rt2x00: fix rmmod crash
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blob939821b4af2ff5b768913cc0809b05695801285c
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Module: rt2x00lib
24 Abstract: rt2x00 generic device routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
36 * Radio control handlers.
38 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
40 int status;
43 * Don't enable the radio twice.
44 * And check if the hardware button has been disabled.
46 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
47 return 0;
50 * Initialize all data queues.
52 rt2x00queue_init_queues(rt2x00dev);
55 * Enable radio.
57 status =
58 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
59 if (status)
60 return status;
62 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
64 rt2x00leds_led_radio(rt2x00dev, true);
65 rt2x00led_led_activity(rt2x00dev, true);
67 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
70 * Enable queues.
72 rt2x00queue_start_queues(rt2x00dev);
73 rt2x00link_start_tuner(rt2x00dev);
74 rt2x00link_start_agc(rt2x00dev);
77 * Start watchdog monitoring.
79 rt2x00link_start_watchdog(rt2x00dev);
81 return 0;
84 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
86 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
87 return;
90 * Stop watchdog monitoring.
92 rt2x00link_stop_watchdog(rt2x00dev);
95 * Stop all queues
97 rt2x00link_stop_agc(rt2x00dev);
98 rt2x00link_stop_tuner(rt2x00dev);
99 rt2x00queue_stop_queues(rt2x00dev);
100 rt2x00queue_flush_queues(rt2x00dev, true);
103 * Disable radio.
105 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
106 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
107 rt2x00led_led_activity(rt2x00dev, false);
108 rt2x00leds_led_radio(rt2x00dev, false);
111 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
112 struct ieee80211_vif *vif)
114 struct rt2x00_dev *rt2x00dev = data;
115 struct rt2x00_intf *intf = vif_to_intf(vif);
118 * It is possible the radio was disabled while the work had been
119 * scheduled. If that happens we should return here immediately,
120 * note that in the spinlock protected area above the delayed_flags
121 * have been cleared correctly.
123 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
124 return;
126 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
127 rt2x00queue_update_beacon(rt2x00dev, vif);
130 static void rt2x00lib_intf_scheduled(struct work_struct *work)
132 struct rt2x00_dev *rt2x00dev =
133 container_of(work, struct rt2x00_dev, intf_work);
136 * Iterate over each interface and perform the
137 * requested configurations.
139 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
140 rt2x00lib_intf_scheduled_iter,
141 rt2x00dev);
144 static void rt2x00lib_autowakeup(struct work_struct *work)
146 struct rt2x00_dev *rt2x00dev =
147 container_of(work, struct rt2x00_dev, autowakeup_work.work);
149 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
150 return;
152 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
153 ERROR(rt2x00dev, "Device failed to wakeup.\n");
154 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
158 * Interrupt context handlers.
160 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
161 struct ieee80211_vif *vif)
163 struct rt2x00_dev *rt2x00dev = data;
164 struct sk_buff *skb;
167 * Only AP mode interfaces do broad- and multicast buffering
169 if (vif->type != NL80211_IFTYPE_AP)
170 return;
173 * Send out buffered broad- and multicast frames
175 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
176 while (skb) {
177 rt2x00mac_tx(rt2x00dev->hw, skb);
178 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
182 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
183 struct ieee80211_vif *vif)
185 struct rt2x00_dev *rt2x00dev = data;
187 if (vif->type != NL80211_IFTYPE_AP &&
188 vif->type != NL80211_IFTYPE_ADHOC &&
189 vif->type != NL80211_IFTYPE_MESH_POINT &&
190 vif->type != NL80211_IFTYPE_WDS)
191 return;
194 * Update the beacon without locking. This is safe on PCI devices
195 * as they only update the beacon periodically here. This should
196 * never be called for USB devices.
