zd1211rw: implement beacon fetching and handling ieee80211_get_buffered_bc()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / zd1211rw / zd_mac.c
blob49ab3c35710076647c85b69e9dc33c888ab2d822
1 /* ZD1211 USB-WLAN driver for Linux
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/usb.h>
27 #include <linux/jiffies.h>
28 #include <net/ieee80211_radiotap.h>
30 #include "zd_def.h"
31 #include "zd_chip.h"
32 #include "zd_mac.h"
33 #include "zd_rf.h"
35 struct zd_reg_alpha2_map {
36 u32 reg;
37 char alpha2[2];
40 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
41 { ZD_REGDOMAIN_FCC, "US" },
42 { ZD_REGDOMAIN_IC, "CA" },
43 { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
44 { ZD_REGDOMAIN_JAPAN, "JP" },
45 { ZD_REGDOMAIN_JAPAN_2, "JP" },
46 { ZD_REGDOMAIN_JAPAN_3, "JP" },
47 { ZD_REGDOMAIN_SPAIN, "ES" },
48 { ZD_REGDOMAIN_FRANCE, "FR" },
51 /* This table contains the hardware specific values for the modulation rates. */
52 static const struct ieee80211_rate zd_rates[] = {
53 { .bitrate = 10,
54 .hw_value = ZD_CCK_RATE_1M, },
55 { .bitrate = 20,
56 .hw_value = ZD_CCK_RATE_2M,
57 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
58 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
59 { .bitrate = 55,
60 .hw_value = ZD_CCK_RATE_5_5M,
61 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
62 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
63 { .bitrate = 110,
64 .hw_value = ZD_CCK_RATE_11M,
65 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
66 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
67 { .bitrate = 60,
68 .hw_value = ZD_OFDM_RATE_6M,
69 .flags = 0 },
70 { .bitrate = 90,
71 .hw_value = ZD_OFDM_RATE_9M,
72 .flags = 0 },
73 { .bitrate = 120,
74 .hw_value = ZD_OFDM_RATE_12M,
75 .flags = 0 },
76 { .bitrate = 180,
77 .hw_value = ZD_OFDM_RATE_18M,
78 .flags = 0 },
79 { .bitrate = 240,
80 .hw_value = ZD_OFDM_RATE_24M,
81 .flags = 0 },
82 { .bitrate = 360,
83 .hw_value = ZD_OFDM_RATE_36M,
84 .flags = 0 },
85 { .bitrate = 480,
86 .hw_value = ZD_OFDM_RATE_48M,
87 .flags = 0 },
88 { .bitrate = 540,
89 .hw_value = ZD_OFDM_RATE_54M,
90 .flags = 0 },
94 * Zydas retry rates table. Each line is listed in the same order as
95 * in zd_rates[] and contains all the rate used when a packet is sent
96 * starting with a given rates. Let's consider an example :
98 * "11 Mbits : 4, 3, 2, 1, 0" means :
99 * - packet is sent using 4 different rates
100 * - 1st rate is index 3 (ie 11 Mbits)
101 * - 2nd rate is index 2 (ie 5.5 Mbits)
102 * - 3rd rate is index 1 (ie 2 Mbits)
103 * - 4th rate is index 0 (ie 1 Mbits)
106 static const struct tx_retry_rate zd_retry_rates[] = {
107 { /* 1 Mbits */ 1, { 0 }},
108 { /* 2 Mbits */ 2, { 1, 0 }},
109 { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
110 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
111 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
112 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
113 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
114 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
115 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
116 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
117 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
118 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
121 static const struct ieee80211_channel zd_channels[] = {
122 { .center_freq = 2412, .hw_value = 1 },
123 { .center_freq = 2417, .hw_value = 2 },
124 { .center_freq = 2422, .hw_value = 3 },
125 { .center_freq = 2427, .hw_value = 4 },
126 { .center_freq = 2432, .hw_value = 5 },
127 { .center_freq = 2437, .hw_value = 6 },
128 { .center_freq = 2442, .hw_value = 7 },
129 { .center_freq = 2447, .hw_value = 8 },
130 { .center_freq = 2452, .hw_value = 9 },
131 { .center_freq = 2457, .hw_value = 10 },
132 { .center_freq = 2462, .hw_value = 11 },
133 { .center_freq = 2467, .hw_value = 12 },
134 { .center_freq = 2472, .hw_value = 13 },
135 { .center_freq = 2484, .hw_value = 14 },
138 static void housekeeping_init(struct zd_mac *mac);
139 static void housekeeping_enable(struct zd_mac *mac);
