mfd: Copy the device pointer to the twl4030-madc structure
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_inode_item.c
blob391044c62d5e61e47d594b6bf6c532409f6b98a0
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dinode.h"
31 #include "xfs_inode.h"
32 #include "xfs_inode_item.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
37 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
39 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
41 return container_of(lip, struct xfs_inode_log_item, ili_item);
46 * This returns the number of iovecs needed to log the given inode item.
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
52 STATIC uint
53 xfs_inode_item_size(
54 struct xfs_log_item *lip)
56 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 struct xfs_inode *ip = iip->ili_inode;
58 uint nvecs = 2;
61 * Only log the data/extents/b-tree root if there is something
62 * left to log.
64 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
66 switch (ip->i_d.di_format) {
67 case XFS_DINODE_FMT_EXTENTS:
68 iip->ili_format.ilf_fields &=
69 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
70 XFS_ILOG_DEV | XFS_ILOG_UUID);
71 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
72 (ip->i_d.di_nextents > 0) &&
73 (ip->i_df.if_bytes > 0)) {
74 ASSERT(ip->i_df.if_u1.if_extents != NULL);
75 nvecs++;
76 } else {
77 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
79 break;
81 case XFS_DINODE_FMT_BTREE:
82 ASSERT(ip->i_df.if_ext_max ==
83 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
84 iip->ili_format.ilf_fields &=
85 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
86 XFS_ILOG_DEV | XFS_ILOG_UUID);
87 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
88 (ip->i_df.if_broot_bytes > 0)) {
89 ASSERT(ip->i_df.if_broot != NULL);
90 nvecs++;
91 } else {
92 ASSERT(!(iip->ili_format.ilf_fields &
93 XFS_ILOG_DBROOT));
94 #ifdef XFS_TRANS_DEBUG
95 if (iip->ili_root_size > 0) {
96 ASSERT(iip->ili_root_size ==
97 ip->i_df.if_broot_bytes);
98 ASSERT(memcmp(iip->ili_orig_root,
99 ip->i_df.if_broot,
100 iip->ili_root_size) == 0);
101 } else {
102 ASSERT(ip->i_df.if_broot_bytes == 0);
104 #endif
105 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
107 break;
109 case XFS_DINODE_FMT_LOCAL:
110 iip->ili_format.ilf_fields &=
111 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
112 XFS_ILOG_DEV | XFS_ILOG_UUID);
113 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
114 (ip->i_df.if_bytes > 0)) {
115 ASSERT(ip->i_df.if_u1.if_data != NULL);
116 ASSERT(ip->i_d.di_size > 0);
117 nvecs++;
118 } else {
119 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
121 break;
123 case XFS_DINODE_FMT_DEV:
124 iip->ili_format.ilf_fields &=
125 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
126 XFS_ILOG_DEXT | XFS_ILOG_UUID);
127 break;
129 case XFS_DINODE_FMT_UUID:
130 iip->ili_format.ilf_fields &=
131 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
132 XFS_ILOG_DEXT | XFS_ILOG_DEV);
133 break;
135 default:
136 ASSERT(0);
137 break;
141 * If there are no attributes associated with this file,
142 * then there cannot be anything more to log.
143 * Clear all attribute-related log flags.
145 if (!XFS_IFORK_Q(ip)) {
146 iip->ili_format.ilf_fields &=
147 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
148 return nvecs;
152 * Log any necessary attribute data.
