thinkpad_acpi: Correct !CONFIG_THINKPAD_ACPI_VIDEO warning
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / mpage.c
blobd78455a81ec979a734f28d7874b6654e5a087e7e
1 /*
2 * fs/mpage.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains functions related to preparing and submitting BIOs which contain
7 * multiple pagecache pages.
9 * 15May2002 Andrew Morton
10 * Initial version
11 * 27Jun2002 axboe@suse.de
12 * use bio_add_page() to build bio's just the right size
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
32 * I/O completion handler for multipage BIOs.
34 * The mpage code never puts partial pages into a BIO (except for end-of-file).
35 * If a page does not map to a contiguous run of blocks then it simply falls
36 * back to block_read_full_page().
38 * Why is this? If a page's completion depends on a number of different BIOs
39 * which can complete in any order (or at the same time) then determining the
40 * status of that page is hard. See end_buffer_async_read() for the details.
41 * There is no point in duplicating all that complexity.
43 static void mpage_end_io(struct bio *bio, int err)
45 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
46 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
48 do {
49 struct page *page = bvec->bv_page;
51 if (--bvec >= bio->bi_io_vec)
52 prefetchw(&bvec->bv_page->flags);
53 if (bio_data_dir(bio) == READ) {
54 if (uptodate) {
55 SetPageUptodate(page);
56 } else {
57 ClearPageUptodate(page);
58 SetPageError(page);
60 unlock_page(page);
61 } else { /* bio_data_dir(bio) == WRITE */
62 if (!uptodate) {
63 SetPageError(page);
64 if (page->mapping)
65 set_bit(AS_EIO, &page->mapping->flags);
67 end_page_writeback(page);
69 } while (bvec >= bio->bi_io_vec);
70 bio_put(bio);
73 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
75 bio->bi_end_io = mpage_end_io;
76 submit_bio(rw, bio);
77 return NULL;
80 static struct bio *
81 mpage_alloc(struct block_device *bdev,
82 sector_t first_sector, int nr_vecs,
83 gfp_t gfp_flags)
85 struct bio *bio;
87 bio = bio_alloc(gfp_flags, nr_vecs);
89 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
90 while (!bio && (nr_vecs /= 2))
91 bio = bio_alloc(gfp_flags, nr_vecs);
94 if (bio) {
95 bio->bi_bdev = bdev;
96 bio->bi_sector = first_sector;
98 return bio;
102 * support function for mpage_readpages. The fs supplied get_block might
103 * return an up to date buffer. This is used to map that buffer into
104 * the page, which allows readpage to avoid triggering a duplicate call
105 * to get_block.
107 * The idea is to avoid adding buffers to pages that don't already have
108 * them. So when the buffer is up to date and the page size == block size,
109 * this marks the page up to date instead of adding new buffers.
111 static void
112 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
114 struct inode *inode = page->mapping->host;
115 struct buffer_head *page_bh, *head;
116 int block = 0;
118 if (!page_has_buffers(page)) {
120 * don't make any buffers if there is only one buffer on
121 * the page and the page just needs to be set up to date
123 if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
124 buffer_uptodate(bh)) {
125 SetPageUptodate(page);
126 return;
128 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
130 head = page_buffers(page);
131 page_bh = head;
132 do {
133 if (block == page_block) {
134 page_bh->b_state = bh->b_state;
135 page_bh->b_bdev = bh->b_bdev;
136 page_bh->b_blocknr = bh->b_blocknr;
137 break;
139 page_bh = page_bh->b_this_page;
140 block++;
141 } while (page_bh != head);
145 * This is the worker routine which does all the work of mapping the disk
146 * blocks and constructs largest possible bios, submits them for IO if the
147 * blocks are not contiguous on the disk.
149 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
150 * represent the validity of its disk mapping and to decide when to do the next
151 * get_block() call.
