thinkpad_acpi: Correct !CONFIG_THINKPAD_ACPI_VIDEO warning
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / namei.c
blob3095ca8a31adfb90331274bb5c4a7ea81087bc44
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
37 #include "internal.h"
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
87 * [10-Sep-98 Alan Modra] Another symlink change.
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
117 static int do_getname(const char __user *filename, char *page)
119 int retval;
120 unsigned long len = PATH_MAX;
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
139 char * getname(const char __user * filename)
141 char *tmp, *result;
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
154 audit_getname(result);
155 return result;
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
166 EXPORT_SYMBOL(putname);
167 #endif
170 * This does basic POSIX ACL permission checking
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
175 umode_t mode = inode->i_mode;
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask, flags);
184 if (error != -EAGAIN)
185 return error;
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
193 * If the DACs are ok we don't need any capability check.
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 * @flags: IPERM_FLAG_ flags.
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things.
212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213 * request cannot be satisfied (eg. requires blocking or too much complexity).
214 * It would then be called again in ref-walk mode.
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
219 int ret;
222 * Do the basic POSIX ACL permission checks.
224 ret = acl_permission_check(inode, mask, flags, check_acl);
225 if (ret != -EACCES)
226 return ret;
229 * Read/write DACs are always overridable.
230 * Executable DACs are overridable if at least one exec bit is set.
232 if (!(mask & MAY_EXEC) || execute_ok(inode))
233 if (capable(CAP_DAC_OVERRIDE))
234 return 0;
237 * Searching includes executable on directories, else just read.
239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 if (capable(CAP_DAC_READ_SEARCH))
242 return 0;
244 return -EACCES;
248 * inode_permission - check for access rights to a given inode
249 * @inode: inode to check permission on
250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
252 * Used to check for read/write/execute permissions on an inode.
253 * We use "fsuid" for this, letting us set arbitrary permissions
254 * for filesystem access without changing the "normal" uids which
255 * are used for other things.
257 int inode_permission(struct inode *inode, int mask)
259 int retval;
261 if (mask & MAY_WRITE) {
262 umode_t mode = inode->i_mode;
265 * Nobody gets write access to a read-only fs.
267 if (IS_RDONLY(inode) &&
268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 return -EROFS;
272 * Nobody gets write access to an immutable file.
274 if (IS_IMMUTABLE(inode))
275 return -EACCES;
278 if (inode->i_op->permission)
279 retval = inode->i_op->permission(inode, mask, 0);
280 else
281 retval = generic_permission(inode, mask, 0,
282 inode->i_op->check_acl);
284 if (retval)
285 return retval;
287 retval = devcgroup_inode_permission(inode, mask);
288 if (retval)
289 return retval;
291 return security_inode_permission(inode, mask);
295 * file_permission - check for additional access rights to a given file
296 * @file: file to check access rights for
297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
299 * Used to check for read/write/execute permissions on an already opened
300 * file.
302 * Note:
303 * Do not use this function in new code. All access checks should
304 * be done using inode_permission().
306 int file_permission(struct file *file, int mask)
308 return inode_permission(file->f_path.dentry->d_inode, mask);
312 * get_write_access() gets write permission for a file.
313 * put_write_access() releases this write permission.
314 * This is used for regular files.
315 * We cannot support write (and maybe mmap read-write shared) accesses and
316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317 * can have the following values:
318 * 0: no writers, no VM_DENYWRITE mappings
319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320 * > 0: (i_writecount) users are writing to the file.
322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323 * except for the cases where we don't hold i_writecount yet. Then we need to
324 * use {get,deny}_write_access() - these functions check the sign and refuse
325 * to do the change if sign is wrong. Exclusion between them is provided by
326 * the inode->i_lock spinlock.
329 int get_write_access(struct inode * inode)
331 spin_lock(&inode->i_lock);
332 if (atomic_read(&inode->i_writecount) < 0) {
333 spin_unlock(&inode->i_lock);
334 return -ETXTBSY;
336 atomic_inc(&inode->i_writecount);
337 spin_unlock(&inode->i_lock);
339 return 0;
342 int deny_write_access(struct file * file)
344 struct inode *inode = file->f_path.dentry->d_inode;
346 spin_lock(&inode->i_lock);
347 if (atomic_read(&inode->i_writecount) > 0) {
348 spin_unlock(&inode->i_lock);
349 return -ETXTBSY;
351 atomic_dec(&inode->i_writecount);
352 spin_unlock(&inode->i_lock);
354 return 0;
358 * path_get - get a reference to a path
359 * @path: path to get the reference to
361 * Given a path increment the reference count to the dentry and the vfsmount.
363 void path_get(struct path *path)
365 mntget(path->mnt);
366 dget(path->dentry);
368 EXPORT_SYMBOL(path_get);
371 * path_put - put a reference to a path
372 * @path: path to put the reference to
374 * Given a path decrement the reference count to the dentry and the vfsmount.
376 void path_put(struct path *path)
378 dput(path->dentry);
379 mntput(path->mnt);
381 EXPORT_SYMBOL(path_put);
384 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
385 * @nd: nameidata pathwalk data to drop
386 * Returns: 0 on success, -ECHILD on failure
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
390 * to drop out of rcu-walk mode and take normal reference counts on dentries
391 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
392 * refcounts at the last known good point before rcu-walk got stuck, so
393 * ref-walk may continue from there. If this is not successful (eg. a seqcount
394 * has changed), then failure is returned and path walk restarts from the
395 * beginning in ref-walk mode.
397 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
398 * ref-walk. Must be called from rcu-walk context.
400 static int nameidata_drop_rcu(struct nameidata *nd)
402 struct fs_struct *fs = current->fs;
403 struct dentry *dentry = nd->path.dentry;
405 BUG_ON(!(nd->flags & LOOKUP_RCU));
406 if (nd->root.mnt) {
407 spin_lock(&fs->lock);
408 if (nd->root.mnt != fs->root.mnt ||
409 nd->root.dentry != fs->root.dentry)
410 goto err_root;
412 spin_lock(&dentry->d_lock);
413 if (!__d_rcu_to_refcount(dentry, nd->seq))
414 goto err;
415 BUG_ON(nd->inode != dentry->d_inode);
416 spin_unlock(&dentry->d_lock);
417 if (nd->root.mnt) {
418 path_get(&nd->root);
419 spin_unlock(&fs->lock);
421 mntget(nd->path.mnt);
423 rcu_read_unlock();
424 br_read_unlock(vfsmount_lock);
425 nd->flags &= ~LOOKUP_RCU;
426 return 0;
427 err:
428 spin_unlock(&dentry->d_lock);
429 err_root:
430 if (nd->root.mnt)
431 spin_unlock(&fs->lock);
432 return -ECHILD;
435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
438 if (nd->flags & LOOKUP_RCU)
439 return nameidata_drop_rcu(nd);
440 return 0;
444 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
445 * @nd: nameidata pathwalk data to drop
446 * @dentry: dentry to drop
447 * Returns: 0 on success, -ECHILD on failure
449 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
450 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
451 * @nd. Must be called from rcu-walk context.
453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
455 struct fs_struct *fs = current->fs;
456 struct dentry *parent = nd->path.dentry;
458 BUG_ON(!(nd->flags & LOOKUP_RCU));
459 if (nd->root.mnt) {
460 spin_lock(&fs->lock);
461 if (nd->root.mnt != fs->root.mnt ||
462 nd->root.dentry != fs->root.dentry)
463 goto err_root;
465 spin_lock(&parent->d_lock);
466 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
467 if (!__d_rcu_to_refcount(dentry, nd->seq))
468 goto err;
470 * If the sequence check on the child dentry passed, then the child has
471 * not been removed from its parent. This means the parent dentry must
472 * be valid and able to take a reference at this point.
474 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
475 BUG_ON(!parent->d_count);
476 parent->d_count++;
477 spin_unlock(&dentry->d_lock);
478 spin_unlock(&parent->d_lock);
479 if (nd->root.mnt) {
480 path_get(&nd->root);
481 spin_unlock(&fs->lock);
483 mntget(nd->path.mnt);
485 rcu_read_unlock();
486 br_read_unlock(vfsmount_lock);
487 nd->flags &= ~LOOKUP_RCU;
488 return 0;
489 err:
490 spin_unlock(&dentry->d_lock);
491 spin_unlock(&parent->d_lock);
492 err_root:
493 if (nd->root.mnt)
494 spin_unlock(&fs->lock);
495 return -ECHILD;
498 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
499 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
501 if (nd->flags & LOOKUP_RCU)
502 return nameidata_dentry_drop_rcu(nd, dentry);
503 return 0;
507 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
508 * @nd: nameidata pathwalk data to drop
509 * Returns: 0 on success, -ECHILD on failure
511 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
512 * nd->path should be the final element of the lookup, so nd->root is discarded.
513 * Must be called from rcu-walk context.
515 static int nameidata_drop_rcu_last(struct nameidata *nd)
517 struct dentry *dentry = nd->path.dentry;
519 BUG_ON(!(nd->flags & LOOKUP_RCU));
520 nd->flags &= ~LOOKUP_RCU;
521 nd->root.mnt = NULL;
522 spin_lock(&dentry->d_lock);
523 if (!__d_rcu_to_refcount(dentry, nd->seq))
524 goto err_unlock;
525 BUG_ON(nd->inode != dentry->d_inode);
526 spin_unlock(&dentry->d_lock);
528 mntget(nd->path.mnt);
530 rcu_read_unlock();
531 br_read_unlock(vfsmount_lock);
533 return 0;
535 err_unlock:
536 spin_unlock(&dentry->d_lock);
537 rcu_read_unlock();
538 br_read_unlock(vfsmount_lock);
539 return -ECHILD;
542 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
543 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd)
545 if (likely(nd->flags & LOOKUP_RCU))
546 return nameidata_drop_rcu_last(nd);
547 return 0;
551 * release_open_intent - free up open intent resources
552 * @nd: pointer to nameidata
554 void release_open_intent(struct nameidata *nd)
556 struct file *file = nd->intent.open.file;
558 if (file && !IS_ERR(file)) {
559 if (file->f_path.dentry == NULL)
560 put_filp(file);
561 else
562 fput(file);
566 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
568 return dentry->d_op->d_revalidate(dentry, nd);
571 static struct dentry *
572 do_revalidate(struct dentry *dentry, struct nameidata *nd)
574 int status = d_revalidate(dentry, nd);
575 if (unlikely(status <= 0)) {
577 * The dentry failed validation.
578 * If d_revalidate returned 0 attempt to invalidate
579 * the dentry otherwise d_revalidate is asking us
580 * to return a fail status.
582 if (status < 0) {
583 dput(dentry);
584 dentry = ERR_PTR(status);
585 } else if (!d_invalidate(dentry)) {
586 dput(dentry);
587 dentry = NULL;
590 return dentry;
593 static inline struct dentry *
594 do_revalidate_rcu(struct dentry *dentry, struct nameidata *nd)
596 int status = d_revalidate(dentry, nd);
597 if (likely(status > 0))
598 return dentry;
599 if (status == -ECHILD) {
600 if (nameidata_dentry_drop_rcu(nd, dentry))
601 return ERR_PTR(-ECHILD);
602 return do_revalidate(dentry, nd);
604 if (status < 0)
605 return ERR_PTR(status);
606 /* Don't d_invalidate in rcu-walk mode */
607 if (nameidata_dentry_drop_rcu(nd, dentry))
608 return ERR_PTR(-ECHILD);
609 if (!d_invalidate(dentry)) {
610 dput(dentry);
611 dentry = NULL;
613 return dentry;
616 static inline int need_reval_dot(struct dentry *dentry)
618 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
619 return 0;
621 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
622 return 0;
624 return 1;
628 * force_reval_path - force revalidation of a dentry
630 * In some situations the path walking code will trust dentries without
631 * revalidating them. This causes problems for filesystems that depend on
632 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
633 * (which indicates that it's possible for the dentry to go stale), force
634 * a d_revalidate call before proceeding.