154 switch (ip->i_d.di_aformat) {
155 case XFS_DINODE_FMT_EXTENTS:
156 iip->ili_format.ilf_fields &=
157 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
158 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
159 (ip->i_d.di_anextents > 0) &&
160 (ip->i_afp->if_bytes > 0)) {
161 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
162 nvecs++;
163 } else {
164 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
166 break;
168 case XFS_DINODE_FMT_BTREE:
169 iip->ili_format.ilf_fields &=
170 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
171 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
172 (ip->i_afp->if_broot_bytes > 0)) {
173 ASSERT(ip->i_afp->if_broot != NULL);
174 nvecs++;
175 } else {
176 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
178 break;
180 case XFS_DINODE_FMT_LOCAL:
181 iip->ili_format.ilf_fields &=
182 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
183 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
184 (ip->i_afp->if_bytes > 0)) {
185 ASSERT(ip->i_afp->if_u1.if_data != NULL);
186 nvecs++;
187 } else {
188 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
190 break;
192 default:
193 ASSERT(0);
194 break;
197 return nvecs;
201 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
203 * For either the data or attr fork in extent format, we need to endian convert
204 * the in-core extent as we place them into the on-disk inode. In this case, we
205 * need to do this conversion before we write the extents into the log. Because
206 * we don't have the disk inode to write into here, we allocate a buffer and
207 * format the extents into it via xfs_iextents_copy(). We free the buffer in
208 * the unlock routine after the copy for the log has been made.
210 * In the case of the data fork, the in-core and on-disk fork sizes can be
211 * different due to delayed allocation extents. We only log on-disk extents
212 * here, so always use the physical fork size to determine the size of the
213 * buffer we need to allocate.
215 STATIC void
216 xfs_inode_item_format_extents(
217 struct xfs_inode *ip,
218 struct xfs_log_iovec *vecp,
219 int whichfork,
220 int type)
222 xfs_bmbt_rec_t *ext_buffer;
224 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
225 if (whichfork == XFS_DATA_FORK)
226 ip->i_itemp->ili_extents_buf = ext_buffer;
227 else
228 ip->i_itemp->ili_aextents_buf = ext_buffer;
230 vecp->i_addr = ext_buffer;
231 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
232 vecp->i_type = type;
236 * This is called to fill in the vector of log iovecs for the
237 * given inode log item. It fills the first item with an inode
238 * log format structure, the second with the on-disk inode structure,
239 * and a possible third and/or fourth with the inode data/extents/b-tree
240 * root and inode attributes data/extents/b-tree root.
242 STATIC void
243 xfs_inode_item_format(
244 struct xfs_log_item *lip,
245 struct xfs_log_iovec *vecp)
247 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
248 struct xfs_inode *ip = iip->ili_inode;
249 uint nvecs;
250 size_t data_bytes;
251 xfs_mount_t *mp;
253 vecp->i_addr = &iip->ili_format;
254 vecp->i_len = sizeof(xfs_inode_log_format_t);
255 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
256 vecp++;
257 nvecs = 1;
260 * Clear i_update_core if the timestamps (or any other
261 * non-transactional modification) need flushing/logging
262 * and we're about to log them with the rest of the core.
264 * This is the same logic as xfs_iflush() but this code can't
265 * run at the same time as xfs_iflush because we're in commit
266 * processing here and so we have the inode lock held in
267 * exclusive mode. Although it doesn't really matter
268 * for the timestamps if both routines were to grab the
269 * timestamps or not. That would be ok.
271 * We clear i_update_core before copying out the data.
272 * This is for coordination with our timestamp updates
273 * that don't hold the inode lock. They will always
274 * update the timestamps BEFORE setting i_update_core,
275 * so if we clear i_update_core after they set it we
276 * are guaranteed to see their updates to the timestamps
277 * either here. Likewise, if they set it after we clear it
278 * here, we'll see it either on the next commit of this
279 * inode or the next time the inode gets flushed via
280 * xfs_iflush(). This depends on strongly ordered memory
281 * semantics, but we have that. We use the SYNCHRONIZE
282 * macro to make sure that the compiler does not reorder
283 * the i_update_core access below the data copy below.
285 if (ip->i_update_core) {
286 ip->i_update_core = 0;
287 SYNCHRONIZE();
291 * Make sure to get the latest timestamps from the Linux inode.