198 WARN_ON(rt2x00_is_usb(rt2x00dev));
199 rt2x00queue_update_beacon_locked(rt2x00dev, vif);
202 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
204 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
205 return;
207 /* send buffered bc/mc frames out for every bssid */
208 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
209 rt2x00lib_bc_buffer_iter,
210 rt2x00dev);
212 * Devices with pre tbtt interrupt don't need to update the beacon
213 * here as they will fetch the next beacon directly prior to
214 * transmission.
216 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
217 return;
219 /* fetch next beacon */
220 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
221 rt2x00lib_beaconupdate_iter,
222 rt2x00dev);
224 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
226 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
228 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
229 return;
231 /* fetch next beacon */
232 ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
233 rt2x00lib_beaconupdate_iter,
234 rt2x00dev);
236 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
238 void rt2x00lib_dmastart(struct queue_entry *entry)
240 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
241 rt2x00queue_index_inc(entry, Q_INDEX);
243 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
245 void rt2x00lib_dmadone(struct queue_entry *entry)
247 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
248 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
249 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
251 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
253 void rt2x00lib_txdone(struct queue_entry *entry,
254 struct txdone_entry_desc *txdesc)
256 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
257 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
258 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
259 unsigned int header_length, i;
260 u8 rate_idx, rate_flags, retry_rates;
261 u8 skbdesc_flags = skbdesc->flags;
262 bool success;
265 * Unmap the skb.
267 rt2x00queue_unmap_skb(entry);
270 * Remove the extra tx headroom from the skb.
272 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
275 * Signal that the TX descriptor is no longer in the skb.
277 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
280 * Determine the length of 802.11 header.
282 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
285 * Remove L2 padding which was added during
287 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
288 rt2x00queue_remove_l2pad(entry->skb, header_length);
291 * If the IV/EIV data was stripped from the frame before it was
292 * passed to the hardware, we should now reinsert it again because
293 * mac80211 will expect the same data to be present it the
294 * frame as it was passed to us.
296 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
297 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
300 * Send frame to debugfs immediately, after this call is completed
301 * we are going to overwrite the skb->cb array.
303 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
306 * Determine if the frame has been successfully transmitted.
308 success =
309 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
310 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
313 * Update TX statistics.
315 rt2x00dev->link.qual.tx_success += success;
316 rt2x00dev->link.qual.tx_failed += !success;
318 rate_idx = skbdesc->tx_rate_idx;
319 rate_flags = skbdesc->tx_rate_flags;
320 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
321 (txdesc->retry + 1) : 1;
324 * Initialize TX status
326 memset(&tx_info->status, 0, sizeof(tx_info->status));
327 tx_info->status.ack_signal = 0;
330 * Frame was send with retries, hardware tried
331 * different rates to send out the frame, at each
332 * retry it lowered the rate 1 step except when the
333 * lowest rate was used.
335 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
336 tx_info->status.rates[i].idx = rate_idx - i;
337 tx_info->status.rates[i].flags = rate_flags;
339 if (rate_idx - i == 0) {
341 * The lowest rate (index 0) was used until the
342 * number of max retries was reached.
344 tx_info->status.rates[i].count = retry_rates - i;
345 i++;
346 break;
348 tx_info->status.rates[i].count = 1;
350 if (i < (IEEE80211_TX_MAX_RATES - 1))
351 tx_info->status.rates[i].idx = -1; /* terminate */
353 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
354 if (success)
355 tx_info->flags |= IEEE80211_TX_STAT_ACK;
356 else
357 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
361 * Every single frame has it's own tx status, hence report
362 * every frame as ampdu of size 1.
364 * TODO: if we can find out how many frames were aggregated
365 * by the hw we could provide the real ampdu_len to mac80211
366 * which would allow the rc algorithm to better decide on
367 * which rates are suitable.
369 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
370 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
371 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
372 tx_info->status.ampdu_len = 1;
373 tx_info->status.ampdu_ack_len = success ? 1 : 0;
375 if (!success)
376 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
379 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
380 if (success)
381 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
382 else
383 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
387 * Only send the status report to mac80211 when it's a frame
388 * that originated in mac80211. If this was a extra frame coming
389 * through a mac80211 library call (RTS/CTS) then we should not
390 * send the status report back.
