net: sh-eth: Fix build error by the value which is not defined
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / ethernet / renesas / sh_eth.c
blob813d41c4a845501bd37e772f094cc356ce029aab
1 /*
2 * SuperH Ethernet device driver
4 * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
5 * Copyright (C) 2008-2009 Renesas Solutions Corp.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 * The full GNU General Public License is included in this distribution in
20 * the file called "COPYING".
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/spinlock.h>
27 #include <linux/interrupt.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/mdio-bitbang.h>
33 #include <linux/netdevice.h>
34 #include <linux/phy.h>
35 #include <linux/cache.h>
36 #include <linux/io.h>
37 #include <linux/interrupt.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/sh_eth.h>
43 #include "sh_eth.h"
45 #define SH_ETH_DEF_MSG_ENABLE \
46 (NETIF_MSG_LINK | \
47 NETIF_MSG_TIMER | \
48 NETIF_MSG_RX_ERR| \
49 NETIF_MSG_TX_ERR)
51 /* There is CPU dependent code */
52 #if defined(CONFIG_CPU_SUBTYPE_SH7724)
53 #define SH_ETH_RESET_DEFAULT 1
54 static void sh_eth_set_duplex(struct net_device *ndev)
56 struct sh_eth_private *mdp = netdev_priv(ndev);
58 if (mdp->duplex) /* Full */
59 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
60 else /* Half */
61 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
64 static void sh_eth_set_rate(struct net_device *ndev)
66 struct sh_eth_private *mdp = netdev_priv(ndev);
68 switch (mdp->speed) {
69 case 10: /* 10BASE */
70 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
71 break;
72 case 100:/* 100BASE */
73 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
74 break;
75 default:
76 break;
80 /* SH7724 */
81 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
82 .set_duplex = sh_eth_set_duplex,
83 .set_rate = sh_eth_set_rate,
85 .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
86 .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
87 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
89 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
90 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
91 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
92 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
94 .apr = 1,
95 .mpr = 1,
96 .tpauser = 1,
97 .hw_swap = 1,
98 .rpadir = 1,
99 .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
101 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
102 #define SH_ETH_HAS_BOTH_MODULES 1
103 #define SH_ETH_HAS_TSU 1
104 static void sh_eth_set_duplex(struct net_device *ndev)
106 struct sh_eth_private *mdp = netdev_priv(ndev);
108 if (mdp->duplex) /* Full */
109 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
110 else /* Half */
111 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
114 static void sh_eth_set_rate(struct net_device *ndev)
116 struct sh_eth_private *mdp = netdev_priv(ndev);
118 switch (mdp->speed) {
119 case 10: /* 10BASE */
120 sh_eth_write(ndev, 0, RTRATE);
121 break;
122 case 100:/* 100BASE */
123 sh_eth_write(ndev, 1, RTRATE);
124 break;
125 default:
126 break;
130 /* SH7757 */
131 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
132 .set_duplex = sh_eth_set_duplex,
133 .set_rate = sh_eth_set_rate,
135 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
136 .rmcr_value = 0x00000001,
138 .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
139 .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
140 EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
141 .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
143 .apr = 1,
144 .mpr = 1,
145 .tpauser = 1,
146 .hw_swap = 1,
147 .no_ade = 1,
148 .rpadir = 1,
149 .rpadir_value = 2 << 16,
152 #define SH_GIGA_ETH_BASE 0xfee00000
153 #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
154 #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
155 static void sh_eth_chip_reset_giga(struct net_device *ndev)
157 int i;
158 unsigned long mahr[2], malr[2];
160 /* save MAHR and MALR */
161 for (i = 0; i < 2; i++) {
162 malr[i] = ioread32((void *)GIGA_MALR(i));
163 mahr[i] = ioread32((void *)GIGA_MAHR(i));
166 /* reset device */
167 iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
168 mdelay(1);
170 /* restore MAHR and MALR */
171 for (i = 0; i < 2; i++) {
172 iowrite32(malr[i], (void *)GIGA_MALR(i));
173 iowrite32(mahr[i], (void *)GIGA_MAHR(i));
177 static int sh_eth_is_gether(struct sh_eth_private *mdp);
178 static void sh_eth_reset(struct net_device *ndev)
180 struct sh_eth_private *mdp = netdev_priv(ndev);
181 int cnt = 100;
183 if (sh_eth_is_gether(mdp)) {
184 sh_eth_write(ndev, 0x03, EDSR);
185 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
186 EDMR);
187 while (cnt > 0) {
188 if (!(sh_eth_read(ndev, EDMR) & 0x3))
189 break;
190 mdelay(1);
191 cnt--;
193 if (cnt < 0)
194 printk(KERN_ERR "Device reset fail\n");
196 /* Table Init */
197 sh_eth_write(ndev, 0x0, TDLAR);
198 sh_eth_write(ndev, 0x0, TDFAR);
199 sh_eth_write(ndev, 0x0, TDFXR);
200 sh_eth_write(ndev, 0x0, TDFFR);
201 sh_eth_write(ndev, 0x0, RDLAR);
202 sh_eth_write(ndev, 0x0, RDFAR);
203 sh_eth_write(ndev, 0x0, RDFXR);
204 sh_eth_write(ndev, 0x0, RDFFR);
205 } else {
206 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
207 EDMR);
208 mdelay(3);
209 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
210 EDMR);
214 static void sh_eth_set_duplex_giga(struct net_device *ndev)
216 struct sh_eth_private *mdp = netdev_priv(ndev);
218 if (mdp->duplex) /* Full */
219 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
220 else /* Half */
221 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
224 static void sh_eth_set_rate_giga(struct net_device *ndev)
226 struct sh_eth_private *mdp = netdev_priv(ndev);
228 switch (mdp->speed) {
229 case 10: /* 10BASE */
230 sh_eth_write(ndev, 0x00000000, GECMR);
231 break;
232 case 100:/* 100BASE */
233 sh_eth_write(ndev, 0x00000010, GECMR);
234 break;
235 case 1000: /* 1000BASE */
236 sh_eth_write(ndev, 0x00000020, GECMR);
237 break;
238 default:
239 break;
243 /* SH7757(GETHERC) */
244 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
