thinkpad-acpi: name event constants
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / sched.h
blob1e174cacf3e5b26456b2a05b9e26be7ce69f17ea
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
42 #ifdef __KERNEL__
44 struct sched_param {
45 int sched_priority;
48 #include <asm/param.h> /* for HZ */
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/path.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rculist.h>
81 #include <linux/rtmutex.h>
83 #include <linux/time.h>
84 #include <linux/param.h>
85 #include <linux/resource.h>
86 #include <linux/timer.h>
87 #include <linux/hrtimer.h>
88 #include <linux/task_io_accounting.h>
89 #include <linux/kobject.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
93 #include <asm/processor.h>
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct fs_struct;
100 struct bts_context;
101 struct perf_counter_context;
104 * List of flags we want to share for kernel threads,
105 * if only because they are not used by them anyway.
107 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110 * These are the constant used to fake the fixed-point load-average
111 * counting. Some notes:
112 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
113 * a load-average precision of 10 bits integer + 11 bits fractional
114 * - if you want to count load-averages more often, you need more
115 * precision, or rounding will get you. With 2-second counting freq,
116 * the EXP_n values would be 1981, 2034 and 2043 if still using only
117 * 11 bit fractions.
119 extern unsigned long avenrun[]; /* Load averages */
120 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122 #define FSHIFT 11 /* nr of bits of precision */
123 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
124 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
125 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
126 #define EXP_5 2014 /* 1/exp(5sec/5min) */
127 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129 #define CALC_LOAD(load,exp,n) \
130 load *= exp; \
131 load += n*(FIXED_1-exp); \
132 load >>= FSHIFT;
134 extern unsigned long total_forks;
135 extern int nr_threads;
136 DECLARE_PER_CPU(unsigned long, process_counts);
137 extern int nr_processes(void);
138 extern unsigned long nr_running(void);
139 extern unsigned long nr_uninterruptible(void);
140 extern unsigned long nr_iowait(void);
141 extern void calc_global_load(void);
142 extern u64 cpu_nr_migrations(int cpu);
144 extern unsigned long get_parent_ip(unsigned long addr);
146 struct seq_file;
147 struct cfs_rq;
148 struct task_group;
149 #ifdef CONFIG_SCHED_DEBUG
150 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
151 extern void proc_sched_set_task(struct task_struct *p);
152 extern void
153 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
154 #else
155 static inline void
156 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
159 static inline void proc_sched_set_task(struct task_struct *p)
162 static inline void
163 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
166 #endif
168 extern unsigned long long time_sync_thresh;
171 * Task state bitmask. NOTE! These bits are also
172 * encoded in fs/proc/array.c: get_task_state().
174 * We have two separate sets of flags: task->state
175 * is about runnability, while task->exit_state are
176 * about the task exiting. Confusing, but this way
177 * modifying one set can't modify the other one by
178 * mistake.
180 #define TASK_RUNNING 0
181 #define TASK_INTERRUPTIBLE 1
182 #define TASK_UNINTERRUPTIBLE 2
183 #define __TASK_STOPPED 4
184 #define __TASK_TRACED 8
185 /* in tsk->exit_state */
186 #define EXIT_ZOMBIE 16
187 #define EXIT_DEAD 32
188 /* in tsk->state again */
189 #define TASK_DEAD 64
190 #define TASK_WAKEKILL 128
192 /* Convenience macros for the sake of set_task_state */
193 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
194 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
195 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
197 /* Convenience macros for the sake of wake_up */
198 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
199 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
201 /* get_task_state() */
202 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
203 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
204 __TASK_TRACED)
206 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
207 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
208 #define task_is_stopped_or_traced(task) \
209 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
210 #define task_contributes_to_load(task) \
211 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
212 (task->flags & PF_FREEZING) == 0)
214 #define __set_task_state(tsk, state_value) \
215 do { (tsk)->state = (state_value); } while (0)
216 #define set_task_state(tsk, state_value) \
217 set_mb((tsk)->state, (state_value))
220 * set_current_state() includes a barrier so that the write of current->state
221 * is correctly serialised wrt the caller's subsequent test of whether to
222 * actually sleep:
224 * set_current_state(TASK_UNINTERRUPTIBLE);
225 * if (do_i_need_to_sleep())
226 * schedule();
228 * If the caller does not need such serialisation then use __set_current_state()
230 #define __set_current_state(state_value) \
231 do { current->state = (state_value); } while (0)
232 #define set_current_state(state_value) \
233 set_mb(current->state, (state_value))
235 /* Task command name length */
236 #define TASK_COMM_LEN 16
238 #include <linux/spinlock.h>
241 * This serializes "schedule()" and also protects
242 * the run-queue from deletions/modifications (but
243 * _adding_ to the beginning of the run-queue has
244 * a separate lock).
246 extern rwlock_t tasklist_lock;
247 extern spinlock_t mmlist_lock;
249 struct task_struct;
251 extern void sched_init(void);
252 extern void sched_init_smp(void);
253 extern asmlinkage void schedule_tail(struct task_struct *prev);
254 extern void init_idle(struct task_struct *idle, int cpu);
255 extern void init_idle_bootup_task(struct task_struct *idle);
257 extern int runqueue_is_locked(void);
258 extern void task_rq_unlock_wait(struct task_struct *p);
260 extern cpumask_var_t nohz_cpu_mask;
261 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
262 extern int select_nohz_load_balancer(int cpu);
263 extern int get_nohz_load_balancer(void);
264 #else
265 static inline int select_nohz_load_balancer(int cpu)
267 return 0;
269 #endif
272 * Only dump TASK_* tasks. (0 for all tasks)
274 extern void show_state_filter(unsigned long state_filter);
276 static inline void show_state(void)
278 show_state_filter(0);
281 extern void show_regs(struct pt_regs *);
284 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
285 * task), SP is the stack pointer of the first frame that should be shown in the back
286 * trace (or NULL if the entire call-chain of the task should be shown).
288 extern void show_stack(struct task_struct *task, unsigned long *sp);
290 void io_schedule(void);
291 long io_schedule_timeout(long timeout);
293 extern void cpu_init (void);
294 extern void trap_init(void);
295 extern void update_process_times(int user);
296 extern void scheduler_tick(void);
298 extern void sched_show_task(struct task_struct *p);
300 #ifdef CONFIG_DETECT_SOFTLOCKUP
301 extern void softlockup_tick(void);
302 extern void touch_softlockup_watchdog(void);
303 extern void touch_all_softlockup_watchdogs(void);
304 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
305 struct file *filp, void __user *buffer,
306 size_t *lenp, loff_t *ppos);
307 extern unsigned int softlockup_panic;
308 extern int softlockup_thresh;
309 #else
310 static inline void softlockup_tick(void)
313 static inline void touch_softlockup_watchdog(void)
316 static inline void touch_all_softlockup_watchdogs(void)
319 #endif
321 #ifdef CONFIG_DETECT_HUNG_TASK
322 extern unsigned int sysctl_hung_task_panic;
323 extern unsigned long sysctl_hung_task_check_count;
324 extern unsigned long sysctl_hung_task_timeout_secs;
325 extern unsigned long sysctl_hung_task_warnings;
326 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
327 struct file *filp, void __user *buffer,
328 size_t *lenp, loff_t *ppos);
329 #endif
331 /* Attach to any functions which should be ignored in wchan output. */
332 #define __sched __attribute__((__section__(".sched.text")))
334 /* Linker adds these: start and end of __sched functions */
335 extern char __sched_text_start[], __sched_text_end[];
337 /* Is this address in the __sched functions? */
338 extern int in_sched_functions(unsigned long addr);
340 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
341 extern signed long schedule_timeout(signed long timeout);
342 extern signed long schedule_timeout_interruptible(signed long timeout);
343 extern signed long schedule_timeout_killable(signed long timeout);
344 extern signed long schedule_timeout_uninterruptible(signed long timeout);
345 asmlinkage void __schedule(void);
346 asmlinkage void schedule(void);
347 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
349 struct nsproxy;
350 struct user_namespace;
353 * Default maximum number of active map areas, this limits the number of vmas
354 * per mm struct. Users can overwrite this number by sysctl but there is a
355 * problem.
357 * When a program's coredump is generated as ELF format, a section is created
358 * per a vma. In ELF, the number of sections is represented in unsigned short.
359 * This means the number of sections should be smaller than 65535 at coredump.