392 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
393 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
394 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
395 else
396 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
397 } else
398 dev_kfree_skb_any(entry->skb);
401 * Make this entry available for reuse.
403 entry->skb = NULL;
404 entry->flags = 0;
406 rt2x00dev->ops->lib->clear_entry(entry);
408 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
411 * If the data queue was below the threshold before the txdone
412 * handler we must make sure the packet queue in the mac80211 stack
413 * is reenabled when the txdone handler has finished.
415 if (!rt2x00queue_threshold(entry->queue))
416 rt2x00queue_unpause_queue(entry->queue);
418 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
420 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
422 struct txdone_entry_desc txdesc;
424 txdesc.flags = 0;
425 __set_bit(status, &txdesc.flags);
426 txdesc.retry = 0;
428 rt2x00lib_txdone(entry, &txdesc);
430 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
432 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
434 struct ieee80211_mgmt *mgmt = (void *)data;
435 u8 *pos, *end;
437 pos = (u8 *)mgmt->u.beacon.variable;
438 end = data + len;
439 while (pos < end) {
440 if (pos + 2 + pos[1] > end)
441 return NULL;
443 if (pos[0] == ie)
444 return pos;
446 pos += 2 + pos[1];
449 return NULL;
452 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
453 struct sk_buff *skb,
454 struct rxdone_entry_desc *rxdesc)
456 struct ieee80211_hdr *hdr = (void *) skb->data;
457 struct ieee80211_tim_ie *tim_ie;
458 u8 *tim;
459 u8 tim_len;
460 bool cam;
462 /* If this is not a beacon, or if mac80211 has no powersaving
463 * configured, or if the device is already in powersaving mode
464 * we can exit now. */
465 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
466 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
467 return;
469 /* min. beacon length + FCS_LEN */
470 if (skb->len <= 40 + FCS_LEN)
471 return;
473 /* and only beacons from the associated BSSID, please */
474 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
475 !rt2x00dev->aid)
476 return;
478 rt2x00dev->last_beacon = jiffies;
480 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
481 if (!tim)
482 return;
484 if (tim[1] < sizeof(*tim_ie))
485 return;
487 tim_len = tim[1];
488 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
490 /* Check whenever the PHY can be turned off again. */
492 /* 1. What about buffered unicast traffic for our AID? */
493 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
495 /* 2. Maybe the AP wants to send multicast/broadcast data? */
496 cam |= (tim_ie->bitmap_ctrl & 0x01);
498 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
499 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
500 IEEE80211_CONF_CHANGE_PS);
503 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
504 struct rxdone_entry_desc *rxdesc)
506 struct ieee80211_supported_band *sband;
507 const struct rt2x00_rate *rate;
508 unsigned int i;
509 int signal = rxdesc->signal;
510 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
512 switch (rxdesc->rate_mode) {
513 case RATE_MODE_CCK:
514 case RATE_MODE_OFDM:
516 * For non-HT rates the MCS value needs to contain the
517 * actually used rate modulation (CCK or OFDM).
519 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
520 signal = RATE_MCS(rxdesc->rate_mode, signal);
522 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
523 for (i = 0; i < sband->n_bitrates; i++) {
524 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
525 if (((type == RXDONE_SIGNAL_PLCP) &&
526 (rate->plcp == signal)) ||
527 ((type == RXDONE_SIGNAL_BITRATE) &&
528 (rate->bitrate == signal)) ||
529 ((type == RXDONE_SIGNAL_MCS) &&
530 (rate->mcs == signal))) {
531 return i;
534 break;
535 case RATE_MODE_HT_MIX:
536 case RATE_MODE_HT_GREENFIELD:
537 if (signal >= 0 && signal <= 76)
538 return signal;
539 break;
540 default:
541 break;
544 WARNING(rt2x00dev, "Frame received with unrecognized signal, "
545 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
546 rxdesc->rate_mode, signal, type);
547 return 0;
550 void rt2x00lib_rxdone(struct queue_entry *entry)
552 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
553 struct rxdone_entry_desc rxdesc;
554 struct sk_buff *skb;
555 struct ieee80211_rx_status *rx_status;
556 unsigned int header_length;
557 int rate_idx;
559 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
560 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
561 goto submit_entry;
563 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
564 goto submit_entry;
567 * Allocate a new sk_buffer. If no new buffer available, drop the
568 * received frame and reuse the existing buffer.
