq *rq;
4550 u64 ns = 0;
4552 rq = task_rq_lock(p, &flags);
4553 ns = do_task_delta_exec(p, rq);
4554 task_rq_unlock(rq, &flags);
4556 return ns;
4560 * Return accounted runtime for the task.
4561 * In case the task is currently running, return the runtime plus current's
4562 * pending runtime that have not been accounted yet.
4564 unsigned long long task_sched_runtime(struct task_struct *p)
4566 unsigned long flags;
4567 struct rq *rq;
4568 u64 ns = 0;
4570 rq = task_rq_lock(p, &flags);
4571 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4572 task_rq_unlock(rq, &flags);
4574 return ns;
4578 * Return sum_exec_runtime for the thread group.
4579 * In case the task is currently running, return the sum plus current's
4580 * pending runtime that have not been accounted yet.
4582 * Note that the thread group might have other running tasks as well,
4583 * so the return value not includes other pending runtime that other
4584 * running tasks might have.
4586 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4588 struct task_cputime totals;
4589 unsigned long flags;
4590 struct rq *rq;
4591 u64 ns;
4593 rq = task_rq_lock(p, &flags);
4594 thread_group_cputime(p, &totals);
4595 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4596 task_rq_unlock(rq, &flags);
4598 return ns;
4602 * Account user cpu time to a process.
4603 * @p: the process that the cpu time gets accounted to
4604 * @cputime: the cpu time spent in user space since the last update
4605 * @cputime_scaled: cputime scaled by cpu frequency
4607 void account_user_time(struct task_struct *p, cputime_t cputime,
4608 cputime_t cputime_scaled)
4610 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4611 cputime64_t tmp;
4613 /* Add user time to process. */
4614 p->utime = cputime_add(p->utime, cputime);
4615 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4616 account_group_user_time(p, cputime);
4618 /* Add user time to cpustat. */
4619 tmp = cputime_to_cputime64(cputime);
4620 if (TASK_NICE(p) > 0)
4621 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4622 else
4623 cpustat->user = cputime64_add(cpustat->user, tmp);
4625 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4626 /* Account for user time used */
4627 acct_update_integrals(p);
4631 * Account guest cpu time to a process.
4632 * @p: the process that the cpu time gets accounted to
4633 * @cputime: the cpu time spent in virtual machine since the last update
4634 * @cputime_scaled: cputime scaled by cpu frequency
4636 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4637 cputime_t cputime_scaled)
4639 cputime64_t tmp;
4640 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4642 tmp = cputime_to_cputime64(cputime);
4644 /* Add guest time to process. */
4645 p->utime = cputime_add(p->utime, cputime);
4646 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4647 account_group_user_time(p, cputime);
4648 p->gtime = cputime_add(p->gtime, cputime);
4650 /* Add guest time to cpustat. */
4651 cpustat->user = cputime64_add(cpustat->user, tmp);
4652 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4656 * Account system cpu time to a process.
4657 * @p: the process that the cpu time gets accounted to
4658 * @hardirq_offset: the offset to subtract from hardirq_count()
4659 * @cputime: the cpu time spent in kernel space since the last update
4660 * @cputime_scaled: cputime scaled by cpu frequency
4662 void account_system_time(struct task_struct *p, int hardirq_offset,
4663 cputime_t cputime, cputime_t cputime_scaled)
4665 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4666 cputime64_t tmp;
4668 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4669 account_guest_time(p, cputime, cputime_scaled);
4670 return;
4673 /* Add system time to process. */
4674 p->stime = cputime_add(p->stime, cputime);
4675 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4676 account_group_system_time(p, cputime);
4678 /* Add system time to cpustat. */
4679 tmp = cputime_to_cputime64(cputime);
4680 if (hardirq_count() - hardirq_offset)
4681 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4682 else if (softirq_count())
4683 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4684 else
4685 cpustat->system = cputime64_add(cpustat->system, tmp);
4687 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4689 /* Account for system time used */
4690 acct_update_integrals(p);
4694 * Account for involuntary wait time.
4695 * @steal: the cpu time spent in involuntary wait
4697 void account_steal_time(cputime_t cputime)
4699 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4700 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4702 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4706 * Account for idle time.
4707 * @cputime: the cpu time spent in idle wait
4709 void account_idle_time(cputime_t cputime)
4711 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4712 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4713 struct rq *rq = this_rq();
4715 if (atomic_read(&rq->nr_iowait) > 0)
4716 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4717 else
4718 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4721 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4724 * Account a single tick of cpu time.
4725 * @p: the process that the cpu time gets accounted to
4726 * @user_tick: indicates if the tick is a user or a system tick
4728 void account_process_tick(struct task_struct *p, int user_tick)
4730 cputime_t one_jiffy = jiffies_to_cputime(1);
4731 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4732 struct rq *rq = this_rq();
4734 if (user_tick)
4735 account_user_time(p, one_jiffy, one_jiffy_scaled);
4736 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4737 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4738 one_jiffy_scaled);
4739 else
4740 account_idle_time(one_jiffy);
4744 * Account multiple ticks of steal time.
4745 * @p: the process from which the cpu time has been stolen
4746 * @ticks: number of stolen ticks
4748 void account_steal_ticks(unsigned long ticks)
4750 account_steal_time(jiffies_to_cputime(ticks));
4754 * Account multiple ticks of idle time.
4755 * @ticks: number of stolen ticks
4757 void account_idle_ticks(unsigned long ticks)
4759 account_idle_time(jiffies_to_cputime(ticks));
4762 #endif
4765 * Use precise platform statistics if available:
4767 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4768 cputime_t task_utime(struct task_struct *p)
4770 return p->utime;
4773 cputime_t task_stime(struct task_struct *p)
4775 return p->stime;
4777 #else
4778 cputime_t task_utime(struct task_struct *p)
4780 clock_t utime = cputime_to_clock_t(p->utime),
4781 total = utime + cputime_to_clock_t(p->stime);
4782 u64 temp;
4785 * Use CFS's precise accounting:
4787 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4789 if (total) {
4790 temp *= utime;
4791 do_div(temp, total);
4793 utime = (clock_t)temp;
4795 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4796 return p->prev_utime;
4799 cputime_t task_stime(struct task_struct *p)
4801 clock_t stime;
4804 * Use CFS's precise accounting. (we subtract utime from
4805 * the total, to make sure the total observed by userspace
4806 * grows monotonically - apps rely on that):
4808 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4809 cputime_to_clock_t(task_utime(p));
4811 if (stime >= 0)
4812 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4814 return p->prev_stime;
4816 #endif
4818 inline cputime_t task_gtime(struct task_struct *p)
4820 return p->gtime;
4824 * This function gets called by the timer code, with HZ frequency.
4825 * We call it with interrupts disabled.
4827 * It also gets called by the fork code, when changing the parent's
4828 * timeslices.
4830 void scheduler_tick(void)
4832 int cpu = smp_processor_id();
4833 struct rq *rq = cpu_rq(cpu);
4834 struct task_struct *curr = rq->curr;
4836 sched_clock_tick();
4838 spin_lock(&rq->lock);
4839 update_rq_clock(rq);
4840 update_cpu_load(rq);
4841 curr->sched_class->task_tick(rq, curr, 0);
4842 spin_unlock(&rq->lock);
4844 #ifdef CONFIG_SMP
4845 rq->idle_at_tick = idle_cpu(cpu);
4846 trigger_load_balance(rq, cpu);
4847 #endif
4850 notrace unsigned long get_parent_ip(unsigned long addr)
4852 if (in_lock_functions(addr)) {
4853 addr = CALLER_ADDR2;
4854 if (in_lock_functions(addr))
4855 addr = CALLER_ADDR3;
4857 return addr;
4860 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4861 defined(CONFIG_PREEMPT_TRACER))
4863 void __kprobes add_preempt_count(int val)
4865 #ifdef CONFIG_DEBUG_PREEMPT
4867 * Underflow?
4869 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4870 return;
4871 #endif
4872 preempt_count() += val;
4873 #ifdef CONFIG_DEBUG_PREEMPT
4875 * Spinlock count overflowing soon?
4877 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4878 PREEMPT_MASK - 10);
4879 #endif
4880 if (preempt_count() == val)
4881 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4883 EXPORT_SYMBOL(add_preempt_count);
4885 void __kprobes sub_preempt_count(int val)
4887 #ifdef CONFIG_DEBUG_PREEMPT
4889 * Underflow?
4891 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4892 return;
4894 * Is the spinlock portion underflowing?
4896 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4897 !(preempt_count() & PREEMPT_MASK)))
4898 return;
4899 #endif
4901 if (preempt_count() == val)
4902 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4903 preempt_count() -= val;
4905 EXPORT_SYMBOL(sub_preempt_count);
4907 #endif
4910 * Print scheduling while atomic bug:
4912 static noinline void __schedule_bug(struct task_struct *prev)
4914 struct pt_regs *regs = get_irq_regs();
4916 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4917 prev->comm, prev->pid, preempt_count());
4919 debug_show_held_locks(prev);
4920 print_modules();
4921 if (irqs_disabled())
4922 print_irqtrace_events(prev);
4924 if (regs)
4925 show_regs(regs);
4926 else
4927 dump_stack();
4931 * Various schedule()-time debugging checks and statistics:
4933 static inline void schedule_debug(struct task_struct *prev)
4936 * Test if we are atomic. Since do_exit() needs to call into
4937 * schedule() atomically, we ignore that path for now.
4938 * Otherwise, whine if we are scheduling when we should not be.
4940 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4941 __schedule_bug(prev);
4943 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4945 schedstat_inc(this_rq(), sched_count);
4946 #ifdef CONFIG_SCHEDSTATS
4947 if (unlikely(prev->lock_depth >= 0)) {
4948 schedstat_inc(this_rq(), bkl_count);
4949 schedstat_inc(prev, sched_info.bkl_count);
4951 #endif
4954 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4956 if (prev->state == TASK_RUNNING) {
4957 u64 runtime = prev->se.sum_exec_runtime;
4959 runtime -= prev->se.prev_sum_exec_runtime;
4960 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4963 * In order to avoid avg_overlap growing stale when we are
4964 * indeed overlapping and hence not getting put to sleep, grow
4965 * the avg_overlap on preemption.
4967 * We use the average preemption runtime because that
4968 * correlates to the amount of cache footprint a task can
4969 * build up.
4971 update_avg(&prev->se.avg_overlap, runtime);
4973 prev->sched_class->put_prev_task(rq, prev);
4977 * Pick up the highest-prio task:
4979 static inline struct task_struct *
4980 pick_next_task(struct rq *rq)
4982 const struct sched_class *class;
4983 struct task_struct *p;
4986 * Optimization: we know that if all tasks are in
4987 * the fair class we can call that function directly:
4989 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4990 p = fair_sched_class.pick_next_task(rq);
4991 if (likely(p))
4992 return p;
4995 class = sched_class_highest;
4996 for ( ; ; ) {
4997 p = class->pick_next_task(rq);
4998 if (p)
4999 return p;
5001 * Will never be NULL as the idle class always
5002 * returns a non-NULL p:
5004 class = class->next;
5009 * schedule() is the main scheduler function.
5011 asmlinkage void __sched __schedule(void)
5013 struct task_struct *prev, *next;
5014 unsigned long *switch_count;
5015 struct rq *rq;
5016 int cpu;
5018 cpu = smp_processor_id();
5019 rq = cpu_rq(cpu);
5020 rcu_qsctr_inc(cpu);
5021 prev = rq->curr;
5022 switch_count = &prev->nivcsw;
5024 release_kernel_lock(prev);
5025 need_resched_nonpreemptible:
5027 schedule_debug(prev);
5029 if (sched_feat(HRTICK))
5030 hrtick_clear(rq);
5032 spin_lock_irq(&rq->lock);
5033 update_rq_clock(rq);
5034 clear_tsk_need_resched(prev);
5036 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5037 if (unlikely(signal_pending_state(prev->state, prev)))
5038 prev->state = TASK_RUNNING;
5039 else
5040 deactivate_task(rq, prev, 1);
5041 switch_count = &prev->nvcsw;
5044 #ifdef CONFIG_SMP
5045 if (prev->sched_class->pre_schedule)
5046 prev->sched_class->pre_schedule(rq, prev);
5047 #endif
5049 if (unlikely(!rq->nr_running))
5050 idle_balance(cpu, rq);
5052 put_prev_task(rq, prev);
5053 next = pick_next_task(rq);
5055 if (likely(prev != next)) {
5056 sched_info_switch(prev, next);
5058 rq->nr_switches++;
5059 rq->curr = next;
5060 ++*switch_count;
5062 context_switch(rq, prev, next); /* unlocks the rq */
5064 * the context switch might have flipped the stack from under
5065 * us, hence refresh the local variables.
5067 cpu = smp_processor_id();
5068 rq = cpu_rq(cpu);
5069 } else
5070 spin_unlock_irq(&rq->lock);
5072 if (unlikely(reacquire_kernel_lock(current) < 0))
5073 goto need_resched_nonpreemptible;
5076 asmlinkage void __sched schedule(void)
5078 need_resched:
5079 preempt_disable();
5080 __schedule();
5081 preempt_enable_no_resched();
5082 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5083 goto need_resched;
5085 EXPORT_SYMBOL(schedule);
5087 #ifdef CONFIG_SMP
5089 * Look out! "owner" is an entirely speculative pointer
5090 * access and not reliable.
5092 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5094 unsigned int cpu;
5095 struct rq *rq;
5097 if (!sched_feat(OWNER_SPIN))
5098 return 0;
5100 #ifdef CONFIG_DEBUG_PAGEALLOC
5102 * Need to access the cpu field knowing that
5103 * DEBUG_PAGEALLOC could have unmapped it if
5104 * the mutex owner just released it and exited.
5106 if (probe_kernel_address(&owner->cpu, cpu))
5107 goto out;
5108 #else
5109 cpu = owner->cpu;
5110 #endif
5113 * Even if the access succeeded (likely case),
5114 * the cpu field may no longer be valid.
5116 if (cpu >= nr_cpumask_bits)
5117 goto out;
5120 * We need to validate that we can do a
5121 * get_cpu() and that we have the percpu area.
5123 if (!cpu_online(cpu))
5124 goto out;
5126 rq = cpu_rq(cpu);
5128 for (;;) {
5130 * Owner changed, break to re-assess state.
5132 if (lock->owner != owner)
5133 break;
5136 * Is that owner really running on that cpu?
5138 if (task_thread_info(rq->curr) != owner || need_resched())
5139 return 0;
5141 cpu_relax();
5143 out:
5144 return 1;
5146 #endif
5148 #ifdef CONFIG_PREEMPT
5150 * this is the entry point to schedule() from in-kernel preemption
5151 * off of preempt_enable. Kernel preemptions off return from interrupt
5152 * occur there and call schedule directly.
5154 asmlinkage void __sched preempt_schedule(void)
5156 struct thread_info *ti = current_thread_info();
5159 * If there is a non-zero preempt_count or interrupts are disabled,
5160 * we do not want to preempt the current task. Just return..
5162 if (likely(ti->preempt_count || irqs_disabled()))
5163 return;
5165 do {
5166 add_preempt_count(PREEMPT_ACTIVE);
5167 schedule();
5168 sub_preempt_count(PREEMPT_ACTIVE);
5171 * Check again in case we missed a preemption opportunity
5172 * between schedule and now.
5174 barrier();
5175 } while (need_resched());
5177 EXPORT_SYMBOL(preempt_schedule);
5180 * this is the entry point to schedule() from kernel preemption
5181 * off of irq context.
5182 * Note, that this is called and return with irqs disabled. This will
5183 * protect us against recursive calling from irq.
5185 asmlinkage void __sched preempt_schedule_irq(void)
5187 struct thread_info *ti = current_thread_info();
5189 /* Catch callers which need to be fixed */
5190 BUG_ON(ti->preempt_count || !irqs_disabled());
5192 do {
5193 add_preempt_count(PREEMPT_ACTIVE);
5194 local_irq_enable();
5195 schedule();
5196 local_irq_disable();
5197 sub_preempt_count(PREEMPT_ACTIVE);
5200 * Check again in case we missed a preemption opportunity
5201 * between schedule and now.
5203 barrier();
5204 } while (need_resched());
5207 #endif /* CONFIG_PREEMPT */
5209 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5210 void *key)
5212 return try_to_wake_up(curr->private, mode, sync);
5214 EXPORT_SYMBOL(default_wake_function);
5217 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5218 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5219 * number) then we wake all the non-exclusive tasks and one exclusive task.
5221 * There are circumstances in which we can try to wake a task which has already
5222 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5223 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5225 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5226 int nr_exclusive, int sync, void *key)
5228 wait_queue_t *curr, *next;
5230 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5231 unsigned flags = curr->flags;
5233 if (curr->func(curr, mode, sync, key) &&
5234 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5235 break;
5240 * __wake_up - wake up threads blocked on a waitqueue.
5241 * @q: the waitqueue
5242 * @mode: which threads
5243 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5244 * @key: is directly passed to the wakeup function
5246 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5247 int nr_exclusive, void *key)
5249 unsigned long flags;
5251 spin_lock_irqsave(&q->lock, flags);
5252 __wake_up_common(q, mode, nr_exclusive, 0, key);
5253 spin_unlock_irqrestore(&q->lock, flags);
5255 EXPORT_SYMBOL(__wake_up);
5258 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5260 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5262 __wake_up_common(q, mode, 1, 0, NULL);
5265 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5267 __wake_up_common(q, mode, 1, 0, key);
5271 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5272 * @q: the waitqueue
5273 * @mode: which threads
5274 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5275 * @key: opaque value to be passed to wakeup targets
5277 * The sync wakeup differs that the waker knows that it will schedule
5278 * away soon, so while the target thread will be woken up, it will not
5279 * be migrated to another CPU - ie. the two threads are 'synchronized'
5280 * with each other. This can prevent needless bouncing between CPUs.
5282 * On UP it can prevent extra preemption.
5284 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5285 int nr_exclusive, void *key)
5287 unsigned long flags;
5288 int sync = 1;
5290 if (unlikely(!q))
5291 return;
5293 if (unlikely(!nr_exclusive))
5294 sync = 0;
5296 spin_lock_irqsave(&q->lock, flags);
5297 __wake_up_common(q, mode, nr_exclusive, sync, key);
5298 spin_unlock_irqrestore(&q->lock, flags);
5300 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5303 * __wake_up_sync - see __wake_up_sync_key()
5305 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5307 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5309 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5312 * complete: - signals a single thread waiting on this completion
5313 * @x: holds the state of this particular completion
5315 * This will wake up a single thread waiting on this completion. Threads will be
5316 * awakened in the same order in which they were queued.