293 xfs_synchronize_times(ip);
295 vecp->i_addr = &ip->i_d;
296 vecp->i_len = sizeof(struct xfs_icdinode);
297 vecp->i_type = XLOG_REG_TYPE_ICORE;
298 vecp++;
299 nvecs++;
300 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
303 * If this is really an old format inode, then we need to
304 * log it as such. This means that we have to copy the link
305 * count from the new field to the old. We don't have to worry
306 * about the new fields, because nothing trusts them as long as
307 * the old inode version number is there. If the superblock already
308 * has a new version number, then we don't bother converting back.
310 mp = ip->i_mount;
311 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
312 if (ip->i_d.di_version == 1) {
313 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
315 * Convert it back.
317 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
318 ip->i_d.di_onlink = ip->i_d.di_nlink;
319 } else {
321 * The superblock version has already been bumped,
322 * so just make the conversion to the new inode
323 * format permanent.
325 ip->i_d.di_version = 2;
326 ip->i_d.di_onlink = 0;
327 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
331 switch (ip->i_d.di_format) {
332 case XFS_DINODE_FMT_EXTENTS:
333 ASSERT(!(iip->ili_format.ilf_fields &
334 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
335 XFS_ILOG_DEV | XFS_ILOG_UUID)));
336 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
337 ASSERT(ip->i_df.if_bytes > 0);
338 ASSERT(ip->i_df.if_u1.if_extents != NULL);
339 ASSERT(ip->i_d.di_nextents > 0);
340 ASSERT(iip->ili_extents_buf == NULL);
341 ASSERT((ip->i_df.if_bytes /
342 (uint)sizeof(xfs_bmbt_rec_t)) > 0);
343 #ifdef XFS_NATIVE_HOST
344 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
345 (uint)sizeof(xfs_bmbt_rec_t)) {
347 * There are no delayed allocation
348 * extents, so just point to the
349 * real extents array.
351 vecp->i_addr = ip->i_df.if_u1.if_extents;
352 vecp->i_len = ip->i_df.if_bytes;
353 vecp->i_type = XLOG_REG_TYPE_IEXT;
354 } else
355 #endif
357 xfs_inode_item_format_extents(ip, vecp,
358 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
360 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
361 iip->ili_format.ilf_dsize = vecp->i_len;
362 vecp++;
363 nvecs++;
365 break;
367 case XFS_DINODE_FMT_BTREE:
368 ASSERT(!(iip->ili_format.ilf_fields &
369 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
370 XFS_ILOG_DEV | XFS_ILOG_UUID)));
371 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
372 ASSERT(ip->i_df.if_broot_bytes > 0);
373 ASSERT(ip->i_df.if_broot != NULL);
374 vecp->i_addr = ip->i_df.if_broot;
375 vecp->i_len = ip->i_df.if_broot_bytes;
376 vecp->i_type = XLOG_REG_TYPE_IBROOT;
377 vecp++;
378 nvecs++;
379 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
381 break;
383 case XFS_DINODE_FMT_LOCAL:
384 ASSERT(!(iip->ili_format.ilf_fields &
385 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
386 XFS_ILOG_DEV | XFS_ILOG_UUID)));
387 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
388 ASSERT(ip->i_df.if_bytes > 0);
389 ASSERT(ip->i_df.if_u1.if_data != NULL);
390 ASSERT(ip->i_d.di_size > 0);
392 vecp->i_addr = ip->i_df.if_u1.if_data;
394 * Round i_bytes up to a word boundary.
395 * The underlying memory is guaranteed to
396 * to be there by xfs_idata_realloc().
398 data_bytes = roundup(ip->i_df.if_bytes, 4);
399 ASSERT((ip->i_df.if_real_bytes == 0) ||
400 (ip->i_df.if_real_bytes == data_bytes));
401 vecp->i_len = (int)data_bytes;
402 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
403 vecp++;
404 nvecs++;
405 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
407 break;
409 case XFS_DINODE_FMT_DEV:
410 ASSERT(!(iip->ili_format.ilf_fields &
411 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
412 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
413 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
414 iip->ili_format.ilf_u.ilfu_rdev =
415 ip->i_df.if_u2.if_rdev;
417 break;
419 case XFS_DINODE_FMT_UUID:
420 ASSERT(!(iip->ili_format.ilf_fields &
421 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
422 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
423 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
424 iip->ili_format.ilf_u.ilfu_uuid =
425 ip->i_df.if_u2.if_uuid;
427 break;
429 default:
430 ASSERT(0);
431 break;
435 * If there are no attributes associated with the file,
436 * then we're done.
