mm/futex: fix futex writes on archs with SW tracking of
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memory.c
blob4b12a10baecf1ed84e5455671e9711cad69947a1
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 long val = 0;
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val = atomic_long_read(&mm->rss_stat.count[member]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 __sync_task_rss_stat(task, mm);
185 #else
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct *task)
194 #endif
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
202 void pgd_clear_bad(pgd_t *pgd)
204 pgd_ERROR(*pgd);
205 pgd_clear(pgd);
208 void pud_clear_bad(pud_t *pud)
210 pud_ERROR(*pud);
211 pud_clear(pud);
214 void pmd_clear_bad(pmd_t *pmd)
216 pmd_ERROR(*pmd);
217 pmd_clear(pmd);
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 unsigned long addr)
227 pgtable_t token = pmd_pgtable(*pmd);
228 pmd_clear(pmd);
229 pte_free_tlb(tlb, token, addr);
230 tlb->mm->nr_ptes--;
233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
237 pmd_t *pmd;
238 unsigned long next;
239 unsigned long start;
241 start = addr;
242 pmd = pmd_offset(pud, addr);
243 do {
244 next = pmd_addr_end(addr, end);
245 if (pmd_none_or_clear_bad(pmd))
246 continue;
247 free_pte_range(tlb, pmd, addr);
248 } while (pmd++, addr = next, addr != end);
250 start &= PUD_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= PUD_MASK;
255 if (!ceiling)
256 return;
258 if (end - 1 > ceiling - 1)
259 return;
261 pmd = pmd_offset(pud, start);
262 pud_clear(pud);
263 pmd_free_tlb(tlb, pmd, start);
266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
270 pud_t *pud;
271 unsigned long next;
272 unsigned long start;
274 start = addr;
275 pud = pud_offset(pgd, addr);
276 do {
277 next = pud_addr_end(addr, end);
278 if (pud_none_or_clear_bad(pud))
279 continue;
280 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281 } while (pud++, addr = next, addr != end);
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
291 if (end - 1 > ceiling - 1)
292 return;
294 pud = pud_offset(pgd, start);
295 pgd_clear(pgd);
296 pud_free_tlb(tlb, pud, start);
300 * This function frees user-level page tables of a process.
302 * Must be called with pagetable lock held.
304 void free_pgd_range(struct mmu_gather *tlb,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
308 pgd_t *pgd;
309 unsigned long next;
310 unsigned long start;
313 * The next few lines have given us lots of grief...
315 * Why are we testing PMD* at this top level? Because often
316 * there will be no work to do at all, and we'd prefer not to
317 * go all the way down to the bottom just to discover that.
319 * Why all these "- 1"s? Because 0 represents both the bottom
320 * of the address space and the top of it (using -1 for the
321 * top wouldn't help much: the masks would do the wrong thing).
322 * The rule is that addr 0 and floor 0 refer to the bottom of
323 * the address space, but end 0 and ceiling 0 refer to the top
324 * Comparisons need to use "end - 1" and "ceiling - 1" (though
325 * that end 0 case should be mythical).
327 * Wherever addr is brought up or ceiling brought down, we must
328 * be careful to reject "the opposite 0" before it confuses the
329 * subsequent tests. But what about where end is brought down
330 * by PMD_SIZE below? no, end can't go down to 0 there.
332 * Whereas we round start (addr) and ceiling down, by different
333 * masks at different levels, in order to test whether a table
334 * now has no other vmas using it, so can be freed, we don't
335 * bother to round floor or end up - the tests don't need that.
338 addr &= PMD_MASK;
339 if (addr < floor) {
340 addr += PMD_SIZE;
341 if (!addr)
342 return;
344 if (ceiling) {
345 ceiling &= PMD_MASK;
346 if (!ceiling)
347 return;
349 if (end - 1 > ceiling - 1)
350 end -= PMD_SIZE;
351 if (addr > end - 1)
352 return;
354 start = addr;
355 pgd = pgd_offset(tlb->mm, addr);
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
360 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
361 } while (pgd++, addr = next, addr != end);
364 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
365 unsigned long floor, unsigned long ceiling)
367 while (vma) {
368 struct vm_area_struct *next = vma->vm_next;
369 unsigned long addr = vma->vm_start;
372 * Hide vma from rmap and truncate_pagecache before freeing
373 * pgtables
375 unlink_anon_vmas(vma);
376 unlink_file_vma(vma);
378 if (is_vm_hugetlb_page(vma)) {
379 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
380 floor, next? next->vm_start: ceiling);
381 } else {
383 * Optimization: gather nearby vmas into one call down
385 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
386 && !is_vm_hugetlb_page(next)) {
387 vma = next;
388 next = vma->vm_next;
389 unlink_anon_vmas(vma);
390 unlink_file_vma(vma);
392 free_pgd_range(tlb, addr, vma->vm_end,
393 floor, next? next->vm_start: ceiling);
395 vma = next;
399 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
401 pgtable_t new = pte_alloc_one(mm, address);
402 if (!new)
403 return -ENOMEM;
406 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 * visible before the pte is made visible to other CPUs by being
408 * put into page tables.
410 * The other side of the story is the pointer chasing in the page
411 * table walking code (when walking the page table without locking;
412 * ie. most of the time). Fortunately, these data accesses consist
413 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 * being the notable exception) will already guarantee loads are
415 * seen in-order. See the alpha page table accessors for the
416 * smp_read_barrier_depends() barriers in page table walking code.
418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
420 spin_lock(&mm->page_table_lock);
421 if (!pmd_present(*pmd)) { /* Has another populated it ? */
422 mm->nr_ptes++;
423 pmd_populate(mm, pmd, new);
424 new = NULL;
426 spin_unlock(&mm->page_table_lock);
427 if (new)
428 pte_free(mm, new);
429 return 0;
432 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
434 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
435 if (!new)
436 return -ENOMEM;
438 smp_wmb(); /* See comment in __pte_alloc */
440 spin_lock(&init_mm.page_table_lock);
441 if (!pmd_present(*pmd)) { /* Has another populated it ? */
442 pmd_populate_kernel(&init_mm, pmd, new);
443 new = NULL;
445 spin_unlock(&init_mm.page_table_lock);
446 if (new)
447 pte_free_kernel(&init_mm, new);
448 return 0;
451 static inline void init_rss_vec(int *rss)
453 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
456 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
458 int i;
460 if (current->mm == mm)
461 sync_mm_rss(current, mm);
462 for (i = 0; i < NR_MM_COUNTERS; i++)
463 if (rss[i])
464 add_mm_counter(mm, i, rss[i]);
468 * This function is called to print an error when a bad pte
469 * is found. For example, we might have a PFN-mapped pte in
470 * a region that doesn't allow it.
472 * The calling function must still handle the error.
474 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
475 pte_t pte, struct page *page)
477 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
478 pud_t *pud = pud_offset(pgd, addr);
479 pmd_t *pmd = pmd_offset(pud, addr);
480 struct address_space *mapping;
481 pgoff_t index;
482 static unsigned long resume;
483 static unsigned long nr_shown;
484 static unsigned long nr_unshown;
487 * Allow a burst of 60 reports, then keep quiet for that minute;
488 * or allow a steady drip of one report per second.
490 if (nr_shown == 60) {
491 if (time_before(jiffies, resume)) {
492 nr_unshown++;
493 return;
495 if (nr_unshown) {
496 printk(KERN_ALERT
497 "BUG: Bad page map: %lu messages suppressed\n",
498 nr_unshown);
499 nr_unshown = 0;
501 nr_shown = 0;
503 if (nr_shown++ == 0)
504 resume = jiffies + 60 * HZ;
506 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
507 index = linear_page_index(vma, addr);
509 printk(KERN_ALERT
510 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
511 current->comm,
512 (long long)pte_val(pte), (long long)pmd_val(*pmd));
513 if (page)
514 dump_page(page);
515 printk(KERN_ALERT
516 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
517 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
519 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
521 if (vma->vm_ops)
522 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
523 (unsigned long)vma->vm_ops->fault);
524 if (vma->vm_file && vma->vm_file->f_op)
525 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
526 (unsigned long)vma->vm_file->f_op->mmap);
527 dump_stack();
528 add_taint(TAINT_BAD_PAGE);
531 static inline int is_cow_mapping(unsigned int flags)
533 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
536 #ifndef is_zero_pfn
537 static inline int is_zero_pfn(unsigned long pfn)
539 return pfn == zero_pfn;
541 #endif
543 #ifndef my_zero_pfn
544 static inline unsigned long my_zero_pfn(unsigned long addr)
546 return zero_pfn;
548 #endif
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
560 * described below.
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 * And for normal mappings this is false.
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
592 #ifdef __HAVE_ARCH_PTE_SPECIAL
593 # define HAVE_PTE_SPECIAL 1
594 #else
595 # define HAVE_PTE_SPECIAL 0
596 #endif
597 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
598 pte_t pte)
600 unsigned long pfn = pte_pfn(pte);
602 if (HAVE_PTE_SPECIAL) {
603 if (likely(!pte_special(pte)))
604 goto check_pfn;
605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 return NULL;
607 if (!is_zero_pfn(pfn))
608 print_bad_pte(vma, addr, pte, NULL);
609 return NULL;
612 /* !HAVE_PTE_SPECIAL case follows: */
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
616 if (!pfn_valid(pfn))
617 return NULL;
618 goto out;
619 } else {
620 unsigned long off;
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 if (pfn == vma->vm_pgoff + off)
623 return NULL;
624 if (!is_cow_mapping(vma->vm_flags))
625 return NULL;
629 if (is_zero_pfn(pfn))
630 return NULL;
631 check_pfn:
632 if (unlikely(pfn > highest_memmap_pfn)) {
633 print_bad_pte(vma, addr, pte, NULL);
634 return NULL;
638 * NOTE! We still have PageReserved() pages in the page tables.
639 * eg. VDSO mappings can cause them to exist.
641 out:
642 return pfn_to_page(pfn);
646 * copy one vm_area from one task to the other. Assumes the page tables
647 * already present in the new task to be cleared in the whole range
648 * covered by this vma.
651 static inline unsigned long
652 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
653 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
654 unsigned long addr, int *rss)
656 unsigned long vm_flags = vma->vm_flags;
657 pte_t pte = *src_pte;
658 struct page *page;
660 /* pte contains position in swap or file, so copy. */
661 if (unlikely(!pte_present(pte))) {
662 if (!pte_file(pte)) {
663 swp_entry_t entry = pte_to_swp_entry(pte);
665 if (swap_duplicate(entry) < 0)
666 return entry.val;
668 /* make sure dst_mm is on swapoff's mmlist. */
669 if (unlikely(list_empty(&dst_mm->mmlist))) {
670 spin_lock(&mmlist_lock);
671 if (list_empty(&dst_mm->mmlist))
672 list_add(&dst_mm->mmlist,
673 &src_mm->mmlist);
674 spin_unlock(&mmlist_lock);
676 if (likely(!non_swap_entry(entry)))
677 rss[MM_SWAPENTS]++;
678 else if (is_write_migration_entry(entry) &&
679 is_cow_mapping(vm_flags)) {
681 * COW mappings require pages in both parent
682 * and child to be set to read.
684 make_migration_entry_read(&entry);
685 pte = swp_entry_to_pte(entry);
686 set_pte_at(src_mm, addr, src_pte, pte);
689 goto out_set_pte;
693 * If it's a COW mapping, write protect it both
694 * in the parent and the child
696 if (is_cow_mapping(vm_flags)) {
697 ptep_set_wrprotect(src_mm, addr, src_pte);
698 pte = pte_wrprotect(pte);
702 * If it's a shared mapping, mark it clean in
703 * the child
705 if (vm_flags & VM_SHARED)
706 pte = pte_mkclean(pte);
707 pte = pte_mkold(pte);
709 page = vm_normal_page(vma, addr, pte);
710 if (page) {
711 get_page(page);
712 page_dup_rmap(page);
713 if (PageAnon(page))
714 rss[MM_ANONPAGES]++;
715 else
716 rss[MM_FILEPAGES]++;
719 out_set_pte:
720 set_pte_at(dst_mm, addr, dst_pte, pte);
721 return 0;
724 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
725 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
726 unsigned long addr, unsigned long end)
728 pte_t *orig_src_pte, *orig_dst_pte;
729 pte_t *src_pte, *dst_pte;
730 spinlock_t *src_ptl, *dst_ptl;
731 int progress = 0;
732 int rss[NR_MM_COUNTERS];
733 swp_entry_t entry = (swp_entry_t){0};
735 again:
736 init_rss_vec(rss);
738 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
739 if (!dst_pte)
740 return -ENOMEM;
741 src_pte = pte_offset_map_nested(src_pmd, addr);
742 src_ptl = pte_lockptr(src_mm, src_pmd);
743 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
744 orig_src_pte = src_pte;
745 orig_dst_pte = dst_pte;
746 arch_enter_lazy_mmu_mode();
748 do {
750 * We are holding two locks at this point - either of them
751 * could generate latencies in another task on another CPU.