5318 * See also complete_all(), wait_for_completion() and related routines.
5320 void complete(struct completion *x)
5322 unsigned long flags;
5324 spin_lock_irqsave(&x->wait.lock, flags);
5325 x->done++;
5326 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5327 spin_unlock_irqrestore(&x->wait.lock, flags);
5329 EXPORT_SYMBOL(complete);
5332 * complete_all: - signals all threads waiting on this completion
5333 * @x: holds the state of this particular completion
5335 * This will wake up all threads waiting on this particular completion event.
5337 void complete_all(struct completion *x)
5339 unsigned long flags;
5341 spin_lock_irqsave(&x->wait.lock, flags);
5342 x->done += UINT_MAX/2;
5343 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5344 spin_unlock_irqrestore(&x->wait.lock, flags);
5346 EXPORT_SYMBOL(complete_all);
5348 static inline long __sched
5349 do_wait_for_common(struct completion *x, long timeout, int state)
5351 if (!x->done) {
5352 DECLARE_WAITQUEUE(wait, current);
5354 wait.flags |= WQ_FLAG_EXCLUSIVE;
5355 __add_wait_queue_tail(&x->wait, &wait);
5356 do {
5357 if (signal_pending_state(state, current)) {
5358 timeout = -ERESTARTSYS;
5359 break;
5361 __set_current_state(state);
5362 spin_unlock_irq(&x->wait.lock);
5363 timeout = schedule_timeout(timeout);
5364 spin_lock_irq(&x->wait.lock);
5365 } while (!x->done && timeout);
5366 __remove_wait_queue(&x->wait, &wait);
5367 if (!x->done)
5368 return timeout;
5370 x->done--;
5371 return timeout ?: 1;
5374 static long __sched
5375 wait_for_common(struct completion *x, long timeout, int state)
5377 might_sleep();
5379 spin_lock_irq(&x->wait.lock);
5380 timeout = do_wait_for_common(x, timeout, state);
5381 spin_unlock_irq(&x->wait.lock);
5382 return timeout;
5386 * wait_for_completion: - waits for completion of a task
5387 * @x: holds the state of this particular completion
5389 * This waits to be signaled for completion of a specific task. It is NOT
5390 * interruptible and there is no timeout.
5392 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5393 * and interrupt capability. Also see complete().
5395 void __sched wait_for_completion(struct completion *x)
5397 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5399 EXPORT_SYMBOL(wait_for_completion);
5402 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5403 * @x: holds the state of this particular completion
5404 * @timeout: timeout value in jiffies
5406 * This waits for either a completion of a specific task to be signaled or for a
5407 * specified timeout to expire. The timeout is in jiffies. It is not
5408 * interruptible.
5410 unsigned long __sched
5411 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5413 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5415 EXPORT_SYMBOL(wait_for_completion_timeout);
5418 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5419 * @x: holds the state of this particular completion
5421 * This waits for completion of a specific task to be signaled. It is
5422 * interruptible.
5424 int __sched wait_for_completion_interruptible(struct completion *x)
5426 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5427 if (t == -ERESTARTSYS)
5428 return t;
5429 return 0;
5431 EXPORT_SYMBOL(wait_for_completion_interruptible);
5434 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5435 * @x: holds the state of this particular completion
5436 * @timeout: timeout value in jiffies
5438 * This waits for either a completion of a specific task to be signaled or for a
5439 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5441 unsigned long __sched
5442 wait_for_completion_interruptible_timeout(struct completion *x,
5443 unsigned long timeout)
5445 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5447 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5450 * wait_for_completion_killable: - waits for completion of a task (killable)
5451 * @x: holds the state of this particular completion
5453 * This waits to be signaled for completion of a specific task. It can be
5454 * interrupted by a kill signal.
5456 int __sched wait_for_completion_killable(struct completion *x)
5458 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5459 if (t == -ERESTARTSYS)
5460 return t;
5461 return 0;
5463 EXPORT_SYMBOL(wait_for_completion_killable);
5466 * try_wait_for_completion - try to decrement a completion without blocking
5467 * @x: completion structure
5469 * Returns: 0 if a decrement cannot be done without blocking
5470 * 1 if a decrement succeeded.
5472 * If a completion is being used as a counting completion,
5473 * attempt to decrement the counter without blocking. This
5474 * enables us to avoid waiting if the resource the completion
5475 * is protecting is not available.
5477 bool try_wait_for_completion(struct completion *x)
5479 int ret = 1;
5481 spin_lock_irq(&x->wait.lock);
5482 if (!x->done)
5483 ret = 0;
5484 else
5485 x->done--;
5486 spin_unlock_irq(&x->wait.lock);
5487 return ret;
5489 EXPORT_SYMBOL(try_wait_for_completion);
5492 * completion_done - Test to see if a completion has any waiters
5493 * @x: completion structure
5495 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5496 * 1 if there are no waiters.
5499 bool completion_done(struct completion *x)
5501 int ret = 1;
5503 spin_lock_irq(&x->wait.lock);
5504 if (!x->done)
5505 ret = 0;
5506 spin_unlock_irq(&x->wait.lock);
5507 return ret;
5509 EXPORT_SYMBOL(completion_done);
5511 static long __sched
5512 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5514 unsigned long flags;
5515 wait_queue_t wait;
5517 init_waitqueue_entry(&wait, current);
5519 __set_current_state(state);
5521 spin_lock_irqsave(&q->lock, flags);
5522 __add_wait_queue(q, &wait);
5523 spin_unlock(&q->lock);
5524 timeout = schedule_timeout(timeout);
5525 spin_lock_irq(&q->lock);
5526 __remove_wait_queue(q, &wait);
5527 spin_unlock_irqrestore(&q->lock, flags);
5529 return timeout;
5532 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5534 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5536 EXPORT_SYMBOL(interruptible_sleep_on);
5538 long __sched
5539 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5541 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5543 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5545 void __sched sleep_on(wait_queue_head_t *q)
5547 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5549 EXPORT_SYMBOL(sleep_on);
5551 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5553 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5555 EXPORT_SYMBOL(sleep_on_timeout);
5557 #ifdef CONFIG_RT_MUTEXES
5560 * rt_mutex_setprio - set the current priority of a task
5561 * @p: task
5562 * @prio: prio value (kernel-internal form)
5564 * This function changes the 'effective' priority of a task. It does
5565 * not touch ->normal_prio like __setscheduler().
5567 * Used by the rt_mutex code to implement priority inheritance logic.
5569 void rt_mutex_setprio(struct task_struct *p, int prio)
5571 unsigned long flags;
5572 int oldprio, on_rq, running;
5573 struct rq *rq;
5574 const struct sched_class *prev_class = p->sched_class;
5576 BUG_ON(prio < 0 || prio > MAX_PRIO);
5578 rq = task_rq_lock(p, &flags);
5579 update_rq_clock(rq);
5581 oldprio = p->prio;
5582 on_rq = p->se.on_rq;
5583 running = task_current(rq, p);
5584 if (on_rq)
5585 dequeue_task(rq, p, 0);
5586 if (running)
5587 p->sched_class->put_prev_task(rq, p);
5589 if (rt_prio(prio))
5590 p->sched_class = &rt_sched_class;
5591 else
5592 p->sched_class = &fair_sched_class;
5594 p->prio = prio;
5596 if (running)
5597 p->sched_class->set_curr_task(rq);
5598 if (on_rq) {
5599 enqueue_task(rq, p, 0);
5601 check_class_changed(rq, p, prev_class, oldprio, running);
5603 task_rq_unlock(rq, &flags);
5606 #endif
5608 void set_user_nice(struct task_struct *p, long nice)
5610 int old_prio, delta, on_rq;
5611 unsigned long flags;
5612 struct rq *rq;
5614 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5615 return;
5617 * We have to be careful, if called from sys_setpriority(),
5618 * the task might be in the middle of scheduling on another CPU.
5620 rq = task_rq_lock(p, &flags);
5621 update_rq_clock(rq);
5623 * The RT priorities are set via sched_setscheduler(), but we still
5624 * allow the 'normal' nice value to be set - but as expected
5625 * it wont have any effect on scheduling until the task is
5626 * SCHED_FIFO/SCHED_RR:
5628 if (task_has_rt_policy(p)) {
5629 p->static_prio = NICE_TO_PRIO(nice);
5630 goto out_unlock;
5632 on_rq = p->se.on_rq;
5633 if (on_rq)
5634 dequeue_task(rq, p, 0);
5636 p->static_prio = NICE_TO_PRIO(nice);
5637 set_load_weight(p);
5638 old_prio = p->prio;
5639 p->prio = effective_prio(p);
5640 delta = p->prio - old_prio;
5642 if (on_rq) {
5643 enqueue_task(rq, p, 0);
5645 * If the task increased its priority or is running and
5646 * lowered its priority, then reschedule its CPU:
5648 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5649 resched_task(rq->curr);
5651 out_unlock:
5652 task_rq_unlock(rq, &flags);
5654 EXPORT_SYMBOL(set_user_nice);
5657 * can_nice - check if a task can reduce its nice value
5658 * @p: task
5659 * @nice: nice value
5661 int can_nice(const struct task_struct *p, const int nice)
5663 /* convert nice value [19,-20] to rlimit style value [1,40] */
5664 int nice_rlim = 20 - nice;
5666 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5667 capable(CAP_SYS_NICE));
5670 #ifdef __ARCH_WANT_SYS_NICE
5673 * sys_nice - change the priority of the current process.
5674 * @increment: priority increment
5676 * sys_setpriority is a more generic, but much slower function that
5677 * does similar things.
5679 SYSCALL_DEFINE1(nice, int, increment)
5681 long nice, retval;
5684 * Setpriority might change our priority at the same moment.
5685 * We don't have to worry. Conceptually one call occurs first
5686 * and we have a single winner.
5688 if (increment < -40)
5689 increment = -40;
5690 if (increment > 40)
5691 increment = 40;
5693 nice = TASK_NICE(current) + increment;
5694 if (nice < -20)
5695 nice = -20;
5696 if (nice > 19)
5697 nice = 19;
5699 if (increment < 0 && !can_nice(current, nice))
5700 return -EPERM;
5702 retval = security_task_setnice(current, nice);
5703 if (retval)
5704 return retval;
5706 set_user_nice(current, nice);
5707 return 0;
5710 #endif
5713 * task_prio - return the priority value of a given task.
5714 * @p: the task in question.
5716 * This is the priority value as seen by users in /proc.
5717 * RT tasks are offset by -200. Normal tasks are centered
5718 * around 0, value goes from -16 to +15.
5720 int task_prio(const struct task_struct *p)
5722 return p->prio - MAX_RT_PRIO;
5726 * task_nice - return the nice value of a given task.
5727 * @p: the task in question.
5729 int task_nice(const struct task_struct *p)
5731 return TASK_NICE(p);
5733 EXPORT_SYMBOL(task_nice);
5736 * idle_cpu - is a given cpu idle currently?
5737 * @cpu: the processor in question.
5739 int idle_cpu(int cpu)
5741 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5745 * idle_task - return the idle task for a given cpu.
5746 * @cpu: the processor in question.
5748 struct task_struct *idle_task(int cpu)
5750 return cpu_rq(cpu)->idle;
5754 * find_process_by_pid - find a process with a matching PID value.
5755 * @pid: the pid in question.
5757 static struct task_struct *find_process_by_pid(pid_t pid)
5759 return pid ? find_task_by_vpid(pid) : current;
5762 /* Actually do priority change: must hold rq lock. */
5763 static void
5764 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5766 BUG_ON(p->se.on_rq);
5768 p->policy = policy;
5769 switch (p->policy) {
5770 case SCHED_NORMAL:
5771 case SCHED_BATCH:
5772 case SCHED_IDLE:
5773 p->sched_class = &fair_sched_class;
5774 break;
5775 case SCHED_FIFO:
5776 case SCHED_RR:
5777 p->sched_class = &rt_sched_class;
5778 break;
5781 p->rt_priority = prio;
5782 p->normal_prio = normal_prio(p);
5783 /* we are holding p->pi_lock already */
5784 p->prio = rt_mutex_getprio(p);
5785 set_load_weight(p);
5789 * check the target process has a UID that matches the current process's
5791 static bool check_same_owner(struct task_struct *p)
5793 const struct cred *cred = current_cred(), *pcred;
5794 bool match;
5796 rcu_read_lock();
5797 pcred = __task_cred(p);
5798 match = (cred->euid == pcred->euid ||
5799 cred->euid == pcred->uid);
5800 rcu_read_unlock();
5801 return match;
5804 static int __sched_setscheduler(struct task_struct *p, int policy,
5805 struct sched_param *param, bool user)
5807 int retval, oldprio, oldpolicy = -1, on_rq, running;
5808 unsigned long flags;
5809 const struct sched_class *prev_class = p->sched_class;
5810 struct rq *rq;
5812 /* may grab non-irq protected spin_locks */
5813 BUG_ON(in_interrupt());
5814 recheck:
5815 /* double check policy once rq lock held */
5816 if (policy < 0)
5817 policy = oldpolicy = p->policy;
5818 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5819 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5820 policy != SCHED_IDLE)
5821 return -EINVAL;
5823 * Valid priorities for SCHED_FIFO and SCHED_RR are
5824 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5825 * SCHED_BATCH and SCHED_IDLE is 0.
5827 if (param->sched_priority < 0 ||
5828 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5829 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5830 return -EINVAL;
5831 if (rt_policy(policy) != (param->sched_priority != 0))
5832 return -EINVAL;
5835 * Allow unprivileged RT tasks to decrease priority:
5837 if (user && !capable(CAP_SYS_NICE)) {
5838 if (rt_policy(policy)) {
5839 unsigned long rlim_rtprio;
5841 if (!lock_task_sighand(p, &flags))
5842 return -ESRCH;
5843 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5844 unlock_task_sighand(p, &flags);
5846 /* can't set/change the rt policy */
5847 if (policy != p->policy && !rlim_rtprio)
5848 return -EPERM;
5850 /* can't increase priority */
5851 if (param->sched_priority > p->rt_priority &&
5852 param->sched_priority > rlim_rtprio)
5853 return -EPERM;
5856 * Like positive nice levels, dont allow tasks to
5857 * move out of SCHED_IDLE either:
5859 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5860 return -EPERM;
5862 /* can't change other user's priorities */
5863 if (!check_same_owner(p))
5864 return -EPERM;
5867 if (user) {
5868 #ifdef CONFIG_RT_GROUP_SCHED
5870 * Do not allow realtime tasks into groups that have no runtime
5871 * assigned.
5873 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5874 task_group(p)->rt_bandwidth.rt_runtime == 0)
5875 return -EPERM;
5876 #endif
5878 retval = security_task_setscheduler(p, policy, param);
5879 if (retval)
5880 return retval;
5884 * make sure no PI-waiters arrive (or leave) while we are
5885 * changing the priority of the task:
5887 spin_lock_irqsave(&p->pi_lock, flags);
5889 * To be able to change p->policy safely, the apropriate
5890 * runqueue lock must be held.
5892 rq = __task_rq_lock(p);
5893 /* recheck policy now with rq lock held */
5894 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5895 policy = oldpolicy = -1;
5896 __task_rq_unlock(rq);
5897 spin_unlock_irqrestore(&p->pi_lock, flags);
5898 goto recheck;
5900 update_rq_clock(rq);
5901 on_rq = p->se.on_rq;
5902 running = task_current(rq, p);
5903 if (on_rq)
5904 deactivate_task(rq, p, 0);
5905 if (running)
5906 p->sched_class->put_prev_task(rq, p);
5908 oldprio = p->prio;
5909 __setscheduler(rq, p, policy, param->sched_priority);
5911 if (running)
5912 p->sched_class->set_curr_task(rq);
5913 if (on_rq) {
5914 activate_task(rq, p, 0);
5916 check_class_changed(rq, p, prev_class, oldprio, running);
5918 __task_rq_unlock(rq);
5919 spin_unlock_irqrestore(&p->pi_lock, flags);
5921 rt_mutex_adjust_pi(p);
5923 return 0;
5927 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5928 * @p: the task in question.
5929 * @policy: new policy.
5930 * @param: structure containing the new RT priority.
5932 * NOTE that the task may be already dead.
5934 int sched_setscheduler(struct task_struct *p, int policy,
5935 struct sched_param *param)
5937 return __sched_setscheduler(p, policy, param, true);
5939 EXPORT_SYMBOL_GPL(sched_setscheduler);
5942 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5943 * @p: the task in question.
5944 * @policy: new policy.
5945 * @param: structure containing the new RT priority.
5947 * Just like sched_setscheduler, only don't bother checking if the
5948 * current context has permission. For example, this is needed in
5949 * stop_machine(): we create temporary high priority worker threads,
5950 * but our caller might not have that capability.
5952 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5953 struct sched_param *param)
5955 return __sched_setscheduler(p, policy, param, false);
5958 static int
5959 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5961 struct sched_param lparam;
5962 struct task_struct *p;
5963 int retval;
5965 if (!param || pid < 0)
5966 return -EINVAL;
5967 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5968 return -EFAULT;
5970 rcu_read_lock();
5971 retval = -ESRCH;
5972 p = find_process_by_pid(pid);
5973 if (p != NULL)
5974 retval = sched_setscheduler(p, policy, &lparam);
5975 rcu_read_unlock();
5977 return retval;
5981 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5982 * @pid: the pid in question.
5983 * @policy: new policy.
5984 * @param: structure containing the new RT priority.
5986 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5987 struct sched_param __user *, param)
5989 /* negative values for policy are not valid */
5990 if (policy < 0)
5991 return -EINVAL;
5993 return do_sched_setscheduler(pid, policy, param);
5997 * sys_sched_setparam - set/change the RT priority of a thread
5998 * @pid: the pid in question.
5999 * @param: structure containing the new RT priority.
6001 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6003 return do_sched_setscheduler(pid, -1, param);
6007 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6008 * @pid: the pid in question.
6010 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6012 struct task_struct *p;
6013 int retval;
6015 if (pid < 0)
6016 return -EINVAL;
6018 retval = -ESRCH;
6019 read_lock(&tasklist_lock);
6020 p = find_process_by_pid(pid);
6021 if (p) {
6022 retval = security_task_getscheduler(p);
6023 if (!retval)
6024 retval = p->policy;
6026 read_unlock(&tasklist_lock);
6027 return retval;
6031 * sys_sched_getscheduler - get the RT priority of a thread
6032 * @pid: the pid in question.