636 * Returns 0 if the revalidation was successful. If the revalidation fails,
637 * either return the error returned by d_revalidate or -ESTALE if the
638 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
639 * invalidate the dentry. It's up to the caller to handle putting references
640 * to the path if necessary.
642 static int
643 force_reval_path(struct path *path, struct nameidata *nd)
645 int status;
646 struct dentry *dentry = path->dentry;
649 * only check on filesystems where it's possible for the dentry to
650 * become stale.
652 if (!need_reval_dot(dentry))
653 return 0;
655 status = d_revalidate(dentry, nd);
656 if (status > 0)
657 return 0;
659 if (!status) {
660 d_invalidate(dentry);
661 status = -ESTALE;
663 return status;
667 * Short-cut version of permission(), for calling on directories
668 * during pathname resolution. Combines parts of permission()
669 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
671 * If appropriate, check DAC only. If not appropriate, or
672 * short-cut DAC fails, then call ->permission() to do more
673 * complete permission check.
675 static inline int exec_permission(struct inode *inode, unsigned int flags)
677 int ret;
679 if (inode->i_op->permission) {
680 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
681 } else {
682 ret = acl_permission_check(inode, MAY_EXEC, flags,
683 inode->i_op->check_acl);
685 if (likely(!ret))
686 goto ok;
687 if (ret == -ECHILD)
688 return ret;
690 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
691 goto ok;
693 return ret;
695 return security_inode_exec_permission(inode, flags);
698 static __always_inline void set_root(struct nameidata *nd)
700 if (!nd->root.mnt)
701 get_fs_root(current->fs, &nd->root);
704 static int link_path_walk(const char *, struct nameidata *);
706 static __always_inline void set_root_rcu(struct nameidata *nd)
708 if (!nd->root.mnt) {
709 struct fs_struct *fs = current->fs;
710 unsigned seq;
712 do {
713 seq = read_seqcount_begin(&fs->seq);
714 nd->root = fs->root;
715 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
716 } while (read_seqcount_retry(&fs->seq, seq));
720 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
722 int ret;
724 if (IS_ERR(link))
725 goto fail;
727 if (*link == '/') {
728 set_root(nd);
729 path_put(&nd->path);
730 nd->path = nd->root;
731 path_get(&nd->root);
733 nd->inode = nd->path.dentry->d_inode;
735 ret = link_path_walk(link, nd);
736 return ret;
737 fail:
738 path_put(&nd->path);
739 return PTR_ERR(link);
742 static void path_put_conditional(struct path *path, struct nameidata *nd)
744 dput(path->dentry);
745 if (path->mnt != nd->path.mnt)
746 mntput(path->mnt);
749 static inline void path_to_nameidata(const struct path *path,
750 struct nameidata *nd)
752 if (!(nd->flags & LOOKUP_RCU)) {
753 dput(nd->path.dentry);
754 if (nd->path.mnt != path->mnt)
755 mntput(nd->path.mnt);
757 nd->path.mnt = path->mnt;
758 nd->path.dentry = path->dentry;
761 static __always_inline int
762 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
764 int error;
765 struct dentry *dentry = link->dentry;
767 BUG_ON(nd->flags & LOOKUP_RCU);
769 touch_atime(link->mnt, dentry);
770 nd_set_link(nd, NULL);
772 if (link->mnt == nd->path.mnt)
773 mntget(link->mnt);
775 nd->last_type = LAST_BIND;
776 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
777 error = PTR_ERR(*p);
778 if (!IS_ERR(*p)) {
779 char *s = nd_get_link(nd);
780 error = 0;
781 if (s)
782 error = __vfs_follow_link(nd, s);
783 else if (nd->last_type == LAST_BIND) {
784 error = force_reval_path(&nd->path, nd);
785 if (error)
786 path_put(&nd->path);
789 return error;
793 * This limits recursive symlink follows to 8, while
794 * limiting consecutive symlinks to 40.
796 * Without that kind of total limit, nasty chains of consecutive
797 * symlinks can cause almost arbitrarily long lookups.
799 static inline int do_follow_link(struct inode *inode, struct path *path, struct nameidata *nd)
801 void *cookie;
802 int err = -ELOOP;
804 /* We drop rcu-walk here */
805 if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
806 return -ECHILD;
807 BUG_ON(inode != path->dentry->d_inode);
809 if (current->link_count >= MAX_NESTED_LINKS)
810 goto loop;
811 if (current->total_link_count >= 40)
812 goto loop;
813 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
814 cond_resched();
815 err = security_inode_follow_link(path->dentry, nd);
816 if (err)
817 goto loop;
818 current->link_count++;
819 current->total_link_count++;
820 nd->depth++;
821 err = __do_follow_link(path, nd, &cookie);
822 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
823 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
824 path_put(path);
825 current->link_count--;
826 nd->depth--;
827 return err;
828 loop:
829 path_put_conditional(path, nd);
830 path_put(&nd->path);
831 return err;
834 static int follow_up_rcu(struct path *path)
836 struct vfsmount *parent;
837 struct dentry *mountpoint;
839 parent = path->mnt->mnt_parent;
840 if (parent == path->mnt)
841 return 0;
842 mountpoint = path->mnt->mnt_mountpoint;
843 path->dentry = mountpoint;
844 path->mnt = parent;
845 return 1;
848 int follow_up(struct path *path)
850 struct vfsmount *parent;
851 struct dentry *mountpoint;
853 br_read_lock(vfsmount_lock);
854 parent = path->mnt->mnt_parent;
855 if (parent == path->mnt) {
856 br_read_unlock(vfsmount_lock);
857 return 0;
859 mntget(parent);
860 mountpoint = dget(path->mnt->mnt_mountpoint);
861 br_read_unlock(vfsmount_lock);
862 dput(path->dentry);
863 path->dentry = mountpoint;
864 mntput(path->mnt);
865 path->mnt = parent;
866 return 1;
870 * Perform an automount
871 * - return -EISDIR to tell follow_managed() to stop and return the path we
872 * were called with.
874 static int follow_automount(struct path *path, unsigned flags,
875 bool *need_mntput)
877 struct vfsmount *mnt;
878 int err;
880 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
881 return -EREMOTE;
883 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
884 * and this is the terminal part of the path.
886 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
887 return -EISDIR; /* we actually want to stop here */
889 /* We want to mount if someone is trying to open/create a file of any
890 * type under the mountpoint, wants to traverse through the mountpoint
891 * or wants to open the mounted directory.
893 * We don't want to mount if someone's just doing a stat and they've
894 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
895 * appended a '/' to the name.
897 if (!(flags & LOOKUP_FOLLOW) &&
898 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
899 LOOKUP_OPEN | LOOKUP_CREATE)))
900 return -EISDIR;
902 current->total_link_count++;
903 if (current->total_link_count >= 40)
904 return -ELOOP;
906 mnt = path->dentry->d_op->d_automount(path);
907 if (IS_ERR(mnt)) {
909 * The filesystem is allowed to return -EISDIR here to indicate
910 * it doesn't want to automount. For instance, autofs would do
911 * this so that its userspace daemon can mount on this dentry.
913 * However, we can only permit this if it's a terminal point in
914 * the path being looked up; if it wasn't then the remainder of
915 * the path is inaccessible and we should say so.
917 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
918 return -EREMOTE;
919 return PTR_ERR(mnt);
922 if (!mnt) /* mount collision */
923 return 0;
925 err = finish_automount(mnt, path);
927 switch (err) {
928 case -EBUSY:
929 /* Someone else made a mount here whilst we were busy */
930 return 0;
931 case 0:
932 dput(path->dentry);
933 if (*need_mntput)
934 mntput(path->mnt);
935 path->mnt = mnt;
936 path->dentry = dget(mnt->mnt_root);
937 *need_mntput = true;
938 return 0;
939 default:
940 return err;
946 * Handle a dentry that is managed in some way.
947 * - Flagged for transit management (autofs)
948 * - Flagged as mountpoint
949 * - Flagged as automount point
951 * This may only be called in refwalk mode.
953 * Serialization is taken care of in namespace.c
955 static int follow_managed(struct path *path, unsigned flags)
957 unsigned managed;
958 bool need_mntput = false;
959 int ret;
961 /* Given that we're not holding a lock here, we retain the value in a
962 * local variable for each dentry as we look at it so that we don't see
963 * the components of that value change under us */
964 while (managed = ACCESS_ONCE(path->dentry->d_flags),
965 managed &= DCACHE_MANAGED_DENTRY,
966 unlikely(managed != 0)) {
967 /* Allow the filesystem to manage the transit without i_mutex
968 * being held. */
969 if (managed & DCACHE_MANAGE_TRANSIT) {
970 BUG_ON(!path->dentry->d_op);
971 BUG_ON(!path->dentry->d_op->d_manage);
972 ret = path->dentry->d_op->d_manage(path->dentry,
973 false, false);
974 if (ret < 0)
975 return ret == -EISDIR ? 0 : ret;
978 /* Transit to a mounted filesystem. */
979 if (managed & DCACHE_MOUNTED) {
980 struct vfsmount *mounted = lookup_mnt(path);
981 if (mounted) {
982 dput(path->dentry);
983 if (need_mntput)
984 mntput(path->mnt);
985 path->mnt = mounted;
986 path->dentry = dget(mounted->mnt_root);
987 need_mntput = true;
988 continue;
991 /* Something is mounted on this dentry in another
992 * namespace and/or whatever was mounted there in this
993 * namespace got unmounted before we managed to get the
994 * vfsmount_lock */
997 /* Handle an automount point */
998 if (managed & DCACHE_NEED_AUTOMOUNT) {
999 ret = follow_automount(path, flags, &need_mntput);
1000 if (ret < 0)
1001 return ret == -EISDIR ? 0 : ret;
1002 continue;
1005 /* We didn't change the current path point */
1006 break;
1008 return 0;
1011 int follow_down_one(struct path *path)
1013 struct vfsmount *mounted;
1015 mounted = lookup_mnt(path);
1016 if (mounted) {
1017 dput(path->dentry);
1018 mntput(path->mnt);
1019 path->mnt = mounted;
1020 path->dentry = dget(mounted->mnt_root);
1021 return 1;
1023 return 0;
1027 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
1028 * meet a managed dentry and we're not walking to "..". True is returned to
1029 * continue, false to abort.
1031 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1032 struct inode **inode, bool reverse_transit)
1034 while (d_mountpoint(path->dentry)) {
1035 struct vfsmount *mounted;
1036 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1037 !reverse_transit &&
1038 path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1039 return false;
1040 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1041 if (!mounted)
1042 break;
1043 path->mnt = mounted;
1044 path->dentry = mounted->mnt_root;
1045 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1046 *inode = path->dentry->d_inode;
1049 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1050 return reverse_transit;
1051 return true;
1054 static int follow_dotdot_rcu(struct nameidata *nd)
1056 struct inode *inode = nd->inode;
1058 set_root_rcu(nd);
1060 while (1) {
1061 if (nd->path.dentry == nd->root.dentry &&
1062 nd->path.mnt == nd->root.mnt) {
1063 break;
1065 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1066 struct dentry *old = nd->path.dentry;
1067 struct dentry *parent = old->d_parent;
1068 unsigned seq;
1070 seq = read_seqcount_begin(&parent->d_seq);
1071 if (read_seqcount_retry(&old->d_seq, nd->seq))
1072 return -ECHILD;
1073 inode = parent->d_inode;
1074 nd->path.dentry = parent;
1075 nd->seq = seq;
1076 break;
1078 if (!follow_up_rcu(&nd->path))
1079 break;
1080 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1081 inode = nd->path.dentry->d_inode;
1083 __follow_mount_rcu(nd, &nd->path, &inode, true);
1084 nd->inode = inode;
1086 return 0;
1090 * Follow down to the covering mount currently visible to userspace. At each
1091 * point, the filesystem owning that dentry may be queried as to whether the
1092 * caller is permitted to proceed or not.