360 * Because the kernel adds some informative sections to a image of program at
361 * generating coredump, we need some margin. The number of extra sections is
362 * 1-3 now and depends on arch. We use "5" as safe margin, here.
364 #define MAPCOUNT_ELF_CORE_MARGIN (5)
365 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
367 extern int sysctl_max_map_count;
369 #include <linux/aio.h>
371 extern unsigned long
372 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
373 unsigned long, unsigned long);
374 extern unsigned long
375 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
376 unsigned long len, unsigned long pgoff,
377 unsigned long flags);
378 extern void arch_unmap_area(struct mm_struct *, unsigned long);
379 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
381 #if USE_SPLIT_PTLOCKS
383 * The mm counters are not protected by its page_table_lock,
384 * so must be incremented atomically.
386 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
387 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
388 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
389 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
390 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
392 #else /* !USE_SPLIT_PTLOCKS */
394 * The mm counters are protected by its page_table_lock,
395 * so can be incremented directly.
397 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
398 #define get_mm_counter(mm, member) ((mm)->_##member)
399 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
400 #define inc_mm_counter(mm, member) (mm)->_##member++
401 #define dec_mm_counter(mm, member) (mm)->_##member--
403 #endif /* !USE_SPLIT_PTLOCKS */
405 #define get_mm_rss(mm) \
406 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
407 #define update_hiwater_rss(mm) do { \
408 unsigned long _rss = get_mm_rss(mm); \
409 if ((mm)->hiwater_rss < _rss) \
410 (mm)->hiwater_rss = _rss; \
411 } while (0)
412 #define update_hiwater_vm(mm) do { \
413 if ((mm)->hiwater_vm < (mm)->total_vm) \
414 (mm)->hiwater_vm = (mm)->total_vm; \
415 } while (0)
417 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
419 return max(mm->hiwater_rss, get_mm_rss(mm));
422 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
424 return max(mm->hiwater_vm, mm->total_vm);
427 extern void set_dumpable(struct mm_struct *mm, int value);
428 extern int get_dumpable(struct mm_struct *mm);
430 /* mm flags */
431 /* dumpable bits */
432 #define MMF_DUMPABLE 0 /* core dump is permitted */
433 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
434 #define MMF_DUMPABLE_BITS 2
436 /* coredump filter bits */
437 #define MMF_DUMP_ANON_PRIVATE 2
438 #define MMF_DUMP_ANON_SHARED 3
439 #define MMF_DUMP_MAPPED_PRIVATE 4
440 #define MMF_DUMP_MAPPED_SHARED 5
441 #define MMF_DUMP_ELF_HEADERS 6
442 #define MMF_DUMP_HUGETLB_PRIVATE 7
443 #define MMF_DUMP_HUGETLB_SHARED 8
444 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
445 #define MMF_DUMP_FILTER_BITS 7
446 #define MMF_DUMP_FILTER_MASK \
447 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
448 #define MMF_DUMP_FILTER_DEFAULT \
449 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
450 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
452 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
453 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
454 #else
455 # define MMF_DUMP_MASK_DEFAULT_ELF 0
456 #endif
458 struct sighand_struct {
459 atomic_t count;
460 struct k_sigaction action[_NSIG];
461 spinlock_t siglock;
462 wait_queue_head_t signalfd_wqh;
465 struct pacct_struct {
466 int ac_flag;
467 long ac_exitcode;
468 unsigned long ac_mem;
469 cputime_t ac_utime, ac_stime;
470 unsigned long ac_minflt, ac_majflt;
474 * struct task_cputime - collected CPU time counts
475 * @utime: time spent in user mode, in &cputime_t units
476 * @stime: time spent in kernel mode, in &cputime_t units
477 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
479 * This structure groups together three kinds of CPU time that are
480 * tracked for threads and thread groups. Most things considering
481 * CPU time want to group these counts together and treat all three
482 * of them in parallel.
484 struct task_cputime {
485 cputime_t utime;
486 cputime_t stime;
487 unsigned long long sum_exec_runtime;
489 /* Alternate field names when used to cache expirations. */
490 #define prof_exp stime
491 #define virt_exp utime
492 #define sched_exp sum_exec_runtime
494 #define INIT_CPUTIME \
495 (struct task_cputime) { \
496 .utime = cputime_zero, \
497 .stime = cputime_zero, \
498 .sum_exec_runtime = 0, \
502 * Disable preemption until the scheduler is running.
503 * Reset by start_kernel()->sched_init()->init_idle().
505 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
506 * before the scheduler is active -- see should_resched().
508 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
511 * struct thread_group_cputimer - thread group interval timer counts
512 * @cputime: thread group interval timers.
513 * @running: non-zero when there are timers running and
514 * @cputime receives updates.
515 * @lock: lock for fields in this struct.
517 * This structure contains the version of task_cputime, above, that is
518 * used for thread group CPU timer calculations.
520 struct thread_group_cputimer {
521 struct task_cputime cputime;
522 int running;
523 spinlock_t lock;
527 * NOTE! "signal_struct" does not have it's own
528 * locking, because a shared signal_struct always
529 * implies a shared sighand_struct, so locking
530 * sighand_struct is always a proper superset of
531 * the locking of signal_struct.
533 struct signal_struct {
534 atomic_t count;
535 atomic_t live;
537 wait_queue_head_t wait_chldexit; /* for wait4() */
539 /* current thread group signal load-balancing target: */
540 struct task_struct *curr_target;
542 /* shared signal handling: */
543 struct sigpending shared_pending;
545 /* thread group exit support */
546 int group_exit_code;
547 /* overloaded:
548 * - notify group_exit_task when ->count is equal to notify_count
549 * - everyone except group_exit_task is stopped during signal delivery
550 * of fatal signals, group_exit_task processes the signal.
552 int notify_count;
553 struct task_struct *group_exit_task;
555 /* thread group stop support, overloads group_exit_code too */
556 int group_stop_count;
557 unsigned int flags; /* see SIGNAL_* flags below */
559 /* POSIX.1b Interval Timers */
560 struct list_head posix_timers;
562 /* ITIMER_REAL timer for the process */
563 struct hrtimer real_timer;
564 struct pid *leader_pid;
565 ktime_t it_real_incr;
567 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
568 cputime_t it_prof_expires, it_virt_expires;
569 cputime_t it_prof_incr, it_virt_incr;
572 * Thread group totals for process CPU timers.
573 * See thread_group_cputimer(), et al, for details.
575 struct thread_group_cputimer cputimer;
577 /* Earliest-expiration cache. */
578 struct task_cputime cputime_expires;
580 struct list_head cpu_timers[3];
582 struct pid *tty_old_pgrp;
584 /* boolean value for session group leader */
585 int leader;
587 struct tty_struct *tty; /* NULL if no tty */
590 * Cumulative resource counters for dead threads in the group,
591 * and for reaped dead child processes forked by this group.
592 * Live threads maintain their own counters and add to these
593 * in __exit_signal, except for the group leader.
595 cputime_t utime, stime, cutime, cstime;
596 cputime_t gtime;
597 cputime_t cgtime;
598 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
599 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
600 unsigned long inblock, oublock, cinblock, coublock;
601 struct task_io_accounting ioac;
604 * Cumulative ns of schedule CPU time fo dead threads in the
605 * group, not including a zombie group leader, (This only differs
606 * from jiffies_to_ns(utime + stime) if sched_clock uses something
607 * other than jiffies.)
609 unsigned long long sum_sched_runtime;
612 * We don't bother to synchronize most readers of this at all,
613 * because there is no reader checking a limit that actually needs
614 * to get both rlim_cur and rlim_max atomically, and either one
615 * alone is a single word that can safely be read normally.
616 * getrlimit/setrlimit use task_lock(current->group_leader) to
617 * protect this instead of the siglock, because they really
618 * have no need to disable irqs.
620 struct rlimit rlim[RLIM_NLIMITS];
622 #ifdef CONFIG_BSD_PROCESS_ACCT
623 struct pacct_struct pacct; /* per-process accounting information */
624 #endif
625 #ifdef CONFIG_TASKSTATS
626 struct taskstats *stats;
627 #endif
628 #ifdef CONFIG_AUDIT
629 unsigned audit_tty;
630 struct tty_audit_buf *tty_audit_buf;
631 #endif
634 /* Context switch must be unlocked if interrupts are to be enabled */
635 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
636 # define __ARCH_WANT_UNLOCKED_CTXSW
637 #endif
640 * Bits in flags field of signal_struct.