6033 * @param: structure containing the RT priority.
6035 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6037 struct sched_param lp;
6038 struct task_struct *p;
6039 int retval;
6041 if (!param || pid < 0)
6042 return -EINVAL;
6044 read_lock(&tasklist_lock);
6045 p = find_process_by_pid(pid);
6046 retval = -ESRCH;
6047 if (!p)
6048 goto out_unlock;
6050 retval = security_task_getscheduler(p);
6051 if (retval)
6052 goto out_unlock;
6054 lp.sched_priority = p->rt_priority;
6055 read_unlock(&tasklist_lock);
6058 * This one might sleep, we cannot do it with a spinlock held ...
6060 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6062 return retval;
6064 out_unlock:
6065 read_unlock(&tasklist_lock);
6066 return retval;
6069 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6071 cpumask_var_t cpus_allowed, new_mask;
6072 struct task_struct *p;
6073 int retval;
6075 get_online_cpus();
6076 read_lock(&tasklist_lock);
6078 p = find_process_by_pid(pid);
6079 if (!p) {
6080 read_unlock(&tasklist_lock);
6081 put_online_cpus();
6082 return -ESRCH;
6086 * It is not safe to call set_cpus_allowed with the
6087 * tasklist_lock held. We will bump the task_struct's
6088 * usage count and then drop tasklist_lock.
6090 get_task_struct(p);
6091 read_unlock(&tasklist_lock);
6093 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6094 retval = -ENOMEM;
6095 goto out_put_task;
6097 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6098 retval = -ENOMEM;
6099 goto out_free_cpus_allowed;
6101 retval = -EPERM;
6102 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6103 goto out_unlock;
6105 retval = security_task_setscheduler(p, 0, NULL);
6106 if (retval)
6107 goto out_unlock;
6109 cpuset_cpus_allowed(p, cpus_allowed);
6110 cpumask_and(new_mask, in_mask, cpus_allowed);
6111 again:
6112 retval = set_cpus_allowed_ptr(p, new_mask);
6114 if (!retval) {
6115 cpuset_cpus_allowed(p, cpus_allowed);
6116 if (!cpumask_subset(new_mask, cpus_allowed)) {
6118 * We must have raced with a concurrent cpuset
6119 * update. Just reset the cpus_allowed to the
6120 * cpuset's cpus_allowed
6122 cpumask_copy(new_mask, cpus_allowed);
6123 goto again;
6126 out_unlock:
6127 free_cpumask_var(new_mask);
6128 out_free_cpus_allowed:
6129 free_cpumask_var(cpus_allowed);
6130 out_put_task:
6131 put_task_struct(p);
6132 put_online_cpus();
6133 return retval;
6136 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6137 struct cpumask *new_mask)
6139 if (len < cpumask_size())
6140 cpumask_clear(new_mask);
6141 else if (len > cpumask_size())
6142 len = cpumask_size();
6144 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6148 * sys_sched_setaffinity - set the cpu affinity of a process
6149 * @pid: pid of the process
6150 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6151 * @user_mask_ptr: user-space pointer to the new cpu mask
6153 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6154 unsigned long __user *, user_mask_ptr)
6156 cpumask_var_t new_mask;
6157 int retval;
6159 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6160 return -ENOMEM;
6162 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6163 if (retval == 0)
6164 retval = sched_setaffinity(pid, new_mask);
6165 free_cpumask_var(new_mask);
6166 return retval;
6169 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6171 struct task_struct *p;
6172 int retval;
6174 get_online_cpus();
6175 read_lock(&tasklist_lock);
6177 retval = -ESRCH;
6178 p = find_process_by_pid(pid);
6179 if (!p)
6180 goto out_unlock;
6182 retval = security_task_getscheduler(p);
6183 if (retval)
6184 goto out_unlock;
6186 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6188 out_unlock:
6189 read_unlock(&tasklist_lock);
6190 put_online_cpus();
6192 return retval;
6196 * sys_sched_getaffinity - get the cpu affinity of a process
6197 * @pid: pid of the process
6198 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6199 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6201 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6202 unsigned long __user *, user_mask_ptr)
6204 int ret;
6205 cpumask_var_t mask;
6207 if (len < cpumask_size())
6208 return -EINVAL;
6210 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6211 return -ENOMEM;
6213 ret = sched_getaffinity(pid, mask);
6214 if (ret == 0) {
6215 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6216 ret = -EFAULT;
6217 else
6218 ret = cpumask_size();
6220 free_cpumask_var(mask);
6222 return ret;
6226 * sys_sched_yield - yield the current processor to other threads.
6228 * This function yields the current CPU to other tasks. If there are no
6229 * other threads running on this CPU then this function will return.
6231 SYSCALL_DEFINE0(sched_yield)
6233 struct rq *rq = this_rq_lock();
6235 schedstat_inc(rq, yld_count);
6236 current->sched_class->yield_task(rq);
6239 * Since we are going to call schedule() anyway, there's
6240 * no need to preempt or enable interrupts:
6242 __release(rq->lock);
6243 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6244 _raw_spin_unlock(&rq->lock);
6245 preempt_enable_no_resched();
6247 schedule();
6249 return 0;
6252 static void __cond_resched(void)
6254 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6255 __might_sleep(__FILE__, __LINE__);
6256 #endif
6258 * The BKS might be reacquired before we have dropped
6259 * PREEMPT_ACTIVE, which could trigger a second
6260 * cond_resched() call.
6262 do {
6263 add_preempt_count(PREEMPT_ACTIVE);
6264 schedule();
6265 sub_preempt_count(PREEMPT_ACTIVE);
6266 } while (need_resched());
6269 int __sched _cond_resched(void)
6271 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6272 system_state == SYSTEM_RUNNING) {
6273 __cond_resched();
6274 return 1;
6276 return 0;
6278 EXPORT_SYMBOL(_cond_resched);
6281 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6282 * call schedule, and on return reacquire the lock.
6284 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6285 * operations here to prevent schedule() from being called twice (once via
6286 * spin_unlock(), once by hand).
6288 int cond_resched_lock(spinlock_t *lock)
6290 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6291 int ret = 0;
6293 if (spin_needbreak(lock) || resched) {
6294 spin_unlock(lock);
6295 if (resched && need_resched())
6296 __cond_resched();
6297 else
6298 cpu_relax();
6299 ret = 1;
6300 spin_lock(lock);
6302 return ret;
6304 EXPORT_SYMBOL(cond_resched_lock);
6306 int __sched cond_resched_softirq(void)
6308 BUG_ON(!in_softirq());
6310 if (need_resched() && system_state == SYSTEM_RUNNING) {
6311 local_bh_enable();
6312 __cond_resched();
6313 local_bh_disable();
6314 return 1;
6316 return 0;
6318 EXPORT_SYMBOL(cond_resched_softirq);
6321 * yield - yield the current processor to other threads.
6323 * This is a shortcut for kernel-space yielding - it marks the
6324 * thread runnable and calls sys_sched_yield().
6326 void __sched yield(void)
6328 set_current_state(TASK_RUNNING);
6329 sys_sched_yield();
6331 EXPORT_SYMBOL(yield);
6334 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6335 * that process accounting knows that this is a task in IO wait state.
6337 * But don't do that if it is a deliberate, throttling IO wait (this task
6338 * has set its backing_dev_info: the queue against which it should throttle)
6340 void __sched io_schedule(void)
6342 struct rq *rq = &__raw_get_cpu_var(runqueues);
6344 delayacct_blkio_start();
6345 atomic_inc(&rq->nr_iowait);
6346 schedule();
6347 atomic_dec(&rq->nr_iowait);
6348 delayacct_blkio_end();
6350 EXPORT_SYMBOL(io_schedule);
6352 long __sched io_schedule_timeout(long timeout)
6354 struct rq *rq = &__raw_get_cpu_var(runqueues);
6355 long ret;
6357 delayacct_blkio_start();
6358 atomic_inc(&rq->nr_iowait);
6359 ret = schedule_timeout(timeout);
6360 atomic_dec(&rq->nr_iowait);
6361 delayacct_blkio_end();
6362 return ret;
6366 * sys_sched_get_priority_max - return maximum RT priority.
6367 * @policy: scheduling class.
6369 * this syscall returns the maximum rt_priority that can be used
6370 * by a given scheduling class.
6372 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6374 int ret = -EINVAL;
6376 switch (policy) {
6377 case SCHED_FIFO:
6378 case SCHED_RR:
6379 ret = MAX_USER_RT_PRIO-1;
6380 break;
6381 case SCHED_NORMAL:
6382 case SCHED_BATCH:
6383 case SCHED_IDLE:
6384 ret = 0;
6385 break;
6387 return ret;
6391 * sys_sched_get_priority_min - return minimum RT priority.
6392 * @policy: scheduling class.
6394 * this syscall returns the minimum rt_priority that can be used
6395 * by a given scheduling class.
6397 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6399 int ret = -EINVAL;
6401 switch (policy) {
6402 case SCHED_FIFO:
6403 case SCHED_RR:
6404 ret = 1;
6405 break;
6406 case SCHED_NORMAL:
6407 case SCHED_BATCH:
6408 case SCHED_IDLE:
6409 ret = 0;
6411 return ret;
6415 * sys_sched_rr_get_interval - return the default timeslice of a process.
6416 * @pid: pid of the process.
6417 * @interval: userspace pointer to the timeslice value.
6419 * this syscall writes the default timeslice value of a given process
6420 * into the user-space timespec buffer. A value of '0' means infinity.
6422 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6423 struct timespec __user *, interval)
6425 struct task_struct *p;
6426 unsigned int time_slice;
6427 int retval;
6428 struct timespec t;
6430 if (pid < 0)
6431 return -EINVAL;
6433 retval = -ESRCH;
6434 read_lock(&tasklist_lock);
6435 p = find_process_by_pid(pid);
6436 if (!p)
6437 goto out_unlock;
6439 retval = security_task_getscheduler(p);
6440 if (retval)
6441 goto out_unlock;
6444 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6445 * tasks that are on an otherwise idle runqueue:
6447 time_slice = 0;
6448 if (p->policy == SCHED_RR) {
6449 time_slice = DEF_TIMESLICE;
6450 } else if (p->policy != SCHED_FIFO) {
6451 struct sched_entity *se = &p->se;
6452 unsigned long flags;
6453 struct rq *rq;
6455 rq = task_rq_lock(p, &flags);
6456 if (rq->cfs.load.weight)
6457 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6458 task_rq_unlock(rq, &flags);
6460 read_unlock(&tasklist_lock);
6461 jiffies_to_timespec(time_slice, &t);
6462 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6463 return retval;
6465 out_unlock:
6466 read_unlock(&tasklist_lock);
6467 return retval;
6470 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6472 void sched_show_task(struct task_struct *p)
6474 unsigned long free = 0;
6475 unsigned state;
6477 state = p->state ? __ffs(p->state) + 1 : 0;
6478 printk(KERN_INFO "%-13.13s %c", p->comm,
6479 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6480 #if BITS_PER_LONG == 32
6481 if (state == TASK_RUNNING)
6482 printk(KERN_CONT " running ");
6483 else
6484 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6485 #else
6486 if (state == TASK_RUNNING)
6487 printk(KERN_CONT " running task ");
6488 else
6489 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6490 #endif
6491 #ifdef CONFIG_DEBUG_STACK_USAGE
6492 free = stack_not_used(p);
6493 #endif
6494 printk(KERN_CONT "%5lu %5d %6d\n", free,
6495 task_pid_nr(p), task_pid_nr(p->real_parent));
6497 show_stack(p, NULL);
6500 void show_state_filter(unsigned long state_filter)
6502 struct task_struct *g, *p;
6504 #if BITS_PER_LONG == 32
6505 printk(KERN_INFO
6506 " task PC stack pid father\n");
6507 #else
6508 printk(KERN_INFO
6509 " task PC stack pid father\n");
6510 #endif
6511 read_lock(&tasklist_lock);
6512 do_each_thread(g, p) {
6514 * reset the NMI-timeout, listing all files on a slow
6515 * console might take alot of time:
6517 touch_nmi_watchdog();
6518 if (!state_filter || (p->state & state_filter))
6519 sched_show_task(p);
6520 } while_each_thread(g, p);
6522 touch_all_softlockup_watchdogs();
6524 #ifdef CONFIG_SCHED_DEBUG
6525 sysrq_sched_debug_show();
6526 #endif
6527 read_unlock(&tasklist_lock);
6529 * Only show locks if all tasks are dumped:
6531 if (state_filter == -1)
6532 debug_show_all_locks();
6535 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6537 idle->sched_class = &idle_sched_class;
6541 * init_idle - set up an idle thread for a given CPU
6542 * @idle: task in question
6543 * @cpu: cpu the idle task belongs to
6545 * NOTE: this function does not set the idle thread's NEED_RESCHED
6546 * flag, to make booting more robust.
6548 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6550 struct rq *rq = cpu_rq(cpu);
6551 unsigned long flags;
6553 spin_lock_irqsave(&rq->lock, flags);
6555 __sched_fork(idle);
6556 idle->se.exec_start = sched_clock();
6558 idle->prio = idle->normal_prio = MAX_PRIO;
6559 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6560 __set_task_cpu(idle, cpu);
6562 rq->curr = rq->idle = idle;
6563 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6564 idle->oncpu = 1;
6565 #endif
6566 spin_unlock_irqrestore(&rq->lock, flags);
6568 /* Set the preempt count _outside_ the spinlocks! */
6569 #if defined(CONFIG_PREEMPT)
6570 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6571 #else
6572 task_thread_info(idle)->preempt_count = 0;
6573 #endif
6575 * The idle tasks have their own, simple scheduling class:
6577 idle->sched_class = &idle_sched_class;
6578 ftrace_graph_init_task(idle);
6582 * In a system that switches off the HZ timer nohz_cpu_mask
6583 * indicates which cpus entered this state. This is used
6584 * in the rcu update to wait only for active cpus. For system
6585 * which do not switch off the HZ timer nohz_cpu_mask should
6586 * always be CPU_BITS_NONE.
6588 cpumask_var_t nohz_cpu_mask;
6591 * Increase the granularity value when there are more CPUs,
6592 * because with more CPUs the 'effective latency' as visible
6593 * to users decreases. But the relationship is not linear,
6594 * so pick a second-best guess by going with the log2 of the
6595 * number of CPUs.
6597 * This idea comes from the SD scheduler of Con Kolivas:
6599 static inline void sched_init_granularity(void)
6601 unsigned int factor = 1 + ilog2(num_online_cpus());
6602 const unsigned long limit = 200000000;
6604 sysctl_sched_min_granularity *= factor;
6605 if (sysctl_sched_min_granularity > limit)
6606 sysctl_sched_min_granularity = limit;
6608 sysctl_sched_latency *= factor;
6609 if (sysctl_sched_latency > limit)
6610 sysctl_sched_latency = limit;
6612 sysctl_sched_wakeup_granularity *= factor;
6614 sysctl_sched_shares_ratelimit *= factor;
6617 #ifdef CONFIG_SMP
6619 * This is how migration works:
6621 * 1) we queue a struct migration_req structure in the source CPU's
6622 * runqueue and wake up that CPU's migration thread.
6623 * 2) we down() the locked semaphore => thread blocks.
6624 * 3) migration thread wakes up (implicitly it forces the migrated
6625 * thread off the CPU)
6626 * 4) it gets the migration request and checks whether the migrated
6627 * task is still in the wrong runqueue.
6628 * 5) if it's in the wrong runqueue then the migration thread removes
6629 * it and puts it into the right queue.
6630 * 6) migration thread up()s the semaphore.
6631 * 7) we wake up and the migration is done.
6635 * Change a given task's CPU affinity. Migrate the thread to a
6636 * proper CPU and schedule it away if the CPU it's executing on
6637 * is removed from the allowed bitmask.
6639 * NOTE: the caller must have a valid reference to the task, the
6640 * task must not exit() & deallocate itself prematurely. The
6641 * call is not atomic; no spinlocks may be held.
6643 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6645 struct migration_req req;
6646 unsigned long flags;
6647 struct rq *rq;
6648 int ret = 0;
6650 rq = task_rq_lock(p, &flags);
6651 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6652 ret = -EINVAL;
6653 goto out;
6656 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6657 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6658 ret = -EINVAL;
6659 goto out;
6662 if (p->sched_class->set_cpus_allowed)
6663 p->sched_class->set_cpus_allowed(p, new_mask);
6664 else {
6665 cpumask_copy(&p->cpus_allowed, new_mask);
6666 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6669 /* Can the task run on the task's current CPU? If so, we're done */
6670 if (cpumask_test_cpu(task_cpu(p), new_mask))
6671 goto out;
6673 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6674 /* Need help from migration thread: drop lock and wait. */
6675 task_rq_unlock(rq, &flags);
6676 wake_up_process(rq->migration_thread);
6677 wait_for_completion(&req.done);
6678 tlb_migrate_finish(p->mm);
6679 return 0;
6681 out:
6682 task_rq_unlock(rq, &flags);
6684 return ret;
6686 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6689 * Move (not current) task off this cpu, onto dest cpu. We're doing
6690 * this because either it can't run here any more (set_cpus_allowed()
6691 * away from this CPU, or CPU going down), or because we're
6692 * attempting to rebalance this task on exec (sched_exec).
6694 * So we race with normal scheduler movements, but that's OK, as long
6695 * as the task is no longer on this CPU.
6697 * Returns non-zero if task was successfully migrated.
6699 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6701 struct rq *rq_dest, *rq_src;
6702 int ret = 0, on_rq;
6704 if (unlikely(!cpu_active(dest_cpu)))
6705 return ret;
6707 rq_src = cpu_rq(src_cpu);
6708 rq_dest = cpu_rq(dest_cpu);
6710 double_rq_lock(rq_src, rq_dest);
6711 /* Already moved. */
6712 if (task_cpu(p) != src_cpu)
6713 goto done;
6714 /* Affinity changed (again). */
6715 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6716 goto fail;
6718 on_rq = p->se.on_rq;
6719 if (on_rq)
6720 deactivate_task(rq_src, p, 0);
6722 set_task_cpu(p, dest_cpu);
6723 if (on_rq) {
6724 activate_task(rq_dest, p, 0);
6725 check_preempt_curr(rq_dest, p, 0);
6727 done:
6728 ret = 1;
6729 fail:
6730 double_rq_unlock(rq_src, rq_dest);
6731 return ret;
6735 * migration_thread - this is a highprio system thread that performs
6736 * thread migration by bumping thread off CPU then 'pushing' onto
6737 * another runqueue.
