mfd: Copy the device pointer to the twl4030-madc structure
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / filter.c
blob36f975fa87cb4975a01e4105c5cc3b0f9d905367
1 /*
2 * Linux Socket Filter - Kernel level socket filtering
4 * Author:
5 * Jay Schulist <jschlst@samba.org>
7 * Based on the design of:
8 * - The Berkeley Packet Filter
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Andi Kleen - Fix a few bad bugs and races.
16 * Kris Katterjohn - Added many additional checks in sk_chk_filter()
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/mm.h>
22 #include <linux/fcntl.h>
23 #include <linux/socket.h>
24 #include <linux/in.h>
25 #include <linux/inet.h>
26 #include <linux/netdevice.h>
27 #include <linux/if_packet.h>
28 #include <linux/gfp.h>
29 #include <net/ip.h>
30 #include <net/protocol.h>
31 #include <net/netlink.h>
32 #include <linux/skbuff.h>
33 #include <net/sock.h>
34 #include <linux/errno.h>
35 #include <linux/timer.h>
36 #include <asm/system.h>
37 #include <asm/uaccess.h>
38 #include <asm/unaligned.h>
39 #include <linux/filter.h>
40 #include <linux/reciprocal_div.h>
41 #include <linux/ratelimit.h>
43 /* No hurry in this branch */
44 static void *__load_pointer(const struct sk_buff *skb, int k, unsigned int size)
46 u8 *ptr = NULL;
48 if (k >= SKF_NET_OFF)
49 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
50 else if (k >= SKF_LL_OFF)
51 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
53 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
54 return ptr;
55 return NULL;
58 static inline void *load_pointer(const struct sk_buff *skb, int k,
59 unsigned int size, void *buffer)
61 if (k >= 0)
62 return skb_header_pointer(skb, k, size, buffer);
63 return __load_pointer(skb, k, size);
66 /**
67 * sk_filter - run a packet through a socket filter
68 * @sk: sock associated with &sk_buff
69 * @skb: buffer to filter
71 * Run the filter code and then cut skb->data to correct size returned by
72 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
73 * than pkt_len we keep whole skb->data. This is the socket level
74 * wrapper to sk_run_filter. It returns 0 if the packet should
75 * be accepted or -EPERM if the packet should be tossed.
78 int sk_filter(struct sock *sk, struct sk_buff *skb)
80 int err;
81 struct sk_filter *filter;
83 err = security_sock_rcv_skb(sk, skb);
84 if (err)
85 return err;
87 rcu_read_lock();
88 filter = rcu_dereference(sk->sk_filter);
89 if (filter) {
90 unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
92 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
94 rcu_read_unlock();
96 return err;
98 EXPORT_SYMBOL(sk_filter);
101 * sk_run_filter - run a filter on a socket
102 * @skb: buffer to run the filter on
103 * @fentry: filter to apply
105 * Decode and apply filter instructions to the skb->data.
106 * Return length to keep, 0 for none. @skb is the data we are
107 * filtering, @filter is the array of filter instructions.
108 * Because all jumps are guaranteed to be before last instruction,
109 * and last instruction guaranteed to be a RET, we dont need to check
110 * flen. (We used to pass to this function the length of filter)
112 unsigned int sk_run_filter(const struct sk_buff *skb,
113 const struct sock_filter *fentry)
115 void *ptr;
116 u32 A = 0; /* Accumulator */
117 u32 X = 0; /* Index Register */
118 u32 mem[BPF_MEMWORDS]; /* Scratch Memory Store */
119 u32 tmp;
120 int k;
123 * Process array of filter instructions.