753 if (progress >= 32) {
754 progress = 0;
755 if (need_resched() ||
756 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
757 break;
759 if (pte_none(*src_pte)) {
760 progress++;
761 continue;
763 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
764 vma, addr, rss);
765 if (entry.val)
766 break;
767 progress += 8;
768 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
770 arch_leave_lazy_mmu_mode();
771 spin_unlock(src_ptl);
772 pte_unmap_nested(orig_src_pte);
773 add_mm_rss_vec(dst_mm, rss);
774 pte_unmap_unlock(orig_dst_pte, dst_ptl);
775 cond_resched();
777 if (entry.val) {
778 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
779 return -ENOMEM;
780 progress = 0;
782 if (addr != end)
783 goto again;
784 return 0;
787 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
788 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
789 unsigned long addr, unsigned long end)
791 pmd_t *src_pmd, *dst_pmd;
792 unsigned long next;
794 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
795 if (!dst_pmd)
796 return -ENOMEM;
797 src_pmd = pmd_offset(src_pud, addr);
798 do {
799 next = pmd_addr_end(addr, end);
800 if (pmd_none_or_clear_bad(src_pmd))
801 continue;
802 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
803 vma, addr, next))
804 return -ENOMEM;
805 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
806 return 0;
809 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
810 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
811 unsigned long addr, unsigned long end)
813 pud_t *src_pud, *dst_pud;
814 unsigned long next;
816 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
817 if (!dst_pud)
818 return -ENOMEM;
819 src_pud = pud_offset(src_pgd, addr);
820 do {
821 next = pud_addr_end(addr, end);
822 if (pud_none_or_clear_bad(src_pud))
823 continue;
824 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
825 vma, addr, next))
826 return -ENOMEM;
827 } while (dst_pud++, src_pud++, addr = next, addr != end);
828 return 0;
831 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
832 struct vm_area_struct *vma)
834 pgd_t *src_pgd, *dst_pgd;
835 unsigned long next;
836 unsigned long addr = vma->vm_start;
837 unsigned long end = vma->vm_end;
838 int ret;
841 * Don't copy ptes where a page fault will fill them correctly.
842 * Fork becomes much lighter when there are big shared or private
843 * readonly mappings. The tradeoff is that copy_page_range is more
844 * efficient than faulting.
846 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
847 if (!vma->anon_vma)
848 return 0;
851 if (is_vm_hugetlb_page(vma))
852 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
854 if (unlikely(is_pfn_mapping(vma))) {
856 * We do not free on error cases below as remove_vma
857 * gets called on error from higher level routine
859 ret = track_pfn_vma_copy(vma);
860 if (ret)
861 return ret;
865 * We need to invalidate the secondary MMU mappings only when
866 * there could be a permission downgrade on the ptes of the
867 * parent mm. And a permission downgrade will only happen if
868 * is_cow_mapping() returns true.
870 if (is_cow_mapping(vma->vm_flags))
871 mmu_notifier_invalidate_range_start(src_mm, addr, end);
873 ret = 0;
874 dst_pgd = pgd_offset(dst_mm, addr);
875 src_pgd = pgd_offset(src_mm, addr);
876 do {
877 next = pgd_addr_end(addr, end);
878 if (pgd_none_or_clear_bad(src_pgd))
879 continue;
880 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
881 vma, addr, next))) {
882 ret = -ENOMEM;
883 break;
885 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
887 if (is_cow_mapping(vma->vm_flags))
888 mmu_notifier_invalidate_range_end(src_mm,
889 vma->vm_start, end);
890 return ret;
893 static unsigned long zap_pte_range(struct mmu_gather *tlb,
894 struct vm_area_struct *vma, pmd_t *pmd,
895 unsigned long addr, unsigned long end,
896 long *zap_work, struct zap_details *details)
898 struct mm_struct *mm = tlb->mm;
899 pte_t *pte;
900 spinlock_t *ptl;
901 int rss[NR_MM_COUNTERS];
903 init_rss_vec(rss);
905 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
906 arch_enter_lazy_mmu_mode();
907 do {
908 pte_t ptent = *pte;
909 if (pte_none(ptent)) {
910 (*zap_work)--;
911 continue;
914 (*zap_work) -= PAGE_SIZE;
916 if (pte_present(ptent)) {
917 struct page *page;
919 page = vm_normal_page(vma, addr, ptent);
920 if (unlikely(details) && page) {
922 * unmap_shared_mapping_pages() wants to
923 * invalidate cache without truncating:
924 * unmap shared but keep private pages.
926 if (details->check_mapping &&
927 details->check_mapping != page->mapping)
928 continue;
930 * Each page->index must be checked when
931 * invalidating or truncating nonlinear.
933 if (details->nonlinear_vma &&
934 (page->index < details->first_index ||
935 page->index > details->last_index))
936 continue;
938 ptent = ptep_get_and_clear_full(mm, addr, pte,
939 tlb->fullmm);
940 tlb_remove_tlb_entry(tlb, pte, addr);
941 if (unlikely(!page))
942 continue;
943 if (unlikely(details) && details->nonlinear_vma
944 && linear_page_index(details->nonlinear_vma,
945 addr) != page->index)
946 set_pte_at(mm, addr, pte,
947 pgoff_to_pte(page->index));
948 if (PageAnon(page))
949 rss[MM_ANONPAGES]--;
950 else {
951 if (pte_dirty(ptent))
952 set_page_dirty(page);
953 if (pte_young(ptent) &&
954 likely(!VM_SequentialReadHint(vma)))
955 mark_page_accessed(page);
956 rss[MM_FILEPAGES]--;
958 page_remove_rmap(page);
959 if (unlikely(page_mapcount(page) < 0))
960 print_bad_pte(vma, addr, ptent, page);
961 tlb_remove_page(tlb, page);
962 continue;
965 * If details->check_mapping, we leave swap entries;
966 * if details->nonlinear_vma, we leave file entries.
968 if (unlikely(details))
969 continue;
970 if (pte_file(ptent)) {
971 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
972 print_bad_pte(vma, addr, ptent, NULL);
973 } else {
974 swp_entry_t entry = pte_to_swp_entry(ptent);
976 if (!non_swap_entry(entry))
977 rss[MM_SWAPENTS]--;
978 if (unlikely(!free_swap_and_cache(entry)))
979 print_bad_pte(vma, addr, ptent, NULL);
981 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
982 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
984 add_mm_rss_vec(mm, rss);
985 arch_leave_lazy_mmu_mode();
986 pte_unmap_unlock(pte - 1, ptl);
988 return addr;
991 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
992 struct vm_area_struct *vma, pud_t *pud,
993 unsigned long addr, unsigned long end,
994 long *zap_work, struct zap_details *details)
996 pmd_t *pmd;
997 unsigned long next;
999 pmd = pmd_offset(pud, addr);
1000 do {
1001 next = pmd_addr_end(addr, end);
1002 if (pmd_none_or_clear_bad(pmd)) {
1003 (*zap_work)--;
1004 continue;
1006 next = zap_pte_range(tlb, vma, pmd, addr, next,
1007 zap_work, details);
1008 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1010 return addr;
1013 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1014 struct vm_area_struct *vma, pgd_t *pgd,
1015 unsigned long addr, unsigned long end,
1016 long *zap_work, struct zap_details *details)
1018 pud_t *pud;
1019 unsigned long next;
1021 pud = pud_offset(pgd, addr);
1022 do {
1023 next = pud_addr_end(addr, end);
1024 if (pud_none_or_clear_bad(pud)) {
1025 (*zap_work)--;
1026 continue;
1028 next = zap_pmd_range(tlb, vma, pud, addr, next,
1029 zap_work, details);
1030 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1032 return addr;
1035 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1036 struct vm_area_struct *vma,
1037 unsigned long addr, unsigned long end,
1038 long *zap_work, struct zap_details *details)
1040 pgd_t *pgd;
1041 unsigned long next;
1043 if (details && !details->check_mapping && !details->nonlinear_vma)
1044 details = NULL;
1046 BUG_ON(addr >= end);
1047 mem_cgroup_uncharge_start();
1048 tlb_start_vma(tlb, vma);
1049 pgd = pgd_offset(vma->vm_mm, addr);
1050 do {
1051 next = pgd_addr_end(addr, end);
1052 if (pgd_none_or_clear_bad(pgd)) {
1053 (*zap_work)--;
1054 continue;
1056 next = zap_pud_range(tlb, vma, pgd, addr, next,
1057 zap_work, details);
1058 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1059 tlb_end_vma(tlb, vma);
1060 mem_cgroup_uncharge_end();
1062 return addr;
1065 #ifdef CONFIG_PREEMPT
1066 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1067 #else
1068 /* No preempt: go for improved straight-line efficiency */
1069 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1070 #endif
1073 * unmap_vmas - unmap a range of memory covered by a list of vma's
1074 * @tlbp: address of the caller's struct mmu_gather
1075 * @vma: the starting vma
1076 * @start_addr: virtual address at which to start unmapping
1077 * @end_addr: virtual address at which to end unmapping
1078 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1079 * @details: details of nonlinear truncation or shared cache invalidation
1081 * Returns the end address of the unmapping (restart addr if interrupted).
1083 * Unmap all pages in the vma list.
1085 * We aim to not hold locks for too long (for scheduling latency reasons).
1086 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1087 * return the ending mmu_gather to the caller.
1089 * Only addresses between `start' and `end' will be unmapped.
1091 * The VMA list must be sorted in ascending virtual address order.
1093 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1094 * range after unmap_vmas() returns. So the only responsibility here is to
1095 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1096 * drops the lock and schedules.
1098 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1099 struct vm_area_struct *vma, unsigned long start_addr,
1100 unsigned long end_addr, unsigned long *nr_accounted,
1101 struct zap_details *details)
1103 long zap_work = ZAP_BLOCK_SIZE;
1104 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1105 int tlb_start_valid = 0;
1106 unsigned long start = start_addr;
1107 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1108 int fullmm = (*tlbp)->fullmm;
1109 struct mm_struct *mm = vma->vm_mm;
1111 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1112 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1113 unsigned long end;
1115 start = max(vma->vm_start, start_addr);
1116 if (start >= vma->vm_end)
1117 continue;
1118 end = min(vma->vm_end, end_addr);
1119 if (end <= vma->vm_start)
1120 continue;
1122 if (vma->vm_flags & VM_ACCOUNT)
1123 *nr_accounted += (end - start) >> PAGE_SHIFT;
1125 if (unlikely(is_pfn_mapping(vma)))
1126 untrack_pfn_vma(vma, 0, 0);
1128 while (start != end) {
1129 if (!tlb_start_valid) {
1130 tlb_start = start;
1131 tlb_start_valid = 1;
1134 if (unlikely(is_vm_hugetlb_page(vma))) {
1136 * It is undesirable to test vma->vm_file as it
1137 * should be non-null for valid hugetlb area.
1138 * However, vm_file will be NULL in the error
1139 * cleanup path of do_mmap_pgoff. When
1140 * hugetlbfs ->mmap method fails,
1141 * do_mmap_pgoff() nullifies vma->vm_file
1142 * before calling this function to clean up.
1143 * Since no pte has actually been setup, it is
1144 * safe to do nothing in this case.