642 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
643 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
644 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
645 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
647 * Pending notifications to parent.
649 #define SIGNAL_CLD_STOPPED 0x00000010
650 #define SIGNAL_CLD_CONTINUED 0x00000020
651 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
653 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
655 /* If true, all threads except ->group_exit_task have pending SIGKILL */
656 static inline int signal_group_exit(const struct signal_struct *sig)
658 return (sig->flags & SIGNAL_GROUP_EXIT) ||
659 (sig->group_exit_task != NULL);
663 * Some day this will be a full-fledged user tracking system..
665 struct user_struct {
666 atomic_t __count; /* reference count */
667 atomic_t processes; /* How many processes does this user have? */
668 atomic_t files; /* How many open files does this user have? */
669 atomic_t sigpending; /* How many pending signals does this user have? */
670 #ifdef CONFIG_INOTIFY_USER
671 atomic_t inotify_watches; /* How many inotify watches does this user have? */
672 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
673 #endif
674 #ifdef CONFIG_EPOLL
675 atomic_t epoll_watches; /* The number of file descriptors currently watched */
676 #endif
677 #ifdef CONFIG_POSIX_MQUEUE
678 /* protected by mq_lock */
679 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
680 #endif
681 unsigned long locked_shm; /* How many pages of mlocked shm ? */
683 #ifdef CONFIG_KEYS
684 struct key *uid_keyring; /* UID specific keyring */
685 struct key *session_keyring; /* UID's default session keyring */
686 #endif
688 /* Hash table maintenance information */
689 struct hlist_node uidhash_node;
690 uid_t uid;
691 struct user_namespace *user_ns;
693 #ifdef CONFIG_USER_SCHED
694 struct task_group *tg;
695 #ifdef CONFIG_SYSFS
696 struct kobject kobj;
697 struct delayed_work work;
698 #endif
699 #endif
701 #ifdef CONFIG_PERF_COUNTERS
702 atomic_long_t locked_vm;
703 #endif
706 extern int uids_sysfs_init(void);
708 extern struct user_struct *find_user(uid_t);
710 extern struct user_struct root_user;
711 #define INIT_USER (&root_user)
714 struct backing_dev_info;
715 struct reclaim_state;
717 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
718 struct sched_info {
719 /* cumulative counters */
720 unsigned long pcount; /* # of times run on this cpu */
721 unsigned long long run_delay; /* time spent waiting on a runqueue */
723 /* timestamps */
724 unsigned long long last_arrival,/* when we last ran on a cpu */
725 last_queued; /* when we were last queued to run */
726 #ifdef CONFIG_SCHEDSTATS
727 /* BKL stats */
728 unsigned int bkl_count;
729 #endif
731 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
733 #ifdef CONFIG_TASK_DELAY_ACCT
734 struct task_delay_info {
735 spinlock_t lock;
736 unsigned int flags; /* Private per-task flags */
738 /* For each stat XXX, add following, aligned appropriately
740 * struct timespec XXX_start, XXX_end;
741 * u64 XXX_delay;
742 * u32 XXX_count;
744 * Atomicity of updates to XXX_delay, XXX_count protected by
745 * single lock above (split into XXX_lock if contention is an issue).
749 * XXX_count is incremented on every XXX operation, the delay
750 * associated with the operation is added to XXX_delay.
751 * XXX_delay contains the accumulated delay time in nanoseconds.
753 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
754 u64 blkio_delay; /* wait for sync block io completion */
755 u64 swapin_delay; /* wait for swapin block io completion */
756 u32 blkio_count; /* total count of the number of sync block */
757 /* io operations performed */
758 u32 swapin_count; /* total count of the number of swapin block */
759 /* io operations performed */
761 struct timespec freepages_start, freepages_end;
762 u64 freepages_delay; /* wait for memory reclaim */
763 u32 freepages_count; /* total count of memory reclaim */
765 #endif /* CONFIG_TASK_DELAY_ACCT */
767 static inline int sched_info_on(void)
769 #ifdef CONFIG_SCHEDSTATS
770 return 1;
771 #elif defined(CONFIG_TASK_DELAY_ACCT)
772 extern int delayacct_on;
773 return delayacct_on;
774 #else
775 return 0;
776 #endif
779 enum cpu_idle_type {
780 CPU_IDLE,
781 CPU_NOT_IDLE,
782 CPU_NEWLY_IDLE,
783 CPU_MAX_IDLE_TYPES
787 * sched-domains (multiprocessor balancing) declarations:
791 * Increase resolution of nice-level calculations:
793 #define SCHED_LOAD_SHIFT 10
794 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
796 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
798 #ifdef CONFIG_SMP
799 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
800 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
801 #define SD_BALANCE_EXEC 4 /* Balance on exec */
802 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
803 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
804 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
805 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
806 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
807 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
808 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
809 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
810 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
812 enum powersavings_balance_level {
813 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
814 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
815 * first for long running threads
817 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
818 * cpu package for power savings
820 MAX_POWERSAVINGS_BALANCE_LEVELS
823 extern int sched_mc_power_savings, sched_smt_power_savings;
825 static inline int sd_balance_for_mc_power(void)
827 if (sched_smt_power_savings)
828 return SD_POWERSAVINGS_BALANCE;
830 return 0;
833 static inline int sd_balance_for_package_power(void)
835 if (sched_mc_power_savings | sched_smt_power_savings)
836 return SD_POWERSAVINGS_BALANCE;
838 return 0;
842 * Optimise SD flags for power savings:
843 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
844 * Keep default SD flags if sched_{smt,mc}_power_saving=0
847 static inline int sd_power_saving_flags(void)
849 if (sched_mc_power_savings | sched_smt_power_savings)
850 return SD_BALANCE_NEWIDLE;
852 return 0;
855 struct sched_group {
856 struct sched_group *next; /* Must be a circular list */
859 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
860 * single CPU. This is read only (except for setup, hotplug CPU).
861 * Note : Never change cpu_power without recompute its reciprocal
863 unsigned int __cpu_power;
865 * reciprocal value of cpu_power to avoid expensive divides
866 * (see include/linux/reciprocal_div.h)
868 u32 reciprocal_cpu_power;
871 * The CPUs this group covers.
873 * NOTE: this field is variable length. (Allocated dynamically
874 * by attaching extra space to the end of the structure,
875 * depending on how many CPUs the kernel has booted up with)
877 * It is also be embedded into static data structures at build
878 * time. (See 'struct static_sched_group' in kernel/sched.c)
880 unsigned long cpumask[0];
883 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
885 return to_cpumask(sg->cpumask);
888 enum sched_domain_level {
889 SD_LV_NONE = 0,
890 SD_LV_SIBLING,
891 SD_LV_MC,
892 SD_LV_CPU,
893 SD_LV_NODE,
894 SD_LV_ALLNODES,
895 SD_LV_MAX
898 struct sched_domain_attr {
899 int relax_domain_level;
902 #define SD_ATTR_INIT (struct sched_domain_attr) { \
903 .relax_domain_level = -1, \
906 struct sched_domain {
907 /* These fields must be setup */
908 struct sched_domain *parent; /* top domain must be null terminated */
909 struct sched_domain *child; /* bottom domain must be null terminated */
910 struct sched_group *groups; /* the balancing groups of the domain */
911 unsigned long min_interval; /* Minimum balance interval ms */
912 unsigned long max_interval; /* Maximum balance interval ms */
913 unsigned int busy_factor; /* less balancing by factor if busy */
914 unsigned int imbalance_pct; /* No balance until over watermark */
915 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
916 unsigned int busy_idx;
917 unsigned int idle_idx;
918 unsigned int newidle_idx;
919 unsigned int wake_idx;
920 unsigned int forkexec_idx;
921 int flags; /* See SD_* */
922 enum sched_domain_level level;
924 /* Runtime fields. */
925 unsigned long last_balance; /* init to jiffies. units in jiffies */
926 unsigned int balance_interval; /* initialise to 1. units in ms. */
927 unsigned int nr_balance_failed; /* initialise to 0 */
929 u64 last_update;
931 #ifdef CONFIG_SCHEDSTATS
932 /* load_balance() stats */
933 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
936 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
937 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
938 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
939 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
940 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
942 /* Active load balancing */
943 unsigned int alb_count;
944 unsigned int alb_failed;
945 unsigned int alb_pushed;
947 /* SD_BALANCE_EXEC stats */
948 unsigned int sbe_count;
949 unsigned int sbe_balanced;
950 unsigned int sbe_pushed;
952 /* SD_BALANCE_FORK stats */
953 unsigned int sbf_count;
954 unsigned int sbf_balanced;
955 unsigned int sbf_pushed;
957 /* try_to_wake_up() stats */
958 unsigned int ttwu_wake_remote;
959 unsigned int ttwu_move_affine;
960 unsigned int ttwu_move_balance;
961 #endif
962 #ifdef CONFIG_SCHED_DEBUG
963 char *name;
964 #endif
967 * Span of all CPUs in this domain.
