eCryptfs: Remove ecryptfs_header_cache_2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / sunrpc / svc_xprt.c
blobab86b7927f84594f188dadfa581271cf55b470cf
1 /*
2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
18 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
20 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
21 static int svc_deferred_recv(struct svc_rqst *rqstp);
22 static struct cache_deferred_req *svc_defer(struct cache_req *req);
23 static void svc_age_temp_xprts(unsigned long closure);
25 /* apparently the "standard" is that clients close
26 * idle connections after 5 minutes, servers after
27 * 6 minutes
28 * http://www.connectathon.org/talks96/nfstcp.pdf
30 static int svc_conn_age_period = 6*60;
32 /* List of registered transport classes */
33 static DEFINE_SPINLOCK(svc_xprt_class_lock);
34 static LIST_HEAD(svc_xprt_class_list);
36 /* SMP locking strategy:
38 * svc_pool->sp_lock protects most of the fields of that pool.
39 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
40 * when both need to be taken (rare), svc_serv->sv_lock is first.
41 * BKL protects svc_serv->sv_nrthread.
42 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
43 * and the ->sk_info_authunix cache.
45 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
46 * enqueued multiply. During normal transport processing this bit
47 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
48 * Providers should not manipulate this bit directly.
50 * Some flags can be set to certain values at any time
51 * providing that certain rules are followed:
53 * XPT_CONN, XPT_DATA:
54 * - Can be set or cleared at any time.
55 * - After a set, svc_xprt_enqueue must be called to enqueue
56 * the transport for processing.
57 * - After a clear, the transport must be read/accepted.
58 * If this succeeds, it must be set again.
59 * XPT_CLOSE:
60 * - Can set at any time. It is never cleared.
61 * XPT_DEAD:
62 * - Can only be set while XPT_BUSY is held which ensures
63 * that no other thread will be using the transport or will
64 * try to set XPT_DEAD.
67 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
69 struct svc_xprt_class *cl;
70 int res = -EEXIST;
72 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
74 INIT_LIST_HEAD(&xcl->xcl_list);
75 spin_lock(&svc_xprt_class_lock);
76 /* Make sure there isn't already a class with the same name */
77 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
78 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
79 goto out;
81 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
82 res = 0;
83 out:
84 spin_unlock(&svc_xprt_class_lock);
85 return res;
87 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
89 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
91 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
92 spin_lock(&svc_xprt_class_lock);
93 list_del_init(&xcl->xcl_list);
94 spin_unlock(&svc_xprt_class_lock);
96 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
99 * Format the transport list for printing
101 int svc_print_xprts(char *buf, int maxlen)
103 struct svc_xprt_class *xcl;
104 char tmpstr[80];
105 int len = 0;
106 buf[0] = '\0';
108 spin_lock(&svc_xprt_class_lock);
109 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
110 int slen;
112 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
113 slen = strlen(tmpstr);
114 if (len + slen > maxlen)
115 break;
116 len += slen;
117 strcat(buf, tmpstr);
119 spin_unlock(&svc_xprt_class_lock);
121 return len;
124 static void svc_xprt_free(struct kref *kref)
126 struct svc_xprt *xprt =
127 container_of(kref, struct svc_xprt, xpt_ref);
128 struct module *owner = xprt->xpt_class->xcl_owner;
129 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
130 svcauth_unix_info_release(xprt);
131 put_net(xprt->xpt_net);
132 /* See comment on corresponding get in xs_setup_bc_tcp(): */
133 if (xprt->xpt_bc_xprt)
134 xprt_put(xprt->xpt_bc_xprt);
135 xprt->xpt_ops->xpo_free(xprt);
136 module_put(owner);
139 void svc_xprt_put(struct svc_xprt *xprt)
141 kref_put(&xprt->xpt_ref, svc_xprt_free);
143 EXPORT_SYMBOL_GPL(svc_xprt_put);
146 * Called by transport drivers to initialize the transport independent
147 * portion of the transport instance.