1146 if (vma->vm_file) {
1147 unmap_hugepage_range(vma, start, end, NULL);
1148 zap_work -= (end - start) /
1149 pages_per_huge_page(hstate_vma(vma));
1152 start = end;
1153 } else
1154 start = unmap_page_range(*tlbp, vma,
1155 start, end, &zap_work, details);
1157 if (zap_work > 0) {
1158 BUG_ON(start != end);
1159 break;
1162 tlb_finish_mmu(*tlbp, tlb_start, start);
1164 if (need_resched() ||
1165 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1166 if (i_mmap_lock) {
1167 *tlbp = NULL;
1168 goto out;
1170 cond_resched();
1173 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1174 tlb_start_valid = 0;
1175 zap_work = ZAP_BLOCK_SIZE;
1178 out:
1179 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1180 return start; /* which is now the end (or restart) address */
1184 * zap_page_range - remove user pages in a given range
1185 * @vma: vm_area_struct holding the applicable pages
1186 * @address: starting address of pages to zap
1187 * @size: number of bytes to zap
1188 * @details: details of nonlinear truncation or shared cache invalidation
1190 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1191 unsigned long size, struct zap_details *details)
1193 struct mm_struct *mm = vma->vm_mm;
1194 struct mmu_gather *tlb;
1195 unsigned long end = address + size;
1196 unsigned long nr_accounted = 0;
1198 lru_add_drain();
1199 tlb = tlb_gather_mmu(mm, 0);
1200 update_hiwater_rss(mm);
1201 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1202 if (tlb)
1203 tlb_finish_mmu(tlb, address, end);
1204 return end;
1208 * zap_vma_ptes - remove ptes mapping the vma
1209 * @vma: vm_area_struct holding ptes to be zapped
1210 * @address: starting address of pages to zap
1211 * @size: number of bytes to zap
1213 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1215 * The entire address range must be fully contained within the vma.
1217 * Returns 0 if successful.
1219 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1220 unsigned long size)
1222 if (address < vma->vm_start || address + size > vma->vm_end ||
1223 !(vma->vm_flags & VM_PFNMAP))
1224 return -1;
1225 zap_page_range(vma, address, size, NULL);
1226 return 0;
1228 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1231 * follow_page - look up a page descriptor from a user-virtual address
1232 * @vma: vm_area_struct mapping @address
1233 * @address: virtual address to look up
1234 * @flags: flags modifying lookup behaviour
1236 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1238 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1239 * an error pointer if there is a mapping to something not represented
1240 * by a page descriptor (see also vm_normal_page()).
1242 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1243 unsigned int flags)
1245 pgd_t *pgd;
1246 pud_t *pud;
1247 pmd_t *pmd;
1248 pte_t *ptep, pte;
1249 spinlock_t *ptl;
1250 struct page *page;
1251 struct mm_struct *mm = vma->vm_mm;
1253 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1254 if (!IS_ERR(page)) {
1255 BUG_ON(flags & FOLL_GET);
1256 goto out;
1259 page = NULL;
1260 pgd = pgd_offset(mm, address);
1261 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1262 goto no_page_table;
1264 pud = pud_offset(pgd, address);
1265 if (pud_none(*pud))
1266 goto no_page_table;
1267 if (pud_huge(*pud)) {
1268 BUG_ON(flags & FOLL_GET);
1269 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1270 goto out;
1272 if (unlikely(pud_bad(*pud)))
1273 goto no_page_table;
1275 pmd = pmd_offset(pud, address);
1276 if (pmd_none(*pmd))
1277 goto no_page_table;
1278 if (pmd_huge(*pmd)) {
1279 BUG_ON(flags & FOLL_GET);
1280 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1281 goto out;
1283 if (unlikely(pmd_bad(*pmd)))
1284 goto no_page_table;
1286 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1288 pte = *ptep;
1289 if (!pte_present(pte))
1290 goto no_page;
1291 if ((flags & FOLL_WRITE) && !pte_write(pte))
1292 goto unlock;
1294 page = vm_normal_page(vma, address, pte);
1295 if (unlikely(!page)) {
1296 if ((flags & FOLL_DUMP) ||
1297 !is_zero_pfn(pte_pfn(pte)))
1298 goto bad_page;
1299 page = pte_page(pte);
1302 if (flags & FOLL_GET)
1303 get_page(page);
1304 if (flags & FOLL_TOUCH) {
1305 if ((flags & FOLL_WRITE) &&
1306 !pte_dirty(pte) && !PageDirty(page))
1307 set_page_dirty(page);
1309 * pte_mkyoung() would be more correct here, but atomic care
1310 * is needed to avoid losing the dirty bit: it is easier to use
1311 * mark_page_accessed().
1313 mark_page_accessed(page);
1315 unlock:
1316 pte_unmap_unlock(ptep, ptl);
1317 out:
1318 return page;
1320 bad_page:
1321 pte_unmap_unlock(ptep, ptl);
1322 return ERR_PTR(-EFAULT);
1324 no_page:
1325 pte_unmap_unlock(ptep, ptl);
1326 if (!pte_none(pte))
1327 return page;
1329 no_page_table:
1331 * When core dumping an enormous anonymous area that nobody
1332 * has touched so far, we don't want to allocate unnecessary pages or
1333 * page tables. Return error instead of NULL to skip handle_mm_fault,
1334 * then get_dump_page() will return NULL to leave a hole in the dump.
1335 * But we can only make this optimization where a hole would surely
1336 * be zero-filled if handle_mm_fault() actually did handle it.
1338 if ((flags & FOLL_DUMP) &&
1339 (!vma->vm_ops || !vma->vm_ops->fault))
1340 return ERR_PTR(-EFAULT);
1341 return page;
1344 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1345 unsigned long start, int nr_pages, unsigned int gup_flags,
1346 struct page **pages, struct vm_area_struct **vmas)
1348 int i;
1349 unsigned long vm_flags;
1351 if (nr_pages <= 0)
1352 return 0;
1354 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1357 * Require read or write permissions.
1358 * If FOLL_FORCE is set, we only require the "MAY" flags.
1360 vm_flags = (gup_flags & FOLL_WRITE) ?
1361 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1362 vm_flags &= (gup_flags & FOLL_FORCE) ?
1363 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1364 i = 0;
1366 do {
1367 struct vm_area_struct *vma;
1369 vma = find_extend_vma(mm, start);
1370 if (!vma && in_gate_area(tsk, start)) {
1371 unsigned long pg = start & PAGE_MASK;
1372 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1373 pgd_t *pgd;
1374 pud_t *pud;
1375 pmd_t *pmd;
1376 pte_t *pte;
1378 /* user gate pages are read-only */
1379 if (gup_flags & FOLL_WRITE)
1380 return i ? : -EFAULT;
1381 if (pg > TASK_SIZE)
1382 pgd = pgd_offset_k(pg);
1383 else
1384 pgd = pgd_offset_gate(mm, pg);
1385 BUG_ON(pgd_none(*pgd));
1386 pud = pud_offset(pgd, pg);
1387 BUG_ON(pud_none(*pud));
1388 pmd = pmd_offset(pud, pg);
1389 if (pmd_none(*pmd))
1390 return i ? : -EFAULT;
1391 pte = pte_offset_map(pmd, pg);
1392 if (pte_none(*pte)) {
1393 pte_unmap(pte);
1394 return i ? : -EFAULT;
1396 if (pages) {
1397 struct page *page;
1399 page = vm_normal_page(gate_vma, start, *pte);
1400 if (!page) {
1401 if (!(gup_flags & FOLL_DUMP) &&
1402 is_zero_pfn(pte_pfn(*pte)))
1403 page = pte_page(*pte);
1404 else {
1405 pte_unmap(pte);
1406 return i ? : -EFAULT;
1409 pages[i] = page;
1410 get_page(page);
1412 pte_unmap(pte);
1413 if (vmas)
1414 vmas[i] = gate_vma;
1415 i++;
1416 start += PAGE_SIZE;
1417 nr_pages--;
1418 continue;
1421 if (!vma ||
1422 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1423 !(vm_flags & vma->vm_flags))
1424 return i ? : -EFAULT;
1426 if (is_vm_hugetlb_page(vma)) {
1427 i = follow_hugetlb_page(mm, vma, pages, vmas,
1428 &start, &nr_pages, i, gup_flags);
1429 continue;
1432 do {
1433 struct page *page;
1434 unsigned int foll_flags = gup_flags;
1437 * If we have a pending SIGKILL, don't keep faulting
1438 * pages and potentially allocating memory.
1440 if (unlikely(fatal_signal_pending(current)))
1441 return i ? i : -ERESTARTSYS;
1443 cond_resched();
1444 while (!(page = follow_page(vma, start, foll_flags))) {
1445 int ret;
1447 ret = handle_mm_fault(mm, vma, start,
1448 (foll_flags & FOLL_WRITE) ?
1449 FAULT_FLAG_WRITE : 0);
1451 if (ret & VM_FAULT_ERROR) {
1452 if (ret & VM_FAULT_OOM)
1453 return i ? i : -ENOMEM;
1454 if (ret &
1455 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1456 return i ? i : -EFAULT;
1457 BUG();
1459 if (ret & VM_FAULT_MAJOR)
1460 tsk->maj_flt++;
1461 else
1462 tsk->min_flt++;
1465 * The VM_FAULT_WRITE bit tells us that
1466 * do_wp_page has broken COW when necessary,
1467 * even if maybe_mkwrite decided not to set
1468 * pte_write. We can thus safely do subsequent
1469 * page lookups as if they were reads. But only
1470 * do so when looping for pte_write is futile:
1471 * in some cases userspace may also be wanting
1472 * to write to the gotten user page, which a
1473 * read fault here might prevent (a readonly
1474 * page might get reCOWed by userspace write).
1476 if ((ret & VM_FAULT_WRITE) &&
1477 !(vma->vm_flags & VM_WRITE))
1478 foll_flags &= ~FOLL_WRITE;
1480 cond_resched();
1482 if (IS_ERR(page))
1483 return i ? i : PTR_ERR(page);
1484 if (pages) {
1485 pages[i] = page;
1487 flush_anon_page(vma, page, start);
1488 flush_dcache_page(page);
1490 if (vmas)
1491 vmas[i] = vma;
1492 i++;
1493 start += PAGE_SIZE;
1494 nr_pages--;
1495 } while (nr_pages && start < vma->vm_end);
1496 } while (nr_pages);
1497 return i;
1501 * fixup_user_fault() - manually resolve a user page fault
1502 * @tsk: the task_struct to use for page fault accounting, or
1503 * NULL if faults are not to be recorded.
1504 * @mm: mm_struct of target mm
1505 * @address: user address
1506 * @fault_flags:flags to pass down to handle_mm_fault()
1508 * This is meant to be called in the specific scenario where for locking reasons
1509 * we try to access user memory in atomic context (within a pagefault_disable()
1510 * section), this returns -EFAULT, and we want to resolve the user fault before
1511 * trying again.
1513 * Typically this is meant to be used by the futex code.
1515 * The main difference with get_user_pages() is that this function will
1516 * unconditionally call handle_mm_fault() which will in turn perform all the
1517 * necessary SW fixup of the dirty and young bits in the PTE, while
1518 * handle_mm_fault() only guarantees to update these in the struct page.
1520 * This is important for some architectures where those bits also gate the
1521 * access permission to the page because they are maintained in software. On
1522 * such architectures, gup() will not be enough to make a subsequent access
1523 * succeed.
1525 * This should be called with the mm_sem held for read.
1527 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1528 unsigned long address, unsigned int fault_flags)
1530 struct vm_area_struct *vma;
1531 int ret;
1533 vma = find_extend_vma(mm, address);
1534 if (!vma || address < vma->vm_start)
1535 return -EFAULT;
1537 ret = handle_mm_fault(mm, vma, address, fault_flags);
1538 if (ret & VM_FAULT_ERROR) {
1539 if (ret & VM_FAULT_OOM)
1540 return -ENOMEM;
1541 if (ret & VM_FAULT_HWPOISON)
1542 return -EFAULT;
1543 if (ret & VM_FAULT_SIGBUS)
1544 return -EFAULT;
1545 BUG();
1547 if (tsk) {
1548 if (ret & VM_FAULT_MAJOR)
1549 tsk->maj_flt++;
1550 else
1551 tsk->min_flt++;
1553 return 0;
1557 * get_user_pages() - pin user pages in memory
1558 * @tsk: task_struct of target task
1559 * @mm: mm_struct of target mm
1560 * @start: starting user address
1561 * @nr_pages: number of pages from start to pin
1562 * @write: whether pages will be written to by the caller
1563 * @force: whether to force write access even if user mapping is
1564 * readonly. This will result in the page being COWed even
1565 * in MAP_SHARED mappings. You do not want this.
1566 * @pages: array that receives pointers to the pages pinned.