245 .chip_reset = sh_eth_chip_reset_giga,
246 .set_duplex = sh_eth_set_duplex_giga,
247 .set_rate = sh_eth_set_rate_giga,
249 .ecsr_value = ECSR_ICD | ECSR_MPD,
250 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
251 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
253 .tx_check = EESR_TC1 | EESR_FTC,
254 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
255 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
256 EESR_ECI,
257 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
258 EESR_TFE,
259 .fdr_value = 0x0000072f,
260 .rmcr_value = 0x00000001,
262 .apr = 1,
263 .mpr = 1,
264 .tpauser = 1,
265 .bculr = 1,
266 .hw_swap = 1,
267 .rpadir = 1,
268 .rpadir_value = 2 << 16,
269 .no_trimd = 1,
270 .no_ade = 1,
273 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
275 if (sh_eth_is_gether(mdp))
276 return &sh_eth_my_cpu_data_giga;
277 else
278 return &sh_eth_my_cpu_data;
281 #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
282 #define SH_ETH_HAS_TSU 1
283 static void sh_eth_chip_reset(struct net_device *ndev)
285 struct sh_eth_private *mdp = netdev_priv(ndev);
287 /* reset device */
288 sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
289 mdelay(1);
292 static void sh_eth_reset(struct net_device *ndev)
294 int cnt = 100;
296 sh_eth_write(ndev, EDSR_ENALL, EDSR);
297 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
298 while (cnt > 0) {
299 if (!(sh_eth_read(ndev, EDMR) & 0x3))
300 break;
301 mdelay(1);
302 cnt--;
304 if (cnt == 0)
305 printk(KERN_ERR "Device reset fail\n");
307 /* Table Init */
308 sh_eth_write(ndev, 0x0, TDLAR);
309 sh_eth_write(ndev, 0x0, TDFAR);
310 sh_eth_write(ndev, 0x0, TDFXR);
311 sh_eth_write(ndev, 0x0, TDFFR);
312 sh_eth_write(ndev, 0x0, RDLAR);
313 sh_eth_write(ndev, 0x0, RDFAR);
314 sh_eth_write(ndev, 0x0, RDFXR);
315 sh_eth_write(ndev, 0x0, RDFFR);
318 static void sh_eth_set_duplex(struct net_device *ndev)
320 struct sh_eth_private *mdp = netdev_priv(ndev);
322 if (mdp->duplex) /* Full */
323 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
324 else /* Half */
325 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
328 static void sh_eth_set_rate(struct net_device *ndev)
330 struct sh_eth_private *mdp = netdev_priv(ndev);
332 switch (mdp->speed) {
333 case 10: /* 10BASE */
334 sh_eth_write(ndev, GECMR_10, GECMR);
335 break;
336 case 100:/* 100BASE */
337 sh_eth_write(ndev, GECMR_100, GECMR);
338 break;
339 case 1000: /* 1000BASE */
340 sh_eth_write(ndev, GECMR_1000, GECMR);
341 break;
342 default:
343 break;
347 /* sh7763 */
348 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
349 .chip_reset = sh_eth_chip_reset,
350 .set_duplex = sh_eth_set_duplex,
351 .set_rate = sh_eth_set_rate,
353 .ecsr_value = ECSR_ICD | ECSR_MPD,
354 .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
355 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
357 .tx_check = EESR_TC1 | EESR_FTC,
358 .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
359 EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
360 EESR_ECI,
361 .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
362 EESR_TFE,
364 .apr = 1,
365 .mpr = 1,
366 .tpauser = 1,
367 .bculr = 1,
368 .hw_swap = 1,
369 .no_trimd = 1,
370 .no_ade = 1,
371 .tsu = 1,
374 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
375 #define SH_ETH_RESET_DEFAULT 1
376 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
377 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
379 .apr = 1,
380 .mpr = 1,
381 .tpauser = 1,
382 .hw_swap = 1,
384 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
385 #define SH_ETH_RESET_DEFAULT 1
386 #define SH_ETH_HAS_TSU 1
387 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
388 .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
389 .tsu = 1,
391 #endif
393 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
395 if (!cd->ecsr_value)
396 cd->ecsr_value = DEFAULT_ECSR_INIT;
398 if (!cd->ecsipr_value)
399 cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
401 if (!cd->fcftr_value)
402 cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
403 DEFAULT_FIFO_F_D_RFD;
405 if (!cd->fdr_value)
406 cd->fdr_value = DEFAULT_FDR_INIT;
408 if (!cd->rmcr_value)
409 cd->rmcr_value = DEFAULT_RMCR_VALUE;
411 if (!cd->tx_check)
412 cd->tx_check = DEFAULT_TX_CHECK;
414 if (!cd->eesr_err_check)
415 cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
417 if (!cd->tx_error_check)
418 cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
421 #if defined(SH_ETH_RESET_DEFAULT)
422 /* Chip Reset */
423 static void sh_eth_reset(struct net_device *ndev)
425 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
426 mdelay(3);
427 sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
429 #endif
431 #if defined(CONFIG_CPU_SH4)
432 static void sh_eth_set_receive_align(struct sk_buff *skb)
434 int reserve;
436 reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
437 if (reserve)
438 skb_reserve(skb, reserve);
440 #else
441 static void sh_eth_set_receive_align(struct sk_buff *skb)
443 skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
445 #endif
448 /* CPU <-> EDMAC endian convert */
449 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
451 switch (mdp->edmac_endian) {
452 case EDMAC_LITTLE_ENDIAN:
453 return cpu_to_le32(x);
454 case EDMAC_BIG_ENDIAN:
455 return cpu_to_be32(x);
457 return x;
460 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
462 switch (mdp->edmac_endian) {
463 case EDMAC_LITTLE_ENDIAN:
464 return le32_to_cpu(x);
465 case EDMAC_BIG_ENDIAN:
466 return be32_to_cpu(x);
468 return x;
472 * Program the hardware MAC address from dev->dev_addr.
474 static void update_mac_address(struct net_device *ndev)
476 sh_eth_write(ndev,
477 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
478 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
479 sh_eth_write(ndev,
480 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
484 * Get MAC address from SuperH MAC address register
486 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
487 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
488 * When you want use this device, you must set MAC address in bootloader.