149 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
150 struct svc_serv *serv)
152 memset(xprt, 0, sizeof(*xprt));
153 xprt->xpt_class = xcl;
154 xprt->xpt_ops = xcl->xcl_ops;
155 kref_init(&xprt->xpt_ref);
156 xprt->xpt_server = serv;
157 INIT_LIST_HEAD(&xprt->xpt_list);
158 INIT_LIST_HEAD(&xprt->xpt_ready);
159 INIT_LIST_HEAD(&xprt->xpt_deferred);
160 INIT_LIST_HEAD(&xprt->xpt_users);
161 mutex_init(&xprt->xpt_mutex);
162 spin_lock_init(&xprt->xpt_lock);
163 set_bit(XPT_BUSY, &xprt->xpt_flags);
164 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
165 xprt->xpt_net = get_net(&init_net);
167 EXPORT_SYMBOL_GPL(svc_xprt_init);
169 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
170 struct svc_serv *serv,
171 struct net *net,
172 const int family,
173 const unsigned short port,
174 int flags)
176 struct sockaddr_in sin = {
177 .sin_family = AF_INET,
178 .sin_addr.s_addr = htonl(INADDR_ANY),
179 .sin_port = htons(port),
181 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
182 struct sockaddr_in6 sin6 = {
183 .sin6_family = AF_INET6,
184 .sin6_addr = IN6ADDR_ANY_INIT,
185 .sin6_port = htons(port),
187 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
188 struct sockaddr *sap;
189 size_t len;
191 switch (family) {
192 case PF_INET:
193 sap = (struct sockaddr *)&sin;
194 len = sizeof(sin);
195 break;
196 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
197 case PF_INET6:
198 sap = (struct sockaddr *)&sin6;
199 len = sizeof(sin6);
200 break;
201 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
202 default:
203 return ERR_PTR(-EAFNOSUPPORT);
206 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
209 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
210 struct net *net, const int family,
211 const unsigned short port, int flags)
213 struct svc_xprt_class *xcl;
215 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
216 spin_lock(&svc_xprt_class_lock);
217 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
218 struct svc_xprt *newxprt;
219 unsigned short newport;
221 if (strcmp(xprt_name, xcl->xcl_name))
222 continue;
224 if (!try_module_get(xcl->xcl_owner))
225 goto err;
227 spin_unlock(&svc_xprt_class_lock);
228 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
229 if (IS_ERR(newxprt)) {
230 module_put(xcl->xcl_owner);
231 return PTR_ERR(newxprt);
234 clear_bit(XPT_TEMP, &newxprt->xpt_flags);
235 spin_lock_bh(&serv->sv_lock);
236 list_add(&newxprt->xpt_list, &serv->sv_permsocks);
237 spin_unlock_bh(&serv->sv_lock);
238 newport = svc_xprt_local_port(newxprt);
239 clear_bit(XPT_BUSY, &newxprt->xpt_flags);
240 return newport;
242 err:
243 spin_unlock(&svc_xprt_class_lock);
244 dprintk("svc: transport %s not found\n", xprt_name);
246 /* This errno is exposed to user space. Provide a reasonable
247 * perror msg for a bad transport. */
248 return -EPROTONOSUPPORT;
250 EXPORT_SYMBOL_GPL(svc_create_xprt);
253 * Copy the local and remote xprt addresses to the rqstp structure
255 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
257 struct sockaddr *sin;
259 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
260 rqstp->rq_addrlen = xprt->xpt_remotelen;
263 * Destination address in request is needed for binding the
264 * source address in RPC replies/callbacks later.
266 sin = (struct sockaddr *)&xprt->xpt_local;
267 switch (sin->sa_family) {
268 case AF_INET:
269 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
270 break;
271 case AF_INET6:
272 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
273 break;
276 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
279 * svc_print_addr - Format rq_addr field for printing
280 * @rqstp: svc_rqst struct containing address to print
281 * @buf: target buffer for formatted address
282 * @len: length of target buffer
285 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
287 return __svc_print_addr(svc_addr(rqstp), buf, len);
289 EXPORT_SYMBOL_GPL(svc_print_addr);
292 * Queue up an idle server thread. Must have pool->sp_lock held.