969 * NOTE: this field is variable length. (Allocated dynamically
970 * by attaching extra space to the end of the structure,
971 * depending on how many CPUs the kernel has booted up with)
973 * It is also be embedded into static data structures at build
974 * time. (See 'struct static_sched_domain' in kernel/sched.c)
976 unsigned long span[0];
979 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
981 return to_cpumask(sd->span);
984 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
985 struct sched_domain_attr *dattr_new);
987 /* Test a flag in parent sched domain */
988 static inline int test_sd_parent(struct sched_domain *sd, int flag)
990 if (sd->parent && (sd->parent->flags & flag))
991 return 1;
993 return 0;
996 #else /* CONFIG_SMP */
998 struct sched_domain_attr;
1000 static inline void
1001 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1002 struct sched_domain_attr *dattr_new)
1005 #endif /* !CONFIG_SMP */
1007 struct io_context; /* See blkdev.h */
1010 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1011 extern void prefetch_stack(struct task_struct *t);
1012 #else
1013 static inline void prefetch_stack(struct task_struct *t) { }
1014 #endif
1016 struct audit_context; /* See audit.c */
1017 struct mempolicy;
1018 struct pipe_inode_info;
1019 struct uts_namespace;
1021 struct rq;
1022 struct sched_domain;
1024 struct sched_class {
1025 const struct sched_class *next;
1027 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1028 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1029 void (*yield_task) (struct rq *rq);
1031 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
1033 struct task_struct * (*pick_next_task) (struct rq *rq);
1034 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1036 #ifdef CONFIG_SMP
1037 int (*select_task_rq)(struct task_struct *p, int sync);
1039 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1040 struct rq *busiest, unsigned long max_load_move,
1041 struct sched_domain *sd, enum cpu_idle_type idle,
1042 int *all_pinned, int *this_best_prio);
1044 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1045 struct rq *busiest, struct sched_domain *sd,
1046 enum cpu_idle_type idle);
1047 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1048 int (*needs_post_schedule) (struct rq *this_rq);
1049 void (*post_schedule) (struct rq *this_rq);
1050 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1052 void (*set_cpus_allowed)(struct task_struct *p,
1053 const struct cpumask *newmask);
1055 void (*rq_online)(struct rq *rq);
1056 void (*rq_offline)(struct rq *rq);
1057 #endif
1059 void (*set_curr_task) (struct rq *rq);
1060 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1061 void (*task_new) (struct rq *rq, struct task_struct *p);
1063 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1064 int running);
1065 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1066 int running);
1067 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1068 int oldprio, int running);
1070 #ifdef CONFIG_FAIR_GROUP_SCHED
1071 void (*moved_group) (struct task_struct *p);
1072 #endif
1075 struct load_weight {
1076 unsigned long weight, inv_weight;
1080 * CFS stats for a schedulable entity (task, task-group etc)
1082 * Current field usage histogram:
1084 * 4 se->block_start
1085 * 4 se->run_node
1086 * 4 se->sleep_start
1087 * 6 se->load.weight
1089 struct sched_entity {
1090 struct load_weight load; /* for load-balancing */
1091 struct rb_node run_node;
1092 struct list_head group_node;
1093 unsigned int on_rq;
1095 u64 exec_start;
1096 u64 sum_exec_runtime;
1097 u64 vruntime;
1098 u64 prev_sum_exec_runtime;
1100 u64 last_wakeup;
1101 u64 avg_overlap;
1103 u64 nr_migrations;
1105 u64 start_runtime;
1106 u64 avg_wakeup;
1108 #ifdef CONFIG_SCHEDSTATS
1109 u64 wait_start;
1110 u64 wait_max;
1111 u64 wait_count;
1112 u64 wait_sum;
1114 u64 sleep_start;
1115 u64 sleep_max;
1116 s64 sum_sleep_runtime;
1118 u64 block_start;
1119 u64 block_max;
1120 u64 exec_max;
1121 u64 slice_max;
1123 u64 nr_migrations_cold;
1124 u64 nr_failed_migrations_affine;
1125 u64 nr_failed_migrations_running;
1126 u64 nr_failed_migrations_hot;
1127 u64 nr_forced_migrations;
1128 u64 nr_forced2_migrations;
1130 u64 nr_wakeups;
1131 u64 nr_wakeups_sync;
1132 u64 nr_wakeups_migrate;
1133 u64 nr_wakeups_local;
1134 u64 nr_wakeups_remote;
1135 u64 nr_wakeups_affine;
1136 u64 nr_wakeups_affine_attempts;
1137 u64 nr_wakeups_passive;
1138 u64 nr_wakeups_idle;
1139 #endif
1141 #ifdef CONFIG_FAIR_GROUP_SCHED
1142 struct sched_entity *parent;
1143 /* rq on which this entity is (to be) queued: */
1144 struct cfs_rq *cfs_rq;
1145 /* rq "owned" by this entity/group: */
1146 struct cfs_rq *my_q;
1147 #endif
1150 struct sched_rt_entity {
1151 struct list_head run_list;
1152 unsigned long timeout;
1153 unsigned int time_slice;
1154 int nr_cpus_allowed;
1156 struct sched_rt_entity *back;
1157 #ifdef CONFIG_RT_GROUP_SCHED
1158 struct sched_rt_entity *parent;
1159 /* rq on which this entity is (to be) queued: */
1160 struct rt_rq *rt_rq;
1161 /* rq "owned" by this entity/group: */
1162 struct rt_rq *my_q;
1163 #endif
1166 struct task_struct {
1167 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1168 void *stack;
1169 atomic_t usage;
1170 unsigned int flags; /* per process flags, defined below */
1171 unsigned int ptrace;
1173 int lock_depth; /* BKL lock depth */
1175 #ifdef CONFIG_SMP
1176 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1177 int oncpu;
1178 #endif
1179 #endif
1181 int prio, static_prio, normal_prio;
1182 unsigned int rt_priority;
1183 const struct sched_class *sched_class;
1184 struct sched_entity se;
1185 struct sched_rt_entity rt;
1187 #ifdef CONFIG_PREEMPT_NOTIFIERS
1188 /* list of struct preempt_notifier: */
1189 struct hlist_head preempt_notifiers;
1190 #endif
1193 * fpu_counter contains the number of consecutive context switches
1194 * that the FPU is used. If this is over a threshold, the lazy fpu
1195 * saving becomes unlazy to save the trap. This is an unsigned char
1196 * so that after 256 times the counter wraps and the behavior turns
1197 * lazy again; this to deal with bursty apps that only use FPU for
1198 * a short time
1200 unsigned char fpu_counter;
1201 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1202 #ifdef CONFIG_BLK_DEV_IO_TRACE
1203 unsigned int btrace_seq;
1204 #endif
1206 unsigned int policy;
1207 cpumask_t cpus_allowed;
1209 #ifdef CONFIG_PREEMPT_RCU
1210 int rcu_read_lock_nesting;
1211 int rcu_flipctr_idx;
1212 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1214 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1215 struct sched_info sched_info;
1216 #endif
1218 struct list_head tasks;
1219 struct plist_node pushable_tasks;
1221 struct mm_struct *mm, *active_mm;
1223 /* task state */
1224 struct linux_binfmt *binfmt;
1225 int exit_state;
1226 int exit_code, exit_signal;
1227 int pdeath_signal; /* The signal sent when the parent dies */
1228 /* ??? */
1229 unsigned int personality;
1230 unsigned did_exec:1;
1231 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1232 * execve */
1233 pid_t pid;
1234 pid_t tgid;
1236 /* Canary value for the -fstack-protector gcc feature */
1237 unsigned long stack_canary;
1240 * pointers to (original) parent process, youngest child, younger sibling,
1241 * older sibling, respectively. (p->father can be replaced with
1242 * p->real_parent->pid)
1244 struct task_struct *real_parent; /* real parent process */
1245 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1247 * children/sibling forms the list of my natural children
1249 struct list_head children; /* list of my children */
1250 struct list_head sibling; /* linkage in my parent's children list */
1251 struct task_struct *group_leader; /* threadgroup leader */
1254 * ptraced is the list of tasks this task is using ptrace on.