153 static struct bio *
154 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
155 sector_t *last_block_in_bio, struct buffer_head *map_bh,
156 unsigned long *first_logical_block, get_block_t get_block)
158 struct inode *inode = page->mapping->host;
159 const unsigned blkbits = inode->i_blkbits;
160 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
161 const unsigned blocksize = 1 << blkbits;
162 sector_t block_in_file;
163 sector_t last_block;
164 sector_t last_block_in_file;
165 sector_t blocks[MAX_BUF_PER_PAGE];
166 unsigned page_block;
167 unsigned first_hole = blocks_per_page;
168 struct block_device *bdev = NULL;
169 int length;
170 int fully_mapped = 1;
171 unsigned nblocks;
172 unsigned relative_block;
174 if (page_has_buffers(page))
175 goto confused;
177 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
178 last_block = block_in_file + nr_pages * blocks_per_page;
179 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
180 if (last_block > last_block_in_file)
181 last_block = last_block_in_file;
182 page_block = 0;
185 * Map blocks using the result from the previous get_blocks call first.
187 nblocks = map_bh->b_size >> blkbits;
188 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
189 block_in_file < (*first_logical_block + nblocks)) {
190 unsigned map_offset = block_in_file - *first_logical_block;
191 unsigned last = nblocks - map_offset;
193 for (relative_block = 0; ; relative_block++) {
194 if (relative_block == last) {
195 clear_buffer_mapped(map_bh);
196 break;
198 if (page_block == blocks_per_page)
199 break;
200 blocks[page_block] = map_bh->b_blocknr + map_offset +
201 relative_block;
202 page_block++;
203 block_in_file++;
205 bdev = map_bh->b_bdev;
209 * Then do more get_blocks calls until we are done with this page.
211 map_bh->b_page = page;
212 while (page_block < blocks_per_page) {
213 map_bh->b_state = 0;
214 map_bh->b_size = 0;
216 if (block_in_file < last_block) {
217 map_bh->b_size = (last_block-block_in_file) << blkbits;
218 if (get_block(inode, block_in_file, map_bh, 0))
219 goto confused;
220 *first_logical_block = block_in_file;
223 if (!buffer_mapped(map_bh)) {
224 fully_mapped = 0;
225 if (first_hole == blocks_per_page)
226 first_hole = page_block;
227 page_block++;
228 block_in_file++;
229 continue;
232 /* some filesystems will copy data into the page during
233 * the get_block call, in which case we don't want to
234 * read it again. map_buffer_to_page copies the data
235 * we just collected from get_block into the page's buffers
236 * so readpage doesn't have to repeat the get_block call
238 if (buffer_uptodate(map_bh)) {
239 map_buffer_to_page(page, map_bh, page_block);
240 goto confused;
243 if (first_hole != blocks_per_page)
244 goto confused; /* hole -> non-hole */
246 /* Contiguous blocks? */
247 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
248 goto confused;
249 nblocks = map_bh->b_size >> blkbits;
250 for (relative_block = 0; ; relative_block++) {
251 if (relative_block == nblocks) {
252 clear_buffer_mapped(map_bh);
253 break;
254 } else if (page_block == blocks_per_page)
255 break;
256 blocks[page_block] = map_bh->b_blocknr+relative_block;
257 page_block++;
258 block_in_file++;
260 bdev = map_bh->b_bdev;
263 if (first_hole != blocks_per_page) {
264 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
265 if (first_hole == 0) {
266 SetPageUptodate(page);
267 unlock_page(page);
268 goto out;
270 } else if (fully_mapped) {
271 SetPageMappedToDisk(page);
275 * This page will go to BIO. Do we need to send this BIO off first?