1567 * Should be at least nr_pages long. Or NULL, if caller
1568 * only intends to ensure the pages are faulted in.
1569 * @vmas: array of pointers to vmas corresponding to each page.
1570 * Or NULL if the caller does not require them.
1572 * Returns number of pages pinned. This may be fewer than the number
1573 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1574 * were pinned, returns -errno. Each page returned must be released
1575 * with a put_page() call when it is finished with. vmas will only
1576 * remain valid while mmap_sem is held.
1578 * Must be called with mmap_sem held for read or write.
1580 * get_user_pages walks a process's page tables and takes a reference to
1581 * each struct page that each user address corresponds to at a given
1582 * instant. That is, it takes the page that would be accessed if a user
1583 * thread accesses the given user virtual address at that instant.
1585 * This does not guarantee that the page exists in the user mappings when
1586 * get_user_pages returns, and there may even be a completely different
1587 * page there in some cases (eg. if mmapped pagecache has been invalidated
1588 * and subsequently re faulted). However it does guarantee that the page
1589 * won't be freed completely. And mostly callers simply care that the page
1590 * contains data that was valid *at some point in time*. Typically, an IO
1591 * or similar operation cannot guarantee anything stronger anyway because
1592 * locks can't be held over the syscall boundary.
1594 * If write=0, the page must not be written to. If the page is written to,
1595 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1596 * after the page is finished with, and before put_page is called.
1598 * get_user_pages is typically used for fewer-copy IO operations, to get a
1599 * handle on the memory by some means other than accesses via the user virtual
1600 * addresses. The pages may be submitted for DMA to devices or accessed via
1601 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1602 * use the correct cache flushing APIs.
1604 * See also get_user_pages_fast, for performance critical applications.
1606 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1607 unsigned long start, int nr_pages, int write, int force,
1608 struct page **pages, struct vm_area_struct **vmas)
1610 int flags = FOLL_TOUCH;
1612 if (pages)
1613 flags |= FOLL_GET;
1614 if (write)
1615 flags |= FOLL_WRITE;
1616 if (force)
1617 flags |= FOLL_FORCE;
1619 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1621 EXPORT_SYMBOL(get_user_pages);
1624 * get_dump_page() - pin user page in memory while writing it to core dump
1625 * @addr: user address
1627 * Returns struct page pointer of user page pinned for dump,
1628 * to be freed afterwards by page_cache_release() or put_page().
1630 * Returns NULL on any kind of failure - a hole must then be inserted into
1631 * the corefile, to preserve alignment with its headers; and also returns
1632 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1633 * allowing a hole to be left in the corefile to save diskspace.
1635 * Called without mmap_sem, but after all other threads have been killed.
1637 #ifdef CONFIG_ELF_CORE
1638 struct page *get_dump_page(unsigned long addr)
1640 struct vm_area_struct *vma;
1641 struct page *page;
1643 if (__get_user_pages(current, current->mm, addr, 1,
1644 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1645 return NULL;
1646 flush_cache_page(vma, addr, page_to_pfn(page));
1647 return page;
1649 #endif /* CONFIG_ELF_CORE */
1651 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1652 spinlock_t **ptl)
1654 pgd_t * pgd = pgd_offset(mm, addr);
1655 pud_t * pud = pud_alloc(mm, pgd, addr);
1656 if (pud) {
1657 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1658 if (pmd)
1659 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1661 return NULL;
1665 * This is the old fallback for page remapping.
1667 * For historical reasons, it only allows reserved pages. Only
1668 * old drivers should use this, and they needed to mark their
1669 * pages reserved for the old functions anyway.
1671 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1672 struct page *page, pgprot_t prot)
1674 struct mm_struct *mm = vma->vm_mm;
1675 int retval;
1676 pte_t *pte;
1677 spinlock_t *ptl;
1679 retval = -EINVAL;
1680 if (PageAnon(page))
1681 goto out;
1682 retval = -ENOMEM;
1683 flush_dcache_page(page);
1684 pte = get_locked_pte(mm, addr, &ptl);
1685 if (!pte)
1686 goto out;
1687 retval = -EBUSY;
1688 if (!pte_none(*pte))
1689 goto out_unlock;
1691 /* Ok, finally just insert the thing.. */
1692 get_page(page);
1693 inc_mm_counter_fast(mm, MM_FILEPAGES);
1694 page_add_file_rmap(page);
1695 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1697 retval = 0;
1698 pte_unmap_unlock(pte, ptl);
1699 return retval;
1700 out_unlock:
1701 pte_unmap_unlock(pte, ptl);
1702 out:
1703 return retval;
1707 * vm_insert_page - insert single page into user vma
1708 * @vma: user vma to map to
1709 * @addr: target user address of this page
1710 * @page: source kernel page
1712 * This allows drivers to insert individual pages they've allocated
1713 * into a user vma.
1715 * The page has to be a nice clean _individual_ kernel allocation.
1716 * If you allocate a compound page, you need to have marked it as
1717 * such (__GFP_COMP), or manually just split the page up yourself
1718 * (see split_page()).
1720 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1721 * took an arbitrary page protection parameter. This doesn't allow
1722 * that. Your vma protection will have to be set up correctly, which
1723 * means that if you want a shared writable mapping, you'd better
1724 * ask for a shared writable mapping!
1726 * The page does not need to be reserved.
1728 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1729 struct page *page)
1731 if (addr < vma->vm_start || addr >= vma->vm_end)
1732 return -EFAULT;
1733 if (!page_count(page))
1734 return -EINVAL;
1735 vma->vm_flags |= VM_INSERTPAGE;
1736 return insert_page(vma, addr, page, vma->vm_page_prot);
1738 EXPORT_SYMBOL(vm_insert_page);
1740 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1741 unsigned long pfn, pgprot_t prot)
1743 struct mm_struct *mm = vma->vm_mm;
1744 int retval;
1745 pte_t *pte, entry;
1746 spinlock_t *ptl;
1748 retval = -ENOMEM;
1749 pte = get_locked_pte(mm, addr, &ptl);
1750 if (!pte)
1751 goto out;
1752 retval = -EBUSY;
1753 if (!pte_none(*pte))
1754 goto out_unlock;
1756 /* Ok, finally just insert the thing.. */
1757 entry = pte_mkspecial(pfn_pte(pfn, prot));
1758 set_pte_at(mm, addr, pte, entry);
1759 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1761 retval = 0;
1762 out_unlock:
1763 pte_unmap_unlock(pte, ptl);
1764 out:
1765 return retval;
1769 * vm_insert_pfn - insert single pfn into user vma
1770 * @vma: user vma to map to
1771 * @addr: target user address of this page
1772 * @pfn: source kernel pfn
1774 * Similar to vm_inert_page, this allows drivers to insert individual pages
1775 * they've allocated into a user vma. Same comments apply.
1777 * This function should only be called from a vm_ops->fault handler, and
1778 * in that case the handler should return NULL.
1780 * vma cannot be a COW mapping.
1782 * As this is called only for pages that do not currently exist, we
1783 * do not need to flush old virtual caches or the TLB.
1785 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1786 unsigned long pfn)
1788 int ret;
1789 pgprot_t pgprot = vma->vm_page_prot;
1791 * Technically, architectures with pte_special can avoid all these
1792 * restrictions (same for remap_pfn_range). However we would like
1793 * consistency in testing and feature parity among all, so we should
1794 * try to keep these invariants in place for everybody.
1796 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1797 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1798 (VM_PFNMAP|VM_MIXEDMAP));
1799 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1800 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1802 if (addr < vma->vm_start || addr >= vma->vm_end)
1803 return -EFAULT;
1804 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1805 return -EINVAL;
1807 ret = insert_pfn(vma, addr, pfn, pgprot);
1809 if (ret)
1810 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1812 return ret;
1814 EXPORT_SYMBOL(vm_insert_pfn);
1816 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1817 unsigned long pfn)
1819 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1821 if (addr < vma->vm_start || addr >= vma->vm_end)
1822 return -EFAULT;
1825 * If we don't have pte special, then we have to use the pfn_valid()
1826 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1827 * refcount the page if pfn_valid is true (hence insert_page rather
1828 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1829 * without pte special, it would there be refcounted as a normal page.
1831 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1832 struct page *page;
1834 page = pfn_to_page(pfn);
1835 return insert_page(vma, addr, page, vma->vm_page_prot);
1837 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1839 EXPORT_SYMBOL(vm_insert_mixed);
1842 * maps a range of physical memory into the requested pages. the old
1843 * mappings are removed. any references to nonexistent pages results
1844 * in null mappings (currently treated as "copy-on-access")
1846 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1847 unsigned long addr, unsigned long end,
1848 unsigned long pfn, pgprot_t prot)
1850 pte_t *pte;
1851 spinlock_t *ptl;
1853 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1854 if (!pte)
1855 return -ENOMEM;
1856 arch_enter_lazy_mmu_mode();
1857 do {
1858 BUG_ON(!pte_none(*pte));
1859 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1860 pfn++;
1861 } while (pte++, addr += PAGE_SIZE, addr != end);
1862 arch_leave_lazy_mmu_mode();
1863 pte_unmap_unlock(pte - 1, ptl);
1864 return 0;
1867 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1868 unsigned long addr, unsigned long end,
1869 unsigned long pfn, pgprot_t prot)
1871 pmd_t *pmd;
1872 unsigned long next;
1874 pfn -= addr >> PAGE_SHIFT;
1875 pmd = pmd_alloc(mm, pud, addr);
1876 if (!pmd)
1877 return -ENOMEM;
1878 do {
1879 next = pmd_addr_end(addr, end);
1880 if (remap_pte_range(mm, pmd, addr, next,
1881 pfn + (addr >> PAGE_SHIFT), prot))
1882 return -ENOMEM;
1883 } while (pmd++, addr = next, addr != end);
1884 return 0;
1887 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1888 unsigned long addr, unsigned long end,
1889 unsigned long pfn, pgprot_t prot)
1891 pud_t *pud;
1892 unsigned long next;
1894 pfn -= addr >> PAGE_SHIFT;
1895 pud = pud_alloc(mm, pgd, addr);
1896 if (!pud)
1897 return -ENOMEM;
1898 do {
1899 next = pud_addr_end(addr, end);
1900 if (remap_pmd_range(mm, pud, addr, next,
1901 pfn + (addr >> PAGE_SHIFT), prot))
1902 return -ENOMEM;
1903 } while (pud++, addr = next, addr != end);
1904 return 0;
1908 * remap_pfn_range - remap kernel memory to userspace
1909 * @vma: user vma to map to
1910 * @addr: target user address to start at
1911 * @pfn: physical address of kernel memory
1912 * @size: size of map area
1913 * @prot: page protection flags for this mapping
1915 * Note: this is only safe if the mm semaphore is held when called.
1917 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1918 unsigned long pfn, unsigned long size, pgprot_t prot)
1920 pgd_t *pgd;
1921 unsigned long next;
1922 unsigned long end = addr + PAGE_ALIGN(size);
1923 struct mm_struct *mm = vma->vm_mm;
1924 int err;
1927 * Physically remapped pages are special. Tell the
1928 * rest of the world about it:
1929 * VM_IO tells people not to look at these pages
1930 * (accesses can have side effects).
1931 * VM_RESERVED is specified all over the place, because
1932 * in 2.4 it kept swapout's vma scan off this vma; but
1933 * in 2.6 the LRU scan won't even find its pages, so this
1934 * flag means no more than count its pages in reserved_vm,
1935 * and omit it from core dump, even when VM_IO turned off.
1936 * VM_PFNMAP tells the core MM that the base pages are just
1937 * raw PFN mappings, and do not have a "struct page" associated
1938 * with them.