125 for (;; fentry++) {
126 #if defined(CONFIG_X86_32)
127 #define K (fentry->k)
128 #else
129 const u32 K = fentry->k;
130 #endif
132 switch (fentry->code) {
133 case BPF_S_ALU_ADD_X:
134 A += X;
135 continue;
136 case BPF_S_ALU_ADD_K:
137 A += K;
138 continue;
139 case BPF_S_ALU_SUB_X:
140 A -= X;
141 continue;
142 case BPF_S_ALU_SUB_K:
143 A -= K;
144 continue;
145 case BPF_S_ALU_MUL_X:
146 A *= X;
147 continue;
148 case BPF_S_ALU_MUL_K:
149 A *= K;
150 continue;
151 case BPF_S_ALU_DIV_X:
152 if (X == 0)
153 return 0;
154 A /= X;
155 continue;
156 case BPF_S_ALU_DIV_K:
157 A = reciprocal_divide(A, K);
158 continue;
159 case BPF_S_ALU_AND_X:
160 A &= X;
161 continue;
162 case BPF_S_ALU_AND_K:
163 A &= K;
164 continue;
165 case BPF_S_ALU_OR_X:
166 A |= X;
167 continue;
168 case BPF_S_ALU_OR_K:
169 A |= K;
170 continue;
171 case BPF_S_ALU_LSH_X:
172 A <<= X;
173 continue;
174 case BPF_S_ALU_LSH_K:
175 A <<= K;
176 continue;
177 case BPF_S_ALU_RSH_X:
178 A >>= X;
179 continue;
180 case BPF_S_ALU_RSH_K:
181 A >>= K;
182 continue;
183 case BPF_S_ALU_NEG:
184 A = -A;
185 continue;
186 case BPF_S_JMP_JA:
187 fentry += K;
188 continue;
189 case BPF_S_JMP_JGT_K:
190 fentry += (A > K) ? fentry->jt : fentry->jf;
191 continue;
192 case BPF_S_JMP_JGE_K:
193 fentry += (A >= K) ? fentry->jt : fentry->jf;
194 continue;
195 case BPF_S_JMP_JEQ_K:
196 fentry += (A == K) ? fentry->jt : fentry->jf;
197 continue;
198 case BPF_S_JMP_JSET_K:
199 fentry += (A & K) ? fentry->jt : fentry->jf;
200 continue;
201 case BPF_S_JMP_JGT_X:
202 fentry += (A > X) ? fentry->jt : fentry->jf;
203 continue;
204 case BPF_S_JMP_JGE_X:
205 fentry += (A >= X) ? fentry->jt : fentry->jf;
206 continue;
207 case BPF_S_JMP_JEQ_X:
208 fentry += (A == X) ? fentry->jt : fentry->jf;
209 continue;
210 case BPF_S_JMP_JSET_X:
211 fentry += (A & X) ? fentry->jt : fentry->jf;
212 continue;
213 case BPF_S_LD_W_ABS:
214 k = K;
215 load_w:
216 ptr = load_pointer(skb, k, 4, &tmp);
217 if (ptr != NULL) {
218 A = get_unaligned_be32(ptr);
219 continue;
221 return 0;
222 case BPF_S_LD_H_ABS:
223 k = K;
224 load_h:
225 ptr = load_pointer(skb, k, 2, &tmp);
226 if (ptr != NULL) {
227 A = get_unaligned_be16(ptr);
228 continue;
230 return 0;
231 case BPF_S_LD_B_ABS:
232 k = K;
233 load_b:
234 ptr = load_pointer(skb, k, 1, &tmp);
235 if (ptr != NULL) {
236 A = *(u8 *)ptr;
237 continue;
239 return 0;
240 case BPF_S_LD_W_LEN:
241 A = skb->len;
242 continue;
243 case BPF_S_LDX_W_LEN:
244 X = skb->len;
245 continue;
246 case BPF_S_LD_W_IND:
247 k = X + K;
248 goto load_w;
249 case BPF_S_LD_H_IND:
250 k = X + K;
251 goto load_h;
252 case BPF_S_LD_B_IND:
253 k = X + K;
254 goto load_b;
255 case BPF_S_LDX_B_MSH:
256 ptr = load_pointer(skb, K, 1, &tmp);
257 if (ptr != NULL) {
258 X = (*(u8 *)ptr & 0xf) << 2;
259 continue;
261 return 0;
262 case BPF_S_LD_IMM:
263 A = K;
264 continue;
265 case BPF_S_LDX_IMM:
266 X = K;
267 continue;
268 case BPF_S_LD_MEM:
269 A = mem[K];
270 continue;
271 case BPF_S_LDX_MEM:
272 X = mem[K];
273 continue;
274 case BPF_S_MISC_TAX:
275 X = A;
276 continue;
277 case BPF_S_MISC_TXA:
278 A = X;
279 continue;
280 case BPF_S_RET_K:
281 return K;
282 case BPF_S_RET_A:
283 return A;
284 case BPF_S_ST:
285 mem[K] = A;
286 continue;
287 case BPF_S_STX:
288 mem[K] = X;
289 continue;
290 case BPF_S_ANC_PROTOCOL:
291 A = ntohs(skb->protocol);
292 continue;
293 case BPF_S_ANC_PKTTYPE:
294 A = skb->pkt_type;
295 continue;
296 case BPF_S_ANC_IFINDEX:
297 if (!skb->dev)
298 return 0;
299 A = skb->dev->ifindex;
300 continue;