1255 * This includes both natural children and PTRACE_ATTACH targets.
1256 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1258 struct list_head ptraced;
1259 struct list_head ptrace_entry;
1262 * This is the tracer handle for the ptrace BTS extension.
1263 * This field actually belongs to the ptracer task.
1265 struct bts_context *bts;
1267 /* PID/PID hash table linkage. */
1268 struct pid_link pids[PIDTYPE_MAX];
1269 struct list_head thread_group;
1271 struct completion *vfork_done; /* for vfork() */
1272 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1273 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1275 cputime_t utime, stime, utimescaled, stimescaled;
1276 cputime_t gtime;
1277 cputime_t prev_utime, prev_stime;
1278 unsigned long nvcsw, nivcsw; /* context switch counts */
1279 struct timespec start_time; /* monotonic time */
1280 struct timespec real_start_time; /* boot based time */
1281 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1282 unsigned long min_flt, maj_flt;
1284 struct task_cputime cputime_expires;
1285 struct list_head cpu_timers[3];
1287 /* process credentials */
1288 const struct cred *real_cred; /* objective and real subjective task
1289 * credentials (COW) */
1290 const struct cred *cred; /* effective (overridable) subjective task
1291 * credentials (COW) */
1292 struct mutex cred_guard_mutex; /* guard against foreign influences on
1293 * credential calculations
1294 * (notably. ptrace) */
1296 char comm[TASK_COMM_LEN]; /* executable name excluding path
1297 - access with [gs]et_task_comm (which lock
1298 it with task_lock())
1299 - initialized normally by setup_new_exec */
1300 /* file system info */
1301 int link_count, total_link_count;
1302 #ifdef CONFIG_SYSVIPC
1303 /* ipc stuff */
1304 struct sysv_sem sysvsem;
1305 #endif
1306 #ifdef CONFIG_DETECT_HUNG_TASK
1307 /* hung task detection */
1308 unsigned long last_switch_count;
1309 #endif
1310 /* CPU-specific state of this task */
1311 struct thread_struct thread;
1312 /* filesystem information */
1313 struct fs_struct *fs;
1314 /* open file information */
1315 struct files_struct *files;
1316 /* namespaces */
1317 struct nsproxy *nsproxy;
1318 /* signal handlers */
1319 struct signal_struct *signal;
1320 struct sighand_struct *sighand;
1322 sigset_t blocked, real_blocked;
1323 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1324 struct sigpending pending;
1326 unsigned long sas_ss_sp;
1327 size_t sas_ss_size;
1328 int (*notifier)(void *priv);
1329 void *notifier_data;
1330 sigset_t *notifier_mask;
1331 struct audit_context *audit_context;
1332 #ifdef CONFIG_AUDITSYSCALL
1333 uid_t loginuid;
1334 unsigned int sessionid;
1335 #endif
1336 seccomp_t seccomp;
1338 /* Thread group tracking */
1339 u32 parent_exec_id;
1340 u32 self_exec_id;
1341 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1342 * mempolicy */
1343 spinlock_t alloc_lock;
1345 #ifdef CONFIG_GENERIC_HARDIRQS
1346 /* IRQ handler threads */
1347 struct irqaction *irqaction;
1348 #endif
1350 /* Protection of the PI data structures: */
1351 spinlock_t pi_lock;
1353 #ifdef CONFIG_RT_MUTEXES
1354 /* PI waiters blocked on a rt_mutex held by this task */
1355 struct plist_head pi_waiters;
1356 /* Deadlock detection and priority inheritance handling */
1357 struct rt_mutex_waiter *pi_blocked_on;
1358 #endif
1360 #ifdef CONFIG_DEBUG_MUTEXES
1361 /* mutex deadlock detection */
1362 struct mutex_waiter *blocked_on;
1363 #endif
1364 #ifdef CONFIG_TRACE_IRQFLAGS
1365 unsigned int irq_events;
1366 int hardirqs_enabled;
1367 unsigned long hardirq_enable_ip;
1368 unsigned int hardirq_enable_event;
1369 unsigned long hardirq_disable_ip;
1370 unsigned int hardirq_disable_event;
1371 int softirqs_enabled;
1372 unsigned long softirq_disable_ip;
1373 unsigned int softirq_disable_event;
1374 unsigned long softirq_enable_ip;
1375 unsigned int softirq_enable_event;
1376 int hardirq_context;
1377 int softirq_context;
1378 #endif
1379 #ifdef CONFIG_LOCKDEP
1380 # define MAX_LOCK_DEPTH 48UL
1381 u64 curr_chain_key;
1382 int lockdep_depth;
1383 unsigned int lockdep_recursion;
1384 struct held_lock held_locks[MAX_LOCK_DEPTH];
1385 gfp_t lockdep_reclaim_gfp;
1386 #endif
1388 /* journalling filesystem info */
1389 void *journal_info;
1391 /* stacked block device info */
1392 struct bio *bio_list, **bio_tail;
1394 /* VM state */
1395 struct reclaim_state *reclaim_state;
1397 struct backing_dev_info *backing_dev_info;
1399 struct io_context *io_context;
1401 unsigned long ptrace_message;
1402 siginfo_t *last_siginfo; /* For ptrace use. */
1403 struct task_io_accounting ioac;
1404 #if defined(CONFIG_TASK_XACCT)
1405 u64 acct_rss_mem1; /* accumulated rss usage */
1406 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1407 cputime_t acct_timexpd; /* stime + utime since last update */
1408 #endif
1409 #ifdef CONFIG_CPUSETS
1410 nodemask_t mems_allowed; /* Protected by alloc_lock */
1411 int cpuset_mem_spread_rotor;
1412 #endif
1413 #ifdef CONFIG_CGROUPS
1414 /* Control Group info protected by css_set_lock */
1415 struct css_set *cgroups;
1416 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1417 struct list_head cg_list;
1418 #endif
1419 #ifdef CONFIG_FUTEX
1420 struct robust_list_head __user *robust_list;
1421 #ifdef CONFIG_COMPAT
1422 struct compat_robust_list_head __user *compat_robust_list;
1423 #endif
1424 struct list_head pi_state_list;
1425 struct futex_pi_state *pi_state_cache;
1426 #endif
1427 #ifdef CONFIG_PERF_COUNTERS
1428 struct perf_counter_context *perf_counter_ctxp;
1429 struct mutex perf_counter_mutex;
1430 struct list_head perf_counter_list;
1431 #endif
1432 #ifdef CONFIG_NUMA
1433 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1434 short il_next;
1435 #endif
1436 atomic_t fs_excl; /* holding fs exclusive resources */
1437 struct rcu_head rcu;
1440 * cache last used pipe for splice
1442 struct pipe_inode_info *splice_pipe;
1443 #ifdef CONFIG_TASK_DELAY_ACCT
1444 struct task_delay_info *delays;
1445 #endif
1446 #ifdef CONFIG_FAULT_INJECTION
1447 int make_it_fail;
1448 #endif
1449 struct prop_local_single dirties;
1450 #ifdef CONFIG_LATENCYTOP
1451 int latency_record_count;
1452 struct latency_record latency_record[LT_SAVECOUNT];
1453 #endif
1455 * time slack values; these are used to round up poll() and
1456 * select() etc timeout values. These are in nanoseconds.
1458 unsigned long timer_slack_ns;
1459 unsigned long default_timer_slack_ns;
1461 struct list_head *scm_work_list;
1462 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1463 /* Index of current stored adress in ret_stack */
1464 int curr_ret_stack;
1465 /* Stack of return addresses for return function tracing */
1466 struct ftrace_ret_stack *ret_stack;
1467 /* time stamp for last schedule */
1468 unsigned long long ftrace_timestamp;
1470 * Number of functions that haven't been traced
1471 * because of depth overrun.
1473 atomic_t trace_overrun;
1474 /* Pause for the tracing */
1475 atomic_t tracing_graph_pause;
1476 #endif
1477 #ifdef CONFIG_TRACING
1478 /* state flags for use by tracers */
1479 unsigned long trace;
1480 /* bitmask of trace recursion */
1481 unsigned long trace_recursion;
1482 #endif /* CONFIG_TRACING */
1485 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1486 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1489 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1490 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1491 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1492 * values are inverted: lower p->prio value means higher priority.