437 * Assert that no attribute-related log flags are set.
439 if (!XFS_IFORK_Q(ip)) {
440 ASSERT(nvecs == lip->li_desc->lid_size);
441 iip->ili_format.ilf_size = nvecs;
442 ASSERT(!(iip->ili_format.ilf_fields &
443 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
444 return;
447 switch (ip->i_d.di_aformat) {
448 case XFS_DINODE_FMT_EXTENTS:
449 ASSERT(!(iip->ili_format.ilf_fields &
450 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
451 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
452 #ifdef DEBUG
453 int nrecs = ip->i_afp->if_bytes /
454 (uint)sizeof(xfs_bmbt_rec_t);
455 ASSERT(nrecs > 0);
456 ASSERT(nrecs == ip->i_d.di_anextents);
457 ASSERT(ip->i_afp->if_bytes > 0);
458 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
459 ASSERT(ip->i_d.di_anextents > 0);
460 #endif
461 #ifdef XFS_NATIVE_HOST
463 * There are not delayed allocation extents
464 * for attributes, so just point at the array.
466 vecp->i_addr = ip->i_afp->if_u1.if_extents;
467 vecp->i_len = ip->i_afp->if_bytes;
468 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
469 #else
470 ASSERT(iip->ili_aextents_buf == NULL);
471 xfs_inode_item_format_extents(ip, vecp,
472 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
473 #endif
474 iip->ili_format.ilf_asize = vecp->i_len;
475 vecp++;
476 nvecs++;
478 break;
480 case XFS_DINODE_FMT_BTREE:
481 ASSERT(!(iip->ili_format.ilf_fields &
482 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
483 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
484 ASSERT(ip->i_afp->if_broot_bytes > 0);
485 ASSERT(ip->i_afp->if_broot != NULL);
486 vecp->i_addr = ip->i_afp->if_broot;
487 vecp->i_len = ip->i_afp->if_broot_bytes;
488 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
489 vecp++;
490 nvecs++;
491 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
493 break;
495 case XFS_DINODE_FMT_LOCAL:
496 ASSERT(!(iip->ili_format.ilf_fields &
497 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
498 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
499 ASSERT(ip->i_afp->if_bytes > 0);
500 ASSERT(ip->i_afp->if_u1.if_data != NULL);
502 vecp->i_addr = ip->i_afp->if_u1.if_data;
504 * Round i_bytes up to a word boundary.
505 * The underlying memory is guaranteed to
506 * to be there by xfs_idata_realloc().
508 data_bytes = roundup(ip->i_afp->if_bytes, 4);
509 ASSERT((ip->i_afp->if_real_bytes == 0) ||
510 (ip->i_afp->if_real_bytes == data_bytes));
511 vecp->i_len = (int)data_bytes;
512 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
513 vecp++;
514 nvecs++;
515 iip->ili_format.ilf_asize = (unsigned)data_bytes;
517 break;
519 default:
520 ASSERT(0);
521 break;
524 ASSERT(nvecs == lip->li_desc->lid_size);
525 iip->ili_format.ilf_size = nvecs;
530 * This is called to pin the inode associated with the inode log
531 * item in memory so it cannot be written out.
533 STATIC void
534 xfs_inode_item_pin(
535 struct xfs_log_item *lip)
537 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
539 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
541 trace_xfs_inode_pin(ip, _RET_IP_);
542 atomic_inc(&ip->i_pincount);
547 * This is called to unpin the inode associated with the inode log
548 * item which was previously pinned with a call to xfs_inode_item_pin().