301 case BPF_S_ANC_MARK:
302 A = skb->mark;
303 continue;
304 case BPF_S_ANC_QUEUE:
305 A = skb->queue_mapping;
306 continue;
307 case BPF_S_ANC_HATYPE:
308 if (!skb->dev)
309 return 0;
310 A = skb->dev->type;
311 continue;
312 case BPF_S_ANC_RXHASH:
313 A = skb->rxhash;
314 continue;
315 case BPF_S_ANC_CPU:
316 A = raw_smp_processor_id();
317 continue;
318 case BPF_S_ANC_NLATTR: {
319 struct nlattr *nla;
321 if (skb_is_nonlinear(skb))
322 return 0;
323 if (A > skb->len - sizeof(struct nlattr))
324 return 0;
326 nla = nla_find((struct nlattr *)&skb->data[A],
327 skb->len - A, X);
328 if (nla)
329 A = (void *)nla - (void *)skb->data;
330 else
331 A = 0;
332 continue;
334 case BPF_S_ANC_NLATTR_NEST: {
335 struct nlattr *nla;
337 if (skb_is_nonlinear(skb))
338 return 0;
339 if (A > skb->len - sizeof(struct nlattr))
340 return 0;
342 nla = (struct nlattr *)&skb->data[A];
343 if (nla->nla_len > A - skb->len)
344 return 0;
346 nla = nla_find_nested(nla, X);
347 if (nla)
348 A = (void *)nla - (void *)skb->data;
349 else
350 A = 0;
351 continue;
353 default:
354 WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
355 fentry->code, fentry->jt,
356 fentry->jf, fentry->k);
357 return 0;
361 return 0;
363 EXPORT_SYMBOL(sk_run_filter);
366 * Security :
367 * A BPF program is able to use 16 cells of memory to store intermediate
368 * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter())
369 * As we dont want to clear mem[] array for each packet going through
370 * sk_run_filter(), we check that filter loaded by user never try to read
371 * a cell if not previously written, and we check all branches to be sure
372 * a malicious user doesn't try to abuse us.
374 static int check_load_and_stores(struct sock_filter *filter, int flen)
376 u16 *masks, memvalid = 0; /* one bit per cell, 16 cells */
377 int pc, ret = 0;
379 BUILD_BUG_ON(BPF_MEMWORDS > 16);
380 masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL);
381 if (!masks)
382 return -ENOMEM;
383 memset(masks, 0xff, flen * sizeof(*masks));
385 for (pc = 0; pc < flen; pc++) {
386 memvalid &= masks[pc];
388 switch (filter[pc].code) {
389 case BPF_S_ST:
390 case BPF_S_STX:
391 memvalid |= (1 << filter[pc].k);
392 break;
393 case BPF_S_LD_MEM:
394 case BPF_S_LDX_MEM:
395 if (!(memvalid & (1 << filter[pc].k))) {
396 ret = -EINVAL;
397 goto error;
399 break;
400 case BPF_S_JMP_JA:
401 /* a jump must set masks on target */
402 masks[pc + 1 + filter[pc].k] &= memvalid;
403 memvalid = ~0;
404 break;
405 case BPF_S_JMP_JEQ_K:
406 case BPF_S_JMP_JEQ_X:
407 case BPF_S_JMP_JGE_K:
408 case BPF_S_JMP_JGE_X:
409 case BPF_S_JMP_JGT_K:
410 case BPF_S_JMP_JGT_X:
411 case BPF_S_JMP_JSET_X:
412 case BPF_S_JMP_JSET_K:
413 /* a jump must set masks on targets */
414 masks[pc + 1 + filter[pc].jt] &= memvalid;
415 masks[pc + 1 + filter[pc].jf] &= memvalid;
416 memvalid = ~0;
417 break;
420 error:
421 kfree(masks);
422 return ret;
426 * sk_chk_filter - verify socket filter code
427 * @filter: filter to verify
428 * @flen: length of filter
430 * Check the user's filter code. If we let some ugly
431 * filter code slip through kaboom! The filter must contain
432 * no references or jumps that are out of range, no illegal
433 * instructions, and must end with a RET instruction.
435 * All jumps are forward as they are not signed.
437 * Returns 0 if the rule set is legal or -EINVAL if not.
439 int sk_chk_filter(struct sock_filter *filter, int flen)
442 * Valid instructions are initialized to non-0.
443 * Invalid instructions are initialized to 0.