570 skb = rt2x00queue_alloc_rxskb(entry);
571 if (!skb)
572 goto submit_entry;
575 * Unmap the skb.
577 rt2x00queue_unmap_skb(entry);
580 * Extract the RXD details.
582 memset(&rxdesc, 0, sizeof(rxdesc));
583 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
586 * The data behind the ieee80211 header must be
587 * aligned on a 4 byte boundary.
589 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
592 * Hardware might have stripped the IV/EIV/ICV data,
593 * in that case it is possible that the data was
594 * provided separately (through hardware descriptor)
595 * in which case we should reinsert the data into the frame.
597 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
598 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
599 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
600 &rxdesc);
601 else if (header_length &&
602 (rxdesc.size > header_length) &&
603 (rxdesc.dev_flags & RXDONE_L2PAD))
604 rt2x00queue_remove_l2pad(entry->skb, header_length);
606 /* Trim buffer to correct size */
607 skb_trim(entry->skb, rxdesc.size);
610 * Translate the signal to the correct bitrate index.
612 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
613 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
614 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
615 rxdesc.flags |= RX_FLAG_HT;
618 * Check if this is a beacon, and more frames have been
619 * buffered while we were in powersaving mode.
621 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
624 * Update extra components
626 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
627 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
628 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
631 * Initialize RX status information, and send frame
632 * to mac80211.
634 rx_status = IEEE80211_SKB_RXCB(entry->skb);
635 rx_status->mactime = rxdesc.timestamp;
636 rx_status->band = rt2x00dev->curr_band;
637 rx_status->freq = rt2x00dev->curr_freq;
638 rx_status->rate_idx = rate_idx;
639 rx_status->signal = rxdesc.rssi;
640 rx_status->flag = rxdesc.flags;
641 rx_status->antenna = rt2x00dev->link.ant.active.rx;
643 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
646 * Replace the skb with the freshly allocated one.
648 entry->skb = skb;
650 submit_entry:
651 entry->flags = 0;
652 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
653 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
654 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
655 rt2x00dev->ops->lib->clear_entry(entry);
657 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
660 * Driver initialization handlers.
662 const struct rt2x00_rate rt2x00_supported_rates[12] = {
664 .flags = DEV_RATE_CCK,
665 .bitrate = 10,
666 .ratemask = BIT(0),
667 .plcp = 0x00,
668 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
671 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
672 .bitrate = 20,
673 .ratemask = BIT(1),
674 .plcp = 0x01,
675 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
678 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
679 .bitrate = 55,
680 .ratemask = BIT(2),
681 .plcp = 0x02,
682 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
685 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
686 .bitrate = 110,
687 .ratemask = BIT(3),
688 .plcp = 0x03,
689 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
692 .flags = DEV_RATE_OFDM,
693 .bitrate = 60,
694 .ratemask = BIT(4),
695 .plcp = 0x0b,
696 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
699 .flags = DEV_RATE_OFDM,
700 .bitrate = 90,
701 .ratemask = BIT(5),
702 .plcp = 0x0f,
703 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
706 .flags = DEV_RATE_OFDM,
707 .bitrate = 120,
708 .ratemask = BIT(6),
709 .plcp = 0x0a,
710 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
713 .flags = DEV_RATE_OFDM,
714 .bitrate = 180,
715 .ratemask = BIT(7),
716 .plcp = 0x0e,
717 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
720 .flags = DEV_RATE_OFDM,
721 .bitrate = 240,
722 .ratemask = BIT(8),
723 .plcp = 0x09,
724 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
727 .flags = DEV_RATE_OFDM,
728 .bitrate = 360,
729 .ratemask = BIT(9),
730 .plcp = 0x0d,
731 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
734 .flags = DEV_RATE_OFDM,
735 .bitrate = 480,
736 .ratemask = BIT(10),
737 .plcp = 0x08,
738 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
741 .flags = DEV_RATE_OFDM,
742 .bitrate = 540,
743 .ratemask = BIT(11),
744 .plcp = 0x0c,
745 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
749 static void rt2x00lib_channel(struct ieee80211_channel *entry,
750 const int channel, const int tx_power,
751 const int value)