293 * Note: this is really a stack rather than a queue, so that we only
294 * use as many different threads as we need, and the rest don't pollute
295 * the cache.
297 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
299 list_add(&rqstp->rq_list, &pool->sp_threads);
303 * Dequeue an nfsd thread. Must have pool->sp_lock held.
305 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
307 list_del(&rqstp->rq_list);
310 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
312 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
313 return true;
314 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
315 return xprt->xpt_ops->xpo_has_wspace(xprt);
316 return false;
320 * Queue up a transport with data pending. If there are idle nfsd
321 * processes, wake 'em up.
324 void svc_xprt_enqueue(struct svc_xprt *xprt)
326 struct svc_serv *serv = xprt->xpt_server;
327 struct svc_pool *pool;
328 struct svc_rqst *rqstp;
329 int cpu;
331 if (!svc_xprt_has_something_to_do(xprt))
332 return;
334 cpu = get_cpu();
335 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
336 put_cpu();
338 spin_lock_bh(&pool->sp_lock);
340 if (!list_empty(&pool->sp_threads) &&
341 !list_empty(&pool->sp_sockets))
342 printk(KERN_ERR
343 "svc_xprt_enqueue: "
344 "threads and transports both waiting??\n");
346 pool->sp_stats.packets++;
348 /* Mark transport as busy. It will remain in this state until
349 * the provider calls svc_xprt_received. We update XPT_BUSY
350 * atomically because it also guards against trying to enqueue
351 * the transport twice.
353 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
354 /* Don't enqueue transport while already enqueued */
355 dprintk("svc: transport %p busy, not enqueued\n", xprt);
356 goto out_unlock;
359 if (!list_empty(&pool->sp_threads)) {
360 rqstp = list_entry(pool->sp_threads.next,
361 struct svc_rqst,
362 rq_list);
363 dprintk("svc: transport %p served by daemon %p\n",
364 xprt, rqstp);
365 svc_thread_dequeue(pool, rqstp);
366 if (rqstp->rq_xprt)
367 printk(KERN_ERR
368 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
369 rqstp, rqstp->rq_xprt);
370 rqstp->rq_xprt = xprt;
371 svc_xprt_get(xprt);
372 rqstp->rq_reserved = serv->sv_max_mesg;
373 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
374 pool->sp_stats.threads_woken++;
375 wake_up(&rqstp->rq_wait);
376 } else {
377 dprintk("svc: transport %p put into queue\n", xprt);
378 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
379 pool->sp_stats.sockets_queued++;
382 out_unlock:
383 spin_unlock_bh(&pool->sp_lock);
385 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
388 * Dequeue the first transport. Must be called with the pool->sp_lock held.
390 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
392 struct svc_xprt *xprt;
394 if (list_empty(&pool->sp_sockets))
395 return NULL;
397 xprt = list_entry(pool->sp_sockets.next,
398 struct svc_xprt, xpt_ready);
399 list_del_init(&xprt->xpt_ready);
401 dprintk("svc: transport %p dequeued, inuse=%d\n",
402 xprt, atomic_read(&xprt->xpt_ref.refcount));
404 return xprt;
408 * svc_xprt_received conditionally queues the transport for processing
409 * by another thread. The caller must hold the XPT_BUSY bit and must
410 * not thereafter touch transport data.
412 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
413 * insufficient) data.
415 void svc_xprt_received(struct svc_xprt *xprt)
417 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
418 /* As soon as we clear busy, the xprt could be closed and
419 * 'put', so we need a reference to call svc_xprt_enqueue with:
421 svc_xprt_get(xprt);
422 clear_bit(XPT_BUSY, &xprt->xpt_flags);
423 svc_xprt_enqueue(xprt);
424 svc_xprt_put(xprt);
426 EXPORT_SYMBOL_GPL(svc_xprt_received);
429 * svc_reserve - change the space reserved for the reply to a request.