140 static void housekeeping_disable(struct zd_mac *mac);
142 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
144 unsigned int i;
145 struct zd_reg_alpha2_map *reg_map;
146 for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
147 reg_map = &reg_alpha2_map[i];
148 if (regdomain == reg_map->reg) {
149 alpha2[0] = reg_map->alpha2[0];
150 alpha2[1] = reg_map->alpha2[1];
151 return 0;
154 return 1;
157 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
159 int r;
160 u8 addr[ETH_ALEN];
161 struct zd_mac *mac = zd_hw_mac(hw);
163 r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
164 if (r)
165 return r;
167 SET_IEEE80211_PERM_ADDR(hw, addr);
169 return 0;
172 int zd_mac_init_hw(struct ieee80211_hw *hw)
174 int r;
175 struct zd_mac *mac = zd_hw_mac(hw);
176 struct zd_chip *chip = &mac->chip;
177 char alpha2[2];
178 u8 default_regdomain;
180 r = zd_chip_enable_int(chip);
181 if (r)
182 goto out;
183 r = zd_chip_init_hw(chip);
184 if (r)
185 goto disable_int;
187 ZD_ASSERT(!irqs_disabled());
189 r = zd_read_regdomain(chip, &default_regdomain);
190 if (r)
191 goto disable_int;
192 spin_lock_irq(&mac->lock);
193 mac->regdomain = mac->default_regdomain = default_regdomain;
194 spin_unlock_irq(&mac->lock);
196 /* We must inform the device that we are doing encryption/decryption in
197 * software at the moment. */
198 r = zd_set_encryption_type(chip, ENC_SNIFFER);
199 if (r)
200 goto disable_int;
202 r = zd_reg2alpha2(mac->regdomain, alpha2);
203 if (r)
204 goto disable_int;
206 r = regulatory_hint(hw->wiphy, alpha2);
207 disable_int:
208 zd_chip_disable_int(chip);
209 out:
210 return r;
213 void zd_mac_clear(struct zd_mac *mac)
215 flush_workqueue(zd_workqueue);
216 zd_chip_clear(&mac->chip);
217 ZD_ASSERT(!spin_is_locked(&mac->lock));
218 ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
221 static int set_rx_filter(struct zd_mac *mac)
223 unsigned long flags;
224 u32 filter = STA_RX_FILTER;
226 spin_lock_irqsave(&mac->lock, flags);
227 if (mac->pass_ctrl)
228 filter |= RX_FILTER_CTRL;
229 spin_unlock_irqrestore(&mac->lock, flags);
231 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
234 static int set_mac_and_bssid(struct zd_mac *mac)
236 int r;
238 if (!mac->vif)
239 return -1;
241 r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
242 if (r)
243 return r;
245 /* Vendor driver after setting MAC either sets BSSID for AP or
246 * filter for other modes.
248 if (mac->type != NL80211_IFTYPE_AP)
249 return set_rx_filter(mac);
250 else
251 return zd_write_bssid(&mac->chip, mac->vif->addr);
254 static int set_mc_hash(struct zd_mac *mac)
256 struct zd_mc_hash hash;
257 zd_mc_clear(&hash);
258 return zd_chip_set_multicast_hash(&mac->chip, &hash);
261 static int zd_op_start(struct ieee80211_hw *hw)
263 struct zd_mac *mac = zd_hw_mac(hw);
264 struct zd_chip *chip = &mac->chip;
265 struct zd_usb *usb = &chip->usb;
266 int r;
268 if (!usb->initialized) {
269 r = zd_usb_init_hw(usb);
270 if (r)
271 goto out;
274 r = zd_chip_enable_int(chip);
275 if (r < 0)
276 goto out;
278 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
279 if (r < 0)
280 goto disable_int;
281 r = set_rx_filter(mac);
282 if (r)
283 goto disable_int;
284 r = set_mc_hash(mac);
285 if (r)
286 goto disable_int;
287 r = zd_chip_switch_radio_on(chip);
288 if (r < 0)
289 goto disable_int;
290 r = zd_chip_enable_rxtx(chip);
291 if (r < 0)
292 goto disable_radio;
293 r = zd_chip_enable_hwint(chip);
294 if (r < 0)
295 goto disable_rxtx;
297 housekeeping_enable(mac);
298 return 0;
299 disable_rxtx:
300 zd_chip_disable_rxtx(chip);
301 disable_radio:
302 zd_chip_switch_radio_off(chip);
303 disable_int:
304 zd_chip_disable_int(chip);
305 out:
306 return r;
309 static void zd_op_stop(struct ieee80211_hw *hw)
311 struct zd_mac *mac = zd_hw_mac(hw);
312 struct zd_chip *chip = &mac->chip;
313 struct sk_buff *skb;
314 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
316 /* The order here deliberately is a little different from the open()
317 * method, since we need to make sure there is no opportunity for RX
318 * frames to be processed by mac80211 after we have stopped it.