6739 static int migration_thread(void *data)
6741 int cpu = (long)data;
6742 struct rq *rq;
6744 rq = cpu_rq(cpu);
6745 BUG_ON(rq->migration_thread != current);
6747 set_current_state(TASK_INTERRUPTIBLE);
6748 while (!kthread_should_stop()) {
6749 struct migration_req *req;
6750 struct list_head *head;
6752 spin_lock_irq(&rq->lock);
6754 if (cpu_is_offline(cpu)) {
6755 spin_unlock_irq(&rq->lock);
6756 goto wait_to_die;
6759 if (rq->active_balance) {
6760 active_load_balance(rq, cpu);
6761 rq->active_balance = 0;
6764 head = &rq->migration_queue;
6766 if (list_empty(head)) {
6767 spin_unlock_irq(&rq->lock);
6768 schedule();
6769 set_current_state(TASK_INTERRUPTIBLE);
6770 continue;
6772 req = list_entry(head->next, struct migration_req, list);
6773 list_del_init(head->next);
6775 spin_unlock(&rq->lock);
6776 __migrate_task(req->task, cpu, req->dest_cpu);
6777 local_irq_enable();
6779 complete(&req->done);
6781 __set_current_state(TASK_RUNNING);
6782 return 0;
6784 wait_to_die:
6785 /* Wait for kthread_stop */
6786 set_current_state(TASK_INTERRUPTIBLE);
6787 while (!kthread_should_stop()) {
6788 schedule();
6789 set_current_state(TASK_INTERRUPTIBLE);
6791 __set_current_state(TASK_RUNNING);
6792 return 0;
6795 #ifdef CONFIG_HOTPLUG_CPU
6797 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6799 int ret;
6801 local_irq_disable();
6802 ret = __migrate_task(p, src_cpu, dest_cpu);
6803 local_irq_enable();
6804 return ret;
6808 * Figure out where task on dead CPU should go, use force if necessary.
6810 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6812 int dest_cpu;
6813 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6815 again:
6816 /* Look for allowed, online CPU in same node. */
6817 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6818 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6819 goto move;
6821 /* Any allowed, online CPU? */
6822 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6823 if (dest_cpu < nr_cpu_ids)
6824 goto move;
6826 /* No more Mr. Nice Guy. */
6827 if (dest_cpu >= nr_cpu_ids) {
6828 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6829 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6832 * Don't tell them about moving exiting tasks or
6833 * kernel threads (both mm NULL), since they never
6834 * leave kernel.
6836 if (p->mm && printk_ratelimit()) {
6837 printk(KERN_INFO "process %d (%s) no "
6838 "longer affine to cpu%d\n",
6839 task_pid_nr(p), p->comm, dead_cpu);
6843 move:
6844 /* It can have affinity changed while we were choosing. */
6845 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6846 goto again;
6850 * While a dead CPU has no uninterruptible tasks queued at this point,
6851 * it might still have a nonzero ->nr_uninterruptible counter, because
6852 * for performance reasons the counter is not stricly tracking tasks to
6853 * their home CPUs. So we just add the counter to another CPU's counter,
6854 * to keep the global sum constant after CPU-down:
6856 static void migrate_nr_uninterruptible(struct rq *rq_src)
6858 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6859 unsigned long flags;
6861 local_irq_save(flags);
6862 double_rq_lock(rq_src, rq_dest);
6863 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6864 rq_src->nr_uninterruptible = 0;
6865 double_rq_unlock(rq_src, rq_dest);
6866 local_irq_restore(flags);
6869 /* Run through task list and migrate tasks from the dead cpu. */
6870 static void migrate_live_tasks(int src_cpu)
6872 struct task_struct *p, *t;
6874 read_lock(&tasklist_lock);
6876 do_each_thread(t, p) {
6877 if (p == current)
6878 continue;
6880 if (task_cpu(p) == src_cpu)
6881 move_task_off_dead_cpu(src_cpu, p);
6882 } while_each_thread(t, p);
6884 read_unlock(&tasklist_lock);
6888 * Schedules idle task to be the next runnable task on current CPU.
6889 * It does so by boosting its priority to highest possible.
6890 * Used by CPU offline code.
6892 void sched_idle_next(void)
6894 int this_cpu = smp_processor_id();
6895 struct rq *rq = cpu_rq(this_cpu);
6896 struct task_struct *p = rq->idle;
6897 unsigned long flags;
6899 /* cpu has to be offline */
6900 BUG_ON(cpu_online(this_cpu));
6903 * Strictly not necessary since rest of the CPUs are stopped by now
6904 * and interrupts disabled on the current cpu.
6906 spin_lock_irqsave(&rq->lock, flags);
6908 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6910 update_rq_clock(rq);
6911 activate_task(rq, p, 0);
6913 spin_unlock_irqrestore(&rq->lock, flags);
6917 * Ensures that the idle task is using init_mm right before its cpu goes
6918 * offline.
6920 void idle_task_exit(void)
6922 struct mm_struct *mm = current->active_mm;
6924 BUG_ON(cpu_online(smp_processor_id()));
6926 if (mm != &init_mm)
6927 switch_mm(mm, &init_mm, current);
6928 mmdrop(mm);
6931 /* called under rq->lock with disabled interrupts */
6932 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6934 struct rq *rq = cpu_rq(dead_cpu);
6936 /* Must be exiting, otherwise would be on tasklist. */
6937 BUG_ON(!p->exit_state);
6939 /* Cannot have done final schedule yet: would have vanished. */
6940 BUG_ON(p->state == TASK_DEAD);
6942 get_task_struct(p);
6945 * Drop lock around migration; if someone else moves it,
6946 * that's OK. No task can be added to this CPU, so iteration is
6947 * fine.
6949 spin_unlock_irq(&rq->lock);
6950 move_task_off_dead_cpu(dead_cpu, p);
6951 spin_lock_irq(&rq->lock);
6953 put_task_struct(p);
6956 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6957 static void migrate_dead_tasks(unsigned int dead_cpu)
6959 struct rq *rq = cpu_rq(dead_cpu);
6960 struct task_struct *next;
6962 for ( ; ; ) {
6963 if (!rq->nr_running)
6964 break;
6965 update_rq_clock(rq);
6966 next = pick_next_task(rq);
6967 if (!next)
6968 break;
6969 next->sched_class->put_prev_task(rq, next);
6970 migrate_dead(dead_cpu, next);
6974 #endif /* CONFIG_HOTPLUG_CPU */
6976 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6978 static struct ctl_table sd_ctl_dir[] = {
6980 .procname = "sched_domain",
6981 .mode = 0555,
6983 {0, },
6986 static struct ctl_table sd_ctl_root[] = {
6988 .ctl_name = CTL_KERN,
6989 .procname = "kernel",
6990 .mode = 0555,
6991 .child = sd_ctl_dir,
6993 {0, },
6996 static struct ctl_table *sd_alloc_ctl_entry(int n)
6998 struct ctl_table *entry =
6999 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7001 return entry;
7004 static void sd_free_ctl_entry(struct ctl_table **tablep)
7006 struct ctl_table *entry;
7009 * In the intermediate directories, both the child directory and
7010 * procname are dynamically allocated and could fail but the mode
7011 * will always be set. In the lowest directory the names are
7012 * static strings and all have proc handlers.
7014 for (entry = *tablep; entry->mode; entry++) {
7015 if (entry->child)
7016 sd_free_ctl_entry(&entry->child);
7017 if (entry->proc_handler == NULL)
7018 kfree(entry->procname);
7021 kfree(*tablep);
7022 *tablep = NULL;
7025 static void
7026 set_table_entry(struct ctl_table *entry,
7027 const char *procname, void *data, int maxlen,
7028 mode_t mode, proc_handler *proc_handler)
7030 entry->procname = procname;
7031 entry->data = data;
7032 entry->maxlen = maxlen;
7033 entry->mode = mode;
7034 entry->proc_handler = proc_handler;
7037 static struct ctl_table *
7038 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7040 struct ctl_table *table = sd_alloc_ctl_entry(13);
7042 if (table == NULL)
7043 return NULL;
7045 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7046 sizeof(long), 0644, proc_doulongvec_minmax);
7047 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7048 sizeof(long), 0644, proc_doulongvec_minmax);
7049 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7050 sizeof(int), 0644, proc_dointvec_minmax);
7051 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7052 sizeof(int), 0644, proc_dointvec_minmax);
7053 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7054 sizeof(int), 0644, proc_dointvec_minmax);
7055 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7056 sizeof(int), 0644, proc_dointvec_minmax);
7057 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7058 sizeof(int), 0644, proc_dointvec_minmax);
7059 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7060 sizeof(int), 0644, proc_dointvec_minmax);
7061 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7062 sizeof(int), 0644, proc_dointvec_minmax);
7063 set_table_entry(&table[9], "cache_nice_tries",
7064 &sd->cache_nice_tries,
7065 sizeof(int), 0644, proc_dointvec_minmax);
7066 set_table_entry(&table[10], "flags", &sd->flags,
7067 sizeof(int), 0644, proc_dointvec_minmax);
7068 set_table_entry(&table[11], "name", sd->name,
7069 CORENAME_MAX_SIZE, 0444, proc_dostring);
7070 /* &table[12] is terminator */
7072 return table;
7075 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7077 struct ctl_table *entry, *table;
7078 struct sched_domain *sd;
7079 int domain_num = 0, i;
7080 char buf[32];
7082 for_each_domain(cpu, sd)
7083 domain_num++;
7084 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7085 if (table == NULL)
7086 return NULL;
7088 i = 0;
7089 for_each_domain(cpu, sd) {
7090 snprintf(buf, 32, "domain%d", i);
7091 entry->procname = kstrdup(buf, GFP_KERNEL);
7092 entry->mode = 0555;
7093 entry->child = sd_alloc_ctl_domain_table(sd);
7094 entry++;
7095 i++;
7097 return table;
7100 static struct ctl_table_header *sd_sysctl_header;
7101 static void register_sched_domain_sysctl(void)
7103 int i, cpu_num = num_online_cpus();
7104 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7105 char buf[32];
7107 WARN_ON(sd_ctl_dir[0].child);
7108 sd_ctl_dir[0].child = entry;
7110 if (entry == NULL)
7111 return;
7113 for_each_online_cpu(i) {
7114 snprintf(buf, 32, "cpu%d", i);
7115 entry->procname = kstrdup(buf, GFP_KERNEL);
7116 entry->mode = 0555;
7117 entry->child = sd_alloc_ctl_cpu_table(i);
7118 entry++;
7121 WARN_ON(sd_sysctl_header);
7122 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7125 /* may be called multiple times per register */
7126 static void unregister_sched_domain_sysctl(void)
7128 if (sd_sysctl_header)
7129 unregister_sysctl_table(sd_sysctl_header);
7130 sd_sysctl_header = NULL;
7131 if (sd_ctl_dir[0].child)
7132 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7134 #else
7135 static void register_sched_domain_sysctl(void)
7138 static void unregister_sched_domain_sysctl(void)
7141 #endif
7143 static void set_rq_online(struct rq *rq)
7145 if (!rq->online) {
7146 const struct sched_class *class;
7148 cpumask_set_cpu(rq->cpu, rq->rd->online);
7149 rq->online = 1;
7151 for_each_class(class) {
7152 if (class->rq_online)
7153 class->rq_online(rq);
7158 static void set_rq_offline(struct rq *rq)
7160 if (rq->online) {
7161 const struct sched_class *class;
7163 for_each_class(class) {
7164 if (class->rq_offline)
7165 class->rq_offline(rq);
7168 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7169 rq->online = 0;
7174 * migration_call - callback that gets triggered when a CPU is added.
7175 * Here we can start up the necessary migration thread for the new CPU.
7177 static int __cpuinit
7178 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7180 struct task_struct *p;
7181 int cpu = (long)hcpu;
7182 unsigned long flags;
7183 struct rq *rq;
7185 switch (action) {
7187 case CPU_UP_PREPARE:
7188 case CPU_UP_PREPARE_FROZEN:
7189 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7190 if (IS_ERR(p))
7191 return NOTIFY_BAD;
7192 kthread_bind(p, cpu);
7193 /* Must be high prio: stop_machine expects to yield to it. */
7194 rq = task_rq_lock(p, &flags);
7195 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7196 task_rq_unlock(rq, &flags);
7197 cpu_rq(cpu)->migration_thread = p;
7198 break;
7200 case CPU_ONLINE:
7201 case CPU_ONLINE_FROZEN:
7202 /* Strictly unnecessary, as first user will wake it. */
7203 wake_up_process(cpu_rq(cpu)->migration_thread);
7205 /* Update our root-domain */
7206 rq = cpu_rq(cpu);
7207 spin_lock_irqsave(&rq->lock, flags);
7208 if (rq->rd) {
7209 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7211 set_rq_online(rq);
7213 spin_unlock_irqrestore(&rq->lock, flags);
7214 break;
7216 #ifdef CONFIG_HOTPLUG_CPU
7217 case CPU_UP_CANCELED:
7218 case CPU_UP_CANCELED_FROZEN:
7219 if (!cpu_rq(cpu)->migration_thread)
7220 break;
7221 /* Unbind it from offline cpu so it can run. Fall thru. */
7222 kthread_bind(cpu_rq(cpu)->migration_thread,
7223 cpumask_any(cpu_online_mask));
7224 kthread_stop(cpu_rq(cpu)->migration_thread);
7225 cpu_rq(cpu)->migration_thread = NULL;
7226 break;
7228 case CPU_DEAD:
7229 case CPU_DEAD_FROZEN:
7230 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7231 migrate_live_tasks(cpu);
7232 rq = cpu_rq(cpu);
7233 kthread_stop(rq->migration_thread);
7234 rq->migration_thread = NULL;
7235 /* Idle task back to normal (off runqueue, low prio) */
7236 spin_lock_irq(&rq->lock);
7237 update_rq_clock(rq);
7238 deactivate_task(rq, rq->idle, 0);
7239 rq->idle->static_prio = MAX_PRIO;
7240 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7241 rq->idle->sched_class = &idle_sched_class;
7242 migrate_dead_tasks(cpu);
7243 spin_unlock_irq(&rq->lock);
7244 cpuset_unlock();
7245 migrate_nr_uninterruptible(rq);
7246 BUG_ON(rq->nr_running != 0);
7249 * No need to migrate the tasks: it was best-effort if
7250 * they didn't take sched_hotcpu_mutex. Just wake up
7251 * the requestors.
7253 spin_lock_irq(&rq->lock);
7254 while (!list_empty(&rq->migration_queue)) {
7255 struct migration_req *req;
7257 req = list_entry(rq->migration_queue.next,
7258 struct migration_req, list);
7259 list_del_init(&req->list);
7260 spin_unlock_irq(&rq->lock);
7261 complete(&req->done);
7262 spin_lock_irq(&rq->lock);
7264 spin_unlock_irq(&rq->lock);
7265 break;
7267 case CPU_DYING:
7268 case CPU_DYING_FROZEN:
7269 /* Update our root-domain */
7270 rq = cpu_rq(cpu);
7271 spin_lock_irqsave(&rq->lock, flags);
7272 if (rq->rd) {
7273 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7274 set_rq_offline(rq);
7276 spin_unlock_irqrestore(&rq->lock, flags);
7277 break;
7278 #endif
7280 return NOTIFY_OK;
7283 /* Register at highest priority so that task migration (migrate_all_tasks)
7284 * happens before everything else.