430 * @rqstp: The request in question
431 * @space: new max space to reserve
433 * Each request reserves some space on the output queue of the transport
434 * to make sure the reply fits. This function reduces that reserved
435 * space to be the amount of space used already, plus @space.
438 void svc_reserve(struct svc_rqst *rqstp, int space)
440 space += rqstp->rq_res.head[0].iov_len;
442 if (space < rqstp->rq_reserved) {
443 struct svc_xprt *xprt = rqstp->rq_xprt;
444 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
445 rqstp->rq_reserved = space;
447 svc_xprt_enqueue(xprt);
450 EXPORT_SYMBOL_GPL(svc_reserve);
452 static void svc_xprt_release(struct svc_rqst *rqstp)
454 struct svc_xprt *xprt = rqstp->rq_xprt;
456 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
458 kfree(rqstp->rq_deferred);
459 rqstp->rq_deferred = NULL;
461 svc_free_res_pages(rqstp);
462 rqstp->rq_res.page_len = 0;
463 rqstp->rq_res.page_base = 0;
465 /* Reset response buffer and release
466 * the reservation.
467 * But first, check that enough space was reserved
468 * for the reply, otherwise we have a bug!
470 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
471 printk(KERN_ERR "RPC request reserved %d but used %d\n",
472 rqstp->rq_reserved,
473 rqstp->rq_res.len);
475 rqstp->rq_res.head[0].iov_len = 0;
476 svc_reserve(rqstp, 0);
477 rqstp->rq_xprt = NULL;
479 svc_xprt_put(xprt);
483 * External function to wake up a server waiting for data
484 * This really only makes sense for services like lockd
485 * which have exactly one thread anyway.
487 void svc_wake_up(struct svc_serv *serv)
489 struct svc_rqst *rqstp;
490 unsigned int i;
491 struct svc_pool *pool;
493 for (i = 0; i < serv->sv_nrpools; i++) {
494 pool = &serv->sv_pools[i];
496 spin_lock_bh(&pool->sp_lock);
497 if (!list_empty(&pool->sp_threads)) {
498 rqstp = list_entry(pool->sp_threads.next,
499 struct svc_rqst,
500 rq_list);
501 dprintk("svc: daemon %p woken up.\n", rqstp);
503 svc_thread_dequeue(pool, rqstp);
504 rqstp->rq_xprt = NULL;
506 wake_up(&rqstp->rq_wait);
508 spin_unlock_bh(&pool->sp_lock);
511 EXPORT_SYMBOL_GPL(svc_wake_up);
513 int svc_port_is_privileged(struct sockaddr *sin)
515 switch (sin->sa_family) {
516 case AF_INET:
517 return ntohs(((struct sockaddr_in *)sin)->sin_port)
518 < PROT_SOCK;
519 case AF_INET6:
520 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
521 < PROT_SOCK;
522 default:
523 return 0;
528 * Make sure that we don't have too many active connections. If we have,
529 * something must be dropped. It's not clear what will happen if we allow
530 * "too many" connections, but when dealing with network-facing software,
531 * we have to code defensively. Here we do that by imposing hard limits.
533 * There's no point in trying to do random drop here for DoS
534 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
535 * attacker can easily beat that.
537 * The only somewhat efficient mechanism would be if drop old
538 * connections from the same IP first. But right now we don't even
539 * record the client IP in svc_sock.
541 * single-threaded services that expect a lot of clients will probably
542 * need to set sv_maxconn to override the default value which is based
543 * on the number of threads
545 static void svc_check_conn_limits(struct svc_serv *serv)
547 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
548 (serv->sv_nrthreads+3) * 20;
550 if (serv->sv_tmpcnt > limit) {
551 struct svc_xprt *xprt = NULL;
552 spin_lock_bh(&serv->sv_lock);
553 if (!list_empty(&serv->sv_tempsocks)) {
554 if (net_ratelimit()) {
555 /* Try to help the admin */
556 printk(KERN_NOTICE "%s: too many open "
557 "connections, consider increasing %s\n",
558 serv->sv_name, serv->sv_maxconn ?