321 zd_chip_disable_rxtx(chip);
322 housekeeping_disable(mac);
323 flush_workqueue(zd_workqueue);
325 zd_chip_disable_hwint(chip);
326 zd_chip_switch_radio_off(chip);
327 zd_chip_disable_int(chip);
330 while ((skb = skb_dequeue(ack_wait_queue)))
331 dev_kfree_skb_any(skb);
335 * zd_mac_tx_status - reports tx status of a packet if required
336 * @hw - a &struct ieee80211_hw pointer
337 * @skb - a sk-buffer
338 * @flags: extra flags to set in the TX status info
339 * @ackssi: ACK signal strength
340 * @success - True for successful transmission of the frame
342 * This information calls ieee80211_tx_status_irqsafe() if required by the
343 * control information. It copies the control information into the status
344 * information.
346 * If no status information has been requested, the skb is freed.
348 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
349 int ackssi, struct tx_status *tx_status)
351 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
352 int i;
353 int success = 1, retry = 1;
354 int first_idx;
355 const struct tx_retry_rate *retries;
357 ieee80211_tx_info_clear_status(info);
359 if (tx_status) {
360 success = !tx_status->failure;
361 retry = tx_status->retry + success;
364 if (success) {
365 /* success */
366 info->flags |= IEEE80211_TX_STAT_ACK;
367 } else {
368 /* failure */
369 info->flags &= ~IEEE80211_TX_STAT_ACK;
372 first_idx = info->status.rates[0].idx;
373 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
374 retries = &zd_retry_rates[first_idx];
375 ZD_ASSERT(1 <= retry && retry <= retries->count);
377 info->status.rates[0].idx = retries->rate[0];
378 info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
380 for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
381 info->status.rates[i].idx = retries->rate[i];
382 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
384 for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
385 info->status.rates[i].idx = retries->rate[retry - 1];
386 info->status.rates[i].count = 1; // (success ? 1:2);
388 if (i<IEEE80211_TX_MAX_RATES)
389 info->status.rates[i].idx = -1; /* terminate */
391 info->status.ack_signal = ackssi;
392 ieee80211_tx_status_irqsafe(hw, skb);
396 * zd_mac_tx_failed - callback for failed frames
397 * @dev: the mac80211 wireless device
399 * This function is called if a frame couldn't be successfully
400 * transferred. The first frame from the tx queue, will be selected and
401 * reported as error to the upper layers.
403 void zd_mac_tx_failed(struct urb *urb)
405 struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
406 struct zd_mac *mac = zd_hw_mac(hw);
407 struct sk_buff_head *q = &mac->ack_wait_queue;
408 struct sk_buff *skb;
409 struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
410 unsigned long flags;
411 int success = !tx_status->failure;
412 int retry = tx_status->retry + success;
413 int found = 0;
414 int i, position = 0;
416 q = &mac->ack_wait_queue;
417 spin_lock_irqsave(&q->lock, flags);
419 skb_queue_walk(q, skb) {
420 struct ieee80211_hdr *tx_hdr;
421 struct ieee80211_tx_info *info;
422 int first_idx, final_idx;
423 const struct tx_retry_rate *retries;
424 u8 final_rate;
426 position ++;
428 /* if the hardware reports a failure and we had a 802.11 ACK
429 * pending, then we skip the first skb when searching for a
430 * matching frame */
431 if (tx_status->failure && mac->ack_pending &&
432 skb_queue_is_first(q, skb)) {
433 continue;
436 tx_hdr = (struct ieee80211_hdr *)skb->data;
438 /* we skip all frames not matching the reported destination */
439 if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
440 continue;
443 /* we skip all frames not matching the reported final rate */
445 info = IEEE80211_SKB_CB(skb);
446 first_idx = info->status.rates[0].idx;
447 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
448 retries = &zd_retry_rates[first_idx];
449 if (retry <= 0 || retry > retries->count)
450 continue;
452 final_idx = retries->rate[retry - 1];
453 final_rate = zd_rates[final_idx].hw_value;
455 if (final_rate != tx_status->rate) {
456 continue;
459 found = 1;
460 break;
463 if (found) {
464 for (i=1; i<=position; i++) {
465 skb = __skb_dequeue(q);
466 zd_mac_tx_status(hw, skb,
467 mac->ack_pending ? mac->ack_signal : 0,
468 i == position ? tx_status : NULL);
469 mac->ack_pending = 0;
473 spin_unlock_irqrestore(&q->lock, flags);
477 * zd_mac_tx_to_dev - callback for USB layer
478 * @skb: a &sk_buff pointer
479 * @error: error value, 0 if transmission successful
481 * Informs the MAC layer that the frame has successfully transferred to the
482 * device. If an ACK is required and the transfer to the device has been
483 * successful, the packets are put on the @ack_wait_queue with
484 * the control set removed.