491 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
493 if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
494 memcpy(ndev->dev_addr, mac, 6);
495 } else {
496 ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
497 ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
498 ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
499 ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
500 ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
501 ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
505 static int sh_eth_is_gether(struct sh_eth_private *mdp)
507 if (mdp->reg_offset == sh_eth_offset_gigabit)
508 return 1;
509 else
510 return 0;
513 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
515 if (sh_eth_is_gether(mdp))
516 return EDTRR_TRNS_GETHER;
517 else
518 return EDTRR_TRNS_ETHER;
521 struct bb_info {
522 void (*set_gate)(void *addr);
523 struct mdiobb_ctrl ctrl;
524 void *addr;
525 u32 mmd_msk;/* MMD */
526 u32 mdo_msk;
527 u32 mdi_msk;
528 u32 mdc_msk;
531 /* PHY bit set */
532 static void bb_set(void *addr, u32 msk)
534 iowrite32(ioread32(addr) | msk, addr);
537 /* PHY bit clear */
538 static void bb_clr(void *addr, u32 msk)
540 iowrite32((ioread32(addr) & ~msk), addr);
543 /* PHY bit read */
544 static int bb_read(void *addr, u32 msk)
546 return (ioread32(addr) & msk) != 0;
549 /* Data I/O pin control */
550 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
552 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
554 if (bitbang->set_gate)
555 bitbang->set_gate(bitbang->addr);
557 if (bit)
558 bb_set(bitbang->addr, bitbang->mmd_msk);
559 else
560 bb_clr(bitbang->addr, bitbang->mmd_msk);
563 /* Set bit data*/
564 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
566 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
568 if (bitbang->set_gate)
569 bitbang->set_gate(bitbang->addr);
571 if (bit)
572 bb_set(bitbang->addr, bitbang->mdo_msk);
573 else
574 bb_clr(bitbang->addr, bitbang->mdo_msk);
577 /* Get bit data*/
578 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
580 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
582 if (bitbang->set_gate)
583 bitbang->set_gate(bitbang->addr);
585 return bb_read(bitbang->addr, bitbang->mdi_msk);
588 /* MDC pin control */
589 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
591 struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
593 if (bitbang->set_gate)
594 bitbang->set_gate(bitbang->addr);
596 if (bit)
597 bb_set(bitbang->addr, bitbang->mdc_msk);
598 else
599 bb_clr(bitbang->addr, bitbang->mdc_msk);
602 /* mdio bus control struct */
603 static struct mdiobb_ops bb_ops = {
604 .owner = THIS_MODULE,
605 .set_mdc = sh_mdc_ctrl,
606 .set_mdio_dir = sh_mmd_ctrl,
607 .set_mdio_data = sh_set_mdio,
608 .get_mdio_data = sh_get_mdio,
611 /* free skb and descriptor buffer */
612 static void sh_eth_ring_free(struct net_device *ndev)
614 struct sh_eth_private *mdp = netdev_priv(ndev);
615 int i;
617 /* Free Rx skb ringbuffer */
618 if (mdp->rx_skbuff) {
619 for (i = 0; i < RX_RING_SIZE; i++) {
620 if (mdp->rx_skbuff[i])
621 dev_kfree_skb(mdp->rx_skbuff[i]);
624 kfree(mdp->rx_skbuff);
626 /* Free Tx skb ringbuffer */
627 if (mdp->tx_skbuff) {
628 for (i = 0; i < TX_RING_SIZE; i++) {
629 if (mdp->tx_skbuff[i])
630 dev_kfree_skb(mdp->tx_skbuff[i]);
633 kfree(mdp->tx_skbuff);
636 /* format skb and descriptor buffer */
637 static void sh_eth_ring_format(struct net_device *ndev)
639 struct sh_eth_private *mdp = netdev_priv(ndev);
640 int i;
641 struct sk_buff *skb;
642 struct sh_eth_rxdesc *rxdesc = NULL;
643 struct sh_eth_txdesc *txdesc = NULL;
644 int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
645 int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
647 mdp->cur_rx = mdp->cur_tx = 0;
648 mdp->dirty_rx = mdp->dirty_tx = 0;
650 memset(mdp->rx_ring, 0, rx_ringsize);
652 /* build Rx ring buffer */
653 for (i = 0; i < RX_RING_SIZE; i++) {
654 /* skb */
655 mdp->rx_skbuff[i] = NULL;
656 skb = dev_alloc_skb(mdp->rx_buf_sz);
657 mdp->rx_skbuff[i] = skb;
658 if (skb == NULL)
659 break;
660 dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
661 DMA_FROM_DEVICE);
662 skb->dev = ndev; /* Mark as being used by this device. */
663 sh_eth_set_receive_align(skb);
665 /* RX descriptor */
666 rxdesc = &mdp->rx_ring[i];
667 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
668 rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
670 /* The size of the buffer is 16 byte boundary. */
671 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
672 /* Rx descriptor address set */
673 if (i == 0) {
674 sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
675 if (sh_eth_is_gether(mdp))
676 sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
680 mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
682 /* Mark the last entry as wrapping the ring. */
683 rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
685 memset(mdp->tx_ring, 0, tx_ringsize);
687 /* build Tx ring buffer */
688 for (i = 0; i < TX_RING_SIZE; i++) {
689 mdp->tx_skbuff[i] = NULL;
690 txdesc = &mdp->tx_ring[i];
691 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
692 txdesc->buffer_length = 0;
693 if (i == 0) {
694 /* Tx descriptor address set */
695 sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
696 if (sh_eth_is_gether(mdp))
697 sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
701 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
704 /* Get skb and descriptor buffer */
705 static int sh_eth_ring_init(struct net_device *ndev)
707 struct sh_eth_private *mdp = netdev_priv(ndev);
708 int rx_ringsize, tx_ringsize, ret = 0;
711 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
712 * card needs room to do 8 byte alignment, +2 so we can reserve
713 * the first 2 bytes, and +16 gets room for the status word from the
714 * card.
716 mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
717 (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
718 if (mdp->cd->rpadir)
719 mdp->rx_buf_sz += NET_IP_ALIGN;
721 /* Allocate RX and TX skb rings */
722 mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
723 GFP_KERNEL);
724 if (!mdp->rx_skbuff) {
725 dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
726 ret = -ENOMEM;
727 return ret;
730 mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
731 GFP_KERNEL);
732 if (!mdp->tx_skbuff) {
733 dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
734 ret = -ENOMEM;
735 goto skb_ring_free;
738 /* Allocate all Rx descriptors. */
739 rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