1094 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1095 * being true).
1097 int follow_down(struct path *path, bool mounting_here)
1099 unsigned managed;
1100 int ret;
1102 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1103 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1104 /* Allow the filesystem to manage the transit without i_mutex
1105 * being held.
1107 * We indicate to the filesystem if someone is trying to mount
1108 * something here. This gives autofs the chance to deny anyone
1109 * other than its daemon the right to mount on its
1110 * superstructure.
1112 * The filesystem may sleep at this point.
1114 if (managed & DCACHE_MANAGE_TRANSIT) {
1115 BUG_ON(!path->dentry->d_op);
1116 BUG_ON(!path->dentry->d_op->d_manage);
1117 ret = path->dentry->d_op->d_manage(
1118 path->dentry, mounting_here, false);
1119 if (ret < 0)
1120 return ret == -EISDIR ? 0 : ret;
1123 /* Transit to a mounted filesystem. */
1124 if (managed & DCACHE_MOUNTED) {
1125 struct vfsmount *mounted = lookup_mnt(path);
1126 if (!mounted)
1127 break;
1128 dput(path->dentry);
1129 mntput(path->mnt);
1130 path->mnt = mounted;
1131 path->dentry = dget(mounted->mnt_root);
1132 continue;
1135 /* Don't handle automount points here */
1136 break;
1138 return 0;
1142 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1144 static void follow_mount(struct path *path)
1146 while (d_mountpoint(path->dentry)) {
1147 struct vfsmount *mounted = lookup_mnt(path);
1148 if (!mounted)
1149 break;
1150 dput(path->dentry);
1151 mntput(path->mnt);
1152 path->mnt = mounted;
1153 path->dentry = dget(mounted->mnt_root);
1157 static void follow_dotdot(struct nameidata *nd)
1159 set_root(nd);
1161 while(1) {
1162 struct dentry *old = nd->path.dentry;
1164 if (nd->path.dentry == nd->root.dentry &&
1165 nd->path.mnt == nd->root.mnt) {
1166 break;
1168 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1169 /* rare case of legitimate dget_parent()... */
1170 nd->path.dentry = dget_parent(nd->path.dentry);
1171 dput(old);
1172 break;
1174 if (!follow_up(&nd->path))
1175 break;
1177 follow_mount(&nd->path);
1178 nd->inode = nd->path.dentry->d_inode;
1182 * Allocate a dentry with name and parent, and perform a parent
1183 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1184 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1185 * have verified that no child exists while under i_mutex.
1187 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1188 struct qstr *name, struct nameidata *nd)
1190 struct inode *inode = parent->d_inode;
1191 struct dentry *dentry;
1192 struct dentry *old;
1194 /* Don't create child dentry for a dead directory. */
1195 if (unlikely(IS_DEADDIR(inode)))
1196 return ERR_PTR(-ENOENT);
1198 dentry = d_alloc(parent, name);
1199 if (unlikely(!dentry))
1200 return ERR_PTR(-ENOMEM);
1202 old = inode->i_op->lookup(inode, dentry, nd);
1203 if (unlikely(old)) {
1204 dput(dentry);
1205 dentry = old;
1207 return dentry;
1211 * It's more convoluted than I'd like it to be, but... it's still fairly
1212 * small and for now I'd prefer to have fast path as straight as possible.
1213 * It _is_ time-critical.
1215 static int do_lookup(struct nameidata *nd, struct qstr *name,
1216 struct path *path, struct inode **inode)
1218 struct vfsmount *mnt = nd->path.mnt;
1219 struct dentry *dentry, *parent = nd->path.dentry;
1220 struct inode *dir;
1221 int err;
1224 * See if the low-level filesystem might want
1225 * to use its own hash..
1227 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1228 err = parent->d_op->d_hash(parent, nd->inode, name);
1229 if (err < 0)
1230 return err;
1234 * Rename seqlock is not required here because in the off chance
1235 * of a false negative due to a concurrent rename, we're going to
1236 * do the non-racy lookup, below.
1238 if (nd->flags & LOOKUP_RCU) {
1239 unsigned seq;
1241 *inode = nd->inode;
1242 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1243 if (!dentry) {
1244 if (nameidata_drop_rcu(nd))
1245 return -ECHILD;
1246 goto need_lookup;
1248 /* Memory barrier in read_seqcount_begin of child is enough */
1249 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1250 return -ECHILD;
1252 nd->seq = seq;
1253 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1254 dentry = do_revalidate_rcu(dentry, nd);
1255 if (!dentry)
1256 goto need_lookup;
1257 if (IS_ERR(dentry))
1258 goto fail;
1259 if (!(nd->flags & LOOKUP_RCU))
1260 goto done;
1262 path->mnt = mnt;
1263 path->dentry = dentry;
1264 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1265 return 0;
1266 if (nameidata_drop_rcu(nd))
1267 return -ECHILD;
1268 /* fallthru */
1270 dentry = __d_lookup(parent, name);
1271 if (!dentry)
1272 goto need_lookup;
1273 found:
1274 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1275 dentry = do_revalidate(dentry, nd);
1276 if (!dentry)
1277 goto need_lookup;
1278 if (IS_ERR(dentry))
1279 goto fail;
1281 done:
1282 path->mnt = mnt;
1283 path->dentry = dentry;
1284 err = follow_managed(path, nd->flags);
1285 if (unlikely(err < 0)) {
1286 path_put_conditional(path, nd);
1287 return err;
1289 *inode = path->dentry->d_inode;
1290 return 0;
1292 need_lookup:
1293 dir = parent->d_inode;
1294 BUG_ON(nd->inode != dir);
1296 mutex_lock(&dir->i_mutex);
1298 * First re-do the cached lookup just in case it was created
1299 * while we waited for the directory semaphore, or the first
1300 * lookup failed due to an unrelated rename.
1302 * This could use version numbering or similar to avoid unnecessary
1303 * cache lookups, but then we'd have to do the first lookup in the
1304 * non-racy way. However in the common case here, everything should
1305 * be hot in cache, so would it be a big win?
1307 dentry = d_lookup(parent, name);
1308 if (likely(!dentry)) {
1309 dentry = d_alloc_and_lookup(parent, name, nd);
1310 mutex_unlock(&dir->i_mutex);
1311 if (IS_ERR(dentry))
1312 goto fail;
1313 goto done;
1316 * Uhhuh! Nasty case: the cache was re-populated while
1317 * we waited on the semaphore. Need to revalidate.
1319 mutex_unlock(&dir->i_mutex);
1320 goto found;
1322 fail:
1323 return PTR_ERR(dentry);
1327 * Name resolution.
1328 * This is the basic name resolution function, turning a pathname into
1329 * the final dentry. We expect 'base' to be positive and a directory.
1331 * Returns 0 and nd will have valid dentry and mnt on success.
1332 * Returns error and drops reference to input namei data on failure.
1334 static int link_path_walk(const char *name, struct nameidata *nd)
1336 struct path next;
1337 int err;
1338 unsigned int lookup_flags = nd->flags;
1340 while (*name=='/')
1341 name++;
1342 if (!*name)
1343 goto return_reval;
1345 if (nd->depth)
1346 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1348 /* At this point we know we have a real path component. */
1349 for(;;) {
1350 struct inode *inode;
1351 unsigned long hash;
1352 struct qstr this;
1353 unsigned int c;
1355 nd->flags |= LOOKUP_CONTINUE;
1356 if (nd->flags & LOOKUP_RCU) {
1357 err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1358 if (err == -ECHILD) {
1359 if (nameidata_drop_rcu(nd))
1360 return -ECHILD;
1361 goto exec_again;
1363 } else {
1364 exec_again:
1365 err = exec_permission(nd->inode, 0);
1367 if (err)
1368 break;
1370 this.name = name;
1371 c = *(const unsigned char *)name;
1373 hash = init_name_hash();
1374 do {
1375 name++;
1376 hash = partial_name_hash(c, hash);
1377 c = *(const unsigned char *)name;
1378 } while (c && (c != '/'));
1379 this.len = name - (const char *) this.name;
1380 this.hash = end_name_hash(hash);
1382 /* remove trailing slashes? */
1383 if (!c)
1384 goto last_component;
1385 while (*++name == '/');
1386 if (!*name)
1387 goto last_with_slashes;
1390 * "." and ".." are special - ".." especially so because it has
1391 * to be able to know about the current root directory and
1392 * parent relationships.
1394 if (this.name[0] == '.') switch (this.len) {
1395 default:
1396 break;
1397 case 2:
1398 if (this.name[1] != '.')
1399 break;
1400 if (nd->flags & LOOKUP_RCU) {
1401 if (follow_dotdot_rcu(nd))
1402 return -ECHILD;
1403 } else
1404 follow_dotdot(nd);
1405 /* fallthrough */
1406 case 1:
1407 continue;
1409 /* This does the actual lookups.. */
1410 err = do_lookup(nd, &this, &next, &inode);
1411 if (err)
1412 break;
1413 err = -ENOENT;
1414 if (!inode)
1415 goto out_dput;
1417 if (inode->i_op->follow_link) {
1418 err = do_follow_link(inode, &next, nd);
1419 if (err)
1420 goto return_err;
1421 nd->inode = nd->path.dentry->d_inode;
1422 err = -ENOENT;
1423 if (!nd->inode)
1424 break;
1425 } else {
1426 path_to_nameidata(&next, nd);
1427 nd->inode = inode;
1429 err = -ENOTDIR;
1430 if (!nd->inode->i_op->lookup)
1431 break;
1432 continue;
1433 /* here ends the main loop */
1435 last_with_slashes:
1436 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1437 last_component:
1438 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1439 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1440 if (lookup_flags & LOOKUP_PARENT)
1441 goto lookup_parent;
1442 if (this.name[0] == '.') switch (this.len) {
1443 default:
1444 break;
1445 case 2:
1446 if (this.name[1] != '.')
1447 break;
1448 if (nd->flags & LOOKUP_RCU) {
1449 if (follow_dotdot_rcu(nd))
1450 return -ECHILD;
1451 } else
1452 follow_dotdot(nd);
1453 /* fallthrough */
1454 case 1:
1455 goto return_reval;
1457 err = do_lookup(nd, &this, &next, &inode);
1458 if (err)
1459 break;
1460 if (inode && unlikely(inode->i_op->follow_link) &&
1461 (lookup_flags & LOOKUP_FOLLOW)) {
1462 err = do_follow_link(inode, &next, nd);
1463 if (err)
1464 goto return_err;
1465 nd->inode = nd->path.dentry->d_inode;
1466 } else {
1467 path_to_nameidata(&next, nd);
1468 nd->inode = inode;
1470 err = -ENOENT;
1471 if (!nd->inode)
1472 break;
1473 if (lookup_flags & LOOKUP_DIRECTORY) {
1474 err = -ENOTDIR;
1475 if (!nd->inode->i_op->lookup)
1476 break;
1478 goto return_base;
1479 lookup_parent:
1480 nd->last = this;
1481 nd->last_type = LAST_NORM;
1482 if (this.name[0] != '.')