486 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
488 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
489 struct ieee80211_hw *hw = info->rate_driver_data[0];
490 struct zd_mac *mac = zd_hw_mac(hw);
492 ieee80211_tx_info_clear_status(info);
494 skb_pull(skb, sizeof(struct zd_ctrlset));
495 if (unlikely(error ||
496 (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
498 * FIXME : do we need to fill in anything ?
500 ieee80211_tx_status_irqsafe(hw, skb);
501 } else {
502 struct sk_buff_head *q = &mac->ack_wait_queue;
504 skb_queue_tail(q, skb);
505 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
506 zd_mac_tx_status(hw, skb_dequeue(q),
507 mac->ack_pending ? mac->ack_signal : 0,
508 NULL);
509 mac->ack_pending = 0;
514 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
516 /* ZD_PURE_RATE() must be used to remove the modulation type flag of
517 * the zd-rate values.
519 static const u8 rate_divisor[] = {
520 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
521 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
522 /* Bits must be doubled. */
523 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
524 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
525 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
526 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
527 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
528 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
529 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
530 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
531 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
532 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
535 u32 bits = (u32)tx_length * 8;
536 u32 divisor;
538 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
539 if (divisor == 0)
540 return -EINVAL;
542 switch (zd_rate) {
543 case ZD_CCK_RATE_5_5M:
544 bits = (2*bits) + 10; /* round up to the next integer */
545 break;
546 case ZD_CCK_RATE_11M:
547 if (service) {
548 u32 t = bits % 11;
549 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
550 if (0 < t && t <= 3) {
551 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
554 bits += 10; /* round up to the next integer */
555 break;
558 return bits/divisor;
561 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
562 struct ieee80211_hdr *header,
563 struct ieee80211_tx_info *info)
566 * CONTROL TODO:
567 * - if backoff needed, enable bit 0
568 * - if burst (backoff not needed) disable bit 0
571 cs->control = 0;
573 /* First fragment */
574 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
575 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
577 /* No ACK expected (multicast, etc.) */
578 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
579 cs->control |= ZD_CS_NO_ACK;
581 /* PS-POLL */
582 if (ieee80211_is_pspoll(header->frame_control))
583 cs->control |= ZD_CS_PS_POLL_FRAME;
585 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
586 cs->control |= ZD_CS_RTS;
588 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
589 cs->control |= ZD_CS_SELF_CTS;
591 /* FIXME: Management frame? */
594 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon)
596 struct zd_mac *mac = zd_hw_mac(hw);
597 int r;
598 u32 tmp, j = 0;
599 /* 4 more bytes for tail CRC */
600 u32 full_len = beacon->len + 4;
602 r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 0);
603 if (r < 0)
604 return r;
605 r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
606 if (r < 0)
607 return r;
609 while (tmp & 0x2) {
610 r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
611 if (r < 0)
612 return r;
613 if ((++j % 100) == 0) {
614 printk(KERN_ERR "CR_BCN_FIFO_SEMAPHORE not ready\n");
615 if (j >= 500) {
616 printk(KERN_ERR "Giving up beacon config.\n");
617 return -ETIMEDOUT;
620 msleep(1);