740 mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
741 GFP_KERNEL);
743 if (!mdp->rx_ring) {
744 dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
745 rx_ringsize);
746 ret = -ENOMEM;
747 goto desc_ring_free;
750 mdp->dirty_rx = 0;
752 /* Allocate all Tx descriptors. */
753 tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
754 mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
755 GFP_KERNEL);
756 if (!mdp->tx_ring) {
757 dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
758 tx_ringsize);
759 ret = -ENOMEM;
760 goto desc_ring_free;
762 return ret;
764 desc_ring_free:
765 /* free DMA buffer */
766 dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
768 skb_ring_free:
769 /* Free Rx and Tx skb ring buffer */
770 sh_eth_ring_free(ndev);
772 return ret;
775 static int sh_eth_dev_init(struct net_device *ndev)
777 int ret = 0;
778 struct sh_eth_private *mdp = netdev_priv(ndev);
779 u_int32_t rx_int_var, tx_int_var;
780 u32 val;
782 /* Soft Reset */
783 sh_eth_reset(ndev);
785 /* Descriptor format */
786 sh_eth_ring_format(ndev);
787 if (mdp->cd->rpadir)
788 sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
790 /* all sh_eth int mask */
791 sh_eth_write(ndev, 0, EESIPR);
793 #if defined(__LITTLE_ENDIAN__)
794 if (mdp->cd->hw_swap)
795 sh_eth_write(ndev, EDMR_EL, EDMR);
796 else
797 #endif
798 sh_eth_write(ndev, 0, EDMR);
800 /* FIFO size set */
801 sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
802 sh_eth_write(ndev, 0, TFTR);
804 /* Frame recv control */
805 sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
807 rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
808 tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
809 sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
811 if (mdp->cd->bculr)
812 sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
814 sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
816 if (!mdp->cd->no_trimd)
817 sh_eth_write(ndev, 0, TRIMD);
819 /* Recv frame limit set register */
820 sh_eth_write(ndev, RFLR_VALUE, RFLR);
822 sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
823 sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
825 /* PAUSE Prohibition */
826 val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
827 ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
829 sh_eth_write(ndev, val, ECMR);
831 if (mdp->cd->set_rate)
832 mdp->cd->set_rate(ndev);
834 /* E-MAC Status Register clear */
835 sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
837 /* E-MAC Interrupt Enable register */
838 sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
840 /* Set MAC address */
841 update_mac_address(ndev);
843 /* mask reset */
844 if (mdp->cd->apr)
845 sh_eth_write(ndev, APR_AP, APR);
846 if (mdp->cd->mpr)
847 sh_eth_write(ndev, MPR_MP, MPR);
848 if (mdp->cd->tpauser)
849 sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
851 /* Setting the Rx mode will start the Rx process. */
852 sh_eth_write(ndev, EDRRR_R, EDRRR);
854 netif_start_queue(ndev);
856 return ret;
859 /* free Tx skb function */
860 static int sh_eth_txfree(struct net_device *ndev)
862 struct sh_eth_private *mdp = netdev_priv(ndev);
863 struct sh_eth_txdesc *txdesc;
864 int freeNum = 0;
865 int entry = 0;
867 for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
868 entry = mdp->dirty_tx % TX_RING_SIZE;
869 txdesc = &mdp->tx_ring[entry];
870 if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
871 break;
872 /* Free the original skb. */
873 if (mdp->tx_skbuff[entry]) {
874 dma_unmap_single(&ndev->dev, txdesc->addr,
875 txdesc->buffer_length, DMA_TO_DEVICE);
876 dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
877 mdp->tx_skbuff[entry] = NULL;
878 freeNum++;
880 txdesc->status = cpu_to_edmac(mdp, TD_TFP);
881 if (entry >= TX_RING_SIZE - 1)
882 txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
884 mdp->stats.tx_packets++;
885 mdp->stats.tx_bytes += txdesc->buffer_length;
887 return freeNum;
890 /* Packet receive function */
891 static int sh_eth_rx(struct net_device *ndev)
893 struct sh_eth_private *mdp = netdev_priv(ndev);
894 struct sh_eth_rxdesc *rxdesc;
896 int entry = mdp->cur_rx % RX_RING_SIZE;
897 int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
898 struct sk_buff *skb;
899 u16 pkt_len = 0;
900 u32 desc_status;
902 rxdesc = &mdp->rx_ring[entry];
903 while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
904 desc_status = edmac_to_cpu(mdp, rxdesc->status);
905 pkt_len = rxdesc->frame_length;
907 if (--boguscnt < 0)
908 break;
910 if (!(desc_status & RDFEND))
911 mdp->stats.rx_length_errors++;
913 if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
914 RD_RFS5 | RD_RFS6 | RD_RFS10)) {
915 mdp->stats.rx_errors++;
916 if (desc_status & RD_RFS1)
917 mdp->stats.rx_crc_errors++;
918 if (desc_status & RD_RFS2)
919 mdp->stats.rx_frame_errors++;
920 if (desc_status & RD_RFS3)
921 mdp->stats.rx_length_errors++;
922 if (desc_status & RD_RFS4)
923 mdp->stats.rx_length_errors++;
924 if (desc_status & RD_RFS6)
925 mdp->stats.rx_missed_errors++;
926 if (desc_status & RD_RFS10)
927 mdp->stats.rx_over_errors++;
928 } else {
929 if (!mdp->cd->hw_swap)
930 sh_eth_soft_swap(
931 phys_to_virt(ALIGN(rxdesc->addr, 4)),
932 pkt_len + 2);
933 skb = mdp->rx_skbuff[entry];
934 mdp->rx_skbuff[entry] = NULL;
935 if (mdp->cd->rpadir)
936 skb_reserve(skb, NET_IP_ALIGN);
937 skb_put(skb, pkt_len);
938 skb->protocol = eth_type_trans(skb, ndev);
939 netif_rx(skb);
940 mdp->stats.rx_packets++;
941 mdp->stats.rx_bytes += pkt_len;
943 rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
944 entry = (++mdp->cur_rx) % RX_RING_SIZE;
945 rxdesc = &mdp->rx_ring[entry];
948 /* Refill the Rx ring buffers. */
949 for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
950 entry = mdp->dirty_rx % RX_RING_SIZE;
951 rxdesc = &mdp->rx_ring[entry];
952 /* The size of the buffer is 16 byte boundary. */
953 rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
955 if (mdp->rx_skbuff[entry] == NULL) {
956 skb = dev_alloc_skb(mdp->rx_buf_sz);
957 mdp->rx_skbuff[entry] = skb;
958 if (skb == NULL)
959 break; /* Better luck next round. */
960 dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
961 DMA_FROM_DEVICE);
962 skb->dev = ndev;
963 sh_eth_set_receive_align(skb);
965 skb_checksum_none_assert(skb);
966 rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
968 if (entry >= RX_RING_SIZE - 1)
969 rxdesc->status |=
970 cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
971 else
972 rxdesc->status |=
973 cpu_to_edmac(mdp, RD_RACT | RD_RFP);
976 /* Restart Rx engine if stopped. */