1483 goto return_base;
1484 if (this.len == 1)
1485 nd->last_type = LAST_DOT;
1486 else if (this.len == 2 && this.name[1] == '.')
1487 nd->last_type = LAST_DOTDOT;
1488 else
1489 goto return_base;
1490 return_reval:
1492 * We bypassed the ordinary revalidation routines.
1493 * We may need to check the cached dentry for staleness.
1495 if (need_reval_dot(nd->path.dentry)) {
1496 if (nameidata_drop_rcu_last_maybe(nd))
1497 return -ECHILD;
1498 /* Note: we do not d_invalidate() */
1499 err = d_revalidate(nd->path.dentry, nd);
1500 if (!err)
1501 err = -ESTALE;
1502 if (err < 0)
1503 break;
1504 return 0;
1506 return_base:
1507 if (nameidata_drop_rcu_last_maybe(nd))
1508 return -ECHILD;
1509 return 0;
1510 out_dput:
1511 if (!(nd->flags & LOOKUP_RCU))
1512 path_put_conditional(&next, nd);
1513 break;
1515 if (!(nd->flags & LOOKUP_RCU))
1516 path_put(&nd->path);
1517 return_err:
1518 return err;
1521 static inline int path_walk_rcu(const char *name, struct nameidata *nd)
1523 current->total_link_count = 0;
1525 return link_path_walk(name, nd);
1528 static inline int path_walk_simple(const char *name, struct nameidata *nd)
1530 current->total_link_count = 0;
1532 return link_path_walk(name, nd);
1535 static int path_walk(const char *name, struct nameidata *nd)
1537 struct path save = nd->path;
1538 int result;
1540 current->total_link_count = 0;
1542 /* make sure the stuff we saved doesn't go away */
1543 path_get(&save);
1545 result = link_path_walk(name, nd);
1546 if (result == -ESTALE) {
1547 /* nd->path had been dropped */
1548 current->total_link_count = 0;
1549 nd->path = save;
1550 nd->inode = save.dentry->d_inode;
1551 path_get(&nd->path);
1552 nd->flags |= LOOKUP_REVAL;
1553 result = link_path_walk(name, nd);
1556 path_put(&save);
1558 return result;
1561 static void path_finish_rcu(struct nameidata *nd)
1563 if (nd->flags & LOOKUP_RCU) {
1564 /* RCU dangling. Cancel it. */
1565 nd->flags &= ~LOOKUP_RCU;
1566 nd->root.mnt = NULL;
1567 rcu_read_unlock();
1568 br_read_unlock(vfsmount_lock);
1570 if (nd->file)
1571 fput(nd->file);
1574 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1576 int retval = 0;
1577 int fput_needed;
1578 struct file *file;
1580 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1581 nd->flags = flags | LOOKUP_RCU;
1582 nd->depth = 0;
1583 nd->root.mnt = NULL;
1584 nd->file = NULL;
1586 if (*name=='/') {
1587 struct fs_struct *fs = current->fs;
1588 unsigned seq;
1590 br_read_lock(vfsmount_lock);
1591 rcu_read_lock();
1593 do {
1594 seq = read_seqcount_begin(&fs->seq);
1595 nd->root = fs->root;
1596 nd->path = nd->root;
1597 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1598 } while (read_seqcount_retry(&fs->seq, seq));
1600 } else if (dfd == AT_FDCWD) {
1601 struct fs_struct *fs = current->fs;
1602 unsigned seq;
1604 br_read_lock(vfsmount_lock);
1605 rcu_read_lock();
1607 do {
1608 seq = read_seqcount_begin(&fs->seq);
1609 nd->path = fs->pwd;
1610 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1611 } while (read_seqcount_retry(&fs->seq, seq));
1613 } else {
1614 struct dentry *dentry;
1616 file = fget_light(dfd, &fput_needed);
1617 retval = -EBADF;
1618 if (!file)
1619 goto out_fail;
1621 dentry = file->f_path.dentry;
1623 retval = -ENOTDIR;
1624 if (!S_ISDIR(dentry->d_inode->i_mode))
1625 goto fput_fail;
1627 retval = file_permission(file, MAY_EXEC);
1628 if (retval)
1629 goto fput_fail;
1631 nd->path = file->f_path;
1632 if (fput_needed)
1633 nd->file = file;
1635 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1636 br_read_lock(vfsmount_lock);
1637 rcu_read_lock();
1639 nd->inode = nd->path.dentry->d_inode;
1640 return 0;
1642 fput_fail:
1643 fput_light(file, fput_needed);
1644 out_fail:
1645 return retval;
1648 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1650 int retval = 0;
1651 int fput_needed;
1652 struct file *file;
1654 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1655 nd->flags = flags;
1656 nd->depth = 0;
1657 nd->root.mnt = NULL;
1659 if (*name=='/') {
1660 set_root(nd);
1661 nd->path = nd->root;
1662 path_get(&nd->root);
1663 } else if (dfd == AT_FDCWD) {
1664 get_fs_pwd(current->fs, &nd->path);
1665 } else {
1666 struct dentry *dentry;
1668 file = fget_light(dfd, &fput_needed);
1669 retval = -EBADF;
1670 if (!file)
1671 goto out_fail;
1673 dentry = file->f_path.dentry;
1675 retval = -ENOTDIR;
1676 if (!S_ISDIR(dentry->d_inode->i_mode))
1677 goto fput_fail;
1679 retval = file_permission(file, MAY_EXEC);
1680 if (retval)
1681 goto fput_fail;
1683 nd->path = file->f_path;
1684 path_get(&file->f_path);
1686 fput_light(file, fput_needed);
1688 nd->inode = nd->path.dentry->d_inode;
1689 return 0;
1691 fput_fail:
1692 fput_light(file, fput_needed);
1693 out_fail:
1694 return retval;
1697 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1698 static int do_path_lookup(int dfd, const char *name,
1699 unsigned int flags, struct nameidata *nd)
1701 int retval;
1704 * Path walking is largely split up into 2 different synchronisation
1705 * schemes, rcu-walk and ref-walk (explained in
1706 * Documentation/filesystems/path-lookup.txt). These share much of the
1707 * path walk code, but some things particularly setup, cleanup, and
1708 * following mounts are sufficiently divergent that functions are
1709 * duplicated. Typically there is a function foo(), and its RCU
1710 * analogue, foo_rcu().
1712 * -ECHILD is the error number of choice (just to avoid clashes) that
1713 * is returned if some aspect of an rcu-walk fails. Such an error must
1714 * be handled by restarting a traditional ref-walk (which will always
1715 * be able to complete).
1717 retval = path_init_rcu(dfd, name, flags, nd);
1718 if (unlikely(retval))
1719 return retval;
1720 retval = path_walk_rcu(name, nd);
1721 path_finish_rcu(nd);
1722 if (nd->root.mnt) {
1723 path_put(&nd->root);
1724 nd->root.mnt = NULL;
1727 if (unlikely(retval == -ECHILD || retval == -ESTALE)) {
1728 /* slower, locked walk */
1729 if (retval == -ESTALE)
1730 flags |= LOOKUP_REVAL;
1731 retval = path_init(dfd, name, flags, nd);
1732 if (unlikely(retval))
1733 return retval;
1734 retval = path_walk(name, nd);
1735 if (nd->root.mnt) {
1736 path_put(&nd->root);
1737 nd->root.mnt = NULL;
1741 if (likely(!retval)) {
1742 if (unlikely(!audit_dummy_context())) {
1743 if (nd->path.dentry && nd->inode)
1744 audit_inode(name, nd->path.dentry);
1748 return retval;
1751 int path_lookup(const char *name, unsigned int flags,
1752 struct nameidata *nd)
1754 return do_path_lookup(AT_FDCWD, name, flags, nd);
1757 int kern_path(const char *name, unsigned int flags, struct path *path)
1759 struct nameidata nd;
1760 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1761 if (!res)
1762 *path = nd.path;
1763 return res;
1767 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1768 * @dentry: pointer to dentry of the base directory
1769 * @mnt: pointer to vfs mount of the base directory
1770 * @name: pointer to file name
1771 * @flags: lookup flags
1772 * @nd: pointer to nameidata
1774 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1775 const char *name, unsigned int flags,
1776 struct nameidata *nd)
1778 int retval;
1780 /* same as do_path_lookup */
1781 nd->last_type = LAST_ROOT;
1782 nd->flags = flags;
1783 nd->depth = 0;
1785 nd->path.dentry = dentry;
1786 nd->path.mnt = mnt;
1787 path_get(&nd->path);
1788 nd->root = nd->path;
1789 path_get(&nd->root);
1790 nd->inode = nd->path.dentry->d_inode;
1792 retval = path_walk(name, nd);
1793 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1794 nd->inode))
1795 audit_inode(name, nd->path.dentry);
1797 path_put(&nd->root);
1798 nd->root.mnt = NULL;
1800 return retval;
1803 static struct dentry *__lookup_hash(struct qstr *name,
1804 struct dentry *base, struct nameidata *nd)
1806 struct inode *inode = base->d_inode;
1807 struct dentry *dentry;
1808 int err;
1810 err = exec_permission(inode, 0);
1811 if (err)
1812 return ERR_PTR(err);
1815 * See if the low-level filesystem might want
1816 * to use its own hash..
1818 if (base->d_flags & DCACHE_OP_HASH) {
1819 err = base->d_op->d_hash(base, inode, name);
1820 dentry = ERR_PTR(err);
1821 if (err < 0)
1822 goto out;
1826 * Don't bother with __d_lookup: callers are for creat as
1827 * well as unlink, so a lot of the time it would cost
1828 * a double lookup.
1830 dentry = d_lookup(base, name);
1832 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1833 dentry = do_revalidate(dentry, nd);
1835 if (!dentry)
1836 dentry = d_alloc_and_lookup(base, name, nd);
1837 out:
1838 return dentry;
1842 * Restricted form of lookup. Doesn't follow links, single-component only,
1843 * needs parent already locked. Doesn't follow mounts.
1844 * SMP-safe.
1846 static struct dentry *lookup_hash(struct nameidata *nd)
1848 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1851 static int __lookup_one_len(const char *name, struct qstr *this,
1852 struct dentry *base, int len)
1854 unsigned long hash;
1855 unsigned int c;
1857 this->name = name;
1858 this->len = len;
1859 if (!len)
1860 return -EACCES;
1862 hash = init_name_hash();
1863 while (len--) {
1864 c = *(const unsigned char *)name++;
1865 if (c == '/' || c == '\0')
1866 return -EACCES;
1867 hash = partial_name_hash(c, hash);
1869 this->hash = end_name_hash(hash);
1870 return 0;
1874 * lookup_one_len - filesystem helper to lookup single pathname component
1875 * @name: pathname component to lookup
1876 * @base: base directory to lookup from
1877 * @len: maximum length @len should be interpreted to
1879 * Note that this routine is purely a helper for filesystem usage and should
1880 * not be called by generic code. Also note that by using this function the
1881 * nameidata argument is passed to the filesystem methods and a filesystem
1882 * using this helper needs to be prepared for that.