623 r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, full_len - 1);
624 if (r < 0)
625 return r;
626 if (zd_chip_is_zd1211b(&mac->chip)) {
627 r = zd_iowrite32(&mac->chip, CR_BCN_LENGTH, full_len - 1);
628 if (r < 0)
629 return r;
632 for (j = 0 ; j < beacon->len; j++) {
633 r = zd_iowrite32(&mac->chip, CR_BCN_FIFO,
634 *((u8 *)(beacon->data + j)));
635 if (r < 0)
636 return r;
639 for (j = 0; j < 4; j++) {
640 r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, 0x0);
641 if (r < 0)
642 return r;
645 r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 1);
646 if (r < 0)
647 return r;
649 /* 802.11b/g 2.4G CCK 1Mb
650 * 802.11a, not yet implemented, uses different values (see GPL vendor
651 * driver)
653 return zd_iowrite32(&mac->chip, CR_BCN_PLCP_CFG, 0x00000400 |
654 (full_len << 19));
657 static int fill_ctrlset(struct zd_mac *mac,
658 struct sk_buff *skb)
660 int r;
661 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
662 unsigned int frag_len = skb->len + FCS_LEN;
663 unsigned int packet_length;
664 struct ieee80211_rate *txrate;
665 struct zd_ctrlset *cs = (struct zd_ctrlset *)
666 skb_push(skb, sizeof(struct zd_ctrlset));
667 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
669 ZD_ASSERT(frag_len <= 0xffff);
671 txrate = ieee80211_get_tx_rate(mac->hw, info);
673 cs->modulation = txrate->hw_value;
674 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
675 cs->modulation = txrate->hw_value_short;
677 cs->tx_length = cpu_to_le16(frag_len);
679 cs_set_control(mac, cs, hdr, info);
681 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
682 ZD_ASSERT(packet_length <= 0xffff);
683 /* ZD1211B: Computing the length difference this way, gives us
684 * flexibility to compute the packet length.
686 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
687 packet_length - frag_len : packet_length);
690 * CURRENT LENGTH:
691 * - transmit frame length in microseconds
692 * - seems to be derived from frame length
693 * - see Cal_Us_Service() in zdinlinef.h
694 * - if macp->bTxBurstEnable is enabled, then multiply by 4
695 * - bTxBurstEnable is never set in the vendor driver
697 * SERVICE:
698 * - "for PLCP configuration"
699 * - always 0 except in some situations at 802.11b 11M
700 * - see line 53 of zdinlinef.h
702 cs->service = 0;
703 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
704 le16_to_cpu(cs->tx_length));
705 if (r < 0)
706 return r;
707 cs->current_length = cpu_to_le16(r);
708 cs->next_frame_length = 0;
710 return 0;
714 * zd_op_tx - transmits a network frame to the device
716 * @dev: mac80211 hardware device
717 * @skb: socket buffer
718 * @control: the control structure
720 * This function transmit an IEEE 802.11 network frame to the device. The
721 * control block of the skbuff will be initialized. If necessary the incoming
722 * mac80211 queues will be stopped.
724 static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
726 struct zd_mac *mac = zd_hw_mac(hw);
727 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
728 int r;
730 r = fill_ctrlset(mac, skb);
731 if (r)
732 goto fail;
734 info->rate_driver_data[0] = hw;
736 r = zd_usb_tx(&mac->chip.usb, skb);
737 if (r)
738 goto fail;
739 return 0;
741 fail:
742 dev_kfree_skb(skb);
743 return 0;
747 * filter_ack - filters incoming packets for acknowledgements
748 * @dev: the mac80211 device
749 * @rx_hdr: received header
750 * @stats: the status for the received packet
752 * This functions looks for ACK packets and tries to match them with the
753 * frames in the tx queue. If a match is found the frame will be dequeued and
754 * the upper layers is informed about the successful transmission. If
755 * mac80211 queues have been stopped and the number of frames still to be
756 * transmitted is low the queues will be opened again.
758 * Returns 1 if the frame was an ACK, 0 if it was ignored.