7286 static struct notifier_block __cpuinitdata migration_notifier = {
7287 .notifier_call = migration_call,
7288 .priority = 10
7291 static int __init migration_init(void)
7293 void *cpu = (void *)(long)smp_processor_id();
7294 int err;
7296 /* Start one for the boot CPU: */
7297 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7298 BUG_ON(err == NOTIFY_BAD);
7299 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7300 register_cpu_notifier(&migration_notifier);
7302 return err;
7304 early_initcall(migration_init);
7305 #endif
7307 #ifdef CONFIG_SMP
7309 #ifdef CONFIG_SCHED_DEBUG
7311 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7312 struct cpumask *groupmask)
7314 struct sched_group *group = sd->groups;
7315 char str[256];
7317 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7318 cpumask_clear(groupmask);
7320 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7322 if (!(sd->flags & SD_LOAD_BALANCE)) {
7323 printk("does not load-balance\n");
7324 if (sd->parent)
7325 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7326 " has parent");
7327 return -1;
7330 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7332 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7333 printk(KERN_ERR "ERROR: domain->span does not contain "
7334 "CPU%d\n", cpu);
7336 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7337 printk(KERN_ERR "ERROR: domain->groups does not contain"
7338 " CPU%d\n", cpu);
7341 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7342 do {
7343 if (!group) {
7344 printk("\n");
7345 printk(KERN_ERR "ERROR: group is NULL\n");
7346 break;
7349 if (!group->__cpu_power) {
7350 printk(KERN_CONT "\n");
7351 printk(KERN_ERR "ERROR: domain->cpu_power not "
7352 "set\n");
7353 break;
7356 if (!cpumask_weight(sched_group_cpus(group))) {
7357 printk(KERN_CONT "\n");
7358 printk(KERN_ERR "ERROR: empty group\n");
7359 break;
7362 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7363 printk(KERN_CONT "\n");
7364 printk(KERN_ERR "ERROR: repeated CPUs\n");
7365 break;
7368 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7370 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7372 printk(KERN_CONT " %s", str);
7373 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7374 printk(KERN_CONT " (__cpu_power = %d)",
7375 group->__cpu_power);
7378 group = group->next;
7379 } while (group != sd->groups);
7380 printk(KERN_CONT "\n");
7382 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7383 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7385 if (sd->parent &&
7386 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7387 printk(KERN_ERR "ERROR: parent span is not a superset "
7388 "of domain->span\n");
7389 return 0;
7392 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7394 cpumask_var_t groupmask;
7395 int level = 0;
7397 if (!sd) {
7398 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7399 return;
7402 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7404 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7405 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7406 return;
7409 for (;;) {
7410 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7411 break;
7412 level++;
7413 sd = sd->parent;
7414 if (!sd)
7415 break;
7417 free_cpumask_var(groupmask);
7419 #else /* !CONFIG_SCHED_DEBUG */
7420 # define sched_domain_debug(sd, cpu) do { } while (0)
7421 #endif /* CONFIG_SCHED_DEBUG */
7423 static int sd_degenerate(struct sched_domain *sd)
7425 if (cpumask_weight(sched_domain_span(sd)) == 1)
7426 return 1;
7428 /* Following flags need at least 2 groups */
7429 if (sd->flags & (SD_LOAD_BALANCE |
7430 SD_BALANCE_NEWIDLE |
7431 SD_BALANCE_FORK |
7432 SD_BALANCE_EXEC |
7433 SD_SHARE_CPUPOWER |
7434 SD_SHARE_PKG_RESOURCES)) {
7435 if (sd->groups != sd->groups->next)
7436 return 0;
7439 /* Following flags don't use groups */
7440 if (sd->flags & (SD_WAKE_IDLE |
7441 SD_WAKE_AFFINE |
7442 SD_WAKE_BALANCE))
7443 return 0;
7445 return 1;
7448 static int
7449 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7451 unsigned long cflags = sd->flags, pflags = parent->flags;
7453 if (sd_degenerate(parent))
7454 return 1;
7456 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7457 return 0;
7459 /* Does parent contain flags not in child? */
7460 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7461 if (cflags & SD_WAKE_AFFINE)
7462 pflags &= ~SD_WAKE_BALANCE;
7463 /* Flags needing groups don't count if only 1 group in parent */
7464 if (parent->groups == parent->groups->next) {
7465 pflags &= ~(SD_LOAD_BALANCE |
7466 SD_BALANCE_NEWIDLE |
7467 SD_BALANCE_FORK |
7468 SD_BALANCE_EXEC |
7469 SD_SHARE_CPUPOWER |
7470 SD_SHARE_PKG_RESOURCES);
7471 if (nr_node_ids == 1)
7472 pflags &= ~SD_SERIALIZE;
7474 if (~cflags & pflags)
7475 return 0;
7477 return 1;
7480 static void free_rootdomain(struct root_domain *rd)
7482 cpupri_cleanup(&rd->cpupri);
7484 free_cpumask_var(rd->rto_mask);
7485 free_cpumask_var(rd->online);
7486 free_cpumask_var(rd->span);
7487 kfree(rd);
7490 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7492 struct root_domain *old_rd = NULL;
7493 unsigned long flags;
7495 spin_lock_irqsave(&rq->lock, flags);
7497 if (rq->rd) {
7498 old_rd = rq->rd;
7500 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7501 set_rq_offline(rq);
7503 cpumask_clear_cpu(rq->cpu, old_rd->span);
7506 * If we dont want to free the old_rt yet then
7507 * set old_rd to NULL to skip the freeing later
7508 * in this function:
7510 if (!atomic_dec_and_test(&old_rd->refcount))
7511 old_rd = NULL;
7514 atomic_inc(&rd->refcount);
7515 rq->rd = rd;
7517 cpumask_set_cpu(rq->cpu, rd->span);
7518 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7519 set_rq_online(rq);
7521 spin_unlock_irqrestore(&rq->lock, flags);
7523 if (old_rd)
7524 free_rootdomain(old_rd);
7527 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7529 memset(rd, 0, sizeof(*rd));
7531 if (bootmem) {
7532 alloc_bootmem_cpumask_var(&def_root_domain.span);
7533 alloc_bootmem_cpumask_var(&def_root_domain.online);
7534 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7535 cpupri_init(&rd->cpupri, true);
7536 return 0;
7539 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7540 goto out;
7541 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7542 goto free_span;
7543 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7544 goto free_online;
7546 if (cpupri_init(&rd->cpupri, false) != 0)
7547 goto free_rto_mask;
7548 return 0;
7550 free_rto_mask:
7551 free_cpumask_var(rd->rto_mask);
7552 free_online:
7553 free_cpumask_var(rd->online);
7554 free_span:
7555 free_cpumask_var(rd->span);
7556 out:
7557 return -ENOMEM;
7560 static void init_defrootdomain(void)
7562 init_rootdomain(&def_root_domain, true);
7564 atomic_set(&def_root_domain.refcount, 1);
7567 static struct root_domain *alloc_rootdomain(void)
7569 struct root_domain *rd;
7571 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7572 if (!rd)
7573 return NULL;
7575 if (init_rootdomain(rd, false) != 0) {
7576 kfree(rd);
7577 return NULL;
7580 return rd;
7584 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7585 * hold the hotplug lock.
7587 static void
7588 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7590 struct rq *rq = cpu_rq(cpu);
7591 struct sched_domain *tmp;
7593 /* Remove the sched domains which do not contribute to scheduling. */
7594 for (tmp = sd; tmp; ) {
7595 struct sched_domain *parent = tmp->parent;
7596 if (!parent)
7597 break;
7599 if (sd_parent_degenerate(tmp, parent)) {
7600 tmp->parent = parent->parent;
7601 if (parent->parent)
7602 parent->parent->child = tmp;
7603 } else
7604 tmp = tmp->parent;
7607 if (sd && sd_degenerate(sd)) {
7608 sd = sd->parent;
7609 if (sd)
7610 sd->child = NULL;
7613 sched_domain_debug(sd, cpu);
7615 rq_attach_root(rq, rd);
7616 rcu_assign_pointer(rq->sd, sd);
7619 /* cpus with isolated domains */
7620 static cpumask_var_t cpu_isolated_map;
7622 /* Setup the mask of cpus configured for isolated domains */
7623 static int __init isolated_cpu_setup(char *str)
7625 cpulist_parse(str, cpu_isolated_map);
7626 return 1;
7629 __setup("isolcpus=", isolated_cpu_setup);
7632 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7633 * to a function which identifies what group(along with sched group) a CPU
7634 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7635 * (due to the fact that we keep track of groups covered with a struct cpumask).
7637 * init_sched_build_groups will build a circular linked list of the groups
7638 * covered by the given span, and will set each group's ->cpumask correctly,
7639 * and ->cpu_power to 0.
7641 static void
7642 init_sched_build_groups(const struct cpumask *span,
7643 const struct cpumask *cpu_map,
7644 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7645 struct sched_group **sg,
7646 struct cpumask *tmpmask),
7647 struct cpumask *covered, struct cpumask *tmpmask)
7649 struct sched_group *first = NULL, *last = NULL;
7650 int i;
7652 cpumask_clear(covered);
7654 for_each_cpu(i, span) {
7655 struct sched_group *sg;
7656 int group = group_fn(i, cpu_map, &sg, tmpmask);
7657 int j;
7659 if (cpumask_test_cpu(i, covered))
7660 continue;
7662 cpumask_clear(sched_group_cpus(sg));
7663 sg->__cpu_power = 0;
7665 for_each_cpu(j, span) {
7666 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7667 continue;
7669 cpumask_set_cpu(j, covered);
7670 cpumask_set_cpu(j, sched_group_cpus(sg));
7672 if (!first)
7673 first = sg;
7674 if (last)
7675 last->next = sg;
7676 last = sg;
7678 last->next = first;
7681 #define SD_NODES_PER_DOMAIN 16
7683 #ifdef CONFIG_NUMA
7686 * find_next_best_node - find the next node to include in a sched_domain
7687 * @node: node whose sched_domain we're building
7688 * @used_nodes: nodes already in the sched_domain
7690 * Find the next node to include in a given scheduling domain. Simply
7691 * finds the closest node not already in the @used_nodes map.
7693 * Should use nodemask_t.
7695 static int find_next_best_node(int node, nodemask_t *used_nodes)
7697 int i, n, val, min_val, best_node = 0;
7699 min_val = INT_MAX;
7701 for (i = 0; i < nr_node_ids; i++) {
7702 /* Start at @node */
7703 n = (node + i) % nr_node_ids;
7705 if (!nr_cpus_node(n))
7706 continue;
7708 /* Skip already used nodes */
7709 if (node_isset(n, *used_nodes))
7710 continue;
7712 /* Simple min distance search */
7713 val = node_distance(node, n);
7715 if (val < min_val) {
7716 min_val = val;
7717 best_node = n;
7721 node_set(best_node, *used_nodes);
7722 return best_node;
7726 * sched_domain_node_span - get a cpumask for a node's sched_domain
7727 * @node: node whose cpumask we're constructing
7728 * @span: resulting cpumask
7730 * Given a node, construct a good cpumask for its sched_domain to span. It
7731 * should be one that prevents unnecessary balancing, but also spreads tasks
7732 * out optimally.
7734 static void sched_domain_node_span(int node, struct cpumask *span)
7736 nodemask_t used_nodes;
7737 int i;
7739 cpumask_clear(span);
7740 nodes_clear(used_nodes);
7742 cpumask_or(span, span, cpumask_of_node(node));
7743 node_set(node, used_nodes);
7745 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7746 int next_node = find_next_best_node(node, &used_nodes);
7748 cpumask_or(span, span, cpumask_of_node(next_node));
7751 #endif /* CONFIG_NUMA */
7753 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7756 * The cpus mask in sched_group and sched_domain hangs off the end.
7757 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7758 * for nr_cpu_ids < CONFIG_NR_CPUS.
7760 struct static_sched_group {
7761 struct sched_group sg;
7762 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7765 struct static_sched_domain {
7766 struct sched_domain sd;
7767 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7771 * SMT sched-domains:
7773 #ifdef CONFIG_SCHED_SMT
7774 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7775 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7777 static int
7778 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7779 struct sched_group **sg, struct cpumask *unused)
7781 if (sg)
7782 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7783 return cpu;
7785 #endif /* CONFIG_SCHED_SMT */
7788 * multi-core sched-domains:
7790 #ifdef CONFIG_SCHED_MC
7791 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7792 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7793 #endif /* CONFIG_SCHED_MC */
7795 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7796 static int
7797 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7798 struct sched_group **sg, struct cpumask *mask)
7800 int group;
7802 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7803 group = cpumask_first(mask);
7804 if (sg)
7805 *sg = &per_cpu(sched_group_core, group).sg;
7806 return group;
7808 #elif defined(CONFIG_SCHED_MC)
7809 static int
7810 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7811 struct sched_group **sg, struct cpumask *unused)
7813 if (sg)
7814 *sg = &per_cpu(sched_group_core, cpu).sg;
7815 return cpu;
7817 #endif
7819 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7820 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7822 static int
7823 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7824 struct sched_group **sg, struct cpumask *mask)
7826 int group;
7827 #ifdef CONFIG_SCHED_MC
7828 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7829 group = cpumask_first(mask);
7830 #elif defined(CONFIG_SCHED_SMT)
7831 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7832 group = cpumask_first(mask);
7833 #else
7834 group = cpu;
7835 #endif
7836 if (sg)
7837 *sg = &per_cpu(sched_group_phys, group).sg;
7838 return group;
7841 #ifdef CONFIG_NUMA
7843 * The init_sched_build_groups can't handle what we want to do with node
7844 * groups, so roll our own. Now each node has its own list of groups which
7845 * gets dynamically allocated.
7847 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7848 static struct sched_group ***sched_group_nodes_bycpu;
7850 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7851 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7853 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7854 struct sched_group **sg,
7855 struct cpumask *nodemask)
7857 int group;
7859 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7860 group = cpumask_first(nodemask);
7862 if (sg)
7863 *sg = &per_cpu(sched_group_allnodes, group).sg;
7864 return group;
7867 static void init_numa_sched_groups_power(struct sched_group *group_head)
7869 struct sched_group *sg = group_head;
7870 int j;
7872 if (!sg)
7873 return;
7874 do {
7875 for_each_cpu(j, sched_group_cpus(sg)) {
7876 struct sched_domain *sd;
7878 sd = &per_cpu(phys_domains, j).sd;
7879 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7881 * Only add "power" once for each
7882 * physical package.
7884 continue;
7887 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7889 sg = sg->next;
7890 } while (sg != group_head);
7892 #endif /* CONFIG_NUMA */
7894 #ifdef CONFIG_NUMA
7895 /* Free memory allocated for various sched_group structures */
7896 static void free_sched_groups(const struct cpumask *cpu_map,
7897 struct cpumask *nodemask)
7899 int cpu, i;
7901 for_each_cpu(cpu, cpu_map) {
7902 struct sched_group **sched_group_nodes
7903 = sched_group_nodes_bycpu[cpu];
7905 if (!sched_group_nodes)
7906 continue;
7908 for (i = 0; i < nr_node_ids; i++) {
7909 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7911 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7912 if (cpumask_empty(nodemask))
7913 continue;
7915 if (sg == NULL)
7916 continue;
7917 sg = sg->next;
7918 next_sg:
7919 oldsg = sg;
7920 sg = sg->next;
7921 kfree(oldsg);
7922 if (oldsg != sched_group_nodes[i])
7923 goto next_sg;
7925 kfree(sched_group_nodes);
7926 sched_group_nodes_bycpu[cpu] = NULL;
7929 #else /* !CONFIG_NUMA */
7930 static void free_sched_groups(const struct cpumask *cpu_map,
7931 struct cpumask *nodemask)
7934 #endif /* CONFIG_NUMA */
7937 * Initialize sched groups cpu_power.
7939 * cpu_power indicates the capacity of sched group, which is used while
7940 * distributing the load between different sched groups in a sched domain.
7941 * Typically cpu_power for all the groups in a sched domain will be same unless
7942 * there are asymmetries in the topology. If there are asymmetries, group
7943 * having more cpu_power will pickup more load compared to the group having
7944 * less cpu_power.
7946 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7947 * the maximum number of tasks a group can handle in the presence of other idle
7948 * or lightly loaded groups in the same sched domain.
7950 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7952 struct sched_domain *child;
7953 struct sched_group *group;
7955 WARN_ON(!sd || !sd->groups);
7957 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7958 return;
7960 child = sd->child;
7962 sd->groups->__cpu_power = 0;
7965 * For perf policy, if the groups in child domain share resources
7966 * (for example cores sharing some portions of the cache hierarchy
7967 * or SMT), then set this domain groups cpu_power such that each group
7968 * can handle only one task, when there are other idle groups in the
7969 * same sched domain.
7971 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7972 (child->flags &
7973 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7974 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7975 return;
7979 * add cpu_power of each child group to this groups cpu_power
7981 group = child->groups;
7982 do {
7983 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7984 group = group->next;
7985 } while (group != child->groups);
7989 * Initializers for schedule domains
7990 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7993 #ifdef CONFIG_SCHED_DEBUG
7994 # define SD_INIT_NAME(sd, type) sd->name = #type
7995 #else
7996 # define SD_INIT_NAME(sd, type) do { } while (0)
7997 #endif
7999 #define SD_INIT(sd, type) sd_init_##type(sd)
8001 #define SD_INIT_FUNC(type) \
8002 static noinline void sd_init_##type(struct sched_domain *sd) \
8004 memset(sd, 0, sizeof(*sd)); \
8005 *sd = SD_##type##_INIT; \
8006 sd->level = SD_LV_##type; \
8007 SD_INIT_NAME(sd, type); \
8010 SD_INIT_FUNC(CPU)
8011 #ifdef CONFIG_NUMA
8012 SD_INIT_FUNC(ALLNODES)
8013 SD_INIT_FUNC(NODE)
8014 #endif
8015 #ifdef CONFIG_SCHED_SMT
8016 SD_INIT_FUNC(SIBLING)
8017 #endif
8018 #ifdef CONFIG_SCHED_MC
8019 SD_INIT_FUNC(MC)
8020 #endif
8022 static int default_relax_domain_level = -1;
8024 static int __init setup_relax_domain_level(char *str)
8026 unsigned long val;
8028 val = simple_strtoul(str, NULL, 0);
8029 if (val < SD_LV_MAX)
8030 default_relax_domain_level = val;
8032 return 1;
8034 __setup("relax_domain_level=", setup_relax_domain_level);
8036 static void set_domain_attribute(struct sched_domain *sd,
8037 struct sched_domain_attr *attr)
8039 int request;
8041 if (!attr || attr->relax_domain_level < 0) {
8042 if (default_relax_domain_level < 0)
8043 return;
8044 else
8045 request = default_relax_domain_level;
8046 } else
8047 request = attr->relax_domain_level;
8048 if (request < sd->level) {
8049 /* turn off idle balance on this domain */
8050 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8051 } else {
8052 /* turn on idle balance on this domain */
8053 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8058 * Build sched domains for a given set of cpus and attach the sched domains
8059 * to the individual cpus
8061 static int __build_sched_domains(const struct cpumask *cpu_map,
8062 struct sched_domain_attr *attr)
8064 int i, err = -ENOMEM;
8065 struct root_domain *rd;
8066 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8067 tmpmask;
8068 #ifdef CONFIG_NUMA
8069 cpumask_var_t domainspan, covered, notcovered;
8070 struct sched_group **sched_group_nodes = NULL;
8071 int sd_allnodes = 0;
8073 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8074 goto out;
8075 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8076 goto free_domainspan;
8077 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8078 goto free_covered;
8079 #endif
8081 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8082 goto free_notcovered;
8083 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8084 goto free_nodemask;
8085 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8086 goto free_this_sibling_map;
8087 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8088 goto free_this_core_map;
8089 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8090 goto free_send_covered;
8092 #ifdef CONFIG_NUMA
8094 * Allocate the per-node list of sched groups
8096 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8097 GFP_KERNEL);
8098 if (!sched_group_nodes) {
8099 printk(KERN_WARNING "Can not alloc sched group node list\n");
8100 goto free_tmpmask;
8102 #endif
8104 rd = alloc_rootdomain();
8105 if (!rd) {
8106 printk(KERN_WARNING "Cannot alloc root domain\n");
8107 goto free_sched_groups;
8110 #ifdef CONFIG_NUMA
8111 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8112 #endif
8115 * Set up domains for cpus specified by the cpu_map.