1494 * The MAX_USER_RT_PRIO value allows the actual maximum
1495 * RT priority to be separate from the value exported to
1496 * user-space. This allows kernel threads to set their
1497 * priority to a value higher than any user task. Note:
1498 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1501 #define MAX_USER_RT_PRIO 100
1502 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1504 #define MAX_PRIO (MAX_RT_PRIO + 40)
1505 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1507 static inline int rt_prio(int prio)
1509 if (unlikely(prio < MAX_RT_PRIO))
1510 return 1;
1511 return 0;
1514 static inline int rt_task(struct task_struct *p)
1516 return rt_prio(p->prio);
1519 static inline struct pid *task_pid(struct task_struct *task)
1521 return task->pids[PIDTYPE_PID].pid;
1524 static inline struct pid *task_tgid(struct task_struct *task)
1526 return task->group_leader->pids[PIDTYPE_PID].pid;
1530 * Without tasklist or rcu lock it is not safe to dereference
1531 * the result of task_pgrp/task_session even if task == current,
1532 * we can race with another thread doing sys_setsid/sys_setpgid.
1534 static inline struct pid *task_pgrp(struct task_struct *task)
1536 return task->group_leader->pids[PIDTYPE_PGID].pid;
1539 static inline struct pid *task_session(struct task_struct *task)
1541 return task->group_leader->pids[PIDTYPE_SID].pid;
1544 struct pid_namespace;
1547 * the helpers to get the task's different pids as they are seen
1548 * from various namespaces
1550 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1551 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1552 * current.
1553 * task_xid_nr_ns() : id seen from the ns specified;
1555 * set_task_vxid() : assigns a virtual id to a task;
1557 * see also pid_nr() etc in include/linux/pid.h
1559 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1560 struct pid_namespace *ns);
1562 static inline pid_t task_pid_nr(struct task_struct *tsk)
1564 return tsk->pid;
1567 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1568 struct pid_namespace *ns)
1570 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1573 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1575 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1579 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1581 return tsk->tgid;
1584 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1586 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1588 return pid_vnr(task_tgid(tsk));
1592 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1593 struct pid_namespace *ns)
1595 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1598 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1600 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1604 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1605 struct pid_namespace *ns)
1607 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1610 static inline pid_t task_session_vnr(struct task_struct *tsk)
1612 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1615 /* obsolete, do not use */
1616 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1618 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1622 * pid_alive - check that a task structure is not stale
1623 * @p: Task structure to be checked.
1625 * Test if a process is not yet dead (at most zombie state)
1626 * If pid_alive fails, then pointers within the task structure
1627 * can be stale and must not be dereferenced.
1629 static inline int pid_alive(struct task_struct *p)
1631 return p->pids[PIDTYPE_PID].pid != NULL;
1635 * is_global_init - check if a task structure is init
1636 * @tsk: Task structure to be checked.
1638 * Check if a task structure is the first user space task the kernel created.
1640 static inline int is_global_init(struct task_struct *tsk)
1642 return tsk->pid == 1;
1646 * is_container_init:
1647 * check whether in the task is init in its own pid namespace.
1649 extern int is_container_init(struct task_struct *tsk);
1651 extern struct pid *cad_pid;
1653 extern void free_task(struct task_struct *tsk);
1654 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1656 extern void __put_task_struct(struct task_struct *t);
1658 static inline void put_task_struct(struct task_struct *t)
1660 if (atomic_dec_and_test(&t->usage))
1661 __put_task_struct(t);
1664 extern cputime_t task_utime(struct task_struct *p);
1665 extern cputime_t task_stime(struct task_struct *p);
1666 extern cputime_t task_gtime(struct task_struct *p);
1669 * Per process flags
1671 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1672 /* Not implemented yet, only for 486*/
1673 #define PF_STARTING 0x00000002 /* being created */
1674 #define PF_EXITING 0x00000004 /* getting shut down */
1675 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1676 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1677 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1678 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1679 #define PF_DUMPCORE 0x00000200 /* dumped core */
1680 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1681 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1682 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1683 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1684 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1685 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1686 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1687 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1688 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1689 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1690 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1691 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1692 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1693 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1694 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1695 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1696 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1697 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1698 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1699 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1700 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1703 * Only the _current_ task can read/write to tsk->flags, but other
1704 * tasks can access tsk->flags in readonly mode for example
1705 * with tsk_used_math (like during threaded core dumping).
1706 * There is however an exception to this rule during ptrace
1707 * or during fork: the ptracer task is allowed to write to the
1708 * child->flags of its traced child (same goes for fork, the parent
1709 * can write to the child->flags), because we're guaranteed the
1710 * child is not running and in turn not changing child->flags
1711 * at the same time the parent does it.
1713 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1714 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1715 #define clear_used_math() clear_stopped_child_used_math(current)
1716 #define set_used_math() set_stopped_child_used_math(current)
1717 #define conditional_stopped_child_used_math(condition, child) \
1718 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1719 #define conditional_used_math(condition) \
1720 conditional_stopped_child_used_math(condition, current)
1721 #define copy_to_stopped_child_used_math(child) \
1722 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1723 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1724 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1725 #define used_math() tsk_used_math(current)
1727 #ifdef CONFIG_SMP
1728 extern int set_cpus_allowed_ptr(struct task_struct *p,
1729 const struct cpumask *new_mask);
1730 #else
1731 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1732 const struct cpumask *new_mask)
1734 if (!cpumask_test_cpu(0, new_mask))
1735 return -EINVAL;
1736 return 0;
1738 #endif
1739 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1741 return set_cpus_allowed_ptr(p, &new_mask);
1745 * Architectures can set this to 1 if they have specified
1746 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1747 * but then during bootup it turns out that sched_clock()
1748 * is reliable after all:
1750 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1751 extern int sched_clock_stable;
1752 #endif
1754 extern unsigned long long sched_clock(void);
1756 extern void sched_clock_init(void);
1757 extern u64 sched_clock_cpu(int cpu);
1759 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1760 static inline void sched_clock_tick(void)
1764 static inline void sched_clock_idle_sleep_event(void)
1768 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1771 #else
1772 extern void sched_clock_tick(void);
1773 extern void sched_clock_idle_sleep_event(void);
1774 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1775 #endif
1778 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1779 * clock constructed from sched_clock():
1781 extern unsigned long long cpu_clock(int cpu);
1783 extern unsigned long long
1784 task_sched_runtime(struct task_struct *task);
1785 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1787 /* sched_exec is called by processes performing an exec */
1788 #ifdef CONFIG_SMP
1789 extern void sched_exec(void);
1790 #else
1791 #define sched_exec() {}
1792 #endif
1794 extern void sched_clock_idle_sleep_event(void);
1795 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1797 #ifdef CONFIG_HOTPLUG_CPU
1798 extern void idle_task_exit(void);
1799 #else
1800 static inline void idle_task_exit(void) {}
1801 #endif
1803 extern void sched_idle_next(void);
1805 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1806 extern void wake_up_idle_cpu(int cpu);
1807 #else
1808 static inline void wake_up_idle_cpu(int cpu) { }
1809 #endif
1811 extern unsigned int sysctl_sched_latency;
1812 extern unsigned int sysctl_sched_min_granularity;
1813 extern unsigned int sysctl_sched_wakeup_granularity;
1814 extern unsigned int sysctl_sched_shares_ratelimit;
1815 extern unsigned int sysctl_sched_shares_thresh;
1816 #ifdef CONFIG_SCHED_DEBUG
1817 extern unsigned int sysctl_sched_child_runs_first;
1818 extern unsigned int sysctl_sched_features;
1819 extern unsigned int sysctl_sched_migration_cost;
1820 extern unsigned int sysctl_sched_nr_migrate;
1821 extern unsigned int sysctl_timer_migration;
1823 int sched_nr_latency_handler(struct ctl_table *table, int write,
1824 struct file *file, void __user *buffer, size_t *length,
1825 loff_t *ppos);
1826 #endif
1827 #ifdef CONFIG_SCHED_DEBUG
1828 static inline unsigned int get_sysctl_timer_migration(void)
1830 return sysctl_timer_migration;
1832 #else
1833 static inline unsigned int get_sysctl_timer_migration(void)
1835 return 1;
1837 #endif
1838 extern unsigned int sysctl_sched_rt_period;
1839 extern int sysctl_sched_rt_runtime;
1841 int sched_rt_handler(struct ctl_table *table, int write,
1842 struct file *filp, void __user *buffer, size_t *lenp,
1843 loff_t *ppos);
1845 extern unsigned int sysctl_sched_compat_yield;
1847 #ifdef CONFIG_RT_MUTEXES
1848 extern int rt_mutex_getprio(struct task_struct *p);
1849 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1850 extern void rt_mutex_adjust_pi(struct task_struct *p);
1851 #else
1852 static inline int rt_mutex_getprio(struct task_struct *p)
1854 return p->normal_prio;
1856 # define rt_mutex_adjust_pi(p) do { } while (0)
1857 #endif
1859 extern void set_user_nice(struct task_struct *p, long nice);
1860 extern int task_prio(const struct task_struct *p);
1861 extern int task_nice(const struct task_struct *p);
1862 extern int can_nice(const struct task_struct *p, const int nice);
1863 extern int task_curr(const struct task_struct *p);
1864 extern int idle_cpu(int cpu);
1865 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1866 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1867 struct sched_param *);
1868 extern struct task_struct *idle_task(int cpu);
1869 extern struct task_struct *curr_task(int cpu);
1870 extern void set_curr_task(int cpu, struct task_struct *p);
1872 void yield(void);
1875 * The default (Linux) execution domain.