1940 * There's a horrible special case to handle copy-on-write
1941 * behaviour that some programs depend on. We mark the "original"
1942 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1944 if (addr == vma->vm_start && end == vma->vm_end) {
1945 vma->vm_pgoff = pfn;
1946 vma->vm_flags |= VM_PFN_AT_MMAP;
1947 } else if (is_cow_mapping(vma->vm_flags))
1948 return -EINVAL;
1950 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1952 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1953 if (err) {
1955 * To indicate that track_pfn related cleanup is not
1956 * needed from higher level routine calling unmap_vmas
1958 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1959 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1960 return -EINVAL;
1963 BUG_ON(addr >= end);
1964 pfn -= addr >> PAGE_SHIFT;
1965 pgd = pgd_offset(mm, addr);
1966 flush_cache_range(vma, addr, end);
1967 do {
1968 next = pgd_addr_end(addr, end);
1969 err = remap_pud_range(mm, pgd, addr, next,
1970 pfn + (addr >> PAGE_SHIFT), prot);
1971 if (err)
1972 break;
1973 } while (pgd++, addr = next, addr != end);
1975 if (err)
1976 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1978 return err;
1980 EXPORT_SYMBOL(remap_pfn_range);
1982 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1983 unsigned long addr, unsigned long end,
1984 pte_fn_t fn, void *data)
1986 pte_t *pte;
1987 int err;
1988 pgtable_t token;
1989 spinlock_t *uninitialized_var(ptl);
1991 pte = (mm == &init_mm) ?
1992 pte_alloc_kernel(pmd, addr) :
1993 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1994 if (!pte)
1995 return -ENOMEM;
1997 BUG_ON(pmd_huge(*pmd));
1999 arch_enter_lazy_mmu_mode();
2001 token = pmd_pgtable(*pmd);
2003 do {
2004 err = fn(pte++, token, addr, data);
2005 if (err)
2006 break;
2007 } while (addr += PAGE_SIZE, addr != end);
2009 arch_leave_lazy_mmu_mode();
2011 if (mm != &init_mm)
2012 pte_unmap_unlock(pte-1, ptl);
2013 return err;
2016 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2017 unsigned long addr, unsigned long end,
2018 pte_fn_t fn, void *data)
2020 pmd_t *pmd;
2021 unsigned long next;
2022 int err;
2024 BUG_ON(pud_huge(*pud));
2026 pmd = pmd_alloc(mm, pud, addr);
2027 if (!pmd)
2028 return -ENOMEM;
2029 do {
2030 next = pmd_addr_end(addr, end);
2031 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2032 if (err)
2033 break;
2034 } while (pmd++, addr = next, addr != end);
2035 return err;
2038 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2039 unsigned long addr, unsigned long end,
2040 pte_fn_t fn, void *data)
2042 pud_t *pud;
2043 unsigned long next;
2044 int err;
2046 pud = pud_alloc(mm, pgd, addr);
2047 if (!pud)
2048 return -ENOMEM;
2049 do {
2050 next = pud_addr_end(addr, end);
2051 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2052 if (err)
2053 break;
2054 } while (pud++, addr = next, addr != end);
2055 return err;
2059 * Scan a region of virtual memory, filling in page tables as necessary
2060 * and calling a provided function on each leaf page table.
2062 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2063 unsigned long size, pte_fn_t fn, void *data)
2065 pgd_t *pgd;
2066 unsigned long next;
2067 unsigned long start = addr, end = addr + size;
2068 int err;
2070 BUG_ON(addr >= end);
2071 mmu_notifier_invalidate_range_start(mm, start, end);
2072 pgd = pgd_offset(mm, addr);
2073 do {
2074 next = pgd_addr_end(addr, end);
2075 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2076 if (err)
2077 break;
2078 } while (pgd++, addr = next, addr != end);
2079 mmu_notifier_invalidate_range_end(mm, start, end);
2080 return err;
2082 EXPORT_SYMBOL_GPL(apply_to_page_range);
2085 * handle_pte_fault chooses page fault handler according to an entry
2086 * which was read non-atomically. Before making any commitment, on
2087 * those architectures or configurations (e.g. i386 with PAE) which
2088 * might give a mix of unmatched parts, do_swap_page and do_file_page
2089 * must check under lock before unmapping the pte and proceeding
2090 * (but do_wp_page is only called after already making such a check;
2091 * and do_anonymous_page and do_no_page can safely check later on).
2093 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2094 pte_t *page_table, pte_t orig_pte)
2096 int same = 1;
2097 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2098 if (sizeof(pte_t) > sizeof(unsigned long)) {
2099 spinlock_t *ptl = pte_lockptr(mm, pmd);
2100 spin_lock(ptl);
2101 same = pte_same(*page_table, orig_pte);
2102 spin_unlock(ptl);
2104 #endif
2105 pte_unmap(page_table);
2106 return same;
2110 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2111 * servicing faults for write access. In the normal case, do always want
2112 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2113 * that do not have writing enabled, when used by access_process_vm.
2115 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2117 if (likely(vma->vm_flags & VM_WRITE))
2118 pte = pte_mkwrite(pte);
2119 return pte;
2122 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2125 * If the source page was a PFN mapping, we don't have
2126 * a "struct page" for it. We do a best-effort copy by
2127 * just copying from the original user address. If that
2128 * fails, we just zero-fill it. Live with it.
2130 if (unlikely(!src)) {
2131 void *kaddr = kmap_atomic(dst, KM_USER0);
2132 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2135 * This really shouldn't fail, because the page is there
2136 * in the page tables. But it might just be unreadable,
2137 * in which case we just give up and fill the result with
2138 * zeroes.
2140 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2141 memset(kaddr, 0, PAGE_SIZE);
2142 kunmap_atomic(kaddr, KM_USER0);
2143 flush_dcache_page(dst);
2144 } else
2145 copy_user_highpage(dst, src, va, vma);
2149 * This routine handles present pages, when users try to write
2150 * to a shared page. It is done by copying the page to a new address
2151 * and decrementing the shared-page counter for the old page.
2153 * Note that this routine assumes that the protection checks have been
2154 * done by the caller (the low-level page fault routine in most cases).
2155 * Thus we can safely just mark it writable once we've done any necessary
2156 * COW.
2158 * We also mark the page dirty at this point even though the page will
2159 * change only once the write actually happens. This avoids a few races,
2160 * and potentially makes it more efficient.
2162 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2163 * but allow concurrent faults), with pte both mapped and locked.
2164 * We return with mmap_sem still held, but pte unmapped and unlocked.
2166 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2167 unsigned long address, pte_t *page_table, pmd_t *pmd,
2168 spinlock_t *ptl, pte_t orig_pte)
2170 struct page *old_page, *new_page;
2171 pte_t entry;
2172 int reuse = 0, ret = 0;
2173 int page_mkwrite = 0;
2174 struct page *dirty_page = NULL;
2176 old_page = vm_normal_page(vma, address, orig_pte);
2177 if (!old_page) {
2179 * VM_MIXEDMAP !pfn_valid() case
2181 * We should not cow pages in a shared writeable mapping.
2182 * Just mark the pages writable as we can't do any dirty
2183 * accounting on raw pfn maps.
2185 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2186 (VM_WRITE|VM_SHARED))
2187 goto reuse;
2188 goto gotten;
2192 * Take out anonymous pages first, anonymous shared vmas are
2193 * not dirty accountable.
2195 if (PageAnon(old_page) && !PageKsm(old_page)) {
2196 if (!trylock_page(old_page)) {
2197 page_cache_get(old_page);
2198 pte_unmap_unlock(page_table, ptl);
2199 lock_page(old_page);
2200 page_table = pte_offset_map_lock(mm, pmd, address,
2201 &ptl);
2202 if (!pte_same(*page_table, orig_pte)) {
2203 unlock_page(old_page);
2204 page_cache_release(old_page);
2205 goto unlock;
2207 page_cache_release(old_page);
2209 reuse = reuse_swap_page(old_page);
2210 if (reuse)
2212 * The page is all ours. Move it to our anon_vma so
2213 * the rmap code will not search our parent or siblings.
2214 * Protected against the rmap code by the page lock.
2216 page_move_anon_rmap(old_page, vma, address);
2217 unlock_page(old_page);
2218 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2219 (VM_WRITE|VM_SHARED))) {
2221 * Only catch write-faults on shared writable pages,
2222 * read-only shared pages can get COWed by
2223 * get_user_pages(.write=1, .force=1).
2225 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2226 struct vm_fault vmf;
2227 int tmp;
2229 vmf.virtual_address = (void __user *)(address &
2230 PAGE_MASK);
2231 vmf.pgoff = old_page->index;
2232 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2233 vmf.page = old_page;
2236 * Notify the address space that the page is about to
2237 * become writable so that it can prohibit this or wait
2238 * for the page to get into an appropriate state.
2240 * We do this without the lock held, so that it can
2241 * sleep if it needs to.
2243 page_cache_get(old_page);
2244 pte_unmap_unlock(page_table, ptl);
2246 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2247 if (unlikely(tmp &
2248 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2249 ret = tmp;
2250 goto unwritable_page;
2252 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2253 lock_page(old_page);
2254 if (!old_page->mapping) {
2255 ret = 0; /* retry the fault */
2256 unlock_page(old_page);
2257 goto unwritable_page;
2259 } else
2260 VM_BUG_ON(!PageLocked(old_page));
2263 * Since we dropped the lock we need to revalidate
2264 * the PTE as someone else may have changed it. If
2265 * they did, we just return, as we can count on the
2266 * MMU to tell us if they didn't also make it writable.
2268 page_table = pte_offset_map_lock(mm, pmd, address,
2269 &ptl);
2270 if (!pte_same(*page_table, orig_pte)) {
2271 unlock_page(old_page);
2272 page_cache_release(old_page);
2273 goto unlock;
2276 page_mkwrite = 1;
2278 dirty_page = old_page;
2279 get_page(dirty_page);
2280 reuse = 1;
2283 if (reuse) {
2284 reuse:
2285 flush_cache_page(vma, address, pte_pfn(orig_pte));
2286 entry = pte_mkyoung(orig_pte);
2287 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2288 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2289 update_mmu_cache(vma, address, page_table);
2290 ret |= VM_FAULT_WRITE;
2291 goto unlock;
2295 * Ok, we need to copy. Oh, well..
2297 page_cache_get(old_page);
2298 gotten:
2299 pte_unmap_unlock(page_table, ptl);
2301 if (unlikely(anon_vma_prepare(vma)))
2302 goto oom;
2304 if (is_zero_pfn(pte_pfn(orig_pte))) {
2305 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2306 if (!new_page)
2307 goto oom;
2308 } else {
2309 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2310 if (!new_page)
2311 goto oom;
2312 cow_user_page(new_page, old_page, address, vma);
2314 __SetPageUptodate(new_page);
2317 * Don't let another task, with possibly unlocked vma,
2318 * keep the mlocked page.
2320 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2321 lock_page(old_page); /* for LRU manipulation */
2322 clear_page_mlock(old_page);
2323 unlock_page(old_page);
2326 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2327 goto oom_free_new;
2330 * Re-check the pte - we dropped the lock
2332 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2333 if (likely(pte_same(*page_table, orig_pte))) {
2334 if (old_page) {
2335 if (!PageAnon(old_page)) {
2336 dec_mm_counter_fast(mm, MM_FILEPAGES);
2337 inc_mm_counter_fast(mm, MM_ANONPAGES);
2339 } else
2340 inc_mm_counter_fast(mm, MM_ANONPAGES);
2341 flush_cache_page(vma, address, pte_pfn(orig_pte));
2342 entry = mk_pte(new_page, vma->vm_page_prot);
2343 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2345 * Clear the pte entry and flush it first, before updating the
2346 * pte with the new entry. This will avoid a race condition
2347 * seen in the presence of one thread doing SMC and another
2348 * thread doing COW.
2350 ptep_clear_flush(vma, address, page_table);
2351 page_add_new_anon_rmap(new_page, vma, address);
2353 * We call the notify macro here because, when using secondary
2354 * mmu page tables (such as kvm shadow page tables), we want the
2355 * new page to be mapped directly into the secondary page table.
2357 set_pte_at_notify(mm, address, page_table, entry);
2358 update_mmu_cache(vma, address, page_table);
2359 if (old_page) {
2361 * Only after switching the pte to the new page may
2362 * we remove the mapcount here. Otherwise another
2363 * process may come and find the rmap count decremented
2364 * before the pte is switched to the new page, and
2365 * "reuse" the old page writing into it while our pte
2366 * here still points into it and can be read by other
2367 * threads.
2369 * The critical issue is to order this
2370 * page_remove_rmap with the ptp_clear_flush above.
2371 * Those stores are ordered by (if nothing else,)
2372 * the barrier present in the atomic_add_negative
2373 * in page_remove_rmap.
2375 * Then the TLB flush in ptep_clear_flush ensures that
2376 * no process can access the old page before the
2377 * decremented mapcount is visible. And the old page
2378 * cannot be reused until after the decremented
2379 * mapcount is visible. So transitively, TLBs to
2380 * old page will be flushed before it can be reused.