445 static const u8 codes[] = {
446 [BPF_ALU|BPF_ADD|BPF_K] = BPF_S_ALU_ADD_K,
447 [BPF_ALU|BPF_ADD|BPF_X] = BPF_S_ALU_ADD_X,
448 [BPF_ALU|BPF_SUB|BPF_K] = BPF_S_ALU_SUB_K,
449 [BPF_ALU|BPF_SUB|BPF_X] = BPF_S_ALU_SUB_X,
450 [BPF_ALU|BPF_MUL|BPF_K] = BPF_S_ALU_MUL_K,
451 [BPF_ALU|BPF_MUL|BPF_X] = BPF_S_ALU_MUL_X,
452 [BPF_ALU|BPF_DIV|BPF_X] = BPF_S_ALU_DIV_X,
453 [BPF_ALU|BPF_AND|BPF_K] = BPF_S_ALU_AND_K,
454 [BPF_ALU|BPF_AND|BPF_X] = BPF_S_ALU_AND_X,
455 [BPF_ALU|BPF_OR|BPF_K] = BPF_S_ALU_OR_K,
456 [BPF_ALU|BPF_OR|BPF_X] = BPF_S_ALU_OR_X,
457 [BPF_ALU|BPF_LSH|BPF_K] = BPF_S_ALU_LSH_K,
458 [BPF_ALU|BPF_LSH|BPF_X] = BPF_S_ALU_LSH_X,
459 [BPF_ALU|BPF_RSH|BPF_K] = BPF_S_ALU_RSH_K,
460 [BPF_ALU|BPF_RSH|BPF_X] = BPF_S_ALU_RSH_X,
461 [BPF_ALU|BPF_NEG] = BPF_S_ALU_NEG,
462 [BPF_LD|BPF_W|BPF_ABS] = BPF_S_LD_W_ABS,
463 [BPF_LD|BPF_H|BPF_ABS] = BPF_S_LD_H_ABS,
464 [BPF_LD|BPF_B|BPF_ABS] = BPF_S_LD_B_ABS,
465 [BPF_LD|BPF_W|BPF_LEN] = BPF_S_LD_W_LEN,
466 [BPF_LD|BPF_W|BPF_IND] = BPF_S_LD_W_IND,
467 [BPF_LD|BPF_H|BPF_IND] = BPF_S_LD_H_IND,
468 [BPF_LD|BPF_B|BPF_IND] = BPF_S_LD_B_IND,
469 [BPF_LD|BPF_IMM] = BPF_S_LD_IMM,
470 [BPF_LDX|BPF_W|BPF_LEN] = BPF_S_LDX_W_LEN,
471 [BPF_LDX|BPF_B|BPF_MSH] = BPF_S_LDX_B_MSH,
472 [BPF_LDX|BPF_IMM] = BPF_S_LDX_IMM,
473 [BPF_MISC|BPF_TAX] = BPF_S_MISC_TAX,
474 [BPF_MISC|BPF_TXA] = BPF_S_MISC_TXA,
475 [BPF_RET|BPF_K] = BPF_S_RET_K,
476 [BPF_RET|BPF_A] = BPF_S_RET_A,
477 [BPF_ALU|BPF_DIV|BPF_K] = BPF_S_ALU_DIV_K,
478 [BPF_LD|BPF_MEM] = BPF_S_LD_MEM,
479 [BPF_LDX|BPF_MEM] = BPF_S_LDX_MEM,
480 [BPF_ST] = BPF_S_ST,
481 [BPF_STX] = BPF_S_STX,
482 [BPF_JMP|BPF_JA] = BPF_S_JMP_JA,
483 [BPF_JMP|BPF_JEQ|BPF_K] = BPF_S_JMP_JEQ_K,
484 [BPF_JMP|BPF_JEQ|BPF_X] = BPF_S_JMP_JEQ_X,
485 [BPF_JMP|BPF_JGE|BPF_K] = BPF_S_JMP_JGE_K,
486 [BPF_JMP|BPF_JGE|BPF_X] = BPF_S_JMP_JGE_X,
487 [BPF_JMP|BPF_JGT|BPF_K] = BPF_S_JMP_JGT_K,
488 [BPF_JMP|BPF_JGT|BPF_X] = BPF_S_JMP_JGT_X,
489 [BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K,
490 [BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X,
492 int pc;
494 if (flen == 0 || flen > BPF_MAXINSNS)
495 return -EINVAL;
497 /* check the filter code now */
498 for (pc = 0; pc < flen; pc++) {
499 struct sock_filter *ftest = &filter[pc];
500 u16 code = ftest->code;
502 if (code >= ARRAY_SIZE(codes))
503 return -EINVAL;
504 code = codes[code];
505 if (!code)
506 return -EINVAL;
507 /* Some instructions need special checks */
508 switch (code) {
509 case BPF_S_ALU_DIV_K:
510 /* check for division by zero */
511 if (ftest->k == 0)
512 return -EINVAL;
513 ftest->k = reciprocal_value(ftest->k);
514 break;
515 case BPF_S_LD_MEM:
516 case BPF_S_LDX_MEM:
517 case BPF_S_ST:
518 case BPF_S_STX:
519 /* check for invalid memory addresses */
520 if (ftest->k >= BPF_MEMWORDS)
521 return -EINVAL;
522 break;
523 case BPF_S_JMP_JA:
525 * Note, the large ftest->k might cause loops.