1884 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1886 int err;
1887 struct qstr this;
1889 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1891 err = __lookup_one_len(name, &this, base, len);
1892 if (err)
1893 return ERR_PTR(err);
1895 return __lookup_hash(&this, base, NULL);
1898 int user_path_at(int dfd, const char __user *name, unsigned flags,
1899 struct path *path)
1901 struct nameidata nd;
1902 char *tmp = getname(name);
1903 int err = PTR_ERR(tmp);
1904 if (!IS_ERR(tmp)) {
1906 BUG_ON(flags & LOOKUP_PARENT);
1908 err = do_path_lookup(dfd, tmp, flags, &nd);
1909 putname(tmp);
1910 if (!err)
1911 *path = nd.path;
1913 return err;
1916 static int user_path_parent(int dfd, const char __user *path,
1917 struct nameidata *nd, char **name)
1919 char *s = getname(path);
1920 int error;
1922 if (IS_ERR(s))
1923 return PTR_ERR(s);
1925 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1926 if (error)
1927 putname(s);
1928 else
1929 *name = s;
1931 return error;
1935 * It's inline, so penalty for filesystems that don't use sticky bit is
1936 * minimal.
1938 static inline int check_sticky(struct inode *dir, struct inode *inode)
1940 uid_t fsuid = current_fsuid();
1942 if (!(dir->i_mode & S_ISVTX))
1943 return 0;
1944 if (inode->i_uid == fsuid)
1945 return 0;
1946 if (dir->i_uid == fsuid)
1947 return 0;
1948 return !capable(CAP_FOWNER);
1952 * Check whether we can remove a link victim from directory dir, check
1953 * whether the type of victim is right.
1954 * 1. We can't do it if dir is read-only (done in permission())
1955 * 2. We should have write and exec permissions on dir
1956 * 3. We can't remove anything from append-only dir
1957 * 4. We can't do anything with immutable dir (done in permission())
1958 * 5. If the sticky bit on dir is set we should either
1959 * a. be owner of dir, or
1960 * b. be owner of victim, or
1961 * c. have CAP_FOWNER capability
1962 * 6. If the victim is append-only or immutable we can't do antyhing with
1963 * links pointing to it.
1964 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1965 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1966 * 9. We can't remove a root or mountpoint.
1967 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1968 * nfs_async_unlink().
1970 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1972 int error;
1974 if (!victim->d_inode)
1975 return -ENOENT;
1977 BUG_ON(victim->d_parent->d_inode != dir);
1978 audit_inode_child(victim, dir);
1980 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1981 if (error)
1982 return error;
1983 if (IS_APPEND(dir))
1984 return -EPERM;
1985 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1986 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1987 return -EPERM;
1988 if (isdir) {
1989 if (!S_ISDIR(victim->d_inode->i_mode))
1990 return -ENOTDIR;
1991 if (IS_ROOT(victim))
1992 return -EBUSY;
1993 } else if (S_ISDIR(victim->d_inode->i_mode))
1994 return -EISDIR;
1995 if (IS_DEADDIR(dir))
1996 return -ENOENT;
1997 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1998 return -EBUSY;
1999 return 0;
2002 /* Check whether we can create an object with dentry child in directory
2003 * dir.
2004 * 1. We can't do it if child already exists (open has special treatment for
2005 * this case, but since we are inlined it's OK)
2006 * 2. We can't do it if dir is read-only (done in permission())
2007 * 3. We should have write and exec permissions on dir
2008 * 4. We can't do it if dir is immutable (done in permission())
2010 static inline int may_create(struct inode *dir, struct dentry *child)
2012 if (child->d_inode)
2013 return -EEXIST;
2014 if (IS_DEADDIR(dir))
2015 return -ENOENT;
2016 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2020 * p1 and p2 should be directories on the same fs.
2022 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2024 struct dentry *p;
2026 if (p1 == p2) {
2027 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2028 return NULL;
2031 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2033 p = d_ancestor(p2, p1);
2034 if (p) {
2035 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2036 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2037 return p;
2040 p = d_ancestor(p1, p2);
2041 if (p) {
2042 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2043 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2044 return p;
2047 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2048 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2049 return NULL;
2052 void unlock_rename(struct dentry *p1, struct dentry *p2)
2054 mutex_unlock(&p1->d_inode->i_mutex);
2055 if (p1 != p2) {
2056 mutex_unlock(&p2->d_inode->i_mutex);
2057 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2061 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
2062 struct nameidata *nd)
2064 int error = may_create(dir, dentry);
2066 if (error)
2067 return error;
2069 if (!dir->i_op->create)
2070 return -EACCES; /* shouldn't it be ENOSYS? */
2071 mode &= S_IALLUGO;
2072 mode |= S_IFREG;
2073 error = security_inode_create(dir, dentry, mode);
2074 if (error)
2075 return error;
2076 error = dir->i_op->create(dir, dentry, mode, nd);
2077 if (!error)
2078 fsnotify_create(dir, dentry);
2079 return error;
2082 int may_open(struct path *path, int acc_mode, int flag)
2084 struct dentry *dentry = path->dentry;
2085 struct inode *inode = dentry->d_inode;
2086 int error;
2088 if (!inode)
2089 return -ENOENT;
2091 switch (inode->i_mode & S_IFMT) {
2092 case S_IFLNK:
2093 return -ELOOP;
2094 case S_IFDIR:
2095 if (acc_mode & MAY_WRITE)
2096 return -EISDIR;
2097 break;
2098 case S_IFBLK:
2099 case S_IFCHR:
2100 if (path->mnt->mnt_flags & MNT_NODEV)
2101 return -EACCES;
2102 /*FALLTHRU*/
2103 case S_IFIFO:
2104 case S_IFSOCK:
2105 flag &= ~O_TRUNC;
2106 break;
2109 error = inode_permission(inode, acc_mode);
2110 if (error)
2111 return error;
2114 * An append-only file must be opened in append mode for writing.
2116 if (IS_APPEND(inode)) {
2117 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2118 return -EPERM;
2119 if (flag & O_TRUNC)
2120 return -EPERM;
2123 /* O_NOATIME can only be set by the owner or superuser */
2124 if (flag & O_NOATIME && !is_owner_or_cap(inode))
2125 return -EPERM;
2128 * Ensure there are no outstanding leases on the file.
2130 return break_lease(inode, flag);
2133 static int handle_truncate(struct file *filp)
2135 struct path *path = &filp->f_path;
2136 struct inode *inode = path->dentry->d_inode;
2137 int error = get_write_access(inode);
2138 if (error)
2139 return error;
2141 * Refuse to truncate files with mandatory locks held on them.
2143 error = locks_verify_locked(inode);
2144 if (!error)
2145 error = security_path_truncate(path);
2146 if (!error) {
2147 error = do_truncate(path->dentry, 0,
2148 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2149 filp);
2151 put_write_access(inode);
2152 return error;
2156 * Be careful about ever adding any more callers of this
2157 * function. Its flags must be in the namei format, not
2158 * what get passed to sys_open().
2160 static int __open_namei_create(struct nameidata *nd, struct path *path,
2161 int open_flag, int mode)
2163 int error;
2164 struct dentry *dir = nd->path.dentry;
2166 if (!IS_POSIXACL(dir->d_inode))
2167 mode &= ~current_umask();
2168 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2169 if (error)
2170 goto out_unlock;
2171 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2172 out_unlock:
2173 mutex_unlock(&dir->d_inode->i_mutex);
2174 dput(nd->path.dentry);
2175 nd->path.dentry = path->dentry;
2177 if (error)
2178 return error;
2179 /* Don't check for write permission, don't truncate */
2180 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2184 * Note that while the flag value (low two bits) for sys_open means:
2185 * 00 - read-only
2186 * 01 - write-only
2187 * 10 - read-write
2188 * 11 - special
2189 * it is changed into
2190 * 00 - no permissions needed
2191 * 01 - read-permission
2192 * 10 - write-permission
2193 * 11 - read-write
2194 * for the internal routines (ie open_namei()/follow_link() etc)
2195 * This is more logical, and also allows the 00 "no perm needed"
2196 * to be used for symlinks (where the permissions are checked
2197 * later).
2200 static inline int open_to_namei_flags(int flag)
2202 if ((flag+1) & O_ACCMODE)
2203 flag++;
2204 return flag;
2207 static int open_will_truncate(int flag, struct inode *inode)
2210 * We'll never write to the fs underlying
2211 * a device file.
2213 if (special_file(inode->i_mode))
2214 return 0;
2215 return (flag & O_TRUNC);
2218 static struct file *finish_open(struct nameidata *nd,
2219 int open_flag, int acc_mode)
2221 struct file *filp;
2222 int will_truncate;
2223 int error;
2225 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2226 if (will_truncate) {
2227 error = mnt_want_write(nd->path.mnt);
2228 if (error)
2229 goto exit;
2231 error = may_open(&nd->path, acc_mode, open_flag);
2232 if (error) {
2233 if (will_truncate)
2234 mnt_drop_write(nd->path.mnt);
2235 goto exit;
2237 filp = nameidata_to_filp(nd);
2238 if (!IS_ERR(filp)) {
2239 error = ima_file_check(filp, acc_mode);
2240 if (error) {
2241 fput(filp);
2242 filp = ERR_PTR(error);
2245 if (!IS_ERR(filp)) {
2246 if (will_truncate) {
2247 error = handle_truncate(filp);
2248 if (error) {
2249 fput(filp);
2250 filp = ERR_PTR(error);
2255 * It is now safe to drop the mnt write
2256 * because the filp has had a write taken
2257 * on its behalf.
2259 if (will_truncate)
2260 mnt_drop_write(nd->path.mnt);
2261 path_put(&nd->path);
2262 return filp;
2264 exit:
2265 path_put(&nd->path);
2266 return ERR_PTR(error);
2270 * Handle O_CREAT case for do_filp_open
2272 static struct file *do_last(struct nameidata *nd, struct path *path,
2273 int open_flag, int acc_mode,
2274 int mode, const char *pathname)
2276 struct dentry *dir = nd->path.dentry;
2277 struct file *filp;
2278 int error = -EISDIR;
2280 switch (nd->last_type) {
2281 case LAST_DOTDOT:
2282 follow_dotdot(nd);
2283 dir = nd->path.dentry;
2284 case LAST_DOT:
2285 if (need_reval_dot(dir)) {
2286 int status = d_revalidate(nd->path.dentry, nd);
2287 if (!status)
2288 status = -ESTALE;
2289 if (status < 0) {
2290 error = status;
2291 goto exit;
2294 /* fallthrough */
2295 case LAST_ROOT:
2296 goto exit;
2297 case LAST_BIND:
2298 audit_inode(pathname, dir);
2299 goto ok;
2302 /* trailing slashes? */
2303 if (nd->last.name[nd->last.len])
2304 goto exit;
2306 mutex_lock(&dir->d_inode->i_mutex);
2308 path->dentry = lookup_hash(nd);
2309 path->mnt = nd->path.mnt;
2311 error = PTR_ERR(path->dentry);
2312 if (IS_ERR(path->dentry)) {
2313 mutex_unlock(&dir->d_inode->i_mutex);
2314 goto exit;
2317 if (IS_ERR(nd->intent.open.file)) {
2318 error = PTR_ERR(nd->intent.open.file);
2319 goto exit_mutex_unlock;
2322 /* Negative dentry, just create the file */
2323 if (!path->dentry->d_inode) {
2325 * This write is needed to ensure that a
2326 * ro->rw transition does not occur between
2327 * the time when the file is created and when
2328 * a permanent write count is taken through
2329 * the 'struct file' in nameidata_to_filp().