2382 page_remove_rmap(old_page);
2385 /* Free the old page.. */
2386 new_page = old_page;
2387 ret |= VM_FAULT_WRITE;
2388 } else
2389 mem_cgroup_uncharge_page(new_page);
2391 if (new_page)
2392 page_cache_release(new_page);
2393 if (old_page)
2394 page_cache_release(old_page);
2395 unlock:
2396 pte_unmap_unlock(page_table, ptl);
2397 if (dirty_page) {
2399 * Yes, Virginia, this is actually required to prevent a race
2400 * with clear_page_dirty_for_io() from clearing the page dirty
2401 * bit after it clear all dirty ptes, but before a racing
2402 * do_wp_page installs a dirty pte.
2404 * do_no_page is protected similarly.
2406 if (!page_mkwrite) {
2407 wait_on_page_locked(dirty_page);
2408 set_page_dirty_balance(dirty_page, page_mkwrite);
2410 put_page(dirty_page);
2411 if (page_mkwrite) {
2412 struct address_space *mapping = dirty_page->mapping;
2414 set_page_dirty(dirty_page);
2415 unlock_page(dirty_page);
2416 page_cache_release(dirty_page);
2417 if (mapping) {
2419 * Some device drivers do not set page.mapping
2420 * but still dirty their pages
2422 balance_dirty_pages_ratelimited(mapping);
2426 /* file_update_time outside page_lock */
2427 if (vma->vm_file)
2428 file_update_time(vma->vm_file);
2430 return ret;
2431 oom_free_new:
2432 page_cache_release(new_page);
2433 oom:
2434 if (old_page) {
2435 if (page_mkwrite) {
2436 unlock_page(old_page);
2437 page_cache_release(old_page);
2439 page_cache_release(old_page);
2441 return VM_FAULT_OOM;
2443 unwritable_page:
2444 page_cache_release(old_page);
2445 return ret;
2449 * Helper functions for unmap_mapping_range().
2451 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2453 * We have to restart searching the prio_tree whenever we drop the lock,
2454 * since the iterator is only valid while the lock is held, and anyway
2455 * a later vma might be split and reinserted earlier while lock dropped.
2457 * The list of nonlinear vmas could be handled more efficiently, using
2458 * a placeholder, but handle it in the same way until a need is shown.
2459 * It is important to search the prio_tree before nonlinear list: a vma
2460 * may become nonlinear and be shifted from prio_tree to nonlinear list
2461 * while the lock is dropped; but never shifted from list to prio_tree.
2463 * In order to make forward progress despite restarting the search,
2464 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2465 * quickly skip it next time around. Since the prio_tree search only
2466 * shows us those vmas affected by unmapping the range in question, we
2467 * can't efficiently keep all vmas in step with mapping->truncate_count:
2468 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2469 * mapping->truncate_count and vma->vm_truncate_count are protected by
2470 * i_mmap_lock.
2472 * In order to make forward progress despite repeatedly restarting some
2473 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2474 * and restart from that address when we reach that vma again. It might
2475 * have been split or merged, shrunk or extended, but never shifted: so
2476 * restart_addr remains valid so long as it remains in the vma's range.
2477 * unmap_mapping_range forces truncate_count to leap over page-aligned
2478 * values so we can save vma's restart_addr in its truncate_count field.
2480 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2482 static void reset_vma_truncate_counts(struct address_space *mapping)
2484 struct vm_area_struct *vma;
2485 struct prio_tree_iter iter;
2487 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2488 vma->vm_truncate_count = 0;
2489 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2490 vma->vm_truncate_count = 0;
2493 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2494 unsigned long start_addr, unsigned long end_addr,
2495 struct zap_details *details)
2497 unsigned long restart_addr;
2498 int need_break;
2501 * files that support invalidating or truncating portions of the
2502 * file from under mmaped areas must have their ->fault function
2503 * return a locked page (and set VM_FAULT_LOCKED in the return).
2504 * This provides synchronisation against concurrent unmapping here.
2507 again:
2508 restart_addr = vma->vm_truncate_count;
2509 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2510 start_addr = restart_addr;
2511 if (start_addr >= end_addr) {
2512 /* Top of vma has been split off since last time */
2513 vma->vm_truncate_count = details->truncate_count;
2514 return 0;
2518 restart_addr = zap_page_range(vma, start_addr,
2519 end_addr - start_addr, details);
2520 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2522 if (restart_addr >= end_addr) {
2523 /* We have now completed this vma: mark it so */
2524 vma->vm_truncate_count = details->truncate_count;
2525 if (!need_break)
2526 return 0;
2527 } else {
2528 /* Note restart_addr in vma's truncate_count field */
2529 vma->vm_truncate_count = restart_addr;
2530 if (!need_break)
2531 goto again;
2534 spin_unlock(details->i_mmap_lock);
2535 cond_resched();
2536 spin_lock(details->i_mmap_lock);
2537 return -EINTR;
2540 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2541 struct zap_details *details)
2543 struct vm_area_struct *vma;
2544 struct prio_tree_iter iter;
2545 pgoff_t vba, vea, zba, zea;
2547 restart:
2548 vma_prio_tree_foreach(vma, &iter, root,
2549 details->first_index, details->last_index) {
2550 /* Skip quickly over those we have already dealt with */
2551 if (vma->vm_truncate_count == details->truncate_count)
2552 continue;
2554 vba = vma->vm_pgoff;
2555 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2556 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2557 zba = details->first_index;
2558 if (zba < vba)
2559 zba = vba;
2560 zea = details->last_index;
2561 if (zea > vea)
2562 zea = vea;
2564 if (unmap_mapping_range_vma(vma,
2565 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2566 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2567 details) < 0)
2568 goto restart;
2572 static inline void unmap_mapping_range_list(struct list_head *head,
2573 struct zap_details *details)
2575 struct vm_area_struct *vma;
2578 * In nonlinear VMAs there is no correspondence between virtual address
2579 * offset and file offset. So we must perform an exhaustive search
2580 * across *all* the pages in each nonlinear VMA, not just the pages
2581 * whose virtual address lies outside the file truncation point.
2583 restart:
2584 list_for_each_entry(vma, head, shared.vm_set.list) {
2585 /* Skip quickly over those we have already dealt with */
2586 if (vma->vm_truncate_count == details->truncate_count)
2587 continue;
2588 details->nonlinear_vma = vma;
2589 if (unmap_mapping_range_vma(vma, vma->vm_start,
2590 vma->vm_end, details) < 0)
2591 goto restart;
2596 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2597 * @mapping: the address space containing mmaps to be unmapped.
2598 * @holebegin: byte in first page to unmap, relative to the start of
2599 * the underlying file. This will be rounded down to a PAGE_SIZE
2600 * boundary. Note that this is different from truncate_pagecache(), which
2601 * must keep the partial page. In contrast, we must get rid of
2602 * partial pages.
2603 * @holelen: size of prospective hole in bytes. This will be rounded
2604 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2605 * end of the file.
2606 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2607 * but 0 when invalidating pagecache, don't throw away private data.
2609 void unmap_mapping_range(struct address_space *mapping,
2610 loff_t const holebegin, loff_t const holelen, int even_cows)
2612 struct zap_details details;
2613 pgoff_t hba = holebegin >> PAGE_SHIFT;
2614 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2616 /* Check for overflow. */
2617 if (sizeof(holelen) > sizeof(hlen)) {
2618 long long holeend =
2619 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2620 if (holeend & ~(long long)ULONG_MAX)
2621 hlen = ULONG_MAX - hba + 1;
2624 details.check_mapping = even_cows? NULL: mapping;
2625 details.nonlinear_vma = NULL;
2626 details.first_index = hba;
2627 details.last_index = hba + hlen - 1;
2628 if (details.last_index < details.first_index)
2629 details.last_index = ULONG_MAX;
2630 details.i_mmap_lock = &mapping->i_mmap_lock;
2632 mutex_lock(&mapping->unmap_mutex);
2633 spin_lock(&mapping->i_mmap_lock);
2635 /* Protect against endless unmapping loops */
2636 mapping->truncate_count++;
2637 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2638 if (mapping->truncate_count == 0)
2639 reset_vma_truncate_counts(mapping);
2640 mapping->truncate_count++;
2642 details.truncate_count = mapping->truncate_count;
2644 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2645 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2646 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2647 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2648 spin_unlock(&mapping->i_mmap_lock);
2649 mutex_unlock(&mapping->unmap_mutex);
2651 EXPORT_SYMBOL(unmap_mapping_range);
2653 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2655 struct address_space *mapping = inode->i_mapping;
2658 * If the underlying filesystem is not going to provide
2659 * a way to truncate a range of blocks (punch a hole) -
2660 * we should return failure right now.
2662 if (!inode->i_op->truncate_range)
2663 return -ENOSYS;
2665 mutex_lock(&inode->i_mutex);
2666 down_write(&inode->i_alloc_sem);
2667 unmap_mapping_range(mapping, offset, (end - offset), 1);
2668 truncate_inode_pages_range(mapping, offset, end);
2669 unmap_mapping_range(mapping, offset, (end - offset), 1);
2670 inode->i_op->truncate_range(inode, offset, end);
2671 up_write(&inode->i_alloc_sem);
2672 mutex_unlock(&inode->i_mutex);
2674 return 0;
2678 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2679 * but allow concurrent faults), and pte mapped but not yet locked.
2680 * We return with mmap_sem still held, but pte unmapped and unlocked.
2682 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2683 unsigned long address, pte_t *page_table, pmd_t *pmd,
2684 unsigned int flags, pte_t orig_pte)
2686 spinlock_t *ptl;
2687 struct page *page, *swapcache = NULL;
2688 swp_entry_t entry;
2689 pte_t pte;
2690 struct mem_cgroup *ptr = NULL;
2691 int ret = 0;
2693 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2694 goto out;
2696 entry = pte_to_swp_entry(orig_pte);
2697 if (unlikely(non_swap_entry(entry))) {
2698 if (is_migration_entry(entry)) {
2699 migration_entry_wait(mm, pmd, address);
2700 } else if (is_hwpoison_entry(entry)) {
2701 ret = VM_FAULT_HWPOISON;
2702 } else {
2703 print_bad_pte(vma, address, orig_pte, NULL);
2704 ret = VM_FAULT_SIGBUS;
2706 goto out;
2708 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2709 page = lookup_swap_cache(entry);
2710 if (!page) {
2711 grab_swap_token(mm); /* Contend for token _before_ read-in */
2712 page = swapin_readahead(entry,
2713 GFP_HIGHUSER_MOVABLE, vma, address);
2714 if (!page) {
2716 * Back out if somebody else faulted in this pte
2717 * while we released the pte lock.
2719 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2720 if (likely(pte_same(*page_table, orig_pte)))
2721 ret = VM_FAULT_OOM;
2722 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2723 goto unlock;
2726 /* Had to read the page from swap area: Major fault */
2727 ret = VM_FAULT_MAJOR;
2728 count_vm_event(PGMAJFAULT);
2729 } else if (PageHWPoison(page)) {
2731 * hwpoisoned dirty swapcache pages are kept for killing
2732 * owner processes (which may be unknown at hwpoison time)
2734 ret = VM_FAULT_HWPOISON;
2735 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2736 goto out_release;
2739 lock_page(page);
2740 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2743 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2744 * release the swapcache from under us. The page pin, and pte_same
2745 * test below, are not enough to exclude that. Even if it is still
2746 * swapcache, we need to check that the page's swap has not changed.
2748 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2749 goto out_page;
2751 if (ksm_might_need_to_copy(page, vma, address)) {
2752 swapcache = page;
2753 page = ksm_does_need_to_copy(page, vma, address);
2755 if (unlikely(!page)) {
2756 ret = VM_FAULT_OOM;
2757 page = swapcache;
2758 swapcache = NULL;
2759 goto out_page;
2763 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2764 ret = VM_FAULT_OOM;
2765 goto out_page;
2769 * Back out if somebody else already faulted in this pte.
2771 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2772 if (unlikely(!pte_same(*page_table, orig_pte)))
2773 goto out_nomap;
2775 if (unlikely(!PageUptodate(page))) {
2776 ret = VM_FAULT_SIGBUS;
2777 goto out_nomap;
2781 * The page isn't present yet, go ahead with the fault.
2783 * Be careful about the sequence of operations here.