559 "the max number of connections." :
560 "the number of threads.");
563 * Always select the oldest connection. It's not fair,
564 * but so is life
566 xprt = list_entry(serv->sv_tempsocks.prev,
567 struct svc_xprt,
568 xpt_list);
569 set_bit(XPT_CLOSE, &xprt->xpt_flags);
570 svc_xprt_get(xprt);
572 spin_unlock_bh(&serv->sv_lock);
574 if (xprt) {
575 svc_xprt_enqueue(xprt);
576 svc_xprt_put(xprt);
582 * Receive the next request on any transport. This code is carefully
583 * organised not to touch any cachelines in the shared svc_serv
584 * structure, only cachelines in the local svc_pool.
586 int svc_recv(struct svc_rqst *rqstp, long timeout)
588 struct svc_xprt *xprt = NULL;
589 struct svc_serv *serv = rqstp->rq_server;
590 struct svc_pool *pool = rqstp->rq_pool;
591 int len, i;
592 int pages;
593 struct xdr_buf *arg;
594 DECLARE_WAITQUEUE(wait, current);
595 long time_left;
597 dprintk("svc: server %p waiting for data (to = %ld)\n",
598 rqstp, timeout);
600 if (rqstp->rq_xprt)
601 printk(KERN_ERR
602 "svc_recv: service %p, transport not NULL!\n",
603 rqstp);
604 if (waitqueue_active(&rqstp->rq_wait))
605 printk(KERN_ERR
606 "svc_recv: service %p, wait queue active!\n",
607 rqstp);
609 /* now allocate needed pages. If we get a failure, sleep briefly */
610 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
611 for (i = 0; i < pages ; i++)
612 while (rqstp->rq_pages[i] == NULL) {
613 struct page *p = alloc_page(GFP_KERNEL);
614 if (!p) {
615 set_current_state(TASK_INTERRUPTIBLE);
616 if (signalled() || kthread_should_stop()) {
617 set_current_state(TASK_RUNNING);
618 return -EINTR;
620 schedule_timeout(msecs_to_jiffies(500));
622 rqstp->rq_pages[i] = p;
624 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
625 BUG_ON(pages >= RPCSVC_MAXPAGES);
627 /* Make arg->head point to first page and arg->pages point to rest */
628 arg = &rqstp->rq_arg;
629 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
630 arg->head[0].iov_len = PAGE_SIZE;
631 arg->pages = rqstp->rq_pages + 1;
632 arg->page_base = 0;
633 /* save at least one page for response */
634 arg->page_len = (pages-2)*PAGE_SIZE;
635 arg->len = (pages-1)*PAGE_SIZE;
636 arg->tail[0].iov_len = 0;
638 try_to_freeze();
639 cond_resched();
640 if (signalled() || kthread_should_stop())
641 return -EINTR;
643 /* Normally we will wait up to 5 seconds for any required
644 * cache information to be provided.
646 rqstp->rq_chandle.thread_wait = 5*HZ;
648 spin_lock_bh(&pool->sp_lock);
649 xprt = svc_xprt_dequeue(pool);
650 if (xprt) {
651 rqstp->rq_xprt = xprt;
652 svc_xprt_get(xprt);
653 rqstp->rq_reserved = serv->sv_max_mesg;
654 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
656 /* As there is a shortage of threads and this request
657 * had to be queued, don't allow the thread to wait so
658 * long for cache updates.
660 rqstp->rq_chandle.thread_wait = 1*HZ;
661 } else {
662 /* No data pending. Go to sleep */
663 svc_thread_enqueue(pool, rqstp);
666 * We have to be able to interrupt this wait
667 * to bring down the daemons ...