2331 error = mnt_want_write(nd->path.mnt);
2332 if (error)
2333 goto exit_mutex_unlock;
2334 error = __open_namei_create(nd, path, open_flag, mode);
2335 if (error) {
2336 mnt_drop_write(nd->path.mnt);
2337 goto exit;
2339 filp = nameidata_to_filp(nd);
2340 mnt_drop_write(nd->path.mnt);
2341 path_put(&nd->path);
2342 if (!IS_ERR(filp)) {
2343 error = ima_file_check(filp, acc_mode);
2344 if (error) {
2345 fput(filp);
2346 filp = ERR_PTR(error);
2349 return filp;
2353 * It already exists.
2355 mutex_unlock(&dir->d_inode->i_mutex);
2356 audit_inode(pathname, path->dentry);
2358 error = -EEXIST;
2359 if (open_flag & O_EXCL)
2360 goto exit_dput;
2362 error = follow_managed(path, nd->flags);
2363 if (error < 0)
2364 goto exit_dput;
2366 error = -ENOENT;
2367 if (!path->dentry->d_inode)
2368 goto exit_dput;
2370 if (path->dentry->d_inode->i_op->follow_link)
2371 return NULL;
2373 path_to_nameidata(path, nd);
2374 nd->inode = path->dentry->d_inode;
2375 error = -EISDIR;
2376 if (S_ISDIR(nd->inode->i_mode))
2377 goto exit;
2379 filp = finish_open(nd, open_flag, acc_mode);
2380 return filp;
2382 exit_mutex_unlock:
2383 mutex_unlock(&dir->d_inode->i_mutex);
2384 exit_dput:
2385 path_put_conditional(path, nd);
2386 exit:
2387 path_put(&nd->path);
2388 return ERR_PTR(error);
2392 * Note that the low bits of the passed in "open_flag"
2393 * are not the same as in the local variable "flag". See
2394 * open_to_namei_flags() for more details.
2396 struct file *do_filp_open(int dfd, const char *pathname,
2397 int open_flag, int mode, int acc_mode)
2399 struct file *filp;
2400 struct nameidata nd;
2401 int error;
2402 struct path path;
2403 int count = 0;
2404 int flag = open_to_namei_flags(open_flag);
2405 int flags;
2407 if (!(open_flag & O_CREAT))
2408 mode = 0;
2410 /* Must never be set by userspace */
2411 open_flag &= ~FMODE_NONOTIFY;
2414 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
2415 * check for O_DSYNC if the need any syncing at all we enforce it's
2416 * always set instead of having to deal with possibly weird behaviour
2417 * for malicious applications setting only __O_SYNC.
2419 if (open_flag & __O_SYNC)
2420 open_flag |= O_DSYNC;
2422 if (!acc_mode)
2423 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
2425 /* O_TRUNC implies we need access checks for write permissions */
2426 if (open_flag & O_TRUNC)
2427 acc_mode |= MAY_WRITE;
2429 /* Allow the LSM permission hook to distinguish append
2430 access from general write access. */
2431 if (open_flag & O_APPEND)
2432 acc_mode |= MAY_APPEND;
2434 flags = LOOKUP_OPEN;
2435 if (open_flag & O_CREAT) {
2436 flags |= LOOKUP_CREATE;
2437 if (open_flag & O_EXCL)
2438 flags |= LOOKUP_EXCL;
2440 if (open_flag & O_DIRECTORY)
2441 flags |= LOOKUP_DIRECTORY;
2442 if (!(open_flag & O_NOFOLLOW))
2443 flags |= LOOKUP_FOLLOW;
2445 filp = get_empty_filp();
2446 if (!filp)
2447 return ERR_PTR(-ENFILE);
2449 filp->f_flags = open_flag;
2450 nd.intent.open.file = filp;
2451 nd.intent.open.flags = flag;
2452 nd.intent.open.create_mode = mode;
2454 if (open_flag & O_CREAT)
2455 goto creat;
2457 /* !O_CREAT, simple open */
2458 error = do_path_lookup(dfd, pathname, flags, &nd);
2459 if (unlikely(error))
2460 goto out_filp2;
2461 error = -ELOOP;
2462 if (!(nd.flags & LOOKUP_FOLLOW)) {
2463 if (nd.inode->i_op->follow_link)
2464 goto out_path2;
2466 error = -ENOTDIR;
2467 if (nd.flags & LOOKUP_DIRECTORY) {
2468 if (!nd.inode->i_op->lookup)
2469 goto out_path2;
2471 audit_inode(pathname, nd.path.dentry);
2472 filp = finish_open(&nd, open_flag, acc_mode);
2473 out2:
2474 release_open_intent(&nd);
2475 return filp;
2477 out_path2:
2478 path_put(&nd.path);
2479 out_filp2:
2480 filp = ERR_PTR(error);
2481 goto out2;
2483 creat:
2484 /* OK, have to create the file. Find the parent. */
2485 error = path_init_rcu(dfd, pathname,
2486 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2487 if (error)
2488 goto out_filp;
2489 error = path_walk_rcu(pathname, &nd);
2490 path_finish_rcu(&nd);
2491 if (unlikely(error == -ECHILD || error == -ESTALE)) {
2492 /* slower, locked walk */
2493 if (error == -ESTALE) {
2494 reval:
2495 flags |= LOOKUP_REVAL;
2497 error = path_init(dfd, pathname,
2498 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2499 if (error)
2500 goto out_filp;
2502 error = path_walk_simple(pathname, &nd);
2504 if (unlikely(error))
2505 goto out_filp;
2506 if (unlikely(!audit_dummy_context()))
2507 audit_inode(pathname, nd.path.dentry);
2510 * We have the parent and last component.
2512 nd.flags = flags;
2513 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2514 while (unlikely(!filp)) { /* trailing symlink */
2515 struct path link = path;
2516 struct inode *linki = link.dentry->d_inode;
2517 void *cookie;
2518 error = -ELOOP;
2519 if (!(nd.flags & LOOKUP_FOLLOW))
2520 goto exit_dput;
2521 if (count++ == 32)
2522 goto exit_dput;
2524 * This is subtle. Instead of calling do_follow_link() we do
2525 * the thing by hands. The reason is that this way we have zero
2526 * link_count and path_walk() (called from ->follow_link)
2527 * honoring LOOKUP_PARENT. After that we have the parent and
2528 * last component, i.e. we are in the same situation as after
2529 * the first path_walk(). Well, almost - if the last component
2530 * is normal we get its copy stored in nd->last.name and we will
2531 * have to putname() it when we are done. Procfs-like symlinks
2532 * just set LAST_BIND.
2534 nd.flags |= LOOKUP_PARENT;
2535 error = security_inode_follow_link(link.dentry, &nd);
2536 if (error)
2537 goto exit_dput;
2538 error = __do_follow_link(&link, &nd, &cookie);
2539 if (unlikely(error)) {
2540 if (!IS_ERR(cookie) && linki->i_op->put_link)
2541 linki->i_op->put_link(link.dentry, &nd, cookie);
2542 /* nd.path had been dropped */
2543 nd.path = link;
2544 goto out_path;
2546 nd.flags &= ~LOOKUP_PARENT;
2547 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2548 if (linki->i_op->put_link)
2549 linki->i_op->put_link(link.dentry, &nd, cookie);
2550 path_put(&link);
2552 out:
2553 if (nd.root.mnt)
2554 path_put(&nd.root);
2555 if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL))
2556 goto reval;
2557 release_open_intent(&nd);
2558 return filp;
2560 exit_dput:
2561 path_put_conditional(&path, &nd);
2562 out_path:
2563 path_put(&nd.path);
2564 out_filp:
2565 filp = ERR_PTR(error);
2566 goto out;
2570 * filp_open - open file and return file pointer
2572 * @filename: path to open
2573 * @flags: open flags as per the open(2) second argument
2574 * @mode: mode for the new file if O_CREAT is set, else ignored
2576 * This is the helper to open a file from kernelspace if you really
2577 * have to. But in generally you should not do this, so please move
2578 * along, nothing to see here..
2580 struct file *filp_open(const char *filename, int flags, int mode)
2582 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
2584 EXPORT_SYMBOL(filp_open);
2587 * lookup_create - lookup a dentry, creating it if it doesn't exist
2588 * @nd: nameidata info
2589 * @is_dir: directory flag
2591 * Simple function to lookup and return a dentry and create it
2592 * if it doesn't exist. Is SMP-safe.
2594 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2596 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2598 struct dentry *dentry = ERR_PTR(-EEXIST);
2600 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2602 * Yucky last component or no last component at all?
2603 * (foo/., foo/.., /////)
2605 if (nd->last_type != LAST_NORM)
2606 goto fail;
2607 nd->flags &= ~LOOKUP_PARENT;
2608 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2609 nd->intent.open.flags = O_EXCL;
2612 * Do the final lookup.
2614 dentry = lookup_hash(nd);
2615 if (IS_ERR(dentry))
2616 goto fail;
2618 if (dentry->d_inode)
2619 goto eexist;
2621 * Special case - lookup gave negative, but... we had foo/bar/
2622 * From the vfs_mknod() POV we just have a negative dentry -
2623 * all is fine. Let's be bastards - you had / on the end, you've
2624 * been asking for (non-existent) directory. -ENOENT for you.
2626 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2627 dput(dentry);
2628 dentry = ERR_PTR(-ENOENT);
2630 return dentry;
2631 eexist:
2632 dput(dentry);
2633 dentry = ERR_PTR(-EEXIST);
2634 fail:
2635 return dentry;
2637 EXPORT_SYMBOL_GPL(lookup_create);
2639 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2641 int error = may_create(dir, dentry);
2643 if (error)
2644 return error;
2646 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2647 return -EPERM;
2649 if (!dir->i_op->mknod)
2650 return -EPERM;
2652 error = devcgroup_inode_mknod(mode, dev);
2653 if (error)
2654 return error;
2656 error = security_inode_mknod(dir, dentry, mode, dev);
2657 if (error)
2658 return error;
2660 error = dir->i_op->mknod(dir, dentry, mode, dev);
2661 if (!error)
2662 fsnotify_create(dir, dentry);
2663 return error;
2666 static int may_mknod(mode_t mode)
2668 switch (mode & S_IFMT) {
2669 case S_IFREG:
2670 case S_IFCHR:
2671 case S_IFBLK:
2672 case S_IFIFO:
2673 case S_IFSOCK:
2674 case 0: /* zero mode translates to S_IFREG */
2675 return 0;
2676 case S_IFDIR:
2677 return -EPERM;
2678 default:
2679 return -EINVAL;
2683 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2684 unsigned, dev)
2686 int error;
2687 char *tmp;
2688 struct dentry *dentry;
2689 struct nameidata nd;
2691 if (S_ISDIR(mode))
2692 return -EPERM;
2694 error = user_path_parent(dfd, filename, &nd, &tmp);
2695 if (error)
2696 return error;
2698 dentry = lookup_create(&nd, 0);
2699 if (IS_ERR(dentry)) {
2700 error = PTR_ERR(dentry);
2701 goto out_unlock;
2703 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2704 mode &= ~current_umask();
2705 error = may_mknod(mode);
2706 if (error)
2707 goto out_dput;
2708 error = mnt_want_write(nd.path.mnt);
2709 if (error)
2710 goto out_dput;
2711 error = security_path_mknod(&nd.path, dentry, mode, dev);
2712 if (error)
2713 goto out_drop_write;
2714 switch (mode & S_IFMT) {
2715 case 0: case S_IFREG:
2716 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2717 break;
2718 case S_IFCHR: case S_IFBLK:
2719 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2720 new_decode_dev(dev));
2721 break;
2722 case S_IFIFO: case S_IFSOCK:
2723 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2724 break;
2726 out_drop_write:
2727 mnt_drop_write(nd.path.mnt);
2728 out_dput:
2729 dput(dentry);
2730 out_unlock:
2731 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2732 path_put(&nd.path);
2733 putname(tmp);
2735 return error;
2738 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2740 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2743 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2745 int error = may_create(dir, dentry);
2747 if (error)
2748 return error;
2750 if (!dir->i_op->mkdir)
2751 return -EPERM;
2753 mode &= (S_IRWXUGO|S_ISVTX);
2754 error = security_inode_mkdir(dir, dentry, mode);
2755 if (error)
2756 return error;
2758 error = dir->i_op->mkdir(dir, dentry, mode);
2759 if (!error)
2760 fsnotify_mkdir(dir, dentry);
2761 return error;
2764 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2766 int error = 0;
2767 char * tmp;
2768 struct dentry *dentry;
2769 struct nameidata nd;
2771 error = user_path_parent(dfd, pathname, &nd, &tmp);
2772 if (error)
2773 goto out_err;
2775 dentry = lookup_create(&nd, 1);
2776 error = PTR_ERR(dentry);
2777 if (IS_ERR(dentry))
2778 goto out_unlock;
2780 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2781 mode &= ~current_umask();
2782 error = mnt_want_write(nd.path.mnt);
2783 if (error)
2784 goto out_dput;
2785 error = security_path_mkdir(&nd.path, dentry, mode);
2786 if (error)
2787 goto out_drop_write;
2788 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2789 out_drop_write:
2790 mnt_drop_write(nd.path.mnt);
2791 out_dput:
2792 dput(dentry);
2793 out_unlock:
2794 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2795 path_put(&nd.path);
2796 putname(tmp);
2797 out_err:
2798 return error;
2801 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2803 return sys_mkdirat(AT_FDCWD, pathname, mode);
2807 * We try to drop the dentry early: we should have
2808 * a usage count of 2 if we're the only user of this
2809 * dentry, and if that is true (possibly after pruning
2810 * the dcache), then we drop the dentry now.