977 /* If we don't need to check status, don't. -KDU */
978 if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
979 sh_eth_write(ndev, EDRRR_R, EDRRR);
981 return 0;
984 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
986 /* disable tx and rx */
987 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
988 ~(ECMR_RE | ECMR_TE), ECMR);
991 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
993 /* enable tx and rx */
994 sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
995 (ECMR_RE | ECMR_TE), ECMR);
998 /* error control function */
999 static void sh_eth_error(struct net_device *ndev, int intr_status)
1001 struct sh_eth_private *mdp = netdev_priv(ndev);
1002 u32 felic_stat;
1003 u32 link_stat;
1004 u32 mask;
1006 if (intr_status & EESR_ECI) {
1007 felic_stat = sh_eth_read(ndev, ECSR);
1008 sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
1009 if (felic_stat & ECSR_ICD)
1010 mdp->stats.tx_carrier_errors++;
1011 if (felic_stat & ECSR_LCHNG) {
1012 /* Link Changed */
1013 if (mdp->cd->no_psr || mdp->no_ether_link) {
1014 if (mdp->link == PHY_DOWN)
1015 link_stat = 0;
1016 else
1017 link_stat = PHY_ST_LINK;
1018 } else {
1019 link_stat = (sh_eth_read(ndev, PSR));
1020 if (mdp->ether_link_active_low)
1021 link_stat = ~link_stat;
1023 if (!(link_stat & PHY_ST_LINK))
1024 sh_eth_rcv_snd_disable(ndev);
1025 else {
1026 /* Link Up */
1027 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1028 ~DMAC_M_ECI, EESIPR);
1029 /*clear int */
1030 sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1031 ECSR);
1032 sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1033 DMAC_M_ECI, EESIPR);
1034 /* enable tx and rx */
1035 sh_eth_rcv_snd_enable(ndev);
1040 if (intr_status & EESR_TWB) {
1041 /* Write buck end. unused write back interrupt */
1042 if (intr_status & EESR_TABT) /* Transmit Abort int */
1043 mdp->stats.tx_aborted_errors++;
1044 if (netif_msg_tx_err(mdp))
1045 dev_err(&ndev->dev, "Transmit Abort\n");
1048 if (intr_status & EESR_RABT) {
1049 /* Receive Abort int */
1050 if (intr_status & EESR_RFRMER) {
1051 /* Receive Frame Overflow int */
1052 mdp->stats.rx_frame_errors++;
1053 if (netif_msg_rx_err(mdp))
1054 dev_err(&ndev->dev, "Receive Abort\n");
1058 if (intr_status & EESR_TDE) {
1059 /* Transmit Descriptor Empty int */
1060 mdp->stats.tx_fifo_errors++;
1061 if (netif_msg_tx_err(mdp))
1062 dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1065 if (intr_status & EESR_TFE) {
1066 /* FIFO under flow */
1067 mdp->stats.tx_fifo_errors++;
1068 if (netif_msg_tx_err(mdp))
1069 dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1072 if (intr_status & EESR_RDE) {
1073 /* Receive Descriptor Empty int */
1074 mdp->stats.rx_over_errors++;
1076 if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
1077 sh_eth_write(ndev, EDRRR_R, EDRRR);
1078 if (netif_msg_rx_err(mdp))
1079 dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1082 if (intr_status & EESR_RFE) {
1083 /* Receive FIFO Overflow int */
1084 mdp->stats.rx_fifo_errors++;
1085 if (netif_msg_rx_err(mdp))
1086 dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1089 if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1090 /* Address Error */
1091 mdp->stats.tx_fifo_errors++;
1092 if (netif_msg_tx_err(mdp))
1093 dev_err(&ndev->dev, "Address Error\n");
1096 mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1097 if (mdp->cd->no_ade)
1098 mask &= ~EESR_ADE;
1099 if (intr_status & mask) {
1100 /* Tx error */
1101 u32 edtrr = sh_eth_read(ndev, EDTRR);
1102 /* dmesg */
1103 dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1104 intr_status, mdp->cur_tx);
1105 dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1106 mdp->dirty_tx, (u32) ndev->state, edtrr);
1107 /* dirty buffer free */
1108 sh_eth_txfree(ndev);
1110 /* SH7712 BUG */
1111 if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1112 /* tx dma start */
1113 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1115 /* wakeup */
1116 netif_wake_queue(ndev);
1120 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1122 struct net_device *ndev = netdev;
1123 struct sh_eth_private *mdp = netdev_priv(ndev);
1124 struct sh_eth_cpu_data *cd = mdp->cd;
1125 irqreturn_t ret = IRQ_NONE;
1126 u32 intr_status = 0;
1128 spin_lock(&mdp->lock);
1130 /* Get interrpt stat */
1131 intr_status = sh_eth_read(ndev, EESR);
1132 /* Clear interrupt */
1133 if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1134 EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1135 cd->tx_check | cd->eesr_err_check)) {
1136 sh_eth_write(ndev, intr_status, EESR);
1137 ret = IRQ_HANDLED;
1138 } else
1139 goto other_irq;
1141 if (intr_status & (EESR_FRC | /* Frame recv*/
1142 EESR_RMAF | /* Multi cast address recv*/
1143 EESR_RRF | /* Bit frame recv */
1144 EESR_RTLF | /* Long frame recv*/
1145 EESR_RTSF | /* short frame recv */
1146 EESR_PRE | /* PHY-LSI recv error */
1147 EESR_CERF)){ /* recv frame CRC error */
1148 sh_eth_rx(ndev);
1151 /* Tx Check */
1152 if (intr_status & cd->tx_check) {
1153 sh_eth_txfree(ndev);
1154 netif_wake_queue(ndev);
1157 if (intr_status & cd->eesr_err_check)
1158 sh_eth_error(ndev, intr_status);
1160 other_irq:
1161 spin_unlock(&mdp->lock);
1163 return ret;
1166 static void sh_eth_timer(unsigned long data)
1168 struct net_device *ndev = (struct net_device *)data;
1169 struct sh_eth_private *mdp = netdev_priv(ndev);
1171 mod_timer(&mdp->timer, jiffies + (10 * HZ));
1174 /* PHY state control function */
1175 static void sh_eth_adjust_link(struct net_device *ndev)
1177 struct sh_eth_private *mdp = netdev_priv(ndev);
1178 struct phy_device *phydev = mdp->phydev;
1179 int new_state = 0;
1181 if (phydev->link != PHY_DOWN) {
1182 if (phydev->duplex != mdp->duplex) {
1183 new_state = 1;
1184 mdp->duplex = phydev->duplex;
1185 if (mdp->cd->set_duplex)
1186 mdp->cd->set_duplex(ndev);
1189 if (phydev->speed != mdp->speed) {
1190 new_state = 1;
1191 mdp->speed = phydev->speed;
1192 if (mdp->cd->set_rate)
1193 mdp->cd->set_rate(ndev);
1195 if (mdp->link == PHY_DOWN) {
1196 sh_eth_write(ndev,
1197 (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1198 new_state = 1;
1199 mdp->link = phydev->link;
1201 } else if (mdp->link) {
1202 new_state = 1;
1203 mdp->link = PHY_DOWN;
1204 mdp->speed = 0;
1205 mdp->duplex = -1;
1208 if (new_state && netif_msg_link(mdp))
1209 phy_print_status(phydev);
1212 /* PHY init function */
1213 static int sh_eth_phy_init(struct net_device *ndev)
1215 struct sh_eth_private *mdp = netdev_priv(ndev);
1216 char phy_id[MII_BUS_ID_SIZE + 3];
1217 struct phy_device *phydev = NULL;