760 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
761 struct ieee80211_rx_status *stats)
763 struct zd_mac *mac = zd_hw_mac(hw);
764 struct sk_buff *skb;
765 struct sk_buff_head *q;
766 unsigned long flags;
767 int found = 0;
768 int i, position = 0;
770 if (!ieee80211_is_ack(rx_hdr->frame_control))
771 return 0;
773 q = &mac->ack_wait_queue;
774 spin_lock_irqsave(&q->lock, flags);
775 skb_queue_walk(q, skb) {
776 struct ieee80211_hdr *tx_hdr;
778 position ++;
780 if (mac->ack_pending && skb_queue_is_first(q, skb))
781 continue;
783 tx_hdr = (struct ieee80211_hdr *)skb->data;
784 if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
786 found = 1;
787 break;
791 if (found) {
792 for (i=1; i<position; i++) {
793 skb = __skb_dequeue(q);
794 zd_mac_tx_status(hw, skb,
795 mac->ack_pending ? mac->ack_signal : 0,
796 NULL);
797 mac->ack_pending = 0;
800 mac->ack_pending = 1;
801 mac->ack_signal = stats->signal;
803 /* Prevent pending tx-packet on AP-mode */
804 if (mac->type == NL80211_IFTYPE_AP) {
805 skb = __skb_dequeue(q);
806 zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
807 mac->ack_pending = 0;
811 spin_unlock_irqrestore(&q->lock, flags);
812 return 1;
815 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
817 struct zd_mac *mac = zd_hw_mac(hw);
818 struct ieee80211_rx_status stats;
819 const struct rx_status *status;
820 struct sk_buff *skb;
821 int bad_frame = 0;
822 __le16 fc;
823 int need_padding;
824 int i;
825 u8 rate;
827 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
828 FCS_LEN + sizeof(struct rx_status))
829 return -EINVAL;
831 memset(&stats, 0, sizeof(stats));
833 /* Note about pass_failed_fcs and pass_ctrl access below:
834 * mac locking intentionally omitted here, as this is the only unlocked
835 * reader and the only writer is configure_filter. Plus, if there were
836 * any races accessing these variables, it wouldn't really matter.
837 * If mac80211 ever provides a way for us to access filter flags
838 * from outside configure_filter, we could improve on this. Also, this
839 * situation may change once we implement some kind of DMA-into-skb
840 * RX path. */
842 /* Caller has to ensure that length >= sizeof(struct rx_status). */
843 status = (struct rx_status *)
844 (buffer + (length - sizeof(struct rx_status)));
845 if (status->frame_status & ZD_RX_ERROR) {
846 if (mac->pass_failed_fcs &&
847 (status->frame_status & ZD_RX_CRC32_ERROR)) {
848 stats.flag |= RX_FLAG_FAILED_FCS_CRC;
849 bad_frame = 1;
850 } else {
851 return -EINVAL;
855 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
856 stats.band = IEEE80211_BAND_2GHZ;
857 stats.signal = status->signal_strength;
859 rate = zd_rx_rate(buffer, status);
861 /* todo: return index in the big switches in zd_rx_rate instead */
862 for (i = 0; i < mac->band.n_bitrates; i++)
863 if (rate == mac->band.bitrates[i].hw_value)
864 stats.rate_idx = i;
866 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
867 buffer += ZD_PLCP_HEADER_SIZE;
869 /* Except for bad frames, filter each frame to see if it is an ACK, in
870 * which case our internal TX tracking is updated. Normally we then
871 * bail here as there's no need to pass ACKs on up to the stack, but
872 * there is also the case where the stack has requested us to pass
873 * control frames on up (pass_ctrl) which we must consider. */
874 if (!bad_frame &&
875 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
876 && !mac->pass_ctrl)
877 return 0;
879 fc = get_unaligned((__le16*)buffer);
880 need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
882 skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
883 if (skb == NULL)
884 return -ENOMEM;
885 if (need_padding) {
886 /* Make sure the payload data is 4 byte aligned. */
887 skb_reserve(skb, 2);
890 /* FIXME : could we avoid this big memcpy ? */
891 memcpy(skb_put(skb, length), buffer, length);
893 memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
894 ieee80211_rx_irqsafe(hw, skb);
895 return 0;
898 static int zd_op_add_interface(struct ieee80211_hw *hw,
899 struct ieee80211_vif *vif)
901 struct zd_mac *mac = zd_hw_mac(hw);
903 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
904 if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
905 return -EOPNOTSUPP;
907 switch (vif->type) {
908 case NL80211_IFTYPE_MONITOR:
909 case NL80211_IFTYPE_MESH_POINT:
910 case NL80211_IFTYPE_STATION:
911 case NL80211_IFTYPE_ADHOC:
912 mac->type = vif->type;
913 break;
914 default:
915 return -EOPNOTSUPP;
918 mac->vif = vif;
920 return set_mac_and_bssid(mac);
923 static void zd_op_remove_interface(struct ieee80211_hw *hw,
924 struct ieee80211_vif *vif)
926 struct zd_mac *mac = zd_hw_mac(hw);
927 mac->type = NL80211_IFTYPE_UNSPECIFIED;
928 mac->vif = NULL;
929 zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
930 zd_write_mac_addr(&mac->chip, NULL);
933 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
935 struct zd_mac *mac = zd_hw_mac(hw);
936 struct ieee80211_conf *conf = &hw->conf;
938 return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
941 static void zd_beacon_done(struct zd_mac *mac)
943 struct sk_buff *skb, *beacon;
945 if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
946 return;
949 * Send out buffered broad- and multicast frames.