2812 * A low-level filesystem can, if it choses, legally
2813 * do a
2815 * if (!d_unhashed(dentry))
2816 * return -EBUSY;
2818 * if it cannot handle the case of removing a directory
2819 * that is still in use by something else..
2821 void dentry_unhash(struct dentry *dentry)
2823 dget(dentry);
2824 shrink_dcache_parent(dentry);
2825 spin_lock(&dentry->d_lock);
2826 if (dentry->d_count == 2)
2827 __d_drop(dentry);
2828 spin_unlock(&dentry->d_lock);
2831 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2833 int error = may_delete(dir, dentry, 1);
2835 if (error)
2836 return error;
2838 if (!dir->i_op->rmdir)
2839 return -EPERM;
2841 mutex_lock(&dentry->d_inode->i_mutex);
2842 dentry_unhash(dentry);
2843 if (d_mountpoint(dentry))
2844 error = -EBUSY;
2845 else {
2846 error = security_inode_rmdir(dir, dentry);
2847 if (!error) {
2848 error = dir->i_op->rmdir(dir, dentry);
2849 if (!error) {
2850 dentry->d_inode->i_flags |= S_DEAD;
2851 dont_mount(dentry);
2855 mutex_unlock(&dentry->d_inode->i_mutex);
2856 if (!error) {
2857 d_delete(dentry);
2859 dput(dentry);
2861 return error;
2864 static long do_rmdir(int dfd, const char __user *pathname)
2866 int error = 0;
2867 char * name;
2868 struct dentry *dentry;
2869 struct nameidata nd;
2871 error = user_path_parent(dfd, pathname, &nd, &name);
2872 if (error)
2873 return error;
2875 switch(nd.last_type) {
2876 case LAST_DOTDOT:
2877 error = -ENOTEMPTY;
2878 goto exit1;
2879 case LAST_DOT:
2880 error = -EINVAL;
2881 goto exit1;
2882 case LAST_ROOT:
2883 error = -EBUSY;
2884 goto exit1;
2887 nd.flags &= ~LOOKUP_PARENT;
2889 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2890 dentry = lookup_hash(&nd);
2891 error = PTR_ERR(dentry);
2892 if (IS_ERR(dentry))
2893 goto exit2;
2894 error = mnt_want_write(nd.path.mnt);
2895 if (error)
2896 goto exit3;
2897 error = security_path_rmdir(&nd.path, dentry);
2898 if (error)
2899 goto exit4;
2900 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2901 exit4:
2902 mnt_drop_write(nd.path.mnt);
2903 exit3:
2904 dput(dentry);
2905 exit2:
2906 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2907 exit1:
2908 path_put(&nd.path);
2909 putname(name);
2910 return error;
2913 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2915 return do_rmdir(AT_FDCWD, pathname);
2918 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2920 int error = may_delete(dir, dentry, 0);
2922 if (error)
2923 return error;
2925 if (!dir->i_op->unlink)
2926 return -EPERM;
2928 mutex_lock(&dentry->d_inode->i_mutex);
2929 if (d_mountpoint(dentry))
2930 error = -EBUSY;
2931 else {
2932 error = security_inode_unlink(dir, dentry);
2933 if (!error) {
2934 error = dir->i_op->unlink(dir, dentry);
2935 if (!error)
2936 dont_mount(dentry);
2939 mutex_unlock(&dentry->d_inode->i_mutex);
2941 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2942 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2943 fsnotify_link_count(dentry->d_inode);
2944 d_delete(dentry);
2947 return error;
2951 * Make sure that the actual truncation of the file will occur outside its
2952 * directory's i_mutex. Truncate can take a long time if there is a lot of
2953 * writeout happening, and we don't want to prevent access to the directory
2954 * while waiting on the I/O.
2956 static long do_unlinkat(int dfd, const char __user *pathname)
2958 int error;
2959 char *name;
2960 struct dentry *dentry;
2961 struct nameidata nd;
2962 struct inode *inode = NULL;
2964 error = user_path_parent(dfd, pathname, &nd, &name);
2965 if (error)
2966 return error;
2968 error = -EISDIR;
2969 if (nd.last_type != LAST_NORM)
2970 goto exit1;
2972 nd.flags &= ~LOOKUP_PARENT;
2974 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2975 dentry = lookup_hash(&nd);
2976 error = PTR_ERR(dentry);
2977 if (!IS_ERR(dentry)) {
2978 /* Why not before? Because we want correct error value */
2979 if (nd.last.name[nd.last.len])
2980 goto slashes;
2981 inode = dentry->d_inode;
2982 if (inode)
2983 ihold(inode);
2984 error = mnt_want_write(nd.path.mnt);
2985 if (error)
2986 goto exit2;
2987 error = security_path_unlink(&nd.path, dentry);
2988 if (error)
2989 goto exit3;
2990 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2991 exit3:
2992 mnt_drop_write(nd.path.mnt);
2993 exit2:
2994 dput(dentry);
2996 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2997 if (inode)
2998 iput(inode); /* truncate the inode here */
2999 exit1:
3000 path_put(&nd.path);
3001 putname(name);
3002 return error;
3004 slashes:
3005 error = !dentry->d_inode ? -ENOENT :
3006 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3007 goto exit2;
3010 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3012 if ((flag & ~AT_REMOVEDIR) != 0)
3013 return -EINVAL;
3015 if (flag & AT_REMOVEDIR)
3016 return do_rmdir(dfd, pathname);
3018 return do_unlinkat(dfd, pathname);
3021 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3023 return do_unlinkat(AT_FDCWD, pathname);
3026 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3028 int error = may_create(dir, dentry);
3030 if (error)
3031 return error;
3033 if (!dir->i_op->symlink)
3034 return -EPERM;
3036 error = security_inode_symlink(dir, dentry, oldname);
3037 if (error)
3038 return error;
3040 error = dir->i_op->symlink(dir, dentry, oldname);
3041 if (!error)
3042 fsnotify_create(dir, dentry);
3043 return error;
3046 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3047 int, newdfd, const char __user *, newname)
3049 int error;
3050 char *from;
3051 char *to;
3052 struct dentry *dentry;
3053 struct nameidata nd;
3055 from = getname(oldname);
3056 if (IS_ERR(from))
3057 return PTR_ERR(from);
3059 error = user_path_parent(newdfd, newname, &nd, &to);
3060 if (error)
3061 goto out_putname;
3063 dentry = lookup_create(&nd, 0);
3064 error = PTR_ERR(dentry);
3065 if (IS_ERR(dentry))
3066 goto out_unlock;
3068 error = mnt_want_write(nd.path.mnt);
3069 if (error)
3070 goto out_dput;
3071 error = security_path_symlink(&nd.path, dentry, from);
3072 if (error)
3073 goto out_drop_write;
3074 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
3075 out_drop_write:
3076 mnt_drop_write(nd.path.mnt);
3077 out_dput:
3078 dput(dentry);
3079 out_unlock:
3080 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3081 path_put(&nd.path);
3082 putname(to);
3083 out_putname:
3084 putname(from);
3085 return error;
3088 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3090 return sys_symlinkat(oldname, AT_FDCWD, newname);
3093 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3095 struct inode *inode = old_dentry->d_inode;
3096 int error;
3098 if (!inode)
3099 return -ENOENT;
3101 error = may_create(dir, new_dentry);
3102 if (error)
3103 return error;
3105 if (dir->i_sb != inode->i_sb)
3106 return -EXDEV;
3109 * A link to an append-only or immutable file cannot be created.
3111 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3112 return -EPERM;
3113 if (!dir->i_op->link)
3114 return -EPERM;
3115 if (S_ISDIR(inode->i_mode))
3116 return -EPERM;
3118 error = security_inode_link(old_dentry, dir, new_dentry);
3119 if (error)
3120 return error;
3122 mutex_lock(&inode->i_mutex);
3123 error = dir->i_op->link(old_dentry, dir, new_dentry);
3124 mutex_unlock(&inode->i_mutex);
3125 if (!error)
3126 fsnotify_link(dir, inode, new_dentry);
3127 return error;
3131 * Hardlinks are often used in delicate situations. We avoid
3132 * security-related surprises by not following symlinks on the
3133 * newname. --KAB
3135 * We don't follow them on the oldname either to be compatible
3136 * with linux 2.0, and to avoid hard-linking to directories
3137 * and other special files. --ADM
3139 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3140 int, newdfd, const char __user *, newname, int, flags)
3142 struct dentry *new_dentry;
3143 struct nameidata nd;
3144 struct path old_path;
3145 int error;
3146 char *to;
3148 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
3149 return -EINVAL;
3151 error = user_path_at(olddfd, oldname,
3152 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
3153 &old_path);
3154 if (error)
3155 return error;
3157 error = user_path_parent(newdfd, newname, &nd, &to);
3158 if (error)
3159 goto out;
3160 error = -EXDEV;
3161 if (old_path.mnt != nd.path.mnt)
3162 goto out_release;
3163 new_dentry = lookup_create(&nd, 0);
3164 error = PTR_ERR(new_dentry);
3165 if (IS_ERR(new_dentry))
3166 goto out_unlock;
3167 error = mnt_want_write(nd.path.mnt);
3168 if (error)
3169 goto out_dput;
3170 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3171 if (error)
3172 goto out_drop_write;
3173 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3174 out_drop_write:
3175 mnt_drop_write(nd.path.mnt);
3176 out_dput:
3177 dput(new_dentry);
3178 out_unlock:
3179 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3180 out_release:
3181 path_put(&nd.path);
3182 putname(to);
3183 out:
3184 path_put(&old_path);
3186 return error;
3189 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3191 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3195 * The worst of all namespace operations - renaming directory. "Perverted"
3196 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3197 * Problems:
3198 * a) we can get into loop creation. Check is done in is_subdir().