1219 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1220 mdp->mii_bus->id , mdp->phy_id);
1222 mdp->link = PHY_DOWN;
1223 mdp->speed = 0;
1224 mdp->duplex = -1;
1226 /* Try connect to PHY */
1227 phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1228 0, mdp->phy_interface);
1229 if (IS_ERR(phydev)) {
1230 dev_err(&ndev->dev, "phy_connect failed\n");
1231 return PTR_ERR(phydev);
1234 dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1235 phydev->addr, phydev->drv->name);
1237 mdp->phydev = phydev;
1239 return 0;
1242 /* PHY control start function */
1243 static int sh_eth_phy_start(struct net_device *ndev)
1245 struct sh_eth_private *mdp = netdev_priv(ndev);
1246 int ret;
1248 ret = sh_eth_phy_init(ndev);
1249 if (ret)
1250 return ret;
1252 /* reset phy - this also wakes it from PDOWN */
1253 phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1254 phy_start(mdp->phydev);
1256 return 0;
1259 static int sh_eth_get_settings(struct net_device *ndev,
1260 struct ethtool_cmd *ecmd)
1262 struct sh_eth_private *mdp = netdev_priv(ndev);
1263 unsigned long flags;
1264 int ret;
1266 spin_lock_irqsave(&mdp->lock, flags);
1267 ret = phy_ethtool_gset(mdp->phydev, ecmd);
1268 spin_unlock_irqrestore(&mdp->lock, flags);
1270 return ret;
1273 static int sh_eth_set_settings(struct net_device *ndev,
1274 struct ethtool_cmd *ecmd)
1276 struct sh_eth_private *mdp = netdev_priv(ndev);
1277 unsigned long flags;
1278 int ret;
1280 spin_lock_irqsave(&mdp->lock, flags);
1282 /* disable tx and rx */
1283 sh_eth_rcv_snd_disable(ndev);
1285 ret = phy_ethtool_sset(mdp->phydev, ecmd);
1286 if (ret)
1287 goto error_exit;
1289 if (ecmd->duplex == DUPLEX_FULL)
1290 mdp->duplex = 1;
1291 else
1292 mdp->duplex = 0;
1294 if (mdp->cd->set_duplex)
1295 mdp->cd->set_duplex(ndev);
1297 error_exit:
1298 mdelay(1);
1300 /* enable tx and rx */
1301 sh_eth_rcv_snd_enable(ndev);
1303 spin_unlock_irqrestore(&mdp->lock, flags);
1305 return ret;
1308 static int sh_eth_nway_reset(struct net_device *ndev)
1310 struct sh_eth_private *mdp = netdev_priv(ndev);
1311 unsigned long flags;
1312 int ret;
1314 spin_lock_irqsave(&mdp->lock, flags);
1315 ret = phy_start_aneg(mdp->phydev);
1316 spin_unlock_irqrestore(&mdp->lock, flags);
1318 return ret;
1321 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1323 struct sh_eth_private *mdp = netdev_priv(ndev);
1324 return mdp->msg_enable;
1327 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1329 struct sh_eth_private *mdp = netdev_priv(ndev);
1330 mdp->msg_enable = value;
1333 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1334 "rx_current", "tx_current",
1335 "rx_dirty", "tx_dirty",
1337 #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
1339 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1341 switch (sset) {
1342 case ETH_SS_STATS:
1343 return SH_ETH_STATS_LEN;
1344 default:
1345 return -EOPNOTSUPP;
1349 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1350 struct ethtool_stats *stats, u64 *data)
1352 struct sh_eth_private *mdp = netdev_priv(ndev);
1353 int i = 0;
1355 /* device-specific stats */
1356 data[i++] = mdp->cur_rx;
1357 data[i++] = mdp->cur_tx;
1358 data[i++] = mdp->dirty_rx;
1359 data[i++] = mdp->dirty_tx;
1362 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1364 switch (stringset) {
1365 case ETH_SS_STATS:
1366 memcpy(data, *sh_eth_gstrings_stats,
1367 sizeof(sh_eth_gstrings_stats));
1368 break;
1372 static const struct ethtool_ops sh_eth_ethtool_ops = {
1373 .get_settings = sh_eth_get_settings,
1374 .set_settings = sh_eth_set_settings,
1375 .nway_reset = sh_eth_nway_reset,
1376 .get_msglevel = sh_eth_get_msglevel,
1377 .set_msglevel = sh_eth_set_msglevel,
1378 .get_link = ethtool_op_get_link,
1379 .get_strings = sh_eth_get_strings,
1380 .get_ethtool_stats = sh_eth_get_ethtool_stats,
1381 .get_sset_count = sh_eth_get_sset_count,
1384 /* network device open function */
1385 static int sh_eth_open(struct net_device *ndev)
1387 int ret = 0;
1388 struct sh_eth_private *mdp = netdev_priv(ndev);
1390 pm_runtime_get_sync(&mdp->pdev->dev);
1392 ret = request_irq(ndev->irq, sh_eth_interrupt,
1393 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1394 defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1395 defined(CONFIG_CPU_SUBTYPE_SH7757)
1396 IRQF_SHARED,
1397 #else
1399 #endif
1400 ndev->name, ndev);
1401 if (ret) {
1402 dev_err(&ndev->dev, "Can not assign IRQ number\n");
1403 return ret;
1406 /* Descriptor set */
1407 ret = sh_eth_ring_init(ndev);
1408 if (ret)
1409 goto out_free_irq;
1411 /* device init */
1412 ret = sh_eth_dev_init(ndev);
1413 if (ret)
1414 goto out_free_irq;
1416 /* PHY control start*/
1417 ret = sh_eth_phy_start(ndev);
1418 if (ret)
1419 goto out_free_irq;
1421 /* Set the timer to check for link beat. */
1422 init_timer(&mdp->timer);
1423 mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1424 setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
1426 return ret;
1428 out_free_irq:
1429 free_irq(ndev->irq, ndev);
1430 pm_runtime_put_sync(&mdp->pdev->dev);
1431 return ret;
1434 /* Timeout function */
1435 static void sh_eth_tx_timeout(struct net_device *ndev)
1437 struct sh_eth_private *mdp = netdev_priv(ndev);
1438 struct sh_eth_rxdesc *rxdesc;
1439 int i;
1441 netif_stop_queue(ndev);
1443 if (netif_msg_timer(mdp))
1444 dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1445 " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1447 /* tx_errors count up */
1448 mdp->stats.tx_errors++;
1450 /* timer off */
1451 del_timer_sync(&mdp->timer);
1453 /* Free all the skbuffs in the Rx queue. */
1454 for (i = 0; i < RX_RING_SIZE; i++) {
1455 rxdesc = &mdp->rx_ring[i];
1456 rxdesc->status = 0;
1457 rxdesc->addr = 0xBADF00D0;
1458 if (mdp->rx_skbuff[i])
1459 dev_kfree_skb(mdp->rx_skbuff[i]);
1460 mdp->rx_skbuff[i] = NULL;
1462 for (i = 0; i < TX_RING_SIZE; i++) {
1463 if (mdp->tx_skbuff[i])
1464 dev_kfree_skb(mdp->tx_skbuff[i]);
1465 mdp->tx_skbuff[i] = NULL;
1468 /* device init */
1469 sh_eth_dev_init(ndev);
1471 /* timer on */
1472 mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1473 add_timer(&mdp->timer);
1476 /* Packet transmit function */
1477 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1479 struct sh_eth_private *mdp = netdev_priv(ndev);
1480 struct sh_eth_txdesc *txdesc;
1481 u32 entry;
1482 unsigned long flags;
1484 spin_lock_irqsave(&mdp->lock, flags);
1485 if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
1486 if (!sh_eth_txfree(ndev)) {
1487 if (netif_msg_tx_queued(mdp))
1488 dev_warn(&ndev->dev, "TxFD exhausted.\n");