753 /* XXX: this assumption about the band is wrong for 802.11j */
754 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
755 entry->center_freq = ieee80211_channel_to_frequency(channel,
756 entry->band);
757 entry->hw_value = value;
758 entry->max_power = tx_power;
759 entry->max_antenna_gain = 0xff;
762 static void rt2x00lib_rate(struct ieee80211_rate *entry,
763 const u16 index, const struct rt2x00_rate *rate)
765 entry->flags = 0;
766 entry->bitrate = rate->bitrate;
767 entry->hw_value = index;
768 entry->hw_value_short = index;
770 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
771 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
774 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
775 struct hw_mode_spec *spec)
777 struct ieee80211_hw *hw = rt2x00dev->hw;
778 struct ieee80211_channel *channels;
779 struct ieee80211_rate *rates;
780 unsigned int num_rates;
781 unsigned int i;
783 num_rates = 0;
784 if (spec->supported_rates & SUPPORT_RATE_CCK)
785 num_rates += 4;
786 if (spec->supported_rates & SUPPORT_RATE_OFDM)
787 num_rates += 8;
789 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
790 if (!channels)
791 return -ENOMEM;
793 rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
794 if (!rates)
795 goto exit_free_channels;
798 * Initialize Rate list.
800 for (i = 0; i < num_rates; i++)
801 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
804 * Initialize Channel list.
806 for (i = 0; i < spec->num_channels; i++) {
807 rt2x00lib_channel(&channels[i],
808 spec->channels[i].channel,
809 spec->channels_info[i].max_power, i);
813 * Intitialize 802.11b, 802.11g
814 * Rates: CCK, OFDM.
815 * Channels: 2.4 GHz
817 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
818 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
819 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
820 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
821 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
822 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
823 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
824 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
825 &spec->ht, sizeof(spec->ht));
829 * Intitialize 802.11a
830 * Rates: OFDM.
831 * Channels: OFDM, UNII, HiperLAN2.
833 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
834 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
835 spec->num_channels - 14;
836 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
837 num_rates - 4;
838 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
839 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
840 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
841 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
842 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
843 &spec->ht, sizeof(spec->ht));
846 return 0;
848 exit_free_channels:
849 kfree(channels);
850 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
851 return -ENOMEM;
854 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
856 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
857 ieee80211_unregister_hw(rt2x00dev->hw);
859 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
860 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
861 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
862 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
863 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
866 kfree(rt2x00dev->spec.channels_info);
869 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
871 struct hw_mode_spec *spec = &rt2x00dev->spec;
872 int status;
874 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
875 return 0;
878 * Initialize HW modes.
880 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
881 if (status)
882 return status;
885 * Initialize HW fields.
887 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
890 * Initialize extra TX headroom required.
892 rt2x00dev->hw->extra_tx_headroom =
893 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
894 rt2x00dev->ops->extra_tx_headroom);
897 * Take TX headroom required for alignment into account.
899 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
900 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
901 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
902 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
905 * Allocate tx status FIFO for driver use.
907 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
909 * Allocate the txstatus fifo. In the worst case the tx
910 * status fifo has to hold the tx status of all entries
911 * in all tx queues. Hence, calculate the kfifo size as
912 * tx_queues * entry_num and round up to the nearest
913 * power of 2.