550 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
552 STATIC void
553 xfs_inode_item_unpin(
554 struct xfs_log_item *lip,
555 int remove)
557 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
559 trace_xfs_inode_unpin(ip, _RET_IP_);
560 ASSERT(atomic_read(&ip->i_pincount) > 0);
561 if (atomic_dec_and_test(&ip->i_pincount))
562 wake_up(&ip->i_ipin_wait);
566 * This is called to attempt to lock the inode associated with this
567 * inode log item, in preparation for the push routine which does the actual
568 * iflush. Don't sleep on the inode lock or the flush lock.
570 * If the flush lock is already held, indicating that the inode has
571 * been or is in the process of being flushed, then (ideally) we'd like to
572 * see if the inode's buffer is still incore, and if so give it a nudge.
573 * We delay doing so until the pushbuf routine, though, to avoid holding
574 * the AIL lock across a call to the blackhole which is the buffer cache.
575 * Also we don't want to sleep in any device strategy routines, which can happen
576 * if we do the subsequent bawrite in here.
578 STATIC uint
579 xfs_inode_item_trylock(
580 struct xfs_log_item *lip)
582 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
583 struct xfs_inode *ip = iip->ili_inode;
585 if (xfs_ipincount(ip) > 0)
586 return XFS_ITEM_PINNED;
588 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
589 return XFS_ITEM_LOCKED;
591 if (!xfs_iflock_nowait(ip)) {
593 * inode has already been flushed to the backing buffer,
594 * leave it locked in shared mode, pushbuf routine will
595 * unlock it.
597 return XFS_ITEM_PUSHBUF;
600 /* Stale items should force out the iclog */
601 if (ip->i_flags & XFS_ISTALE) {
602 xfs_ifunlock(ip);
604 * we hold the AIL lock - notify the unlock routine of this
605 * so it doesn't try to get the lock again.
607 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
608 return XFS_ITEM_PINNED;
611 #ifdef DEBUG
612 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
613 ASSERT(iip->ili_format.ilf_fields != 0);
614 ASSERT(iip->ili_logged == 0);
615 ASSERT(lip->li_flags & XFS_LI_IN_AIL);
617 #endif
618 return XFS_ITEM_SUCCESS;
622 * Unlock the inode associated with the inode log item.
623 * Clear the fields of the inode and inode log item that
624 * are specific to the current transaction. If the
625 * hold flags is set, do not unlock the inode.
627 STATIC void
628 xfs_inode_item_unlock(
629 struct xfs_log_item *lip)
631 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
632 struct xfs_inode *ip = iip->ili_inode;
633 unsigned short lock_flags;
635 ASSERT(iip->ili_inode->i_itemp != NULL);
636 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
639 * Clear the transaction pointer in the inode.
641 ip->i_transp = NULL;
644 * If the inode needed a separate buffer with which to log
645 * its extents, then free it now.
647 if (iip->ili_extents_buf != NULL) {
648 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
649 ASSERT(ip->i_d.di_nextents > 0);
650 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
651 ASSERT(ip->i_df.if_bytes > 0);
652 kmem_free(iip->ili_extents_buf);
653 iip->ili_extents_buf = NULL;
655 if (iip->ili_aextents_buf != NULL) {
656 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
657 ASSERT(ip->i_d.di_anextents > 0);
658 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
659 ASSERT(ip->i_afp->if_bytes > 0);
660 kmem_free(iip->ili_aextents_buf);
661 iip->ili_aextents_buf = NULL;
664 lock_flags = iip->ili_lock_flags;
665 iip->ili_lock_flags = 0;
666 if (lock_flags) {
667 xfs_iunlock(iip->ili_inode, lock_flags);
668 IRELE(iip->ili_inode);
673 * This is called to find out where the oldest active copy of the inode log
674 * item in the on disk log resides now that the last log write of it completed
675 * at the given lsn. Since we always re-log all dirty data in an inode, the
676 * latest copy in the on disk log is the only one that matters. Therefore,
677 * simply return the given lsn.