1489 netif_stop_queue(ndev);
1490 spin_unlock_irqrestore(&mdp->lock, flags);
1491 return NETDEV_TX_BUSY;
1494 spin_unlock_irqrestore(&mdp->lock, flags);
1496 entry = mdp->cur_tx % TX_RING_SIZE;
1497 mdp->tx_skbuff[entry] = skb;
1498 txdesc = &mdp->tx_ring[entry];
1499 /* soft swap. */
1500 if (!mdp->cd->hw_swap)
1501 sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1502 skb->len + 2);
1503 txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1504 DMA_TO_DEVICE);
1505 if (skb->len < ETHERSMALL)
1506 txdesc->buffer_length = ETHERSMALL;
1507 else
1508 txdesc->buffer_length = skb->len;
1510 if (entry >= TX_RING_SIZE - 1)
1511 txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1512 else
1513 txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1515 mdp->cur_tx++;
1517 if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1518 sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1520 return NETDEV_TX_OK;
1523 /* device close function */
1524 static int sh_eth_close(struct net_device *ndev)
1526 struct sh_eth_private *mdp = netdev_priv(ndev);
1527 int ringsize;
1529 netif_stop_queue(ndev);
1531 /* Disable interrupts by clearing the interrupt mask. */
1532 sh_eth_write(ndev, 0x0000, EESIPR);
1534 /* Stop the chip's Tx and Rx processes. */
1535 sh_eth_write(ndev, 0, EDTRR);
1536 sh_eth_write(ndev, 0, EDRRR);
1538 /* PHY Disconnect */
1539 if (mdp->phydev) {
1540 phy_stop(mdp->phydev);
1541 phy_disconnect(mdp->phydev);
1544 free_irq(ndev->irq, ndev);
1546 del_timer_sync(&mdp->timer);
1548 /* Free all the skbuffs in the Rx queue. */
1549 sh_eth_ring_free(ndev);
1551 /* free DMA buffer */
1552 ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
1553 dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1555 /* free DMA buffer */
1556 ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
1557 dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
1559 pm_runtime_put_sync(&mdp->pdev->dev);
1561 return 0;
1564 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
1566 struct sh_eth_private *mdp = netdev_priv(ndev);
1568 pm_runtime_get_sync(&mdp->pdev->dev);
1570 mdp->stats.tx_dropped += sh_eth_read(ndev, TROCR);
1571 sh_eth_write(ndev, 0, TROCR); /* (write clear) */
1572 mdp->stats.collisions += sh_eth_read(ndev, CDCR);
1573 sh_eth_write(ndev, 0, CDCR); /* (write clear) */
1574 mdp->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
1575 sh_eth_write(ndev, 0, LCCR); /* (write clear) */
1576 if (sh_eth_is_gether(mdp)) {
1577 mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
1578 sh_eth_write(ndev, 0, CERCR); /* (write clear) */
1579 mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
1580 sh_eth_write(ndev, 0, CEECR); /* (write clear) */
1581 } else {
1582 mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
1583 sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
1585 pm_runtime_put_sync(&mdp->pdev->dev);
1587 return &mdp->stats;
1590 /* ioctl to device funciotn*/
1591 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
1592 int cmd)
1594 struct sh_eth_private *mdp = netdev_priv(ndev);
1595 struct phy_device *phydev = mdp->phydev;
1597 if (!netif_running(ndev))
1598 return -EINVAL;
1600 if (!phydev)
1601 return -ENODEV;
1603 return phy_mii_ioctl(phydev, rq, cmd);
1606 #if defined(SH_ETH_HAS_TSU)
1607 /* Multicast reception directions set */
1608 static void sh_eth_set_multicast_list(struct net_device *ndev)
1610 if (ndev->flags & IFF_PROMISC) {
1611 /* Set promiscuous. */
1612 sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_MCT) |
1613 ECMR_PRM, ECMR);
1614 } else {
1615 /* Normal, unicast/broadcast-only mode. */
1616 sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) |
1617 ECMR_MCT, ECMR);
1620 #endif /* SH_ETH_HAS_TSU */
1622 /* SuperH's TSU register init function */
1623 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
1625 sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
1626 sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
1627 sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
1628 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
1629 sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
1630 sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
1631 sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
1632 sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
1633 sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
1634 sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
1635 if (sh_eth_is_gether(mdp)) {
1636 sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
1637 sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
1638 } else {
1639 sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
1640 sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
1642 sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
1643 sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
1644 sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
1645 sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
1646 sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
1647 sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
1648 sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
1651 /* MDIO bus release function */
1652 static int sh_mdio_release(struct net_device *ndev)
1654 struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
1656 /* unregister mdio bus */
1657 mdiobus_unregister(bus);
1659 /* remove mdio bus info from net_device */
1660 dev_set_drvdata(&ndev->dev, NULL);
1662 /* free interrupts memory */
1663 kfree(bus->irq);
1665 /* free bitbang info */
1666 free_mdio_bitbang(bus);
1668 return 0;
1671 /* MDIO bus init function */
1672 static int sh_mdio_init(struct net_device *ndev, int id,
1673 struct sh_eth_plat_data *pd)
1675 int ret, i;
1676 struct bb_info *bitbang;
1677 struct sh_eth_private *mdp = netdev_priv(ndev);
1679 /* create bit control struct for PHY */
1680 bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
1681 if (!bitbang) {
1682 ret = -ENOMEM;
1683 goto out;
1686 /* bitbang init */
1687 bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
1688 bitbang->set_gate = pd->set_mdio_gate;
1689 bitbang->mdi_msk = 0x08;
1690 bitbang->mdo_msk = 0x04;
1691 bitbang->mmd_msk = 0x02;/* MMD */
1692 bitbang->mdc_msk = 0x01;
1693 bitbang->ctrl.ops = &bb_ops;
1695 /* MII controller setting */
1696 mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
1697 if (!mdp->mii_bus) {
1698 ret = -ENOMEM;
1699 goto out_free_bitbang;
1702 /* Hook up MII support for ethtool */
1703 mdp->mii_bus->name = "sh_mii";
1704 mdp->mii_bus->parent = &ndev->dev;