2784 * To get its accounting right, reuse_swap_page() must be called
2785 * while the page is counted on swap but not yet in mapcount i.e.
2786 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2787 * must be called after the swap_free(), or it will never succeed.
2788 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2789 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2790 * in page->private. In this case, a record in swap_cgroup is silently
2791 * discarded at swap_free().
2794 inc_mm_counter_fast(mm, MM_ANONPAGES);
2795 dec_mm_counter_fast(mm, MM_SWAPENTS);
2796 pte = mk_pte(page, vma->vm_page_prot);
2797 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2798 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2799 flags &= ~FAULT_FLAG_WRITE;
2801 flush_icache_page(vma, page);
2802 set_pte_at(mm, address, page_table, pte);
2803 page_add_anon_rmap(page, vma, address);
2804 /* It's better to call commit-charge after rmap is established */
2805 mem_cgroup_commit_charge_swapin(page, ptr);
2807 swap_free(entry);
2808 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2809 try_to_free_swap(page);
2810 unlock_page(page);
2811 if (swapcache) {
2813 * Hold the lock to avoid the swap entry to be reused
2814 * until we take the PT lock for the pte_same() check
2815 * (to avoid false positives from pte_same). For
2816 * further safety release the lock after the swap_free
2817 * so that the swap count won't change under a
2818 * parallel locked swapcache.
2820 unlock_page(swapcache);
2821 page_cache_release(swapcache);
2824 if (flags & FAULT_FLAG_WRITE) {
2825 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2826 if (ret & VM_FAULT_ERROR)
2827 ret &= VM_FAULT_ERROR;
2828 goto out;
2831 /* No need to invalidate - it was non-present before */
2832 update_mmu_cache(vma, address, page_table);
2833 unlock:
2834 pte_unmap_unlock(page_table, ptl);
2835 out:
2836 return ret;
2837 out_nomap:
2838 mem_cgroup_cancel_charge_swapin(ptr);
2839 pte_unmap_unlock(page_table, ptl);
2840 out_page:
2841 unlock_page(page);
2842 out_release:
2843 page_cache_release(page);
2844 if (swapcache) {
2845 unlock_page(swapcache);
2846 page_cache_release(swapcache);
2848 return ret;
2852 * This is like a special single-page "expand_{down|up}wards()",
2853 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2854 * doesn't hit another vma.
2856 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2858 address &= PAGE_MASK;
2859 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2860 struct vm_area_struct *prev = vma->vm_prev;
2863 * Is there a mapping abutting this one below?
2865 * That's only ok if it's the same stack mapping
2866 * that has gotten split..
2868 if (prev && prev->vm_end == address)
2869 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2871 expand_stack(vma, address - PAGE_SIZE);
2873 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2874 struct vm_area_struct *next = vma->vm_next;
2876 /* As VM_GROWSDOWN but s/below/above/ */
2877 if (next && next->vm_start == address + PAGE_SIZE)
2878 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2880 expand_upwards(vma, address + PAGE_SIZE);
2882 return 0;
2886 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2887 * but allow concurrent faults), and pte mapped but not yet locked.
2888 * We return with mmap_sem still held, but pte unmapped and unlocked.
2890 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2891 unsigned long address, pte_t *page_table, pmd_t *pmd,
2892 unsigned int flags)
2894 struct page *page;
2895 spinlock_t *ptl;
2896 pte_t entry;
2898 pte_unmap(page_table);
2900 /* Check if we need to add a guard page to the stack */
2901 if (check_stack_guard_page(vma, address) < 0)
2902 return VM_FAULT_SIGBUS;
2904 /* Use the zero-page for reads */
2905 if (!(flags & FAULT_FLAG_WRITE)) {
2906 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2907 vma->vm_page_prot));
2908 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2909 if (!pte_none(*page_table))
2910 goto unlock;
2911 goto setpte;
2914 /* Allocate our own private page. */
2915 if (unlikely(anon_vma_prepare(vma)))
2916 goto oom;
2917 page = alloc_zeroed_user_highpage_movable(vma, address);
2918 if (!page)
2919 goto oom;
2920 __SetPageUptodate(page);
2922 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2923 goto oom_free_page;
2925 entry = mk_pte(page, vma->vm_page_prot);
2926 if (vma->vm_flags & VM_WRITE)
2927 entry = pte_mkwrite(pte_mkdirty(entry));
2929 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2930 if (!pte_none(*page_table))
2931 goto release;
2933 inc_mm_counter_fast(mm, MM_ANONPAGES);
2934 page_add_new_anon_rmap(page, vma, address);
2935 setpte:
2936 set_pte_at(mm, address, page_table, entry);
2938 /* No need to invalidate - it was non-present before */
2939 update_mmu_cache(vma, address, page_table);
2940 unlock:
2941 pte_unmap_unlock(page_table, ptl);
2942 return 0;
2943 release:
2944 mem_cgroup_uncharge_page(page);
2945 page_cache_release(page);
2946 goto unlock;
2947 oom_free_page:
2948 page_cache_release(page);
2949 oom:
2950 return VM_FAULT_OOM;
2954 * __do_fault() tries to create a new page mapping. It aggressively
2955 * tries to share with existing pages, but makes a separate copy if
2956 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2957 * the next page fault.
2959 * As this is called only for pages that do not currently exist, we
2960 * do not need to flush old virtual caches or the TLB.
2962 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2963 * but allow concurrent faults), and pte neither mapped nor locked.
2964 * We return with mmap_sem still held, but pte unmapped and unlocked.
2966 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2967 unsigned long address, pmd_t *pmd,
2968 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2970 pte_t *page_table;
2971 spinlock_t *ptl;
2972 struct page *page;
2973 pte_t entry;
2974 int anon = 0;
2975 int charged = 0;
2976 struct page *dirty_page = NULL;
2977 struct vm_fault vmf;
2978 int ret;
2979 int page_mkwrite = 0;
2981 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2982 vmf.pgoff = pgoff;
2983 vmf.flags = flags;
2984 vmf.page = NULL;
2986 ret = vma->vm_ops->fault(vma, &vmf);
2987 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2988 return ret;
2990 if (unlikely(PageHWPoison(vmf.page))) {
2991 if (ret & VM_FAULT_LOCKED)
2992 unlock_page(vmf.page);
2993 return VM_FAULT_HWPOISON;
2997 * For consistency in subsequent calls, make the faulted page always
2998 * locked.
3000 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3001 lock_page(vmf.page);
3002 else
3003 VM_BUG_ON(!PageLocked(vmf.page));
3006 * Should we do an early C-O-W break?
3008 page = vmf.page;
3009 if (flags & FAULT_FLAG_WRITE) {
3010 if (!(vma->vm_flags & VM_SHARED)) {
3011 anon = 1;
3012 if (unlikely(anon_vma_prepare(vma))) {
3013 ret = VM_FAULT_OOM;
3014 goto out;
3016 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3017 vma, address);
3018 if (!page) {
3019 ret = VM_FAULT_OOM;
3020 goto out;
3022 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3023 ret = VM_FAULT_OOM;
3024 page_cache_release(page);
3025 goto out;
3027 charged = 1;
3029 * Don't let another task, with possibly unlocked vma,
3030 * keep the mlocked page.
3032 if (vma->vm_flags & VM_LOCKED)
3033 clear_page_mlock(vmf.page);
3034 copy_user_highpage(page, vmf.page, address, vma);
3035 __SetPageUptodate(page);
3036 } else {
3038 * If the page will be shareable, see if the backing
3039 * address space wants to know that the page is about
3040 * to become writable
3042 if (vma->vm_ops->page_mkwrite) {
3043 int tmp;
3045 unlock_page(page);
3046 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3047 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3048 if (unlikely(tmp &
3049 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3050 ret = tmp;
3051 goto unwritable_page;
3053 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3054 lock_page(page);
3055 if (!page->mapping) {
3056 ret = 0; /* retry the fault */
3057 unlock_page(page);
3058 goto unwritable_page;
3060 } else
3061 VM_BUG_ON(!PageLocked(page));
3062 page_mkwrite = 1;
3068 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3071 * This silly early PAGE_DIRTY setting removes a race
3072 * due to the bad i386 page protection. But it's valid
3073 * for other architectures too.
3075 * Note that if FAULT_FLAG_WRITE is set, we either now have
3076 * an exclusive copy of the page, or this is a shared mapping,
3077 * so we can make it writable and dirty to avoid having to
3078 * handle that later.
3080 /* Only go through if we didn't race with anybody else... */
3081 if (likely(pte_same(*page_table, orig_pte))) {
3082 flush_icache_page(vma, page);
3083 entry = mk_pte(page, vma->vm_page_prot);
3084 if (flags & FAULT_FLAG_WRITE)
3085 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3086 if (anon) {
3087 inc_mm_counter_fast(mm, MM_ANONPAGES);
3088 page_add_new_anon_rmap(page, vma, address);
3089 } else {
3090 inc_mm_counter_fast(mm, MM_FILEPAGES);
3091 page_add_file_rmap(page);
3092 if (flags & FAULT_FLAG_WRITE) {
3093 dirty_page = page;
3094 get_page(dirty_page);
3097 set_pte_at(mm, address, page_table, entry);
3099 /* no need to invalidate: a not-present page won't be cached */
3100 update_mmu_cache(vma, address, page_table);
3101 } else {
3102 if (charged)
3103 mem_cgroup_uncharge_page(page);
3104 if (anon)
3105 page_cache_release(page);
3106 else
3107 anon = 1; /* no anon but release faulted_page */
3110 pte_unmap_unlock(page_table, ptl);
3112 out:
3113 if (dirty_page) {
3114 struct address_space *mapping = page->mapping;
3116 if (set_page_dirty(dirty_page))
3117 page_mkwrite = 1;
3118 unlock_page(dirty_page);
3119 put_page(dirty_page);
3120 if (page_mkwrite && mapping) {
3122 * Some device drivers do not set page.mapping but still
3123 * dirty their pages
3125 balance_dirty_pages_ratelimited(mapping);
3128 /* file_update_time outside page_lock */
3129 if (vma->vm_file)
3130 file_update_time(vma->vm_file);
3131 } else {
3132 unlock_page(vmf.page);
3133 if (anon)
3134 page_cache_release(vmf.page);
3137 return ret;
3139 unwritable_page:
3140 page_cache_release(page);
3141 return ret;
3144 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3145 unsigned long address, pte_t *page_table, pmd_t *pmd,
3146 unsigned int flags, pte_t orig_pte)
3148 pgoff_t pgoff = (((address & PAGE_MASK)
3149 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3151 pte_unmap(page_table);
3152 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3156 * Fault of a previously existing named mapping. Repopulate the pte
3157 * from the encoded file_pte if possible. This enables swappable
3158 * nonlinear vmas.
3160 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3161 * but allow concurrent faults), and pte mapped but not yet locked.
3162 * We return with mmap_sem still held, but pte unmapped and unlocked.
3164 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3165 unsigned long address, pte_t *page_table, pmd_t *pmd,
3166 unsigned int flags, pte_t orig_pte)
3168 pgoff_t pgoff;
3170 flags |= FAULT_FLAG_NONLINEAR;
3172 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3173 return 0;
3175 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3177 * Page table corrupted: show pte and kill process.
3179 print_bad_pte(vma, address, orig_pte, NULL);
3180 return VM_FAULT_SIGBUS;
3183 pgoff = pte_to_pgoff(orig_pte);
3184 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3188 * These routines also need to handle stuff like marking pages dirty
3189 * and/or accessed for architectures that don't do it in hardware (most
3190 * RISC architectures). The early dirtying is also good on the i386.
3192 * There is also a hook called "update_mmu_cache()" that architectures
3193 * with external mmu caches can use to update those (ie the Sparc or
3194 * PowerPC hashed page tables that act as extended TLBs).
3196 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3197 * but allow concurrent faults), and pte mapped but not yet locked.
3198 * We return with mmap_sem still held, but pte unmapped and unlocked.