951 while (!ieee80211_queue_stopped(mac->hw, 0)) {
952 skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
953 if (!skb)
954 break;
955 zd_op_tx(mac->hw, skb);
959 * Fetch next beacon so that tim_count is updated.
961 beacon = ieee80211_beacon_get(mac->hw, mac->vif);
962 if (!beacon)
963 return;
965 zd_mac_config_beacon(mac->hw, beacon);
966 kfree_skb(beacon);
969 static void zd_process_intr(struct work_struct *work)
971 u16 int_status;
972 unsigned long flags;
973 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
975 spin_lock_irqsave(&mac->lock, flags);
976 int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
977 spin_unlock_irqrestore(&mac->lock, flags);
979 if (int_status & INT_CFG_NEXT_BCN) {
980 /*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
981 zd_beacon_done(mac);
982 } else {
983 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
986 zd_chip_enable_hwint(&mac->chip);
990 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
991 struct netdev_hw_addr_list *mc_list)
993 struct zd_mac *mac = zd_hw_mac(hw);
994 struct zd_mc_hash hash;
995 struct netdev_hw_addr *ha;
997 zd_mc_clear(&hash);
999 netdev_hw_addr_list_for_each(ha, mc_list) {
1000 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1001 zd_mc_add_addr(&hash, ha->addr);
1004 return hash.low | ((u64)hash.high << 32);
1007 #define SUPPORTED_FIF_FLAGS \
1008 (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1009 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
1010 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1011 unsigned int changed_flags,
1012 unsigned int *new_flags,
1013 u64 multicast)
1015 struct zd_mc_hash hash = {
1016 .low = multicast,
1017 .high = multicast >> 32,
1019 struct zd_mac *mac = zd_hw_mac(hw);
1020 unsigned long flags;
1021 int r;
1023 /* Only deal with supported flags */
1024 changed_flags &= SUPPORTED_FIF_FLAGS;
1025 *new_flags &= SUPPORTED_FIF_FLAGS;
1028 * If multicast parameter (as returned by zd_op_prepare_multicast)
1029 * has changed, no bit in changed_flags is set. To handle this
1030 * situation, we do not return if changed_flags is 0. If we do so,
1031 * we will have some issue with IPv6 which uses multicast for link
1032 * layer address resolution.
1034 if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
1035 zd_mc_add_all(&hash);
1037 spin_lock_irqsave(&mac->lock, flags);
1038 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1039 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1040 mac->multicast_hash = hash;
1041 spin_unlock_irqrestore(&mac->lock, flags);
1043 zd_chip_set_multicast_hash(&mac->chip, &hash);
1045 if (changed_flags & FIF_CONTROL) {
1046 r = set_rx_filter(mac);
1047 if (r)
1048 dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1051 /* no handling required for FIF_OTHER_BSS as we don't currently
1052 * do BSSID filtering */
1053 /* FIXME: in future it would be nice to enable the probe response
1054 * filter (so that the driver doesn't see them) until
1055 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1056 * have to schedule work to enable prbresp reception, which might
1057 * happen too late. For now we'll just listen and forward them all the
1058 * time. */
1061 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1063 mutex_lock(&mac->chip.mutex);
1064 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1065 mutex_unlock(&mac->chip.mutex);
1068 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1069 struct ieee80211_vif *vif,
1070 struct ieee80211_bss_conf *bss_conf,
1071 u32 changes)
1073 struct zd_mac *mac = zd_hw_mac(hw);
1074 int associated;
1076 dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1078 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1079 mac->type == NL80211_IFTYPE_ADHOC) {
1080 associated = true;
1081 if (changes & BSS_CHANGED_BEACON) {
1082 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1084 if (beacon) {
1085 zd_mac_config_beacon(hw, beacon);
1086 kfree_skb(beacon);