277 if (bio && (*last_block_in_bio != blocks[0] - 1))
278 bio = mpage_bio_submit(READ, bio);
280 alloc_new:
281 if (bio == NULL) {
282 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
283 min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
284 GFP_KERNEL);
285 if (bio == NULL)
286 goto confused;
289 length = first_hole << blkbits;
290 if (bio_add_page(bio, page, length, 0) < length) {
291 bio = mpage_bio_submit(READ, bio);
292 goto alloc_new;
295 relative_block = block_in_file - *first_logical_block;
296 nblocks = map_bh->b_size >> blkbits;
297 if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
298 (first_hole != blocks_per_page))
299 bio = mpage_bio_submit(READ, bio);
300 else
301 *last_block_in_bio = blocks[blocks_per_page - 1];
302 out:
303 return bio;
305 confused:
306 if (bio)
307 bio = mpage_bio_submit(READ, bio);
308 if (!PageUptodate(page))
309 block_read_full_page(page, get_block);
310 else
311 unlock_page(page);
312 goto out;
316 * mpage_readpages - populate an address space with some pages & start reads against them
317 * @mapping: the address_space
318 * @pages: The address of a list_head which contains the target pages. These
319 * pages have their ->index populated and are otherwise uninitialised.
320 * The page at @pages->prev has the lowest file offset, and reads should be
321 * issued in @pages->prev to @pages->next order.
322 * @nr_pages: The number of pages at *@pages
323 * @get_block: The filesystem's block mapper function.
325 * This function walks the pages and the blocks within each page, building and
326 * emitting large BIOs.
328 * If anything unusual happens, such as:
330 * - encountering a page which has buffers
331 * - encountering a page which has a non-hole after a hole
332 * - encountering a page with non-contiguous blocks
334 * then this code just gives up and calls the buffer_head-based read function.
335 * It does handle a page which has holes at the end - that is a common case:
336 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
338 * BH_Boundary explanation:
340 * There is a problem. The mpage read code assembles several pages, gets all
341 * their disk mappings, and then submits them all. That's fine, but obtaining
342 * the disk mappings may require I/O. Reads of indirect blocks, for example.
344 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
345 * submitted in the following order:
346 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
348 * because the indirect block has to be read to get the mappings of blocks
349 * 13,14,15,16. Obviously, this impacts performance.
351 * So what we do it to allow the filesystem's get_block() function to set
352 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
353 * after this one will require I/O against a block which is probably close to
354 * this one. So you should push what I/O you have currently accumulated.
356 * This all causes the disk requests to be issued in the correct order.
359 mpage_readpages(struct address_space *mapping, struct list_head *pages,
360 unsigned nr_pages, get_block_t get_block)
362 struct bio *bio = NULL;
363 unsigned page_idx;
364 sector_t last_block_in_bio = 0;
365 struct buffer_head map_bh;
366 unsigned long first_logical_block = 0;
368 map_bh.b_state = 0;
369 map_bh.b_size = 0;
370 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
371 struct page *page = list_entry(pages->prev, struct page, lru);
373 prefetchw(&page->flags);
374 list_del(&page->lru);
375 if (!add_to_page_cache_lru(page, mapping,
376 page->index, GFP_KERNEL)) {
377 bio = do_mpage_readpage(bio, page,
378 nr_pages - page_idx,
379 &last_block_in_bio, &map_bh,
380 &first_logical_block,
381 get_block);
383 page_cache_release(page);
385 BUG_ON(!list_empty(pages));
386 if (bio)
387 mpage_bio_submit(READ, bio);
388 return 0;
390 EXPORT_SYMBOL(mpage_readpages);
393 * This isn't called much at all
395 int mpage_readpage(struct page *page, get_block_t get_block)
397 struct bio *bio = NULL;
398 sector_t last_block_in_bio = 0;
399 struct buffer_head map_bh;
400 unsigned long first_logical_block = 0;
402 map_bh.b_state = 0;
403 map_bh.b_size = 0;
404 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
405 &map_bh, &first_logical_block, get_block);
406 if (bio)
407 mpage_bio_submit(READ, bio);
408 return 0;
410 EXPORT_SYMBOL(mpage_readpage);
413 * Writing is not so simple.
415 * If the page has buffers then they will be used for obtaining the disk
416 * mapping. We only support pages which are fully mapped-and-dirty, with a
417 * special case for pages which are unmapped at the end: end-of-file.
419 * If the page has no buffers (preferred) then the page is mapped here.
421 * If all blocks are found to be contiguous then the page can go into the
422 * BIO. Otherwise fall back to the mapping's writepage().