679 * If the inode has been marked stale because the cluster is being freed, we
680 * don't want to (re-)insert this inode into the AIL. There is a race condition
681 * where the cluster buffer may be unpinned before the inode is inserted into
682 * the AIL during transaction committed processing. If the buffer is unpinned
683 * before the inode item has been committed and inserted, then it is possible
684 * for the buffer to be written and IO completes before the inode is inserted
685 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
686 * AIL which will never get removed. It will, however, get reclaimed which
687 * triggers an assert in xfs_inode_free() complaining about freein an inode
688 * still in the AIL.
690 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
691 * transaction committed code knows that it does not need to do any further
692 * processing on the item.
694 STATIC xfs_lsn_t
695 xfs_inode_item_committed(
696 struct xfs_log_item *lip,
697 xfs_lsn_t lsn)
699 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
700 struct xfs_inode *ip = iip->ili_inode;
702 if (xfs_iflags_test(ip, XFS_ISTALE)) {
703 xfs_inode_item_unpin(lip, 0);
704 return -1;
706 return lsn;
710 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
711 * failed to get the inode flush lock but did get the inode locked SHARED.
712 * Here we're trying to see if the inode buffer is incore, and if so whether it's
713 * marked delayed write. If that's the case, we'll promote it and that will
714 * allow the caller to write the buffer by triggering the xfsbufd to run.
716 STATIC bool
717 xfs_inode_item_pushbuf(
718 struct xfs_log_item *lip)
720 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
721 struct xfs_inode *ip = iip->ili_inode;
722 struct xfs_buf *bp;
723 bool ret = true;
725 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
728 * If a flush is not in progress anymore, chances are that the
729 * inode was taken off the AIL. So, just get out.
731 if (completion_done(&ip->i_flush) ||
732 !(lip->li_flags & XFS_LI_IN_AIL)) {
733 xfs_iunlock(ip, XFS_ILOCK_SHARED);
734 return true;
737 bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
738 iip->ili_format.ilf_len, XBF_TRYLOCK);
740 xfs_iunlock(ip, XFS_ILOCK_SHARED);
741 if (!bp)
742 return true;
743 if (XFS_BUF_ISDELAYWRITE(bp))
744 xfs_buf_delwri_promote(bp);
745 if (XFS_BUF_ISPINNED(bp))
746 ret = false;
747 xfs_buf_relse(bp);
748 return ret;
752 * This is called to asynchronously write the inode associated with this
753 * inode log item out to disk. The inode will already have been locked by
754 * a successful call to xfs_inode_item_trylock().
756 STATIC void
757 xfs_inode_item_push(
758 struct xfs_log_item *lip)
760 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
761 struct xfs_inode *ip = iip->ili_inode;
763 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
764 ASSERT(!completion_done(&ip->i_flush));
767 * Since we were able to lock the inode's flush lock and
768 * we found it on the AIL, the inode must be dirty. This
769 * is because the inode is removed from the AIL while still
770 * holding the flush lock in xfs_iflush_done(). Thus, if
771 * we found it in the AIL and were able to obtain the flush
772 * lock without sleeping, then there must not have been
773 * anyone in the process of flushing the inode.
775 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
776 iip->ili_format.ilf_fields != 0);
779 * Push the inode to it's backing buffer. This will not remove the
780 * inode from the AIL - a further push will be required to trigger a
781 * buffer push. However, this allows all the dirty inodes to be pushed
782 * to the buffer before it is pushed to disk. The buffer IO completion
783 * will pull the inode from the AIL, mark it clean and unlock the flush
784 * lock.
786 (void) xfs_iflush(ip, SYNC_TRYLOCK);
787 xfs_iunlock(ip, XFS_ILOCK_SHARED);
791 * XXX rcc - this one really has to do something. Probably needs
792 * to stamp in a new field in the incore inode.
794 STATIC void
795 xfs_inode_item_committing(
796 struct xfs_log_item *lip,
797 xfs_lsn_t lsn)
799 INODE_ITEM(lip)->ili_last_lsn = lsn;
803 * This is the ops vector shared by all buf log items.