1090 if (changes & BSS_CHANGED_BEACON_ENABLED) {
1091 u16 interval = 0;
1092 u8 period = 0;
1094 if (bss_conf->enable_beacon) {
1095 period = bss_conf->dtim_period;
1096 interval = bss_conf->beacon_int;
1099 zd_set_beacon_interval(&mac->chip, interval, period,
1100 mac->type);
1102 } else
1103 associated = is_valid_ether_addr(bss_conf->bssid);
1105 spin_lock_irq(&mac->lock);
1106 mac->associated = associated;
1107 spin_unlock_irq(&mac->lock);
1109 /* TODO: do hardware bssid filtering */
1111 if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1112 spin_lock_irq(&mac->lock);
1113 mac->short_preamble = bss_conf->use_short_preamble;
1114 spin_unlock_irq(&mac->lock);
1116 set_rts_cts(mac, bss_conf->use_short_preamble);
1120 static u64 zd_op_get_tsf(struct ieee80211_hw *hw)
1122 struct zd_mac *mac = zd_hw_mac(hw);
1123 return zd_chip_get_tsf(&mac->chip);
1126 static const struct ieee80211_ops zd_ops = {
1127 .tx = zd_op_tx,
1128 .start = zd_op_start,
1129 .stop = zd_op_stop,
1130 .add_interface = zd_op_add_interface,
1131 .remove_interface = zd_op_remove_interface,
1132 .config = zd_op_config,
1133 .prepare_multicast = zd_op_prepare_multicast,
1134 .configure_filter = zd_op_configure_filter,
1135 .bss_info_changed = zd_op_bss_info_changed,
1136 .get_tsf = zd_op_get_tsf,
1139 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1141 struct zd_mac *mac;
1142 struct ieee80211_hw *hw;
1144 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1145 if (!hw) {
1146 dev_dbg_f(&intf->dev, "out of memory\n");
1147 return NULL;
1150 mac = zd_hw_mac(hw);
1152 memset(mac, 0, sizeof(*mac));
1153 spin_lock_init(&mac->lock);
1154 mac->hw = hw;
1156 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1158 memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1159 memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1160 mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1161 mac->band.bitrates = mac->rates;
1162 mac->band.n_channels = ARRAY_SIZE(zd_channels);
1163 mac->band.channels = mac->channels;
1165 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
1167 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1168 IEEE80211_HW_SIGNAL_UNSPEC |
1169 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1171 hw->wiphy->interface_modes =
1172 BIT(NL80211_IFTYPE_MESH_POINT) |
1173 BIT(NL80211_IFTYPE_STATION) |
1174 BIT(NL80211_IFTYPE_ADHOC);
1176 hw->max_signal = 100;
1177 hw->queues = 1;
1178 hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1181 * Tell mac80211 that we support multi rate retries
1183 hw->max_rates = IEEE80211_TX_MAX_RATES;
1184 hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
1186 skb_queue_head_init(&mac->ack_wait_queue);
1187 mac->ack_pending = 0;
1189 zd_chip_init(&mac->chip, hw, intf);
1190 housekeeping_init(mac);
1191 INIT_WORK(&mac->process_intr, zd_process_intr);
1193 SET_IEEE80211_DEV(hw, &intf->dev);
1194 return hw;
1197 #define LINK_LED_WORK_DELAY HZ
1199 static void link_led_handler(struct work_struct *work)
1201 struct zd_mac *mac =
1202 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1203 struct zd_chip *chip = &mac->chip;
1204 int is_associated;
1205 int r;
1207 spin_lock_irq(&mac->lock);
1208 is_associated = mac->associated;
1209 spin_unlock_irq(&mac->lock);
1211 r = zd_chip_control_leds(chip,
1212 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1213 if (r)
1214 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1216 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1217 LINK_LED_WORK_DELAY);
1220 static void housekeeping_init(struct zd_mac *mac)
1222 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1225 static void housekeeping_enable(struct zd_mac *mac)
1227 dev_dbg_f(zd_mac_dev(mac), "\n");
1228 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1232 static void housekeeping_disable(struct zd_mac *mac)
1234 dev_dbg_f(zd_mac_dev(mac), "\n");
1235 cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1236 zd_chip_control_leds(&mac->chip, ZD_LED_OFF);