915 int kfifo_size =
916 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
917 rt2x00dev->ops->tx->entry_num *
918 sizeof(u32));
920 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
921 GFP_KERNEL);
922 if (status)
923 return status;
927 * Initialize tasklets if used by the driver. Tasklets are
928 * disabled until the interrupts are turned on. The driver
929 * has to handle that.
931 #define RT2X00_TASKLET_INIT(taskletname) \
932 if (rt2x00dev->ops->lib->taskletname) { \
933 tasklet_init(&rt2x00dev->taskletname, \
934 rt2x00dev->ops->lib->taskletname, \
935 (unsigned long)rt2x00dev); \
936 tasklet_disable(&rt2x00dev->taskletname); \
939 RT2X00_TASKLET_INIT(txstatus_tasklet);
940 RT2X00_TASKLET_INIT(pretbtt_tasklet);
941 RT2X00_TASKLET_INIT(tbtt_tasklet);
942 RT2X00_TASKLET_INIT(rxdone_tasklet);
943 RT2X00_TASKLET_INIT(autowake_tasklet);
945 #undef RT2X00_TASKLET_INIT
948 * Register HW.
950 status = ieee80211_register_hw(rt2x00dev->hw);
951 if (status)
952 return status;
954 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
956 return 0;
960 * Initialization/uninitialization handlers.
962 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
964 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
965 return;
968 * Unregister extra components.
970 rt2x00rfkill_unregister(rt2x00dev);
973 * Allow the HW to uninitialize.
975 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
978 * Free allocated queue entries.
980 rt2x00queue_uninitialize(rt2x00dev);
983 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
985 int status;
987 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
988 return 0;
991 * Allocate all queue entries.
993 status = rt2x00queue_initialize(rt2x00dev);
994 if (status)
995 return status;
998 * Initialize the device.
1000 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1001 if (status) {
1002 rt2x00queue_uninitialize(rt2x00dev);
1003 return status;
1006 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1009 * Register the extra components.
1011 rt2x00rfkill_register(rt2x00dev);
1013 return 0;
1016 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1018 int retval;
1020 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1021 return 0;
1024 * If this is the first interface which is added,
1025 * we should load the firmware now.
1027 retval = rt2x00lib_load_firmware(rt2x00dev);
1028 if (retval)
1029 return retval;
1032 * Initialize the device.
1034 retval = rt2x00lib_initialize(rt2x00dev);
1035 if (retval)
1036 return retval;
1038 rt2x00dev->intf_ap_count = 0;
1039 rt2x00dev->intf_sta_count = 0;
1040 rt2x00dev->intf_associated = 0;
1042 /* Enable the radio */
1043 retval = rt2x00lib_enable_radio(rt2x00dev);
1044 if (retval)
1045 return retval;
1047 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1049 return 0;
1052 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1054 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1055 return;
1058 * Perhaps we can add something smarter here,
1059 * but for now just disabling the radio should do.
1061 rt2x00lib_disable_radio(rt2x00dev);
1063 rt2x00dev->intf_ap_count = 0;
1064 rt2x00dev->intf_sta_count = 0;
1065 rt2x00dev->intf_associated = 0;
1069 * driver allocation handlers.
1071 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1073 int retval = -ENOMEM;
1075 spin_lock_init(&rt2x00dev->irqmask_lock);
1076 mutex_init(&rt2x00dev->csr_mutex);
1078 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1081 * Make room for rt2x00_intf inside the per-interface
1082 * structure ieee80211_vif.
1084 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1087 * Determine which operating modes are supported, all modes
1088 * which require beaconing, depend on the availability of
1089 * beacon entries.
1091 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1092 if (rt2x00dev->ops->bcn->entry_num > 0)
1093 rt2x00dev->hw->wiphy->interface_modes |=
1094 BIT(NL80211_IFTYPE_ADHOC) |
1095 BIT(NL80211_IFTYPE_AP) |
1096 BIT(NL80211_IFTYPE_MESH_POINT) |
1097 BIT(NL80211_IFTYPE_WDS);
1100 * Initialize work.