1705 snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1706 mdp->pdev->name, id);
1708 /* PHY IRQ */
1709 mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1710 if (!mdp->mii_bus->irq) {
1711 ret = -ENOMEM;
1712 goto out_free_bus;
1715 for (i = 0; i < PHY_MAX_ADDR; i++)
1716 mdp->mii_bus->irq[i] = PHY_POLL;
1718 /* regist mdio bus */
1719 ret = mdiobus_register(mdp->mii_bus);
1720 if (ret)
1721 goto out_free_irq;
1723 dev_set_drvdata(&ndev->dev, mdp->mii_bus);
1725 return 0;
1727 out_free_irq:
1728 kfree(mdp->mii_bus->irq);
1730 out_free_bus:
1731 free_mdio_bitbang(mdp->mii_bus);
1733 out_free_bitbang:
1734 kfree(bitbang);
1736 out:
1737 return ret;
1740 static const u16 *sh_eth_get_register_offset(int register_type)
1742 const u16 *reg_offset = NULL;
1744 switch (register_type) {
1745 case SH_ETH_REG_GIGABIT:
1746 reg_offset = sh_eth_offset_gigabit;
1747 break;
1748 case SH_ETH_REG_FAST_SH4:
1749 reg_offset = sh_eth_offset_fast_sh4;
1750 break;
1751 case SH_ETH_REG_FAST_SH3_SH2:
1752 reg_offset = sh_eth_offset_fast_sh3_sh2;
1753 break;
1754 default:
1755 printk(KERN_ERR "Unknown register type (%d)\n", register_type);
1756 break;
1759 return reg_offset;
1762 static const struct net_device_ops sh_eth_netdev_ops = {
1763 .ndo_open = sh_eth_open,
1764 .ndo_stop = sh_eth_close,
1765 .ndo_start_xmit = sh_eth_start_xmit,
1766 .ndo_get_stats = sh_eth_get_stats,
1767 #if defined(SH_ETH_HAS_TSU)
1768 .ndo_set_rx_mode = sh_eth_set_multicast_list,
1769 #endif
1770 .ndo_tx_timeout = sh_eth_tx_timeout,
1771 .ndo_do_ioctl = sh_eth_do_ioctl,
1772 .ndo_validate_addr = eth_validate_addr,
1773 .ndo_set_mac_address = eth_mac_addr,
1774 .ndo_change_mtu = eth_change_mtu,
1777 static int sh_eth_drv_probe(struct platform_device *pdev)
1779 int ret, devno = 0;
1780 struct resource *res;
1781 struct net_device *ndev = NULL;
1782 struct sh_eth_private *mdp = NULL;
1783 struct sh_eth_plat_data *pd;
1785 /* get base addr */
1786 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1787 if (unlikely(res == NULL)) {
1788 dev_err(&pdev->dev, "invalid resource\n");
1789 ret = -EINVAL;
1790 goto out;
1793 ndev = alloc_etherdev(sizeof(struct sh_eth_private));
1794 if (!ndev) {
1795 dev_err(&pdev->dev, "Could not allocate device.\n");
1796 ret = -ENOMEM;
1797 goto out;
1800 /* The sh Ether-specific entries in the device structure. */
1801 ndev->base_addr = res->start;
1802 devno = pdev->id;
1803 if (devno < 0)
1804 devno = 0;
1806 ndev->dma = -1;
1807 ret = platform_get_irq(pdev, 0);
1808 if (ret < 0) {
1809 ret = -ENODEV;
1810 goto out_release;
1812 ndev->irq = ret;
1814 SET_NETDEV_DEV(ndev, &pdev->dev);
1816 /* Fill in the fields of the device structure with ethernet values. */
1817 ether_setup(ndev);
1819 mdp = netdev_priv(ndev);
1820 mdp->addr = ioremap(res->start, resource_size(res));
1821 if (mdp->addr == NULL) {
1822 ret = -ENOMEM;
1823 dev_err(&pdev->dev, "ioremap failed.\n");
1824 goto out_release;
1827 spin_lock_init(&mdp->lock);
1828 mdp->pdev = pdev;
1829 pm_runtime_enable(&pdev->dev);
1830 pm_runtime_resume(&pdev->dev);
1832 pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
1833 /* get PHY ID */
1834 mdp->phy_id = pd->phy;
1835 mdp->phy_interface = pd->phy_interface;
1836 /* EDMAC endian */
1837 mdp->edmac_endian = pd->edmac_endian;
1838 mdp->no_ether_link = pd->no_ether_link;
1839 mdp->ether_link_active_low = pd->ether_link_active_low;
1840 mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
1842 /* set cpu data */
1843 #if defined(SH_ETH_HAS_BOTH_MODULES)
1844 mdp->cd = sh_eth_get_cpu_data(mdp);
1845 #else
1846 mdp->cd = &sh_eth_my_cpu_data;
1847 #endif
1848 sh_eth_set_default_cpu_data(mdp->cd);
1850 /* set function */
1851 ndev->netdev_ops = &sh_eth_netdev_ops;
1852 SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
1853 ndev->watchdog_timeo = TX_TIMEOUT;
1855 /* debug message level */
1856 mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
1857 mdp->post_rx = POST_RX >> (devno << 1);
1858 mdp->post_fw = POST_FW >> (devno << 1);
1860 /* read and set MAC address */
1861 read_mac_address(ndev, pd->mac_addr);
1863 /* First device only init */
1864 if (!devno) {
1865 if (mdp->cd->tsu) {
1866 struct resource *rtsu;
1867 rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1868 if (!rtsu) {
1869 dev_err(&pdev->dev, "Not found TSU resource\n");
1870 goto out_release;
1872 mdp->tsu_addr = ioremap(rtsu->start,
1873 resource_size(rtsu));
1875 if (mdp->cd->chip_reset)
1876 mdp->cd->chip_reset(ndev);
1878 if (mdp->cd->tsu) {
1879 /* TSU init (Init only)*/
1880 sh_eth_tsu_init(mdp);
1884 /* network device register */
1885 ret = register_netdev(ndev);
1886 if (ret)
1887 goto out_release;
1889 /* mdio bus init */
1890 ret = sh_mdio_init(ndev, pdev->id, pd);
1891 if (ret)
1892 goto out_unregister;
1894 /* print device information */
1895 pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
1896 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1898 platform_set_drvdata(pdev, ndev);
1900 return ret;
1902 out_unregister:
1903 unregister_netdev(ndev);
1905 out_release:
1906 /* net_dev free */
1907 if (mdp && mdp->addr)
1908 iounmap(mdp->addr);
1909 if (mdp && mdp->tsu_addr)
1910 iounmap(mdp->tsu_addr);
1911 if (ndev)
1912 free_netdev(ndev);
1914 out:
1915 return ret;
1918 static int sh_eth_drv_remove(struct platform_device *pdev)
1920 struct net_device *ndev = platform_get_drvdata(pdev);
1921 struct sh_eth_private *mdp = netdev_priv(ndev);
1923 iounmap(mdp->tsu_addr);
1924 sh_mdio_release(ndev);
1925 unregister_netdev(ndev);
1926 pm_runtime_disable(&pdev->dev);
1927 iounmap(mdp->addr);
1928 free_netdev(ndev);
1929 platform_set_drvdata(pdev, NULL);
1931 return 0;
1934 static int sh_eth_runtime_nop(struct device *dev)
1937 * Runtime PM callback shared between ->runtime_suspend()
1938 * and ->runtime_resume(). Simply returns success.
1940 * This driver re-initializes all registers after
1941 * pm_runtime_get_sync() anyway so there is no need
1942 * to save and restore registers here.
1944 return 0;
1947 static struct dev_pm_ops sh_eth_dev_pm_ops = {
1948 .runtime_suspend = sh_eth_runtime_nop,
1949 .runtime_resume = sh_eth_runtime_nop,
1952 static struct platform_driver sh_eth_driver = {
1953 .probe = sh_eth_drv_probe,
1954 .remove = sh_eth_drv_remove,
1955 .driver = {
1956 .name = CARDNAME,
1957 .pm = &sh_eth_dev_pm_ops,
1961 module_platform_driver(sh_eth_driver);
1963 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
1964 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
1965 MODULE_LICENSE("GPL v2");