3199 * b) race potential - two innocent renames can create a loop together.
3200 * That's where 4.4 screws up. Current fix: serialization on
3201 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3202 * story.
3203 * c) we have to lock _three_ objects - parents and victim (if it exists).
3204 * And that - after we got ->i_mutex on parents (until then we don't know
3205 * whether the target exists). Solution: try to be smart with locking
3206 * order for inodes. We rely on the fact that tree topology may change
3207 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3208 * move will be locked. Thus we can rank directories by the tree
3209 * (ancestors first) and rank all non-directories after them.
3210 * That works since everybody except rename does "lock parent, lookup,
3211 * lock child" and rename is under ->s_vfs_rename_mutex.
3212 * HOWEVER, it relies on the assumption that any object with ->lookup()
3213 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3214 * we'd better make sure that there's no link(2) for them.
3215 * d) some filesystems don't support opened-but-unlinked directories,
3216 * either because of layout or because they are not ready to deal with
3217 * all cases correctly. The latter will be fixed (taking this sort of
3218 * stuff into VFS), but the former is not going away. Solution: the same
3219 * trick as in rmdir().
3220 * e) conversion from fhandle to dentry may come in the wrong moment - when
3221 * we are removing the target. Solution: we will have to grab ->i_mutex
3222 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3223 * ->i_mutex on parents, which works but leads to some truly excessive
3224 * locking].
3226 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3227 struct inode *new_dir, struct dentry *new_dentry)
3229 int error = 0;
3230 struct inode *target;
3233 * If we are going to change the parent - check write permissions,
3234 * we'll need to flip '..'.
3236 if (new_dir != old_dir) {
3237 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3238 if (error)
3239 return error;
3242 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3243 if (error)
3244 return error;
3246 target = new_dentry->d_inode;
3247 if (target)
3248 mutex_lock(&target->i_mutex);
3249 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3250 error = -EBUSY;
3251 else {
3252 if (target)
3253 dentry_unhash(new_dentry);
3254 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3256 if (target) {
3257 if (!error) {
3258 target->i_flags |= S_DEAD;
3259 dont_mount(new_dentry);
3261 mutex_unlock(&target->i_mutex);
3262 if (d_unhashed(new_dentry))
3263 d_rehash(new_dentry);
3264 dput(new_dentry);
3266 if (!error)
3267 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3268 d_move(old_dentry,new_dentry);
3269 return error;
3272 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3273 struct inode *new_dir, struct dentry *new_dentry)
3275 struct inode *target;
3276 int error;
3278 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3279 if (error)
3280 return error;
3282 dget(new_dentry);
3283 target = new_dentry->d_inode;
3284 if (target)
3285 mutex_lock(&target->i_mutex);
3286 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3287 error = -EBUSY;
3288 else
3289 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3290 if (!error) {
3291 if (target)
3292 dont_mount(new_dentry);
3293 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3294 d_move(old_dentry, new_dentry);
3296 if (target)
3297 mutex_unlock(&target->i_mutex);
3298 dput(new_dentry);
3299 return error;
3302 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3303 struct inode *new_dir, struct dentry *new_dentry)
3305 int error;
3306 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3307 const unsigned char *old_name;
3309 if (old_dentry->d_inode == new_dentry->d_inode)
3310 return 0;
3312 error = may_delete(old_dir, old_dentry, is_dir);
3313 if (error)
3314 return error;
3316 if (!new_dentry->d_inode)
3317 error = may_create(new_dir, new_dentry);
3318 else
3319 error = may_delete(new_dir, new_dentry, is_dir);
3320 if (error)
3321 return error;
3323 if (!old_dir->i_op->rename)
3324 return -EPERM;
3326 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3328 if (is_dir)
3329 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3330 else
3331 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3332 if (!error)
3333 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3334 new_dentry->d_inode, old_dentry);
3335 fsnotify_oldname_free(old_name);
3337 return error;
3340 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3341 int, newdfd, const char __user *, newname)
3343 struct dentry *old_dir, *new_dir;
3344 struct dentry *old_dentry, *new_dentry;
3345 struct dentry *trap;
3346 struct nameidata oldnd, newnd;
3347 char *from;
3348 char *to;
3349 int error;
3351 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3352 if (error)
3353 goto exit;
3355 error = user_path_parent(newdfd, newname, &newnd, &to);
3356 if (error)
3357 goto exit1;
3359 error = -EXDEV;
3360 if (oldnd.path.mnt != newnd.path.mnt)
3361 goto exit2;
3363 old_dir = oldnd.path.dentry;
3364 error = -EBUSY;
3365 if (oldnd.last_type != LAST_NORM)
3366 goto exit2;
3368 new_dir = newnd.path.dentry;
3369 if (newnd.last_type != LAST_NORM)
3370 goto exit2;
3372 oldnd.flags &= ~LOOKUP_PARENT;
3373 newnd.flags &= ~LOOKUP_PARENT;
3374 newnd.flags |= LOOKUP_RENAME_TARGET;
3376 trap = lock_rename(new_dir, old_dir);
3378 old_dentry = lookup_hash(&oldnd);
3379 error = PTR_ERR(old_dentry);
3380 if (IS_ERR(old_dentry))
3381 goto exit3;
3382 /* source must exist */
3383 error = -ENOENT;
3384 if (!old_dentry->d_inode)
3385 goto exit4;
3386 /* unless the source is a directory trailing slashes give -ENOTDIR */
3387 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3388 error = -ENOTDIR;
3389 if (oldnd.last.name[oldnd.last.len])
3390 goto exit4;
3391 if (newnd.last.name[newnd.last.len])
3392 goto exit4;
3394 /* source should not be ancestor of target */
3395 error = -EINVAL;
3396 if (old_dentry == trap)
3397 goto exit4;
3398 new_dentry = lookup_hash(&newnd);
3399 error = PTR_ERR(new_dentry);
3400 if (IS_ERR(new_dentry))
3401 goto exit4;
3402 /* target should not be an ancestor of source */
3403 error = -ENOTEMPTY;
3404 if (new_dentry == trap)
3405 goto exit5;
3407 error = mnt_want_write(oldnd.path.mnt);
3408 if (error)
3409 goto exit5;
3410 error = security_path_rename(&oldnd.path, old_dentry,
3411 &newnd.path, new_dentry);
3412 if (error)
3413 goto exit6;
3414 error = vfs_rename(old_dir->d_inode, old_dentry,
3415 new_dir->d_inode, new_dentry);
3416 exit6:
3417 mnt_drop_write(oldnd.path.mnt);
3418 exit5:
3419 dput(new_dentry);
3420 exit4:
3421 dput(old_dentry);
3422 exit3:
3423 unlock_rename(new_dir, old_dir);
3424 exit2:
3425 path_put(&newnd.path);
3426 putname(to);
3427 exit1:
3428 path_put(&oldnd.path);
3429 putname(from);
3430 exit:
3431 return error;
3434 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3436 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3439 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3441 int len;
3443 len = PTR_ERR(link);
3444 if (IS_ERR(link))
3445 goto out;
3447 len = strlen(link);
3448 if (len > (unsigned) buflen)
3449 len = buflen;
3450 if (copy_to_user(buffer, link, len))
3451 len = -EFAULT;
3452 out:
3453 return len;
3457 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3458 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3459 * using) it for any given inode is up to filesystem.
3461 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3463 struct nameidata nd;
3464 void *cookie;
3465 int res;
3467 nd.depth = 0;
3468 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3469 if (IS_ERR(cookie))
3470 return PTR_ERR(cookie);
3472 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3473 if (dentry->d_inode->i_op->put_link)
3474 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3475 return res;
3478 int vfs_follow_link(struct nameidata *nd, const char *link)
3480 return __vfs_follow_link(nd, link);
3483 /* get the link contents into pagecache */
3484 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3486 char *kaddr;
3487 struct page *page;
3488 struct address_space *mapping = dentry->d_inode->i_mapping;
3489 page = read_mapping_page(mapping, 0, NULL);
3490 if (IS_ERR(page))
3491 return (char*)page;
3492 *ppage = page;
3493 kaddr = kmap(page);
3494 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3495 return kaddr;
3498 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3500 struct page *page = NULL;
3501 char *s = page_getlink(dentry, &page);
3502 int res = vfs_readlink(dentry,buffer,buflen,s);
3503 if (page) {
3504 kunmap(page);
3505 page_cache_release(page);
3507 return res;
3510 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3512 struct page *page = NULL;
3513 nd_set_link(nd, page_getlink(dentry, &page));
3514 return page;
3517 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3519 struct page *page = cookie;
3521 if (page) {
3522 kunmap(page);
3523 page_cache_release(page);
3528 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3530 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3532 struct address_space *mapping = inode->i_mapping;
3533 struct page *page;
3534 void *fsdata;
3535 int err;
3536 char *kaddr;
3537 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3538 if (nofs)
3539 flags |= AOP_FLAG_NOFS;
3541 retry:
3542 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3543 flags, &page, &fsdata);
3544 if (err)
3545 goto fail;
3547 kaddr = kmap_atomic(page, KM_USER0);
3548 memcpy(kaddr, symname, len-1);
3549 kunmap_atomic(kaddr, KM_USER0);
3551 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3552 page, fsdata);
3553 if (err < 0)
3554 goto fail;
3555 if (err < len-1)
3556 goto retry;
3558 mark_inode_dirty(inode);
3559 return 0;
3560 fail:
3561 return err;
3564 int page_symlink(struct inode *inode, const char *symname, int len)
3566 return __page_symlink(inode, symname, len,
3567 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3570 const struct inode_operations page_symlink_inode_operations = {
3571 .readlink = generic_readlink,
3572 .follow_link = page_follow_link_light,
3573 .put_link = page_put_link,
3576 EXPORT_SYMBOL(user_path_at);
3577 EXPORT_SYMBOL(follow_down_one);
3578 EXPORT_SYMBOL(follow_down);
3579 EXPORT_SYMBOL(follow_up);
3580 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3581 EXPORT_SYMBOL(getname);
3582 EXPORT_SYMBOL(lock_rename);
3583 EXPORT_SYMBOL(lookup_one_len);
3584 EXPORT_SYMBOL(page_follow_link_light);
3585 EXPORT_SYMBOL(page_put_link);
3586 EXPORT_SYMBOL(page_readlink);
3587 EXPORT_SYMBOL(__page_symlink);
3588 EXPORT_SYMBOL(page_symlink);
3589 EXPORT_SYMBOL(page_symlink_inode_operations);
3590 EXPORT_SYMBOL(path_lookup);
3591 EXPORT_SYMBOL(kern_path);
3592 EXPORT_SYMBOL(vfs_path_lookup);
3593 EXPORT_SYMBOL(inode_permission);
3594 EXPORT_SYMBOL(file_permission);
3595 EXPORT_SYMBOL(unlock_rename);
3596 EXPORT_SYMBOL(vfs_create);
3597 EXPORT_SYMBOL(vfs_follow_link);
3598 EXPORT_SYMBOL(vfs_link);
3599 EXPORT_SYMBOL(vfs_mkdir);
3600 EXPORT_SYMBOL(vfs_mknod);
3601 EXPORT_SYMBOL(generic_permission);
3602 EXPORT_SYMBOL(vfs_readlink);
3603 EXPORT_SYMBOL(vfs_rename);
3604 EXPORT_SYMBOL(vfs_rmdir);
3605 EXPORT_SYMBOL(vfs_symlink);
3606 EXPORT_SYMBOL(vfs_unlink);
3607 EXPORT_SYMBOL(dentry_unhash);
3608 EXPORT_SYMBOL(generic_readlink);