8117 for_each_cpu(i, cpu_map) {
8118 struct sched_domain *sd = NULL, *p;
8120 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8122 #ifdef CONFIG_NUMA
8123 if (cpumask_weight(cpu_map) >
8124 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8125 sd = &per_cpu(allnodes_domains, i).sd;
8126 SD_INIT(sd, ALLNODES);
8127 set_domain_attribute(sd, attr);
8128 cpumask_copy(sched_domain_span(sd), cpu_map);
8129 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8130 p = sd;
8131 sd_allnodes = 1;
8132 } else
8133 p = NULL;
8135 sd = &per_cpu(node_domains, i).sd;
8136 SD_INIT(sd, NODE);
8137 set_domain_attribute(sd, attr);
8138 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8139 sd->parent = p;
8140 if (p)
8141 p->child = sd;
8142 cpumask_and(sched_domain_span(sd),
8143 sched_domain_span(sd), cpu_map);
8144 #endif
8146 p = sd;
8147 sd = &per_cpu(phys_domains, i).sd;
8148 SD_INIT(sd, CPU);
8149 set_domain_attribute(sd, attr);
8150 cpumask_copy(sched_domain_span(sd), nodemask);
8151 sd->parent = p;
8152 if (p)
8153 p->child = sd;
8154 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8156 #ifdef CONFIG_SCHED_MC
8157 p = sd;
8158 sd = &per_cpu(core_domains, i).sd;
8159 SD_INIT(sd, MC);
8160 set_domain_attribute(sd, attr);
8161 cpumask_and(sched_domain_span(sd), cpu_map,
8162 cpu_coregroup_mask(i));
8163 sd->parent = p;
8164 p->child = sd;
8165 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8166 #endif
8168 #ifdef CONFIG_SCHED_SMT
8169 p = sd;
8170 sd = &per_cpu(cpu_domains, i).sd;
8171 SD_INIT(sd, SIBLING);
8172 set_domain_attribute(sd, attr);
8173 cpumask_and(sched_domain_span(sd),
8174 topology_thread_cpumask(i), cpu_map);
8175 sd->parent = p;
8176 p->child = sd;
8177 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8178 #endif
8181 #ifdef CONFIG_SCHED_SMT
8182 /* Set up CPU (sibling) groups */
8183 for_each_cpu(i, cpu_map) {
8184 cpumask_and(this_sibling_map,
8185 topology_thread_cpumask(i), cpu_map);
8186 if (i != cpumask_first(this_sibling_map))
8187 continue;
8189 init_sched_build_groups(this_sibling_map, cpu_map,
8190 &cpu_to_cpu_group,
8191 send_covered, tmpmask);
8193 #endif
8195 #ifdef CONFIG_SCHED_MC
8196 /* Set up multi-core groups */
8197 for_each_cpu(i, cpu_map) {
8198 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8199 if (i != cpumask_first(this_core_map))
8200 continue;
8202 init_sched_build_groups(this_core_map, cpu_map,
8203 &cpu_to_core_group,
8204 send_covered, tmpmask);
8206 #endif
8208 /* Set up physical groups */
8209 for (i = 0; i < nr_node_ids; i++) {
8210 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8211 if (cpumask_empty(nodemask))
8212 continue;
8214 init_sched_build_groups(nodemask, cpu_map,
8215 &cpu_to_phys_group,
8216 send_covered, tmpmask);
8219 #ifdef CONFIG_NUMA
8220 /* Set up node groups */
8221 if (sd_allnodes) {
8222 init_sched_build_groups(cpu_map, cpu_map,
8223 &cpu_to_allnodes_group,
8224 send_covered, tmpmask);
8227 for (i = 0; i < nr_node_ids; i++) {
8228 /* Set up node groups */
8229 struct sched_group *sg, *prev;
8230 int j;
8232 cpumask_clear(covered);
8233 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8234 if (cpumask_empty(nodemask)) {
8235 sched_group_nodes[i] = NULL;
8236 continue;
8239 sched_domain_node_span(i, domainspan);
8240 cpumask_and(domainspan, domainspan, cpu_map);
8242 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8243 GFP_KERNEL, i);
8244 if (!sg) {
8245 printk(KERN_WARNING "Can not alloc domain group for "
8246 "node %d\n", i);
8247 goto error;
8249 sched_group_nodes[i] = sg;
8250 for_each_cpu(j, nodemask) {
8251 struct sched_domain *sd;
8253 sd = &per_cpu(node_domains, j).sd;
8254 sd->groups = sg;
8256 sg->__cpu_power = 0;
8257 cpumask_copy(sched_group_cpus(sg), nodemask);
8258 sg->next = sg;
8259 cpumask_or(covered, covered, nodemask);
8260 prev = sg;
8262 for (j = 0; j < nr_node_ids; j++) {
8263 int n = (i + j) % nr_node_ids;
8265 cpumask_complement(notcovered, covered);
8266 cpumask_and(tmpmask, notcovered, cpu_map);
8267 cpumask_and(tmpmask, tmpmask, domainspan);
8268 if (cpumask_empty(tmpmask))
8269 break;
8271 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8272 if (cpumask_empty(tmpmask))
8273 continue;
8275 sg = kmalloc_node(sizeof(struct sched_group) +
8276 cpumask_size(),
8277 GFP_KERNEL, i);
8278 if (!sg) {
8279 printk(KERN_WARNING
8280 "Can not alloc domain group for node %d\n", j);
8281 goto error;
8283 sg->__cpu_power = 0;
8284 cpumask_copy(sched_group_cpus(sg), tmpmask);
8285 sg->next = prev->next;
8286 cpumask_or(covered, covered, tmpmask);
8287 prev->next = sg;
8288 prev = sg;
8291 #endif
8293 /* Calculate CPU power for physical packages and nodes */
8294 #ifdef CONFIG_SCHED_SMT
8295 for_each_cpu(i, cpu_map) {
8296 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8298 init_sched_groups_power(i, sd);
8300 #endif
8301 #ifdef CONFIG_SCHED_MC
8302 for_each_cpu(i, cpu_map) {
8303 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8305 init_sched_groups_power(i, sd);
8307 #endif
8309 for_each_cpu(i, cpu_map) {
8310 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8312 init_sched_groups_power(i, sd);
8315 #ifdef CONFIG_NUMA
8316 for (i = 0; i < nr_node_ids; i++)
8317 init_numa_sched_groups_power(sched_group_nodes[i]);
8319 if (sd_allnodes) {
8320 struct sched_group *sg;
8322 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8323 tmpmask);
8324 init_numa_sched_groups_power(sg);
8326 #endif
8328 /* Attach the domains */
8329 for_each_cpu(i, cpu_map) {
8330 struct sched_domain *sd;
8331 #ifdef CONFIG_SCHED_SMT
8332 sd = &per_cpu(cpu_domains, i).sd;
8333 #elif defined(CONFIG_SCHED_MC)
8334 sd = &per_cpu(core_domains, i).sd;
8335 #else
8336 sd = &per_cpu(phys_domains, i).sd;
8337 #endif
8338 cpu_attach_domain(sd, rd, i);
8341 err = 0;
8343 free_tmpmask:
8344 free_cpumask_var(tmpmask);
8345 free_send_covered:
8346 free_cpumask_var(send_covered);
8347 free_this_core_map:
8348 free_cpumask_var(this_core_map);
8349 free_this_sibling_map:
8350 free_cpumask_var(this_sibling_map);
8351 free_nodemask:
8352 free_cpumask_var(nodemask);
8353 free_notcovered:
8354 #ifdef CONFIG_NUMA
8355 free_cpumask_var(notcovered);
8356 free_covered:
8357 free_cpumask_var(covered);
8358 free_domainspan:
8359 free_cpumask_var(domainspan);
8360 out:
8361 #endif
8362 return err;
8364 free_sched_groups:
8365 #ifdef CONFIG_NUMA
8366 kfree(sched_group_nodes);
8367 #endif
8368 goto free_tmpmask;
8370 #ifdef CONFIG_NUMA
8371 error:
8372 free_sched_groups(cpu_map, tmpmask);
8373 free_rootdomain(rd);
8374 goto free_tmpmask;
8375 #endif
8378 static int build_sched_domains(const struct cpumask *cpu_map)
8380 return __build_sched_domains(cpu_map, NULL);
8383 static struct cpumask *doms_cur; /* current sched domains */
8384 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8385 static struct sched_domain_attr *dattr_cur;
8386 /* attribues of custom domains in 'doms_cur' */
8389 * Special case: If a kmalloc of a doms_cur partition (array of
8390 * cpumask) fails, then fallback to a single sched domain,
8391 * as determined by the single cpumask fallback_doms.
8393 static cpumask_var_t fallback_doms;
8396 * arch_update_cpu_topology lets virtualized architectures update the
8397 * cpu core maps. It is supposed to return 1 if the topology changed
8398 * or 0 if it stayed the same.
8400 int __attribute__((weak)) arch_update_cpu_topology(void)
8402 return 0;
8406 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8407 * For now this just excludes isolated cpus, but could be used to
8408 * exclude other special cases in the future.
8410 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8412 int err;
8414 arch_update_cpu_topology();
8415 ndoms_cur = 1;
8416 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8417 if (!doms_cur)
8418 doms_cur = fallback_doms;
8419 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8420 dattr_cur = NULL;
8421 err = build_sched_domains(doms_cur);
8422 register_sched_domain_sysctl();
8424 return err;
8427 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8428 struct cpumask *tmpmask)
8430 free_sched_groups(cpu_map, tmpmask);
8434 * Detach sched domains from a group of cpus specified in cpu_map
8435 * These cpus will now be attached to the NULL domain
8437 static void detach_destroy_domains(const struct cpumask *cpu_map)
8439 /* Save because hotplug lock held. */
8440 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8441 int i;
8443 for_each_cpu(i, cpu_map)
8444 cpu_attach_domain(NULL, &def_root_domain, i);
8445 synchronize_sched();
8446 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8449 /* handle null as "default" */
8450 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8451 struct sched_domain_attr *new, int idx_new)
8453 struct sched_domain_attr tmp;
8455 /* fast path */
8456 if (!new && !cur)
8457 return 1;
8459 tmp = SD_ATTR_INIT;
8460 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8461 new ? (new + idx_new) : &tmp,
8462 sizeof(struct sched_domain_attr));
8466 * Partition sched domains as specified by the 'ndoms_new'
8467 * cpumasks in the array doms_new[] of cpumasks. This compares
8468 * doms_new[] to the current sched domain partitioning, doms_cur[].
8469 * It destroys each deleted domain and builds each new domain.
8471 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8472 * The masks don't intersect (don't overlap.) We should setup one
8473 * sched domain for each mask. CPUs not in any of the cpumasks will
8474 * not be load balanced. If the same cpumask appears both in the
8475 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8476 * it as it is.
8478 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8479 * ownership of it and will kfree it when done with it. If the caller
8480 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8481 * ndoms_new == 1, and partition_sched_domains() will fallback to
8482 * the single partition 'fallback_doms', it also forces the domains
8483 * to be rebuilt.
8485 * If doms_new == NULL it will be replaced with cpu_online_mask.
8486 * ndoms_new == 0 is a special case for destroying existing domains,
8487 * and it will not create the default domain.
8489 * Call with hotplug lock held
8491 /* FIXME: Change to struct cpumask *doms_new[] */
8492 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8493 struct sched_domain_attr *dattr_new)
8495 int i, j, n;
8496 int new_topology;
8498 mutex_lock(&sched_domains_mutex);
8500 /* always unregister in case we don't destroy any domains */
8501 unregister_sched_domain_sysctl();
8503 /* Let architecture update cpu core mappings. */
8504 new_topology = arch_update_cpu_topology();
8506 n = doms_new ? ndoms_new : 0;
8508 /* Destroy deleted domains */
8509 for (i = 0; i < ndoms_cur; i++) {
8510 for (j = 0; j < n && !new_topology; j++) {
8511 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8512 && dattrs_equal(dattr_cur, i, dattr_new, j))
8513 goto match1;
8515 /* no match - a current sched domain not in new doms_new[] */
8516 detach_destroy_domains(doms_cur + i);
8517 match1:
8521 if (doms_new == NULL) {
8522 ndoms_cur = 0;
8523 doms_new = fallback_doms;
8524 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8525 WARN_ON_ONCE(dattr_new);
8528 /* Build new domains */
8529 for (i = 0; i < ndoms_new; i++) {
8530 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8531 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8532 && dattrs_equal(dattr_new, i, dattr_cur, j))
8533 goto match2;
8535 /* no match - add a new doms_new */
8536 __build_sched_domains(doms_new + i,
8537 dattr_new ? dattr_new + i : NULL);
8538 match2:
8542 /* Remember the new sched domains */
8543 if (doms_cur != fallback_doms)
8544 kfree(doms_cur);
8545 kfree(dattr_cur); /* kfree(NULL) is safe */
8546 doms_cur = doms_new;
8547 dattr_cur = dattr_new;
8548 ndoms_cur = ndoms_new;
8550 register_sched_domain_sysctl();
8552 mutex_unlock(&sched_domains_mutex);
8555 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8556 static void arch_reinit_sched_domains(void)
8558 get_online_cpus();
8560 /* Destroy domains first to force the rebuild */
8561 partition_sched_domains(0, NULL, NULL);
8563 rebuild_sched_domains();
8564 put_online_cpus();
8567 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8569 unsigned int level = 0;
8571 if (sscanf(buf, "%u", &level) != 1)
8572 return -EINVAL;
8575 * level is always be positive so don't check for
8576 * level < POWERSAVINGS_BALANCE_NONE which is 0
8577 * What happens on 0 or 1 byte write,
8578 * need to check for count as well?
8581 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8582 return -EINVAL;
8584 if (smt)
8585 sched_smt_power_savings = level;
8586 else
8587 sched_mc_power_savings = level;
8589 arch_reinit_sched_domains();
8591 return count;
8594 #ifdef CONFIG_SCHED_MC
8595 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8596 char *page)
8598 return sprintf(page, "%u\n", sched_mc_power_savings);
8600 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8601 const char *buf, size_t count)
8603 return sched_power_savings_store(buf, count, 0);
8605 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8606 sched_mc_power_savings_show,
8607 sched_mc_power_savings_store);
8608 #endif
8610 #ifdef CONFIG_SCHED_SMT
8611 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8612 char *page)
8614 return sprintf(page, "%u\n", sched_smt_power_savings);
8616 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8617 const char *buf, size_t count)
8619 return sched_power_savings_store(buf, count, 1);
8621 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8622 sched_smt_power_savings_show,
8623 sched_smt_power_savings_store);
8624 #endif
8626 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8628 int err = 0;
8630 #ifdef CONFIG_SCHED_SMT
8631 if (smt_capable())
8632 err = sysfs_create_file(&cls->kset.kobj,
8633 &attr_sched_smt_power_savings.attr);
8634 #endif
8635 #ifdef CONFIG_SCHED_MC
8636 if (!err && mc_capable())
8637 err = sysfs_create_file(&cls->kset.kobj,
8638 &attr_sched_mc_power_savings.attr);
8639 #endif
8640 return err;
8642 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8644 #ifndef CONFIG_CPUSETS
8646 * Add online and remove offline CPUs from the scheduler domains.
8647 * When cpusets are enabled they take over this function.
8649 static int update_sched_domains(struct notifier_block *nfb,
8650 unsigned long action, void *hcpu)
8652 switch (action) {
8653 case CPU_ONLINE:
8654 case CPU_ONLINE_FROZEN:
8655 case CPU_DEAD:
8656 case CPU_DEAD_FROZEN:
8657 partition_sched_domains(1, NULL, NULL);
8658 return NOTIFY_OK;
8660 default:
8661 return NOTIFY_DONE;
8664 #endif
8666 static int update_runtime(struct notifier_block *nfb,
8667 unsigned long action, void *hcpu)
8669 int cpu = (int)(long)hcpu;
8671 switch (action) {
8672 case CPU_DOWN_PREPARE:
8673 case CPU_DOWN_PREPARE_FROZEN:
8674 disable_runtime(cpu_rq(cpu));
8675 return NOTIFY_OK;
8677 case CPU_DOWN_FAILED:
8678 case CPU_DOWN_FAILED_FROZEN:
8679 case CPU_ONLINE:
8680 case CPU_ONLINE_FROZEN:
8681 enable_runtime(cpu_rq(cpu));
8682 return NOTIFY_OK;
8684 default:
8685 return NOTIFY_DONE;
8689 void __init sched_init_smp(void)
8691 cpumask_var_t non_isolated_cpus;
8693 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8695 #if defined(CONFIG_NUMA)
8696 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8697 GFP_KERNEL);
8698 BUG_ON(sched_group_nodes_bycpu == NULL);
8699 #endif
8700 get_online_cpus();
8701 mutex_lock(&sched_domains_mutex);
8702 arch_init_sched_domains(cpu_online_mask);
8703 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8704 if (cpumask_empty(non_isolated_cpus))
8705 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8706 mutex_unlock(&sched_domains_mutex);
8707 put_online_cpus();
8709 #ifndef CONFIG_CPUSETS
8710 /* XXX: Theoretical race here - CPU may be hotplugged now */
8711 hotcpu_notifier(update_sched_domains, 0);
8712 #endif
8714 /* RT runtime code needs to handle some hotplug events */
8715 hotcpu_notifier(update_runtime, 0);
8717 init_hrtick();
8719 /* Move init over to a non-isolated CPU */
8720 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8721 BUG();
8722 sched_init_granularity();
8723 free_cpumask_var(non_isolated_cpus);
8725 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8726 init_sched_rt_class();
8728 #else
8729 void __init sched_init_smp(void)
8731 sched_init_granularity();
8733 #endif /* CONFIG_SMP */
8735 int in_sched_functions(unsigned long addr)
8737 return in_lock_functions(addr) ||
8738 (addr >= (unsigned long)__sched_text_start
8739 && addr < (unsigned long)__sched_text_end);
8742 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8744 cfs_rq->tasks_timeline = RB_ROOT;
8745 INIT_LIST_HEAD(&cfs_rq->tasks);
8746 #ifdef CONFIG_FAIR_GROUP_SCHED
8747 cfs_rq->rq = rq;
8748 #endif
8749 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8752 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8754 struct rt_prio_array *array;
8755 int i;
8757 array = &rt_rq->active;
8758 for (i = 0; i < MAX_RT_PRIO; i++) {
8759 INIT_LIST_HEAD(array->queue + i);
8760 __clear_bit(i, array->bitmap);
8762 /* delimiter for bitsearch: */
8763 __set_bit(MAX_RT_PRIO, array->bitmap);
8765 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8766 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8767 #ifdef CONFIG_SMP
8768 rt_rq->highest_prio.next = MAX_RT_PRIO;
8769 #endif
8770 #endif
8771 #ifdef CONFIG_SMP
8772 rt_rq->rt_nr_migratory = 0;
8773 rt_rq->overloaded = 0;
8774 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8775 #endif
8777 rt_rq->rt_time = 0;
8778 rt_rq->rt_throttled = 0;
8779 rt_rq->rt_runtime = 0;
8780 spin_lock_init(&rt_rq->rt_runtime_lock);
8782 #ifdef CONFIG_RT_GROUP_SCHED
8783 rt_rq->rt_nr_boosted = 0;
8784 rt_rq->rq = rq;
8785 #endif
8788 #ifdef CONFIG_FAIR_GROUP_SCHED
8789 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8790 struct sched_entity *se, int cpu, int add,
8791 struct sched_entity *parent)
8793 struct rq *rq = cpu_rq(cpu);
8794 tg->cfs_rq[cpu] = cfs_rq;
8795 init_cfs_rq(cfs_rq, rq);
8796 cfs_rq->tg = tg;
8797 if (add)
8798 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8800 tg->se[cpu] = se;
8801 /* se could be NULL for init_task_group */
8802 if (!se)
8803 return;
8805 if (!parent)
8806 se->cfs_rq = &rq->cfs;
8807 else
8808 se->cfs_rq = parent->my_q;
8810 se->my_q = cfs_rq;
8811 se->load.weight = tg->shares;
8812 se->load.inv_weight = 0;
8813 se->parent = parent;
8815 #endif
8817 #ifdef CONFIG_RT_GROUP_SCHED
8818 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8819 struct sched_rt_entity *rt_se, int cpu, int add,
8820 struct sched_rt_entity *parent)
8822 struct rq *rq = cpu_rq(cpu);
8824 tg->rt_rq[cpu] = rt_rq;
8825 init_rt_rq(rt_rq, rq);
8826 rt_rq->tg = tg;
8827 rt_rq->rt_se = rt_se;
8828 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8829 if (add)
8830 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8832 tg->rt_se[cpu] = rt_se;
8833 if (!rt_se)
8834 return;
8836 if (!parent)
8837 rt_se->rt_rq = &rq->rt;
8838 else
8839 rt_se->rt_rq = parent->my_q;
8841 rt_se->my_q = rt_rq;
8842 rt_se->parent = parent;
8843 INIT_LIST_HEAD(&rt_se->run_list);
8845 #endif
8847 void __init sched_init(void)
8849 int i, j;
8850 unsigned long alloc_size = 0, ptr;
8852 #ifdef CONFIG_FAIR_GROUP_SCHED
8853 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8854 #endif
8855 #ifdef CONFIG_RT_GROUP_SCHED
8856 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8857 #endif
8858 #ifdef CONFIG_USER_SCHED
8859 alloc_size *= 2;
8860 #endif
8861 #ifdef CONFIG_CPUMASK_OFFSTACK
8862 alloc_size += num_possible_cpus() * cpumask_size();
8863 #endif
8865 * As sched_init() is called before page_alloc is setup,
8866 * we use alloc_bootmem().