424 * FIXME: This code wants an estimate of how many pages are still to be
425 * written, so it can intelligently allocate a suitably-sized BIO. For now,
426 * just allocate full-size (16-page) BIOs.
429 struct mpage_data {
430 struct bio *bio;
431 sector_t last_block_in_bio;
432 get_block_t *get_block;
433 unsigned use_writepage;
436 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
437 void *data)
439 struct mpage_data *mpd = data;
440 struct bio *bio = mpd->bio;
441 struct address_space *mapping = page->mapping;
442 struct inode *inode = page->mapping->host;
443 const unsigned blkbits = inode->i_blkbits;
444 unsigned long end_index;
445 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
446 sector_t last_block;
447 sector_t block_in_file;
448 sector_t blocks[MAX_BUF_PER_PAGE];
449 unsigned page_block;
450 unsigned first_unmapped = blocks_per_page;
451 struct block_device *bdev = NULL;
452 int boundary = 0;
453 sector_t boundary_block = 0;
454 struct block_device *boundary_bdev = NULL;
455 int length;
456 struct buffer_head map_bh;
457 loff_t i_size = i_size_read(inode);
458 int ret = 0;
460 if (page_has_buffers(page)) {
461 struct buffer_head *head = page_buffers(page);
462 struct buffer_head *bh = head;
464 /* If they're all mapped and dirty, do it */
465 page_block = 0;
466 do {
467 BUG_ON(buffer_locked(bh));
468 if (!buffer_mapped(bh)) {
470 * unmapped dirty buffers are created by
471 * __set_page_dirty_buffers -> mmapped data
473 if (buffer_dirty(bh))
474 goto confused;
475 if (first_unmapped == blocks_per_page)
476 first_unmapped = page_block;
477 continue;
480 if (first_unmapped != blocks_per_page)
481 goto confused; /* hole -> non-hole */
483 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
484 goto confused;
485 if (page_block) {
486 if (bh->b_blocknr != blocks[page_block-1] + 1)
487 goto confused;
489 blocks[page_block++] = bh->b_blocknr;
490 boundary = buffer_boundary(bh);
491 if (boundary) {
492 boundary_block = bh->b_blocknr;
493 boundary_bdev = bh->b_bdev;
495 bdev = bh->b_bdev;
496 } while ((bh = bh->b_this_page) != head);
498 if (first_unmapped)
499 goto page_is_mapped;
502 * Page has buffers, but they are all unmapped. The page was
503 * created by pagein or read over a hole which was handled by
504 * block_read_full_page(). If this address_space is also
505 * using mpage_readpages then this can rarely happen.
507 goto confused;
511 * The page has no buffers: map it to disk
513 BUG_ON(!PageUptodate(page));
514 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
515 last_block = (i_size - 1) >> blkbits;
516 map_bh.b_page = page;
517 for (page_block = 0; page_block < blocks_per_page; ) {
519 map_bh.b_state = 0;
520 map_bh.b_size = 1 << blkbits;
521 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
522 goto confused;
523 if (buffer_new(&map_bh))
524 unmap_underlying_metadata(map_bh.b_bdev,
525 map_bh.b_blocknr);
526 if (buffer_boundary(&map_bh)) {
527 boundary_block = map_bh.b_blocknr;
528 boundary_bdev = map_bh.b_bdev;
530 if (page_block) {
531 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
532 goto confused;
534 blocks[page_block++] = map_bh.b_blocknr;
535 boundary = buffer_boundary(&map_bh);
536 bdev = map_bh.b_bdev;
537 if (block_in_file == last_block)
538 break;
539 block_in_file++;
541 BUG_ON(page_block == 0);
543 first_unmapped = page_block;
545 page_is_mapped:
546 end_index = i_size >> PAGE_CACHE_SHIFT;
547 if (page->index >= end_index) {
549 * The page straddles i_size. It must be zeroed out on each
550 * and every writepage invocation because it may be mmapped.
551 * "A file is mapped in multiples of the page size. For a file
552 * that is not a multiple of the page size, the remaining memory
553 * is zeroed when mapped, and writes to that region are not
554 * written out to the file."