1877 extern struct exec_domain default_exec_domain;
1879 union thread_union {
1880 struct thread_info thread_info;
1881 unsigned long stack[THREAD_SIZE/sizeof(long)];
1884 #ifndef __HAVE_ARCH_KSTACK_END
1885 static inline int kstack_end(void *addr)
1887 /* Reliable end of stack detection:
1888 * Some APM bios versions misalign the stack
1890 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1892 #endif
1894 extern union thread_union init_thread_union;
1895 extern struct task_struct init_task;
1897 extern struct mm_struct init_mm;
1899 extern struct pid_namespace init_pid_ns;
1902 * find a task by one of its numerical ids
1904 * find_task_by_pid_ns():
1905 * finds a task by its pid in the specified namespace
1906 * find_task_by_vpid():
1907 * finds a task by its virtual pid
1909 * see also find_vpid() etc in include/linux/pid.h
1912 extern struct task_struct *find_task_by_vpid(pid_t nr);
1913 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1914 struct pid_namespace *ns);
1916 extern void __set_special_pids(struct pid *pid);
1918 /* per-UID process charging. */
1919 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1920 static inline struct user_struct *get_uid(struct user_struct *u)
1922 atomic_inc(&u->__count);
1923 return u;
1925 extern void free_uid(struct user_struct *);
1926 extern void release_uids(struct user_namespace *ns);
1928 #include <asm/current.h>
1930 extern void do_timer(unsigned long ticks);
1932 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1933 extern int wake_up_process(struct task_struct *tsk);
1934 extern void wake_up_new_task(struct task_struct *tsk,
1935 unsigned long clone_flags);
1936 #ifdef CONFIG_SMP
1937 extern void kick_process(struct task_struct *tsk);
1938 #else
1939 static inline void kick_process(struct task_struct *tsk) { }
1940 #endif
1941 extern void sched_fork(struct task_struct *p, int clone_flags);
1942 extern void sched_dead(struct task_struct *p);
1944 extern void proc_caches_init(void);
1945 extern void flush_signals(struct task_struct *);
1946 extern void __flush_signals(struct task_struct *);
1947 extern void ignore_signals(struct task_struct *);
1948 extern void flush_signal_handlers(struct task_struct *, int force_default);
1949 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1951 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1953 unsigned long flags;
1954 int ret;
1956 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1957 ret = dequeue_signal(tsk, mask, info);
1958 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1960 return ret;
1963 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1964 sigset_t *mask);
1965 extern void unblock_all_signals(void);
1966 extern void release_task(struct task_struct * p);
1967 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1968 extern int force_sigsegv(int, struct task_struct *);
1969 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1970 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1971 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1972 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1973 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1974 extern int kill_pid(struct pid *pid, int sig, int priv);
1975 extern int kill_proc_info(int, struct siginfo *, pid_t);
1976 extern int do_notify_parent(struct task_struct *, int);
1977 extern void force_sig(int, struct task_struct *);
1978 extern void force_sig_specific(int, struct task_struct *);
1979 extern int send_sig(int, struct task_struct *, int);
1980 extern void zap_other_threads(struct task_struct *p);
1981 extern struct sigqueue *sigqueue_alloc(void);
1982 extern void sigqueue_free(struct sigqueue *);
1983 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1984 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1985 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1987 static inline int kill_cad_pid(int sig, int priv)
1989 return kill_pid(cad_pid, sig, priv);
1992 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1993 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1994 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1995 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1997 static inline int is_si_special(const struct siginfo *info)
1999 return info <= SEND_SIG_FORCED;
2003 * True if we are on the alternate signal stack.
2005 static inline int on_sig_stack(unsigned long sp)
2007 #ifdef CONFIG_STACK_GROWSUP
2008 return sp >= current->sas_ss_sp &&
2009 sp - current->sas_ss_sp < current->sas_ss_size;
2010 #else
2011 return sp > current->sas_ss_sp &&
2012 sp - current->sas_ss_sp <= current->sas_ss_size;
2013 #endif
2016 static inline int sas_ss_flags(unsigned long sp)
2018 return (current->sas_ss_size == 0 ? SS_DISABLE
2019 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2023 * Routines for handling mm_structs
2025 extern struct mm_struct * mm_alloc(void);
2027 /* mmdrop drops the mm and the page tables */
2028 extern void __mmdrop(struct mm_struct *);
2029 static inline void mmdrop(struct mm_struct * mm)
2031 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2032 __mmdrop(mm);
2035 /* mmput gets rid of the mappings and all user-space */
2036 extern void mmput(struct mm_struct *);
2037 /* Grab a reference to a task's mm, if it is not already going away */
2038 extern struct mm_struct *get_task_mm(struct task_struct *task);
2039 /* Remove the current tasks stale references to the old mm_struct */
2040 extern void mm_release(struct task_struct *, struct mm_struct *);
2041 /* Allocate a new mm structure and copy contents from tsk->mm */
2042 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2044 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2045 struct task_struct *, struct pt_regs *);
2046 extern void flush_thread(void);
2047 extern void exit_thread(void);
2049 extern void exit_files(struct task_struct *);
2050 extern void __cleanup_signal(struct signal_struct *);
2051 extern void __cleanup_sighand(struct sighand_struct *);
2053 extern void exit_itimers(struct signal_struct *);
2054 extern void flush_itimer_signals(void);
2056 extern NORET_TYPE void do_group_exit(int);
2058 extern void daemonize(const char *, ...);
2059 extern int allow_signal(int);
2060 extern int disallow_signal(int);
2062 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2063 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2064 struct task_struct *fork_idle(int);
2066 extern void set_task_comm(struct task_struct *tsk, char *from);
2067 extern char *get_task_comm(char *to, struct task_struct *tsk);
2069 #ifdef CONFIG_SMP
2070 extern void wait_task_context_switch(struct task_struct *p);
2071 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2072 #else
2073 static inline void wait_task_context_switch(struct task_struct *p) {}
2074 static inline unsigned long wait_task_inactive(struct task_struct *p,
2075 long match_state)
2077 return 1;
2079 #endif
2081 #define next_task(p) \
2082 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2084 #define for_each_process(p) \
2085 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2087 extern bool is_single_threaded(struct task_struct *);
2090 * Careful: do_each_thread/while_each_thread is a double loop so
2091 * 'break' will not work as expected - use goto instead.
2093 #define do_each_thread(g, t) \
2094 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2096 #define while_each_thread(g, t) \
2097 while ((t = next_thread(t)) != g)
2099 /* de_thread depends on thread_group_leader not being a pid based check */
2100 #define thread_group_leader(p) (p == p->group_leader)
2102 /* Do to the insanities of de_thread it is possible for a process
2103 * to have the pid of the thread group leader without actually being
2104 * the thread group leader. For iteration through the pids in proc
2105 * all we care about is that we have a task with the appropriate
2106 * pid, we don't actually care if we have the right task.