526 * Compare this with conditional jumps below,
527 * where offsets are limited. --ANK (981016)
529 if (ftest->k >= (unsigned)(flen-pc-1))
530 return -EINVAL;
531 break;
532 case BPF_S_JMP_JEQ_K:
533 case BPF_S_JMP_JEQ_X:
534 case BPF_S_JMP_JGE_K:
535 case BPF_S_JMP_JGE_X:
536 case BPF_S_JMP_JGT_K:
537 case BPF_S_JMP_JGT_X:
538 case BPF_S_JMP_JSET_X:
539 case BPF_S_JMP_JSET_K:
540 /* for conditionals both must be safe */
541 if (pc + ftest->jt + 1 >= flen ||
542 pc + ftest->jf + 1 >= flen)
543 return -EINVAL;
544 break;
545 case BPF_S_LD_W_ABS:
546 case BPF_S_LD_H_ABS:
547 case BPF_S_LD_B_ABS:
548 #define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
549 code = BPF_S_ANC_##CODE; \
550 break
551 switch (ftest->k) {
552 ANCILLARY(PROTOCOL);
553 ANCILLARY(PKTTYPE);
554 ANCILLARY(IFINDEX);
555 ANCILLARY(NLATTR);
556 ANCILLARY(NLATTR_NEST);
557 ANCILLARY(MARK);
558 ANCILLARY(QUEUE);
559 ANCILLARY(HATYPE);
560 ANCILLARY(RXHASH);
561 ANCILLARY(CPU);
564 ftest->code = code;
567 /* last instruction must be a RET code */
568 switch (filter[flen - 1].code) {
569 case BPF_S_RET_K:
570 case BPF_S_RET_A:
571 return check_load_and_stores(filter, flen);
573 return -EINVAL;
575 EXPORT_SYMBOL(sk_chk_filter);
578 * sk_filter_release_rcu - Release a socket filter by rcu_head
579 * @rcu: rcu_head that contains the sk_filter to free
581 void sk_filter_release_rcu(struct rcu_head *rcu)
583 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
585 bpf_jit_free(fp);
586 kfree(fp);
588 EXPORT_SYMBOL(sk_filter_release_rcu);
591 * sk_attach_filter - attach a socket filter
592 * @fprog: the filter program
593 * @sk: the socket to use
595 * Attach the user's filter code. We first run some sanity checks on
596 * it to make sure it does not explode on us later. If an error
597 * occurs or there is insufficient memory for the filter a negative
598 * errno code is returned. On success the return is zero.
600 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
602 struct sk_filter *fp, *old_fp;
603 unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
604 int err;
606 /* Make sure new filter is there and in the right amounts. */
607 if (fprog->filter == NULL)
608 return -EINVAL;
610 fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);
611 if (!fp)
612 return -ENOMEM;
613 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
614 sock_kfree_s(sk, fp, fsize+sizeof(*fp));
615 return -EFAULT;
618 atomic_set(&fp->refcnt, 1);
619 fp->len = fprog->len;
620 fp->bpf_func = sk_run_filter;
622 err = sk_chk_filter(fp->insns, fp->len);
623 if (err) {
624 sk_filter_uncharge(sk, fp);
625 return err;
628 bpf_jit_compile(fp);
630 old_fp = rcu_dereference_protected(sk->sk_filter,
631 sock_owned_by_user(sk));
632 rcu_assign_pointer(sk->sk_filter, fp);
634 if (old_fp)
635 sk_filter_uncharge(sk, old_fp);
636 return 0;
638 EXPORT_SYMBOL_GPL(sk_attach_filter);
640 int sk_detach_filter(struct sock *sk)
642 int ret = -ENOENT;
643 struct sk_filter *filter;
645 filter = rcu_dereference_protected(sk->sk_filter,
646 sock_owned_by_user(sk));
647 if (filter) {
648 rcu_assign_pointer(sk->sk_filter, NULL);
649 sk_filter_uncharge(sk, filter);
650 ret = 0;
652 return ret;
654 EXPORT_SYMBOL_GPL(sk_detach_filter);