1102 rt2x00dev->workqueue =
1103 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1104 if (!rt2x00dev->workqueue) {
1105 retval = -ENOMEM;
1106 goto exit;
1109 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1110 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1113 * Let the driver probe the device to detect the capabilities.
1115 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1116 if (retval) {
1117 ERROR(rt2x00dev, "Failed to allocate device.\n");
1118 goto exit;
1122 * Allocate queue array.
1124 retval = rt2x00queue_allocate(rt2x00dev);
1125 if (retval)
1126 goto exit;
1129 * Initialize ieee80211 structure.
1131 retval = rt2x00lib_probe_hw(rt2x00dev);
1132 if (retval) {
1133 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1134 goto exit;
1138 * Register extra components.
1140 rt2x00link_register(rt2x00dev);
1141 rt2x00leds_register(rt2x00dev);
1142 rt2x00debug_register(rt2x00dev);
1144 return 0;
1146 exit:
1147 rt2x00lib_remove_dev(rt2x00dev);
1149 return retval;
1151 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1153 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1155 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1158 * Disable radio.
1160 rt2x00lib_disable_radio(rt2x00dev);
1163 * Stop all work.
1165 cancel_work_sync(&rt2x00dev->intf_work);
1166 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1167 if (rt2x00_is_usb(rt2x00dev)) {
1168 del_timer_sync(&rt2x00dev->txstatus_timer);
1169 cancel_work_sync(&rt2x00dev->rxdone_work);
1170 cancel_work_sync(&rt2x00dev->txdone_work);
1172 destroy_workqueue(rt2x00dev->workqueue);
1175 * Free the tx status fifo.
1177 kfifo_free(&rt2x00dev->txstatus_fifo);
1180 * Kill the tx status tasklet.
1182 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1183 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1184 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1185 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1186 tasklet_kill(&rt2x00dev->autowake_tasklet);
1189 * Uninitialize device.
1191 rt2x00lib_uninitialize(rt2x00dev);
1194 * Free extra components
1196 rt2x00debug_deregister(rt2x00dev);
1197 rt2x00leds_unregister(rt2x00dev);
1200 * Free ieee80211_hw memory.
1202 rt2x00lib_remove_hw(rt2x00dev);
1205 * Free firmware image.
1207 rt2x00lib_free_firmware(rt2x00dev);
1210 * Free queue structures.
1212 rt2x00queue_free(rt2x00dev);
1214 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1217 * Device state handlers
1219 #ifdef CONFIG_PM
1220 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1222 NOTICE(rt2x00dev, "Going to sleep.\n");
1225 * Prevent mac80211 from accessing driver while suspended.
1227 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1228 return 0;
1231 * Cleanup as much as possible.
1233 rt2x00lib_uninitialize(rt2x00dev);
1236 * Suspend/disable extra components.
1238 rt2x00leds_suspend(rt2x00dev);
1239 rt2x00debug_deregister(rt2x00dev);
1242 * Set device mode to sleep for power management,
1243 * on some hardware this call seems to consistently fail.
1244 * From the specifications it is hard to tell why it fails,
1245 * and if this is a "bad thing".
1246 * Overall it is safe to just ignore the failure and
1247 * continue suspending. The only downside is that the
1248 * device will not be in optimal power save mode, but with
1249 * the radio and the other components already disabled the
1250 * device is as good as disabled.
1252 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1253 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1254 "continue suspending.\n");
1256 return 0;
1258 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1260 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1262 NOTICE(rt2x00dev, "Waking up.\n");
1265 * Restore/enable extra components.
1267 rt2x00debug_register(rt2x00dev);
1268 rt2x00leds_resume(rt2x00dev);
1271 * We are ready again to receive requests from mac80211.
1273 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1275 return 0;
1277 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1278 #endif /* CONFIG_PM */
1281 * rt2x00lib module information.
1283 MODULE_AUTHOR(DRV_PROJECT);
1284 MODULE_VERSION(DRV_VERSION);
1285 MODULE_DESCRIPTION("rt2x00 library");
1286 MODULE_LICENSE("GPL");