8868 if (alloc_size) {
8869 ptr = (unsigned long)alloc_bootmem(alloc_size);
8871 #ifdef CONFIG_FAIR_GROUP_SCHED
8872 init_task_group.se = (struct sched_entity **)ptr;
8873 ptr += nr_cpu_ids * sizeof(void **);
8875 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8876 ptr += nr_cpu_ids * sizeof(void **);
8878 #ifdef CONFIG_USER_SCHED
8879 root_task_group.se = (struct sched_entity **)ptr;
8880 ptr += nr_cpu_ids * sizeof(void **);
8882 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8883 ptr += nr_cpu_ids * sizeof(void **);
8884 #endif /* CONFIG_USER_SCHED */
8885 #endif /* CONFIG_FAIR_GROUP_SCHED */
8886 #ifdef CONFIG_RT_GROUP_SCHED
8887 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8888 ptr += nr_cpu_ids * sizeof(void **);
8890 init_task_group.rt_rq = (struct rt_rq **)ptr;
8891 ptr += nr_cpu_ids * sizeof(void **);
8893 #ifdef CONFIG_USER_SCHED
8894 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8895 ptr += nr_cpu_ids * sizeof(void **);
8897 root_task_group.rt_rq = (struct rt_rq **)ptr;
8898 ptr += nr_cpu_ids * sizeof(void **);
8899 #endif /* CONFIG_USER_SCHED */
8900 #endif /* CONFIG_RT_GROUP_SCHED */
8901 #ifdef CONFIG_CPUMASK_OFFSTACK
8902 for_each_possible_cpu(i) {
8903 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8904 ptr += cpumask_size();
8906 #endif /* CONFIG_CPUMASK_OFFSTACK */
8909 #ifdef CONFIG_SMP
8910 init_defrootdomain();
8911 #endif
8913 init_rt_bandwidth(&def_rt_bandwidth,
8914 global_rt_period(), global_rt_runtime());
8916 #ifdef CONFIG_RT_GROUP_SCHED
8917 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8918 global_rt_period(), global_rt_runtime());
8919 #ifdef CONFIG_USER_SCHED
8920 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8921 global_rt_period(), RUNTIME_INF);
8922 #endif /* CONFIG_USER_SCHED */
8923 #endif /* CONFIG_RT_GROUP_SCHED */
8925 #ifdef CONFIG_GROUP_SCHED
8926 list_add(&init_task_group.list, &task_groups);
8927 INIT_LIST_HEAD(&init_task_group.children);
8929 #ifdef CONFIG_USER_SCHED
8930 INIT_LIST_HEAD(&root_task_group.children);
8931 init_task_group.parent = &root_task_group;
8932 list_add(&init_task_group.siblings, &root_task_group.children);
8933 #endif /* CONFIG_USER_SCHED */
8934 #endif /* CONFIG_GROUP_SCHED */
8936 for_each_possible_cpu(i) {
8937 struct rq *rq;
8939 rq = cpu_rq(i);
8940 spin_lock_init(&rq->lock);
8941 rq->nr_running = 0;
8942 init_cfs_rq(&rq->cfs, rq);
8943 init_rt_rq(&rq->rt, rq);
8944 #ifdef CONFIG_FAIR_GROUP_SCHED
8945 init_task_group.shares = init_task_group_load;
8946 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8947 #ifdef CONFIG_CGROUP_SCHED
8949 * How much cpu bandwidth does init_task_group get?
8951 * In case of task-groups formed thr' the cgroup filesystem, it
8952 * gets 100% of the cpu resources in the system. This overall
8953 * system cpu resource is divided among the tasks of
8954 * init_task_group and its child task-groups in a fair manner,
8955 * based on each entity's (task or task-group's) weight
8956 * (se->load.weight).
8958 * In other words, if init_task_group has 10 tasks of weight
8959 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8960 * then A0's share of the cpu resource is:
8962 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8964 * We achieve this by letting init_task_group's tasks sit
8965 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8967 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8968 #elif defined CONFIG_USER_SCHED
8969 root_task_group.shares = NICE_0_LOAD;
8970 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8972 * In case of task-groups formed thr' the user id of tasks,
8973 * init_task_group represents tasks belonging to root user.
8974 * Hence it forms a sibling of all subsequent groups formed.
8975 * In this case, init_task_group gets only a fraction of overall
8976 * system cpu resource, based on the weight assigned to root
8977 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8978 * by letting tasks of init_task_group sit in a separate cfs_rq
8979 * (init_cfs_rq) and having one entity represent this group of
8980 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8982 init_tg_cfs_entry(&init_task_group,
8983 &per_cpu(init_cfs_rq, i),
8984 &per_cpu(init_sched_entity, i), i, 1,
8985 root_task_group.se[i]);
8987 #endif
8988 #endif /* CONFIG_FAIR_GROUP_SCHED */
8990 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8991 #ifdef CONFIG_RT_GROUP_SCHED
8992 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8993 #ifdef CONFIG_CGROUP_SCHED
8994 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8995 #elif defined CONFIG_USER_SCHED
8996 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8997 init_tg_rt_entry(&init_task_group,
8998 &per_cpu(init_rt_rq, i),
8999 &per_cpu(init_sched_rt_entity, i), i, 1,
9000 root_task_group.rt_se[i]);
9001 #endif
9002 #endif
9004 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9005 rq->cpu_load[j] = 0;
9006 #ifdef CONFIG_SMP
9007 rq->sd = NULL;
9008 rq->rd = NULL;
9009 rq->active_balance = 0;
9010 rq->next_balance = jiffies;
9011 rq->push_cpu = 0;
9012 rq->cpu = i;
9013 rq->online = 0;
9014 rq->migration_thread = NULL;
9015 INIT_LIST_HEAD(&rq->migration_queue);
9016 rq_attach_root(rq, &def_root_domain);
9017 #endif
9018 init_rq_hrtick(rq);
9019 atomic_set(&rq->nr_iowait, 0);
9022 set_load_weight(&init_task);
9024 #ifdef CONFIG_PREEMPT_NOTIFIERS
9025 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9026 #endif
9028 #ifdef CONFIG_SMP
9029 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9030 #endif
9032 #ifdef CONFIG_RT_MUTEXES
9033 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9034 #endif
9037 * The boot idle thread does lazy MMU switching as well:
9039 atomic_inc(&init_mm.mm_count);
9040 enter_lazy_tlb(&init_mm, current);
9043 * Make us the idle thread. Technically, schedule() should not be
9044 * called from this thread, however somewhere below it might be,
9045 * but because we are the idle thread, we just pick up running again
9046 * when this runqueue becomes "idle".
9048 init_idle(current, smp_processor_id());
9050 * During early bootup we pretend to be a normal task:
9052 current->sched_class = &fair_sched_class;
9054 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9055 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9056 #ifdef CONFIG_SMP
9057 #ifdef CONFIG_NO_HZ
9058 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9059 #endif
9060 alloc_bootmem_cpumask_var(&cpu_isolated_map);
9061 #endif /* SMP */
9063 scheduler_running = 1;
9066 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9067 void __might_sleep(char *file, int line)
9069 #ifdef in_atomic
9070 static unsigned long prev_jiffy; /* ratelimiting */
9072 if ((!in_atomic() && !irqs_disabled()) ||
9073 system_state != SYSTEM_RUNNING || oops_in_progress)
9074 return;
9075 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9076 return;
9077 prev_jiffy = jiffies;
9079 printk(KERN_ERR
9080 "BUG: sleeping function called from invalid context at %s:%d\n",
9081 file, line);
9082 printk(KERN_ERR
9083 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9084 in_atomic(), irqs_disabled(),
9085 current->pid, current->comm);
9087 debug_show_held_locks(current);
9088 if (irqs_disabled())
9089 print_irqtrace_events(current);
9090 dump_stack();
9091 #endif
9093 EXPORT_SYMBOL(__might_sleep);
9094 #endif
9096 #ifdef CONFIG_MAGIC_SYSRQ
9097 static void normalize_task(struct rq *rq, struct task_struct *p)
9099 int on_rq;
9101 update_rq_clock(rq);
9102 on_rq = p->se.on_rq;
9103 if (on_rq)
9104 deactivate_task(rq, p, 0);
9105 __setscheduler(rq, p, SCHED_NORMAL, 0);
9106 if (on_rq) {
9107 activate_task(rq, p, 0);
9108 resched_task(rq->curr);
9112 void normalize_rt_tasks(void)
9114 struct task_struct *g, *p;
9115 unsigned long flags;
9116 struct rq *rq;
9118 read_lock_irqsave(&tasklist_lock, flags);
9119 do_each_thread(g, p) {
9121 * Only normalize user tasks:
9123 if (!p->mm)
9124 continue;
9126 p->se.exec_start = 0;
9127 #ifdef CONFIG_SCHEDSTATS
9128 p->se.wait_start = 0;
9129 p->se.sleep_start = 0;
9130 p->se.block_start = 0;
9131 #endif
9133 if (!rt_task(p)) {
9135 * Renice negative nice level userspace
9136 * tasks back to 0:
9138 if (TASK_NICE(p) < 0 && p->mm)
9139 set_user_nice(p, 0);
9140 continue;
9143 spin_lock(&p->pi_lock);
9144 rq = __task_rq_lock(p);
9146 normalize_task(rq, p);
9148 __task_rq_unlock(rq);
9149 spin_unlock(&p->pi_lock);
9150 } while_each_thread(g, p);
9152 read_unlock_irqrestore(&tasklist_lock, flags);
9155 #endif /* CONFIG_MAGIC_SYSRQ */
9157 #ifdef CONFIG_IA64
9159 * These functions are only useful for the IA64 MCA handling.
9161 * They can only be called when the whole system has been
9162 * stopped - every CPU needs to be quiescent, and no scheduling
9163 * activity can take place. Using them for anything else would
9164 * be a serious bug, and as a result, they aren't even visible
9165 * under any other configuration.
9169 * curr_task - return the current task for a given cpu.
9170 * @cpu: the processor in question.
9172 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9174 struct task_struct *curr_task(int cpu)
9176 return cpu_curr(cpu);
9180 * set_curr_task - set the current task for a given cpu.
9181 * @cpu: the processor in question.
9182 * @p: the task pointer to set.
9184 * Description: This function must only be used when non-maskable interrupts
9185 * are serviced on a separate stack. It allows the architecture to switch the
9186 * notion of the current task on a cpu in a non-blocking manner. This function
9187 * must be called with all CPU's synchronized, and interrupts disabled, the
9188 * and caller must save the original value of the current task (see
9189 * curr_task() above) and restore that value before reenabling interrupts and
9190 * re-starting the system.
9192 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9194 void set_curr_task(int cpu, struct task_struct *p)
9196 cpu_curr(cpu) = p;
9199 #endif
9201 #ifdef CONFIG_FAIR_GROUP_SCHED
9202 static void free_fair_sched_group(struct task_group *tg)
9204 int i;
9206 for_each_possible_cpu(i) {
9207 if (tg->cfs_rq)
9208 kfree(tg->cfs_rq[i]);
9209 if (tg->se)
9210 kfree(tg->se[i]);
9213 kfree(tg->cfs_rq);
9214 kfree(tg->se);
9217 static
9218 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9220 struct cfs_rq *cfs_rq;
9221 struct sched_entity *se;
9222 struct rq *rq;
9223 int i;
9225 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9226 if (!tg->cfs_rq)
9227 goto err;
9228 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9229 if (!tg->se)
9230 goto err;
9232 tg->shares = NICE_0_LOAD;
9234 for_each_possible_cpu(i) {
9235 rq = cpu_rq(i);
9237 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9238 GFP_KERNEL, cpu_to_node(i));
9239 if (!cfs_rq)
9240 goto err;
9242 se = kzalloc_node(sizeof(struct sched_entity),
9243 GFP_KERNEL, cpu_to_node(i));
9244 if (!se)
9245 goto err;
9247 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9250 return 1;
9252 err:
9253 return 0;
9256 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9258 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9259 &cpu_rq(cpu)->leaf_cfs_rq_list);
9262 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9264 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9266 #else /* !CONFG_FAIR_GROUP_SCHED */
9267 static inline void free_fair_sched_group(struct task_group *tg)
9271 static inline
9272 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9274 return 1;
9277 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9281 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9284 #endif /* CONFIG_FAIR_GROUP_SCHED */
9286 #ifdef CONFIG_RT_GROUP_SCHED
9287 static void free_rt_sched_group(struct task_group *tg)
9289 int i;
9291 destroy_rt_bandwidth(&tg->rt_bandwidth);
9293 for_each_possible_cpu(i) {
9294 if (tg->rt_rq)
9295 kfree(tg->rt_rq[i]);
9296 if (tg->rt_se)
9297 kfree(tg->rt_se[i]);
9300 kfree(tg->rt_rq);
9301 kfree(tg->rt_se);
9304 static
9305 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9307 struct rt_rq *rt_rq;
9308 struct sched_rt_entity *rt_se;
9309 struct rq *rq;
9310 int i;
9312 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9313 if (!tg->rt_rq)
9314 goto err;
9315 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9316 if (!tg->rt_se)
9317 goto err;
9319 init_rt_bandwidth(&tg->rt_bandwidth,
9320 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9322 for_each_possible_cpu(i) {
9323 rq = cpu_rq(i);
9325 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9326 GFP_KERNEL, cpu_to_node(i));
9327 if (!rt_rq)
9328 goto err;
9330 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9331 GFP_KERNEL, cpu_to_node(i));
9332 if (!rt_se)
9333 goto err;
9335 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9338 return 1;
9340 err:
9341 return 0;
9344 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9346 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9347 &cpu_rq(cpu)->leaf_rt_rq_list);
9350 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9352 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9354 #else /* !CONFIG_RT_GROUP_SCHED */
9355 static inline void free_rt_sched_group(struct task_group *tg)
9359 static inline
9360 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9362 return 1;
9365 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9369 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9372 #endif /* CONFIG_RT_GROUP_SCHED */
9374 #ifdef CONFIG_GROUP_SCHED
9375 static void free_sched_group(struct task_group *tg)
9377 free_fair_sched_group(tg);
9378 free_rt_sched_group(tg);
9379 kfree(tg);
9382 /* allocate runqueue etc for a new task group */
9383 struct task_group *sched_create_group(struct task_group *parent)
9385 struct task_group *tg;
9386 unsigned long flags;
9387 int i;
9389 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9390 if (!tg)
9391 return ERR_PTR(-ENOMEM);
9393 if (!alloc_fair_sched_group(tg, parent))
9394 goto err;
9396 if (!alloc_rt_sched_group(tg, parent))
9397 goto err;
9399 spin_lock_irqsave(&task_group_lock, flags);
9400 for_each_possible_cpu(i) {
9401 register_fair_sched_group(tg, i);
9402 register_rt_sched_group(tg, i);
9404 list_add_rcu(&tg->list, &task_groups);
9406 WARN_ON(!parent); /* root should already exist */
9408 tg->parent = parent;
9409 INIT_LIST_HEAD(&tg->children);
9410 list_add_rcu(&tg->siblings, &parent->children);
9411 spin_unlock_irqrestore(&task_group_lock, flags);
9413 return tg;
9415 err:
9416 free_sched_group(tg);
9417 return ERR_PTR(-ENOMEM);
9420 /* rcu callback to free various structures associated with a task group */
9421 static void free_sched_group_rcu(struct rcu_head *rhp)
9423 /* now it should be safe to free those cfs_rqs */
9424 free_sched_group(container_of(rhp, struct task_group, rcu));
9427 /* Destroy runqueue etc associated with a task group */
9428 void sched_destroy_group(struct task_group *tg)
9430 unsigned long flags;
9431 int i;
9433 spin_lock_irqsave(&task_group_lock, flags);
9434 for_each_possible_cpu(i) {
9435 unregister_fair_sched_group(tg, i);
9436 unregister_rt_sched_group(tg, i);
9438 list_del_rcu(&tg->list);
9439 list_del_rcu(&tg->siblings);
9440 spin_unlock_irqrestore(&task_group_lock, flags);
9442 /* wait for possible concurrent references to cfs_rqs complete */
9443 call_rcu(&tg->rcu, free_sched_group_rcu);
9446 /* change task's runqueue when it moves between groups.
9447 * The caller of this function should have put the task in its new group
9448 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9449 * reflect its new group.