805 static struct xfs_item_ops xfs_inode_item_ops = {
806 .iop_size = xfs_inode_item_size,
807 .iop_format = xfs_inode_item_format,
808 .iop_pin = xfs_inode_item_pin,
809 .iop_unpin = xfs_inode_item_unpin,
810 .iop_trylock = xfs_inode_item_trylock,
811 .iop_unlock = xfs_inode_item_unlock,
812 .iop_committed = xfs_inode_item_committed,
813 .iop_push = xfs_inode_item_push,
814 .iop_pushbuf = xfs_inode_item_pushbuf,
815 .iop_committing = xfs_inode_item_committing
820 * Initialize the inode log item for a newly allocated (in-core) inode.
822 void
823 xfs_inode_item_init(
824 struct xfs_inode *ip,
825 struct xfs_mount *mp)
827 struct xfs_inode_log_item *iip;
829 ASSERT(ip->i_itemp == NULL);
830 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
832 iip->ili_inode = ip;
833 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
834 &xfs_inode_item_ops);
835 iip->ili_format.ilf_type = XFS_LI_INODE;
836 iip->ili_format.ilf_ino = ip->i_ino;
837 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
838 iip->ili_format.ilf_len = ip->i_imap.im_len;
839 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
843 * Free the inode log item and any memory hanging off of it.
845 void
846 xfs_inode_item_destroy(
847 xfs_inode_t *ip)
849 #ifdef XFS_TRANS_DEBUG
850 if (ip->i_itemp->ili_root_size != 0) {
851 kmem_free(ip->i_itemp->ili_orig_root);
853 #endif
854 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
859 * This is the inode flushing I/O completion routine. It is called
860 * from interrupt level when the buffer containing the inode is
861 * flushed to disk. It is responsible for removing the inode item
862 * from the AIL if it has not been re-logged, and unlocking the inode's
863 * flush lock.
865 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
866 * list for other inodes that will run this function. We remove them from the
867 * buffer list so we can process all the inode IO completions in one AIL lock
868 * traversal.
870 void
871 xfs_iflush_done(
872 struct xfs_buf *bp,
873 struct xfs_log_item *lip)
875 struct xfs_inode_log_item *iip;
876 struct xfs_log_item *blip;
877 struct xfs_log_item *next;
878 struct xfs_log_item *prev;
879 struct xfs_ail *ailp = lip->li_ailp;
880 int need_ail = 0;
883 * Scan the buffer IO completions for other inodes being completed and
884 * attach them to the current inode log item.
886 blip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
887 prev = NULL;
888 while (blip != NULL) {
889 if (lip->li_cb != xfs_iflush_done) {
890 prev = blip;
891 blip = blip->li_bio_list;
892 continue;
895 /* remove from list */
896 next = blip->li_bio_list;
897 if (!prev) {
898 XFS_BUF_SET_FSPRIVATE(bp, next);
899 } else {
900 prev->li_bio_list = next;
903 /* add to current list */
904 blip->li_bio_list = lip->li_bio_list;
905 lip->li_bio_list = blip;
908 * while we have the item, do the unlocked check for needing
909 * the AIL lock.
911 iip = INODE_ITEM(blip);
912 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
913 need_ail++;
915 blip = next;
918 /* make sure we capture the state of the initial inode. */
919 iip = INODE_ITEM(lip);
920 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
921 need_ail++;
924 * We only want to pull the item from the AIL if it is
925 * actually there and its location in the log has not
926 * changed since we started the flush. Thus, we only bother
927 * if the ili_logged flag is set and the inode's lsn has not
928 * changed. First we check the lsn outside
929 * the lock since it's cheaper, and then we recheck while
930 * holding the lock before removing the inode from the AIL.