3200 static inline int handle_pte_fault(struct mm_struct *mm,
3201 struct vm_area_struct *vma, unsigned long address,
3202 pte_t *pte, pmd_t *pmd, unsigned int flags)
3204 pte_t entry;
3205 spinlock_t *ptl;
3207 entry = *pte;
3208 if (!pte_present(entry)) {
3209 if (pte_none(entry)) {
3210 if (vma->vm_ops) {
3211 if (likely(vma->vm_ops->fault))
3212 return do_linear_fault(mm, vma, address,
3213 pte, pmd, flags, entry);
3215 return do_anonymous_page(mm, vma, address,
3216 pte, pmd, flags);
3218 if (pte_file(entry))
3219 return do_nonlinear_fault(mm, vma, address,
3220 pte, pmd, flags, entry);
3221 return do_swap_page(mm, vma, address,
3222 pte, pmd, flags, entry);
3225 ptl = pte_lockptr(mm, pmd);
3226 spin_lock(ptl);
3227 if (unlikely(!pte_same(*pte, entry)))
3228 goto unlock;
3229 if (flags & FAULT_FLAG_WRITE) {
3230 if (!pte_write(entry))
3231 return do_wp_page(mm, vma, address,
3232 pte, pmd, ptl, entry);
3233 entry = pte_mkdirty(entry);
3235 entry = pte_mkyoung(entry);
3236 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3237 update_mmu_cache(vma, address, pte);
3238 } else {
3240 * This is needed only for protection faults but the arch code
3241 * is not yet telling us if this is a protection fault or not.
3242 * This still avoids useless tlb flushes for .text page faults
3243 * with threads.
3245 if (flags & FAULT_FLAG_WRITE)
3246 flush_tlb_page(vma, address);
3248 unlock:
3249 pte_unmap_unlock(pte, ptl);
3250 return 0;
3254 * By the time we get here, we already hold the mm semaphore
3256 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3257 unsigned long address, unsigned int flags)
3259 pgd_t *pgd;
3260 pud_t *pud;
3261 pmd_t *pmd;
3262 pte_t *pte;
3264 __set_current_state(TASK_RUNNING);
3266 count_vm_event(PGFAULT);
3268 /* do counter updates before entering really critical section. */
3269 check_sync_rss_stat(current);
3271 if (unlikely(is_vm_hugetlb_page(vma)))
3272 return hugetlb_fault(mm, vma, address, flags);
3274 pgd = pgd_offset(mm, address);
3275 pud = pud_alloc(mm, pgd, address);
3276 if (!pud)
3277 return VM_FAULT_OOM;
3278 pmd = pmd_alloc(mm, pud, address);
3279 if (!pmd)
3280 return VM_FAULT_OOM;
3281 pte = pte_alloc_map(mm, pmd, address);
3282 if (!pte)
3283 return VM_FAULT_OOM;
3285 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3288 #ifndef __PAGETABLE_PUD_FOLDED
3290 * Allocate page upper directory.
3291 * We've already handled the fast-path in-line.
3293 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3295 pud_t *new = pud_alloc_one(mm, address);
3296 if (!new)
3297 return -ENOMEM;
3299 smp_wmb(); /* See comment in __pte_alloc */
3301 spin_lock(&mm->page_table_lock);
3302 if (pgd_present(*pgd)) /* Another has populated it */
3303 pud_free(mm, new);
3304 else
3305 pgd_populate(mm, pgd, new);
3306 spin_unlock(&mm->page_table_lock);
3307 return 0;
3309 #endif /* __PAGETABLE_PUD_FOLDED */
3311 #ifndef __PAGETABLE_PMD_FOLDED
3313 * Allocate page middle directory.
3314 * We've already handled the fast-path in-line.
3316 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3318 pmd_t *new = pmd_alloc_one(mm, address);
3319 if (!new)
3320 return -ENOMEM;
3322 smp_wmb(); /* See comment in __pte_alloc */
3324 spin_lock(&mm->page_table_lock);
3325 #ifndef __ARCH_HAS_4LEVEL_HACK
3326 if (pud_present(*pud)) /* Another has populated it */
3327 pmd_free(mm, new);
3328 else
3329 pud_populate(mm, pud, new);
3330 #else
3331 if (pgd_present(*pud)) /* Another has populated it */
3332 pmd_free(mm, new);
3333 else
3334 pgd_populate(mm, pud, new);
3335 #endif /* __ARCH_HAS_4LEVEL_HACK */
3336 spin_unlock(&mm->page_table_lock);
3337 return 0;
3339 #endif /* __PAGETABLE_PMD_FOLDED */
3341 int make_pages_present(unsigned long addr, unsigned long end)
3343 int ret, len, write;
3344 struct vm_area_struct * vma;
3346 vma = find_vma(current->mm, addr);
3347 if (!vma)
3348 return -ENOMEM;
3349 write = (vma->vm_flags & VM_WRITE) != 0;
3350 BUG_ON(addr >= end);
3351 BUG_ON(end > vma->vm_end);
3352 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3353 ret = get_user_pages(current, current->mm, addr,
3354 len, write, 0, NULL, NULL);
3355 if (ret < 0)
3356 return ret;
3357 return ret == len ? 0 : -EFAULT;
3360 #if !defined(__HAVE_ARCH_GATE_AREA)
3362 #if defined(AT_SYSINFO_EHDR)
3363 static struct vm_area_struct gate_vma;
3365 static int __init gate_vma_init(void)
3367 gate_vma.vm_mm = NULL;
3368 gate_vma.vm_start = FIXADDR_USER_START;
3369 gate_vma.vm_end = FIXADDR_USER_END;
3370 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3371 gate_vma.vm_page_prot = __P101;
3373 * Make sure the vDSO gets into every core dump.
3374 * Dumping its contents makes post-mortem fully interpretable later
3375 * without matching up the same kernel and hardware config to see
3376 * what PC values meant.
3378 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3379 return 0;
3381 __initcall(gate_vma_init);
3382 #endif
3384 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3386 #ifdef AT_SYSINFO_EHDR
3387 return &gate_vma;
3388 #else
3389 return NULL;
3390 #endif
3393 int in_gate_area_no_task(unsigned long addr)
3395 #ifdef AT_SYSINFO_EHDR
3396 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3397 return 1;
3398 #endif
3399 return 0;
3402 #endif /* __HAVE_ARCH_GATE_AREA */
3404 static int follow_pte(struct mm_struct *mm, unsigned long address,
3405 pte_t **ptepp, spinlock_t **ptlp)
3407 pgd_t *pgd;
3408 pud_t *pud;
3409 pmd_t *pmd;
3410 pte_t *ptep;
3412 pgd = pgd_offset(mm, address);
3413 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3414 goto out;
3416 pud = pud_offset(pgd, address);
3417 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3418 goto out;
3420 pmd = pmd_offset(pud, address);
3421 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3422 goto out;
3424 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3425 if (pmd_huge(*pmd))
3426 goto out;
3428 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3429 if (!ptep)
3430 goto out;
3431 if (!pte_present(*ptep))
3432 goto unlock;
3433 *ptepp = ptep;
3434 return 0;
3435 unlock:
3436 pte_unmap_unlock(ptep, *ptlp);
3437 out:
3438 return -EINVAL;
3442 * follow_pfn - look up PFN at a user virtual address
3443 * @vma: memory mapping
3444 * @address: user virtual address
3445 * @pfn: location to store found PFN
3447 * Only IO mappings and raw PFN mappings are allowed.
3449 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3451 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3452 unsigned long *pfn)
3454 int ret = -EINVAL;
3455 spinlock_t *ptl;
3456 pte_t *ptep;
3458 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3459 return ret;
3461 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3462 if (ret)
3463 return ret;
3464 *pfn = pte_pfn(*ptep);
3465 pte_unmap_unlock(ptep, ptl);
3466 return 0;
3468 EXPORT_SYMBOL(follow_pfn);
3470 #ifdef CONFIG_HAVE_IOREMAP_PROT
3471 int follow_phys(struct vm_area_struct *vma,
3472 unsigned long address, unsigned int flags,
3473 unsigned long *prot, resource_size_t *phys)
3475 int ret = -EINVAL;
3476 pte_t *ptep, pte;
3477 spinlock_t *ptl;
3479 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3480 goto out;
3482 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3483 goto out;
3484 pte = *ptep;
3486 if ((flags & FOLL_WRITE) && !pte_write(pte))
3487 goto unlock;
3489 *prot = pgprot_val(pte_pgprot(pte));
3490 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3492 ret = 0;
3493 unlock:
3494 pte_unmap_unlock(ptep, ptl);
3495 out:
3496 return ret;
3499 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3500 void *buf, int len, int write)
3502 resource_size_t phys_addr;
3503 unsigned long prot = 0;
3504 void __iomem *maddr;
3505 int offset = addr & (PAGE_SIZE-1);
3507 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3508 return -EINVAL;
3510 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3511 if (write)
3512 memcpy_toio(maddr + offset, buf, len);
3513 else
3514 memcpy_fromio(buf, maddr + offset, len);
3515 iounmap(maddr);
3517 return len;
3519 #endif
3522 * Access another process' address space.
3523 * Source/target buffer must be kernel space,
3524 * Do not walk the page table directly, use get_user_pages
3526 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3528 struct mm_struct *mm;
3529 struct vm_area_struct *vma;
3530 void *old_buf = buf;
3532 mm = get_task_mm(tsk);
3533 if (!mm)
3534 return 0;
3536 down_read(&mm->mmap_sem);
3537 /* ignore errors, just check how much was successfully transferred */
3538 while (len) {
3539 int bytes, ret, offset;
3540 void *maddr;
3541 struct page *page = NULL;
3543 ret = get_user_pages(tsk, mm, addr, 1,
3544 write, 1, &page, &vma);
3545 if (ret <= 0) {
3547 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3548 * we can access using slightly different code.
3550 #ifdef CONFIG_HAVE_IOREMAP_PROT
3551 vma = find_vma(mm, addr);
3552 if (!vma)
3553 break;
3554 if (vma->vm_ops && vma->vm_ops->access)
3555 ret = vma->vm_ops->access(vma, addr, buf,
3556 len, write);
3557 if (ret <= 0)
3558 #endif
3559 break;
3560 bytes = ret;
3561 } else {
3562 bytes = len;
3563 offset = addr & (PAGE_SIZE-1);
3564 if (bytes > PAGE_SIZE-offset)
3565 bytes = PAGE_SIZE-offset;
3567 maddr = kmap(page);
3568 if (write) {
3569 copy_to_user_page(vma, page, addr,
3570 maddr + offset, buf, bytes);
3571 set_page_dirty_lock(page);
3572 } else {
3573 copy_from_user_page(vma, page, addr,
3574 buf, maddr + offset, bytes);
3576 kunmap(page);
3577 page_cache_release(page);
3579 len -= bytes;
3580 buf += bytes;
3581 addr += bytes;
3583 up_read(&mm->mmap_sem);
3584 mmput(mm);
3586 return buf - old_buf;
3590 * Print the name of a VMA.
3592 void print_vma_addr(char *prefix, unsigned long ip)
3594 struct mm_struct *mm = current->mm;
3595 struct vm_area_struct *vma;
3598 * Do not print if we are in atomic
3599 * contexts (in exception stacks, etc.):
3601 if (preempt_count())
3602 return;
3604 down_read(&mm->mmap_sem);
3605 vma = find_vma(mm, ip);
3606 if (vma && vma->vm_file) {
3607 struct file *f = vma->vm_file;
3608 char *buf = (char *)__get_free_page(GFP_KERNEL);
3609 if (buf) {
3610 char *p, *s;
3612 p = d_path(&f->f_path, buf, PAGE_SIZE);
3613 if (IS_ERR(p))
3614 p = "?";
3615 s = strrchr(p, '/');
3616 if (s)
3617 p = s+1;
3618 printk("%s%s[%lx+%lx]", prefix, p,
3619 vma->vm_start,
3620 vma->vm_end - vma->vm_start);
3621 free_page((unsigned long)buf);
3624 up_read(&current->mm->mmap_sem);
3627 #ifdef CONFIG_PROVE_LOCKING
3628 void might_fault(void)
3631 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3632 * holding the mmap_sem, this is safe because kernel memory doesn't
3633 * get paged out, therefore we'll never actually fault, and the
3634 * below annotations will generate false positives.
3636 if (segment_eq(get_fs(), KERNEL_DS))
3637 return;
3639 might_sleep();
3641 * it would be nicer only to annotate paths which are not under
3642 * pagefault_disable, however that requires a larger audit and
3643 * providing helpers like get_user_atomic.
3645 if (!in_atomic() && current->mm)
3646 might_lock_read(&current->mm->mmap_sem);
3648 EXPORT_SYMBOL(might_fault);
3649 #endif