2108 static inline int has_group_leader_pid(struct task_struct *p)
2110 return p->pid == p->tgid;
2113 static inline
2114 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2116 return p1->tgid == p2->tgid;
2119 static inline struct task_struct *next_thread(const struct task_struct *p)
2121 return list_entry_rcu(p->thread_group.next,
2122 struct task_struct, thread_group);
2125 static inline int thread_group_empty(struct task_struct *p)
2127 return list_empty(&p->thread_group);
2130 #define delay_group_leader(p) \
2131 (thread_group_leader(p) && !thread_group_empty(p))
2133 static inline int task_detached(struct task_struct *p)
2135 return p->exit_signal == -1;
2139 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2140 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2141 * pins the final release of task.io_context. Also protects ->cpuset and
2142 * ->cgroup.subsys[].
2144 * Nests both inside and outside of read_lock(&tasklist_lock).
2145 * It must not be nested with write_lock_irq(&tasklist_lock),
2146 * neither inside nor outside.
2148 static inline void task_lock(struct task_struct *p)
2150 spin_lock(&p->alloc_lock);
2153 static inline void task_unlock(struct task_struct *p)
2155 spin_unlock(&p->alloc_lock);
2158 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2159 unsigned long *flags);
2161 static inline void unlock_task_sighand(struct task_struct *tsk,
2162 unsigned long *flags)
2164 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2167 #ifndef __HAVE_THREAD_FUNCTIONS
2169 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2170 #define task_stack_page(task) ((task)->stack)
2172 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2174 *task_thread_info(p) = *task_thread_info(org);
2175 task_thread_info(p)->task = p;
2178 static inline unsigned long *end_of_stack(struct task_struct *p)
2180 return (unsigned long *)(task_thread_info(p) + 1);
2183 #endif
2185 static inline int object_is_on_stack(void *obj)
2187 void *stack = task_stack_page(current);
2189 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2192 extern void thread_info_cache_init(void);
2194 #ifdef CONFIG_DEBUG_STACK_USAGE
2195 static inline unsigned long stack_not_used(struct task_struct *p)
2197 unsigned long *n = end_of_stack(p);
2199 do { /* Skip over canary */
2200 n++;
2201 } while (!*n);
2203 return (unsigned long)n - (unsigned long)end_of_stack(p);
2205 #endif
2207 /* set thread flags in other task's structures
2208 * - see asm/thread_info.h for TIF_xxxx flags available
2210 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2212 set_ti_thread_flag(task_thread_info(tsk), flag);
2215 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2217 clear_ti_thread_flag(task_thread_info(tsk), flag);
2220 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2222 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2225 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2227 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2230 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2232 return test_ti_thread_flag(task_thread_info(tsk), flag);
2235 static inline void set_tsk_need_resched(struct task_struct *tsk)
2237 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2240 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2242 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2245 static inline int test_tsk_need_resched(struct task_struct *tsk)
2247 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2250 static inline int restart_syscall(void)
2252 set_tsk_thread_flag(current, TIF_SIGPENDING);
2253 return -ERESTARTNOINTR;
2256 static inline int signal_pending(struct task_struct *p)
2258 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2261 extern int __fatal_signal_pending(struct task_struct *p);
2263 static inline int fatal_signal_pending(struct task_struct *p)
2265 return signal_pending(p) && __fatal_signal_pending(p);
2268 static inline int signal_pending_state(long state, struct task_struct *p)
2270 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2271 return 0;
2272 if (!signal_pending(p))
2273 return 0;
2275 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2278 static inline int need_resched(void)
2280 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2284 * cond_resched() and cond_resched_lock(): latency reduction via
2285 * explicit rescheduling in places that are safe. The return
2286 * value indicates whether a reschedule was done in fact.
2287 * cond_resched_lock() will drop the spinlock before scheduling,
2288 * cond_resched_softirq() will enable bhs before scheduling.
2290 extern int _cond_resched(void);
2291 #ifdef CONFIG_PREEMPT_BKL
2292 static inline int cond_resched(void)
2294 return 0;
2296 #else
2297 static inline int cond_resched(void)
2299 return _cond_resched();
2301 #endif
2302 extern int cond_resched_lock(spinlock_t * lock);
2303 extern int cond_resched_softirq(void);
2304 static inline int cond_resched_bkl(void)
2306 return _cond_resched();
2310 * Does a critical section need to be broken due to another
2311 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2312 * but a general need for low latency)
2314 static inline int spin_needbreak(spinlock_t *lock)
2316 #ifdef CONFIG_PREEMPT
2317 return spin_is_contended(lock);
2318 #else
2319 return 0;
2320 #endif
2324 * Thread group CPU time accounting.
2326 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2327 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2329 static inline void thread_group_cputime_init(struct signal_struct *sig)
2331 sig->cputimer.cputime = INIT_CPUTIME;
2332 spin_lock_init(&sig->cputimer.lock);
2333 sig->cputimer.running = 0;
2336 static inline void thread_group_cputime_free(struct signal_struct *sig)
2341 * Reevaluate whether the task has signals pending delivery.
2342 * Wake the task if so.
2343 * This is required every time the blocked sigset_t changes.
2344 * callers must hold sighand->siglock.
2346 extern void recalc_sigpending_and_wake(struct task_struct *t);
2347 extern void recalc_sigpending(void);
2349 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2352 * Wrappers for p->thread_info->cpu access. No-op on UP.
2354 #ifdef CONFIG_SMP
2356 static inline unsigned int task_cpu(const struct task_struct *p)
2358 return task_thread_info(p)->cpu;
2361 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2363 #else
2365 static inline unsigned int task_cpu(const struct task_struct *p)
2367 return 0;
2370 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2374 #endif /* CONFIG_SMP */
2376 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2378 #ifdef CONFIG_TRACING
2379 extern void
2380 __trace_special(void *__tr, void *__data,
2381 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2382 #else
2383 static inline void
2384 __trace_special(void *__tr, void *__data,
2385 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2388 #endif
2390 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2391 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2393 extern void normalize_rt_tasks(void);
2395 #ifdef CONFIG_GROUP_SCHED
2397 extern struct task_group init_task_group;
2398 #ifdef CONFIG_USER_SCHED
2399 extern struct task_group root_task_group;
2400 extern void set_tg_uid(struct user_struct *user);
2401 #endif
2403 extern struct task_group *sched_create_group(struct task_group *parent);
2404 extern void sched_destroy_group(struct task_group *tg);
2405 extern void sched_move_task(struct task_struct *tsk);
2406 #ifdef CONFIG_FAIR_GROUP_SCHED
2407 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2408 extern unsigned long sched_group_shares(struct task_group *tg);
2409 #endif
2410 #ifdef CONFIG_RT_GROUP_SCHED
2411 extern int sched_group_set_rt_runtime(struct task_group *tg,
2412 long rt_runtime_us);
2413 extern long sched_group_rt_runtime(struct task_group *tg);
2414 extern int sched_group_set_rt_period(struct task_group *tg,
2415 long rt_period_us);
2416 extern long sched_group_rt_period(struct task_group *tg);
2417 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2418 #endif
2419 #endif
2421 extern int task_can_switch_user(struct user_struct *up,
2422 struct task_struct *tsk);
2424 #ifdef CONFIG_TASK_XACCT
2425 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2427 tsk->ioac.rchar += amt;
2430 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2432 tsk->ioac.wchar += amt;
2435 static inline void inc_syscr(struct task_struct *tsk)
2437 tsk->ioac.syscr++;
2440 static inline void inc_syscw(struct task_struct *tsk)
2442 tsk->ioac.syscw++;
2444 #else
2445 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2449 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2453 static inline void inc_syscr(struct task_struct *tsk)
2457 static inline void inc_syscw(struct task_struct *tsk)
2460 #endif
2462 #ifndef TASK_SIZE_OF
2463 #define TASK_SIZE_OF(tsk) TASK_SIZE
2464 #endif
2467 * Call the function if the target task is executing on a CPU right now:
2469 extern void task_oncpu_function_call(struct task_struct *p,
2470 void (*func) (void *info), void *info);
2473 #ifdef CONFIG_MM_OWNER
2474 extern void mm_update_next_owner(struct mm_struct *mm);
2475 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2476 #else
2477 static inline void mm_update_next_owner(struct mm_struct *mm)
2481 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2484 #endif /* CONFIG_MM_OWNER */
2486 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2488 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2489 unsigned int limit)
2491 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2494 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2495 unsigned int limit)
2497 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2500 static inline unsigned long rlimit(unsigned int limit)
2502 return task_rlimit(current, limit);
2505 static inline unsigned long rlimit_max(unsigned int limit)
2507 return task_rlimit_max(current, limit);
2510 #endif /* __KERNEL__ */
2512 #endif