9451 void sched_move_task(struct task_struct *tsk)
9453 int on_rq, running;
9454 unsigned long flags;
9455 struct rq *rq;
9457 rq = task_rq_lock(tsk, &flags);
9459 update_rq_clock(rq);
9461 running = task_current(rq, tsk);
9462 on_rq = tsk->se.on_rq;
9464 if (on_rq)
9465 dequeue_task(rq, tsk, 0);
9466 if (unlikely(running))
9467 tsk->sched_class->put_prev_task(rq, tsk);
9469 set_task_rq(tsk, task_cpu(tsk));
9471 #ifdef CONFIG_FAIR_GROUP_SCHED
9472 if (tsk->sched_class->moved_group)
9473 tsk->sched_class->moved_group(tsk);
9474 #endif
9476 if (unlikely(running))
9477 tsk->sched_class->set_curr_task(rq);
9478 if (on_rq)
9479 enqueue_task(rq, tsk, 0);
9481 task_rq_unlock(rq, &flags);
9483 #endif /* CONFIG_GROUP_SCHED */
9485 #ifdef CONFIG_FAIR_GROUP_SCHED
9486 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9488 struct cfs_rq *cfs_rq = se->cfs_rq;
9489 int on_rq;
9491 on_rq = se->on_rq;
9492 if (on_rq)
9493 dequeue_entity(cfs_rq, se, 0);
9495 se->load.weight = shares;
9496 se->load.inv_weight = 0;
9498 if (on_rq)
9499 enqueue_entity(cfs_rq, se, 0);
9502 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9504 struct cfs_rq *cfs_rq = se->cfs_rq;
9505 struct rq *rq = cfs_rq->rq;
9506 unsigned long flags;
9508 spin_lock_irqsave(&rq->lock, flags);
9509 __set_se_shares(se, shares);
9510 spin_unlock_irqrestore(&rq->lock, flags);
9513 static DEFINE_MUTEX(shares_mutex);
9515 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9517 int i;
9518 unsigned long flags;
9521 * We can't change the weight of the root cgroup.
9523 if (!tg->se[0])
9524 return -EINVAL;
9526 if (shares < MIN_SHARES)
9527 shares = MIN_SHARES;
9528 else if (shares > MAX_SHARES)
9529 shares = MAX_SHARES;
9531 mutex_lock(&shares_mutex);
9532 if (tg->shares == shares)
9533 goto done;
9535 spin_lock_irqsave(&task_group_lock, flags);
9536 for_each_possible_cpu(i)
9537 unregister_fair_sched_group(tg, i);
9538 list_del_rcu(&tg->siblings);
9539 spin_unlock_irqrestore(&task_group_lock, flags);
9541 /* wait for any ongoing reference to this group to finish */
9542 synchronize_sched();
9545 * Now we are free to modify the group's share on each cpu
9546 * w/o tripping rebalance_share or load_balance_fair.
9548 tg->shares = shares;
9549 for_each_possible_cpu(i) {
9551 * force a rebalance
9553 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9554 set_se_shares(tg->se[i], shares);
9558 * Enable load balance activity on this group, by inserting it back on
9559 * each cpu's rq->leaf_cfs_rq_list.
9561 spin_lock_irqsave(&task_group_lock, flags);
9562 for_each_possible_cpu(i)
9563 register_fair_sched_group(tg, i);
9564 list_add_rcu(&tg->siblings, &tg->parent->children);
9565 spin_unlock_irqrestore(&task_group_lock, flags);
9566 done:
9567 mutex_unlock(&shares_mutex);
9568 return 0;
9571 unsigned long sched_group_shares(struct task_group *tg)
9573 return tg->shares;
9575 #endif
9577 #ifdef CONFIG_RT_GROUP_SCHED
9579 * Ensure that the real time constraints are schedulable.
9581 static DEFINE_MUTEX(rt_constraints_mutex);
9583 static unsigned long to_ratio(u64 period, u64 runtime)
9585 if (runtime == RUNTIME_INF)
9586 return 1ULL << 20;
9588 return div64_u64(runtime << 20, period);
9591 /* Must be called with tasklist_lock held */
9592 static inline int tg_has_rt_tasks(struct task_group *tg)
9594 struct task_struct *g, *p;
9596 do_each_thread(g, p) {
9597 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9598 return 1;
9599 } while_each_thread(g, p);
9601 return 0;
9604 struct rt_schedulable_data {
9605 struct task_group *tg;
9606 u64 rt_period;
9607 u64 rt_runtime;
9610 static int tg_schedulable(struct task_group *tg, void *data)
9612 struct rt_schedulable_data *d = data;
9613 struct task_group *child;
9614 unsigned long total, sum = 0;
9615 u64 period, runtime;
9617 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9618 runtime = tg->rt_bandwidth.rt_runtime;
9620 if (tg == d->tg) {
9621 period = d->rt_period;
9622 runtime = d->rt_runtime;
9625 #ifdef CONFIG_USER_SCHED
9626 if (tg == &root_task_group) {
9627 period = global_rt_period();
9628 runtime = global_rt_runtime();
9630 #endif
9633 * Cannot have more runtime than the period.
9635 if (runtime > period && runtime != RUNTIME_INF)
9636 return -EINVAL;
9639 * Ensure we don't starve existing RT tasks.
9641 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9642 return -EBUSY;
9644 total = to_ratio(period, runtime);
9647 * Nobody can have more than the global setting allows.
9649 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9650 return -EINVAL;
9653 * The sum of our children's runtime should not exceed our own.
9655 list_for_each_entry_rcu(child, &tg->children, siblings) {
9656 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9657 runtime = child->rt_bandwidth.rt_runtime;
9659 if (child == d->tg) {
9660 period = d->rt_period;
9661 runtime = d->rt_runtime;
9664 sum += to_ratio(period, runtime);
9667 if (sum > total)
9668 return -EINVAL;
9670 return 0;
9673 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9675 struct rt_schedulable_data data = {
9676 .tg = tg,
9677 .rt_period = period,
9678 .rt_runtime = runtime,
9681 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9684 static int tg_set_bandwidth(struct task_group *tg,
9685 u64 rt_period, u64 rt_runtime)
9687 int i, err = 0;
9689 mutex_lock(&rt_constraints_mutex);
9690 read_lock(&tasklist_lock);
9691 err = __rt_schedulable(tg, rt_period, rt_runtime);
9692 if (err)
9693 goto unlock;
9695 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9696 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9697 tg->rt_bandwidth.rt_runtime = rt_runtime;
9699 for_each_possible_cpu(i) {
9700 struct rt_rq *rt_rq = tg->rt_rq[i];
9702 spin_lock(&rt_rq->rt_runtime_lock);
9703 rt_rq->rt_runtime = rt_runtime;
9704 spin_unlock(&rt_rq->rt_runtime_lock);
9706 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9707 unlock:
9708 read_unlock(&tasklist_lock);
9709 mutex_unlock(&rt_constraints_mutex);
9711 return err;
9714 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9716 u64 rt_runtime, rt_period;
9718 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9719 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9720 if (rt_runtime_us < 0)
9721 rt_runtime = RUNTIME_INF;
9723 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9726 long sched_group_rt_runtime(struct task_group *tg)
9728 u64 rt_runtime_us;
9730 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9731 return -1;
9733 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9734 do_div(rt_runtime_us, NSEC_PER_USEC);
9735 return rt_runtime_us;
9738 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9740 u64 rt_runtime, rt_period;
9742 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9743 rt_runtime = tg->rt_bandwidth.rt_runtime;
9745 if (rt_period == 0)
9746 return -EINVAL;
9748 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9751 long sched_group_rt_period(struct task_group *tg)
9753 u64 rt_period_us;
9755 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9756 do_div(rt_period_us, NSEC_PER_USEC);
9757 return rt_period_us;
9760 static int sched_rt_global_constraints(void)
9762 u64 runtime, period;
9763 int ret = 0;
9765 if (sysctl_sched_rt_period <= 0)
9766 return -EINVAL;
9768 runtime = global_rt_runtime();
9769 period = global_rt_period();
9772 * Sanity check on the sysctl variables.
9774 if (runtime > period && runtime != RUNTIME_INF)
9775 return -EINVAL;
9777 mutex_lock(&rt_constraints_mutex);
9778 read_lock(&tasklist_lock);
9779 ret = __rt_schedulable(NULL, 0, 0);
9780 read_unlock(&tasklist_lock);
9781 mutex_unlock(&rt_constraints_mutex);
9783 return ret;
9786 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9788 /* Don't accept realtime tasks when there is no way for them to run */
9789 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9790 return 0;
9792 return 1;
9795 #else /* !CONFIG_RT_GROUP_SCHED */
9796 static int sched_rt_global_constraints(void)
9798 unsigned long flags;
9799 int i;
9801 if (sysctl_sched_rt_period <= 0)
9802 return -EINVAL;
9804 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9805 for_each_possible_cpu(i) {
9806 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9808 spin_lock(&rt_rq->rt_runtime_lock);
9809 rt_rq->rt_runtime = global_rt_runtime();
9810 spin_unlock(&rt_rq->rt_runtime_lock);
9812 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9814 return 0;
9816 #endif /* CONFIG_RT_GROUP_SCHED */
9818 int sched_rt_handler(struct ctl_table *table, int write,
9819 struct file *filp, void __user *buffer, size_t *lenp,
9820 loff_t *ppos)
9822 int ret;
9823 int old_period, old_runtime;
9824 static DEFINE_MUTEX(mutex);
9826 mutex_lock(&mutex);
9827 old_period = sysctl_sched_rt_period;
9828 old_runtime = sysctl_sched_rt_runtime;
9830 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9832 if (!ret && write) {
9833 ret = sched_rt_global_constraints();
9834 if (ret) {
9835 sysctl_sched_rt_period = old_period;
9836 sysctl_sched_rt_runtime = old_runtime;
9837 } else {
9838 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9839 def_rt_bandwidth.rt_period =
9840 ns_to_ktime(global_rt_period());
9843 mutex_unlock(&mutex);
9845 return ret;
9848 #ifdef CONFIG_CGROUP_SCHED
9850 /* return corresponding task_group object of a cgroup */
9851 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9853 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9854 struct task_group, css);
9857 static struct cgroup_subsys_state *
9858 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9860 struct task_group *tg, *parent;
9862 if (!cgrp->parent) {
9863 /* This is early initialization for the top cgroup */
9864 return &init_task_group.css;
9867 parent = cgroup_tg(cgrp->parent);
9868 tg = sched_create_group(parent);
9869 if (IS_ERR(tg))
9870 return ERR_PTR(-ENOMEM);
9872 return &tg->css;
9875 static void
9876 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9878 struct task_group *tg = cgroup_tg(cgrp);
9880 sched_destroy_group(tg);
9883 static int
9884 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9885 struct task_struct *tsk)
9887 #ifdef CONFIG_RT_GROUP_SCHED
9888 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9889 return -EINVAL;
9890 #else
9891 /* We don't support RT-tasks being in separate groups */
9892 if (tsk->sched_class != &fair_sched_class)
9893 return -EINVAL;
9894 #endif
9896 return 0;
9899 static void
9900 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9901 struct cgroup *old_cont, struct task_struct *tsk)
9903 sched_move_task(tsk);
9906 #ifdef CONFIG_FAIR_GROUP_SCHED
9907 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9908 u64 shareval)
9910 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9913 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9915 struct task_group *tg = cgroup_tg(cgrp);
9917 return (u64) tg->shares;
9919 #endif /* CONFIG_FAIR_GROUP_SCHED */
9921 #ifdef CONFIG_RT_GROUP_SCHED
9922 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9923 s64 val)
9925 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9928 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9930 return sched_group_rt_runtime(cgroup_tg(cgrp));
9933 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9934 u64 rt_period_us)
9936 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9939 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9941 return sched_group_rt_period(cgroup_tg(cgrp));
9943 #endif /* CONFIG_RT_GROUP_SCHED */
9945 static struct cftype cpu_files[] = {
9946 #ifdef CONFIG_FAIR_GROUP_SCHED
9948 .name = "shares",
9949 .read_u64 = cpu_shares_read_u64,
9950 .write_u64 = cpu_shares_write_u64,
9952 #endif
9953 #ifdef CONFIG_RT_GROUP_SCHED
9955 .name = "rt_runtime_us",
9956 .read_s64 = cpu_rt_runtime_read,
9957 .write_s64 = cpu_rt_runtime_write,
9960 .name = "rt_period_us",
9961 .read_u64 = cpu_rt_period_read_uint,
9962 .write_u64 = cpu_rt_period_write_uint,
9964 #endif
9967 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9969 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9972 struct cgroup_subsys cpu_cgroup_subsys = {
9973 .name = "cpu",
9974 .create = cpu_cgroup_create,
9975 .destroy = cpu_cgroup_destroy,
9976 .can_attach = cpu_cgroup_can_attach,
9977 .attach = cpu_cgroup_attach,
9978 .populate = cpu_cgroup_populate,
9979 .subsys_id = cpu_cgroup_subsys_id,
9980 .early_init = 1,
9983 #endif /* CONFIG_CGROUP_SCHED */
9985 #ifdef CONFIG_CGROUP_CPUACCT
9988 * CPU accounting code for task groups.
9990 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9991 * (balbir@in.ibm.com).
9994 /* track cpu usage of a group of tasks and its child groups */
9995 struct cpuacct {
9996 struct cgroup_subsys_state css;
9997 /* cpuusage holds pointer to a u64-type object on every cpu */
9998 u64 *cpuusage;
9999 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10000 struct cpuacct *parent;
10003 struct cgroup_subsys cpuacct_subsys;
10005 /* return cpu accounting group corresponding to this container */
10006 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10008 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10009 struct cpuacct, css);
10012 /* return cpu accounting group to which this task belongs */
10013 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10015 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10016 struct cpuacct, css);
10019 /* create a new cpu accounting group */
10020 static struct cgroup_subsys_state *cpuacct_create(
10021 struct cgroup_subsys *ss, struct cgroup *cgrp)
10023 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10024 int i;
10026 if (!ca)
10027 goto out;
10029 ca->cpuusage = alloc_percpu(u64);
10030 if (!ca->cpuusage)
10031 goto out_free_ca;
10033 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10034 if (percpu_counter_init(&ca->cpustat[i], 0))
10035 goto out_free_counters;
10037 if (cgrp->parent)
10038 ca->parent = cgroup_ca(cgrp->parent);
10040 return &ca->css;
10042 out_free_counters:
10043 while (--i >= 0)
10044 percpu_counter_destroy(&ca->cpustat[i]);
10045 free_percpu(ca->cpuusage);
10046 out_free_ca:
10047 kfree(ca);
10048 out:
10049 return ERR_PTR(-ENOMEM);
10052 /* destroy an existing cpu accounting group */
10053 static void
10054 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10056 struct cpuacct *ca = cgroup_ca(cgrp);
10057 int i;
10059 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10060 percpu_counter_destroy(&ca->cpustat[i]);
10061 free_percpu(ca->cpuusage);
10062 kfree(ca);
10065 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10067 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10068 u64 data;
10070 #ifndef CONFIG_64BIT
10072 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10074 spin_lock_irq(&cpu_rq(cpu)->lock);
10075 data = *cpuusage;
10076 spin_unlock_irq(&cpu_rq(cpu)->lock);
10077 #else
10078 data = *cpuusage;
10079 #endif
10081 return data;
10084 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10086 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10088 #ifndef CONFIG_64BIT
10090 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10092 spin_lock_irq(&cpu_rq(cpu)->lock);
10093 *cpuusage = val;
10094 spin_unlock_irq(&cpu_rq(cpu)->lock);
10095 #else
10096 *cpuusage = val;
10097 #endif
10100 /* return total cpu usage (in nanoseconds) of a group */
10101 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10103 struct cpuacct *ca = cgroup_ca(cgrp);
10104 u64 totalcpuusage = 0;
10105 int i;
10107 for_each_present_cpu(i)
10108 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10110 return totalcpuusage;
10113 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10114 u64 reset)
10116 struct cpuacct *ca = cgroup_ca(cgrp);
10117 int err = 0;
10118 int i;
10120 if (reset) {
10121 err = -EINVAL;
10122 goto out;
10125 for_each_present_cpu(i)
10126 cpuacct_cpuusage_write(ca, i, 0);
10128 out:
10129 return err;
10132 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10133 struct seq_file *m)
10135 struct cpuacct *ca = cgroup_ca(cgroup);
10136 u64 percpu;
10137 int i;
10139 for_each_present_cpu(i) {
10140 percpu = cpuacct_cpuusage_read(ca, i);
10141 seq_printf(m, "%llu ", (unsigned long long) percpu);
10143 seq_printf(m, "\n");
10144 return 0;
10147 static const char *cpuacct_stat_desc[] = {
10148 [CPUACCT_STAT_USER] = "user",
10149 [CPUACCT_STAT_SYSTEM] = "system",
10152 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10153 struct cgroup_map_cb *cb)
10155 struct cpuacct *ca = cgroup_ca(cgrp);
10156 int i;
10158 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10159 s64 val = percpu_counter_read(&ca->cpustat[i]);
10160 val = cputime64_to_clock_t(val);
10161 cb->fill(cb, cpuacct_stat_desc[i], val);
10163 return 0;
10166 static struct cftype files[] = {
10168 .name = "usage",
10169 .read_u64 = cpuusage_read,
10170 .write_u64 = cpuusage_write,
10173 .name = "usage_percpu",
10174 .read_seq_string = cpuacct_percpu_seq_read,
10177 .name = "stat",
10178 .read_map = cpuacct_stats_show,
10182 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10184 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10188 * charge this task's execution time to its accounting group.
10190 * called with rq->lock held.
10192 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10194 struct cpuacct *ca;
10195 int cpu;
10197 if (unlikely(!cpuacct_subsys.active))
10198 return;
10200 cpu = task_cpu(tsk);
10202 rcu_read_lock();
10204 ca = task_ca(tsk);
10206 for (; ca; ca = ca->parent) {
10207 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10208 *cpuusage += cputime;
10211 rcu_read_unlock();
10215 * Charge the system/user time to the task's accounting group.
10217 static void cpuacct_update_stats(struct task_struct *tsk,
10218 enum cpuacct_stat_index idx, cputime_t val)
10220 struct cpuacct *ca;
10222 if (unlikely(!cpuacct_subsys.active))
10223 return;
10225 rcu_read_lock();
10226 ca = task_ca(tsk);
10228 do {
10229 percpu_counter_add(&ca->cpustat[idx], val);
10230 ca = ca->parent;
10231 } while (ca);
10232 rcu_read_unlock();
10235 struct cgroup_subsys cpuacct_subsys = {
10236 .name = "cpuacct",
10237 .create = cpuacct_create,
10238 .destroy = cpuacct_destroy,
10239 .populate = cpuacct_populate,
10240 .subsys_id = cpuacct_subsys_id,
10242 #endif /* CONFIG_CGROUP_CPUACCT */