556 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
558 if (page->index > end_index || !offset)
559 goto confused;
560 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
564 * This page will go to BIO. Do we need to send this BIO off first?
566 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
567 bio = mpage_bio_submit(WRITE, bio);
569 alloc_new:
570 if (bio == NULL) {
571 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
572 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
573 if (bio == NULL)
574 goto confused;
578 * Must try to add the page before marking the buffer clean or
579 * the confused fail path above (OOM) will be very confused when
580 * it finds all bh marked clean (i.e. it will not write anything)
582 length = first_unmapped << blkbits;
583 if (bio_add_page(bio, page, length, 0) < length) {
584 bio = mpage_bio_submit(WRITE, bio);
585 goto alloc_new;
589 * OK, we have our BIO, so we can now mark the buffers clean. Make
590 * sure to only clean buffers which we know we'll be writing.
592 if (page_has_buffers(page)) {
593 struct buffer_head *head = page_buffers(page);
594 struct buffer_head *bh = head;
595 unsigned buffer_counter = 0;
597 do {
598 if (buffer_counter++ == first_unmapped)
599 break;
600 clear_buffer_dirty(bh);
601 bh = bh->b_this_page;
602 } while (bh != head);
605 * we cannot drop the bh if the page is not uptodate
606 * or a concurrent readpage would fail to serialize with the bh
607 * and it would read from disk before we reach the platter.
609 if (buffer_heads_over_limit && PageUptodate(page))
610 try_to_free_buffers(page);
613 BUG_ON(PageWriteback(page));
614 set_page_writeback(page);
615 unlock_page(page);
616 if (boundary || (first_unmapped != blocks_per_page)) {
617 bio = mpage_bio_submit(WRITE, bio);
618 if (boundary_block) {
619 write_boundary_block(boundary_bdev,
620 boundary_block, 1 << blkbits);
622 } else {
623 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
625 goto out;
627 confused:
628 if (bio)
629 bio = mpage_bio_submit(WRITE, bio);
631 if (mpd->use_writepage) {
632 ret = mapping->a_ops->writepage(page, wbc);
633 } else {
634 ret = -EAGAIN;
635 goto out;
638 * The caller has a ref on the inode, so *mapping is stable
640 mapping_set_error(mapping, ret);
641 out:
642 mpd->bio = bio;
643 return ret;
647 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
648 * @mapping: address space structure to write
649 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
650 * @get_block: the filesystem's block mapper function.
651 * If this is NULL then use a_ops->writepage. Otherwise, go
652 * direct-to-BIO.
654 * This is a library function, which implements the writepages()
655 * address_space_operation.
657 * If a page is already under I/O, generic_writepages() skips it, even
658 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
659 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
660 * and msync() need to guarantee that all the data which was dirty at the time
661 * the call was made get new I/O started against them. If wbc->sync_mode is
662 * WB_SYNC_ALL then we were called for data integrity and we must wait for
663 * existing IO to complete.
666 mpage_writepages(struct address_space *mapping,
667 struct writeback_control *wbc, get_block_t get_block)
669 int ret;
671 if (!get_block)
672 ret = generic_writepages(mapping, wbc);
673 else {
674 struct mpage_data mpd = {
675 .bio = NULL,
676 .last_block_in_bio = 0,
677 .get_block = get_block,
678 .use_writepage = 1,
681 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
682 if (mpd.bio)
683 mpage_bio_submit(WRITE, mpd.bio);
685 return ret;
687 EXPORT_SYMBOL(mpage_writepages);
689 int mpage_writepage(struct page *page, get_block_t get_block,
690 struct writeback_control *wbc)
692 struct mpage_data mpd = {
693 .bio = NULL,
694 .last_block_in_bio = 0,
695 .get_block = get_block,
696 .use_writepage = 0,
698 int ret = __mpage_writepage(page, wbc, &mpd);
699 if (mpd.bio)
700 mpage_bio_submit(WRITE, mpd.bio);
701 return ret;
703 EXPORT_SYMBOL(mpage_writepage);