932 if (need_ail) {
933 struct xfs_log_item *log_items[need_ail];
934 int i = 0;
935 spin_lock(&ailp->xa_lock);
936 for (blip = lip; blip; blip = blip->li_bio_list) {
937 iip = INODE_ITEM(blip);
938 if (iip->ili_logged &&
939 blip->li_lsn == iip->ili_flush_lsn) {
940 log_items[i++] = blip;
942 ASSERT(i <= need_ail);
944 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
945 xfs_trans_ail_delete_bulk(ailp, log_items, i);
950 * clean up and unlock the flush lock now we are done. We can clear the
951 * ili_last_fields bits now that we know that the data corresponding to
952 * them is safely on disk.
954 for (blip = lip; blip; blip = next) {
955 next = blip->li_bio_list;
956 blip->li_bio_list = NULL;
958 iip = INODE_ITEM(blip);
959 iip->ili_logged = 0;
960 iip->ili_last_fields = 0;
961 xfs_ifunlock(iip->ili_inode);
966 * This is the inode flushing abort routine. It is called
967 * from xfs_iflush when the filesystem is shutting down to clean
968 * up the inode state.
969 * It is responsible for removing the inode item
970 * from the AIL if it has not been re-logged, and unlocking the inode's
971 * flush lock.
973 void
974 xfs_iflush_abort(
975 xfs_inode_t *ip)
977 xfs_inode_log_item_t *iip = ip->i_itemp;
979 if (iip) {
980 struct xfs_ail *ailp = iip->ili_item.li_ailp;
981 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
982 spin_lock(&ailp->xa_lock);
983 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
984 /* xfs_trans_ail_delete() drops the AIL lock. */
985 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
986 } else
987 spin_unlock(&ailp->xa_lock);
989 iip->ili_logged = 0;
991 * Clear the ili_last_fields bits now that we know that the
992 * data corresponding to them is safely on disk.
994 iip->ili_last_fields = 0;
996 * Clear the inode logging fields so no more flushes are
997 * attempted.
999 iip->ili_format.ilf_fields = 0;
1002 * Release the inode's flush lock since we're done with it.
1004 xfs_ifunlock(ip);
1007 void
1008 xfs_istale_done(
1009 struct xfs_buf *bp,
1010 struct xfs_log_item *lip)
1012 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
1016 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1017 * (which can have different field alignments) to the native version
1020 xfs_inode_item_format_convert(
1021 xfs_log_iovec_t *buf,
1022 xfs_inode_log_format_t *in_f)
1024 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1025 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
1027 in_f->ilf_type = in_f32->ilf_type;
1028 in_f->ilf_size = in_f32->ilf_size;
1029 in_f->ilf_fields = in_f32->ilf_fields;
1030 in_f->ilf_asize = in_f32->ilf_asize;
1031 in_f->ilf_dsize = in_f32->ilf_dsize;
1032 in_f->ilf_ino = in_f32->ilf_ino;
1033 /* copy biggest field of ilf_u */
1034 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1035 in_f32->ilf_u.ilfu_uuid.__u_bits,
1036 sizeof(uuid_t));
1037 in_f->ilf_blkno = in_f32->ilf_blkno;
1038 in_f->ilf_len = in_f32->ilf_len;
1039 in_f->ilf_boffset = in_f32->ilf_boffset;
1040 return 0;
1041 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1042 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
1044 in_f->ilf_type = in_f64->ilf_type;
1045 in_f->ilf_size = in_f64->ilf_size;
1046 in_f->ilf_fields = in_f64->ilf_fields;
1047 in_f->ilf_asize = in_f64->ilf_asize;
1048 in_f->ilf_dsize = in_f64->ilf_dsize;
1049 in_f->ilf_ino = in_f64->ilf_ino;
1050 /* copy biggest field of ilf_u */
1051 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1052 in_f64->ilf_u.ilfu_uuid.__u_bits,
1053 sizeof(uuid_t));
1054 in_f->ilf_blkno = in_f64->ilf_blkno;
1055 in_f->ilf_len = in_f64->ilf_len;
1056 in_f->ilf_boffset = in_f64->ilf_boffset;
1057 return 0;
1059 return EFSCORRUPTED;