669 set_current_state(TASK_INTERRUPTIBLE);
672 * checking kthread_should_stop() here allows us to avoid
673 * locking and signalling when stopping kthreads that call
674 * svc_recv. If the thread has already been woken up, then
675 * we can exit here without sleeping. If not, then it
676 * it'll be woken up quickly during the schedule_timeout
678 if (kthread_should_stop()) {
679 set_current_state(TASK_RUNNING);
680 spin_unlock_bh(&pool->sp_lock);
681 return -EINTR;
684 add_wait_queue(&rqstp->rq_wait, &wait);
685 spin_unlock_bh(&pool->sp_lock);
687 time_left = schedule_timeout(timeout);
689 try_to_freeze();
691 spin_lock_bh(&pool->sp_lock);
692 remove_wait_queue(&rqstp->rq_wait, &wait);
693 if (!time_left)
694 pool->sp_stats.threads_timedout++;
696 xprt = rqstp->rq_xprt;
697 if (!xprt) {
698 svc_thread_dequeue(pool, rqstp);
699 spin_unlock_bh(&pool->sp_lock);
700 dprintk("svc: server %p, no data yet\n", rqstp);
701 if (signalled() || kthread_should_stop())
702 return -EINTR;
703 else
704 return -EAGAIN;
707 spin_unlock_bh(&pool->sp_lock);
709 len = 0;
710 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
711 dprintk("svc_recv: found XPT_CLOSE\n");
712 svc_delete_xprt(xprt);
713 /* Leave XPT_BUSY set on the dead xprt: */
714 goto out;
716 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
717 struct svc_xprt *newxpt;
718 newxpt = xprt->xpt_ops->xpo_accept(xprt);
719 if (newxpt) {
721 * We know this module_get will succeed because the
722 * listener holds a reference too
724 __module_get(newxpt->xpt_class->xcl_owner);
725 svc_check_conn_limits(xprt->xpt_server);
726 spin_lock_bh(&serv->sv_lock);
727 set_bit(XPT_TEMP, &newxpt->xpt_flags);
728 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
729 serv->sv_tmpcnt++;
730 if (serv->sv_temptimer.function == NULL) {
731 /* setup timer to age temp transports */
732 setup_timer(&serv->sv_temptimer,
733 svc_age_temp_xprts,
734 (unsigned long)serv);
735 mod_timer(&serv->sv_temptimer,
736 jiffies + svc_conn_age_period * HZ);
738 spin_unlock_bh(&serv->sv_lock);
739 svc_xprt_received(newxpt);
741 } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
742 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
743 rqstp, pool->sp_id, xprt,
744 atomic_read(&xprt->xpt_ref.refcount));
745 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
746 if (rqstp->rq_deferred)
747 len = svc_deferred_recv(rqstp);
748 else
749 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
750 dprintk("svc: got len=%d\n", len);
752 svc_xprt_received(xprt);
754 /* No data, incomplete (TCP) read, or accept() */
755 if (len == 0 || len == -EAGAIN)
756 goto out;
758 clear_bit(XPT_OLD, &xprt->xpt_flags);
760 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
761 rqstp->rq_chandle.defer = svc_defer;
763 if (serv->sv_stats)
764 serv->sv_stats->netcnt++;
765 return len;
766 out:
767 rqstp->rq_res.len = 0;
768 svc_xprt_release(rqstp);
769 return -EAGAIN;
771 EXPORT_SYMBOL_GPL(svc_recv);
774 * Drop request
776 void svc_drop(struct svc_rqst *rqstp)
778 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
779 svc_xprt_release(rqstp);
781 EXPORT_SYMBOL_GPL(svc_drop);
784 * Return reply to client.
786 int svc_send(struct svc_rqst *rqstp)
788 struct svc_xprt *xprt;
789 int len;
790 struct xdr_buf *xb;
792 xprt = rqstp->rq_xprt;
793 if (!xprt)
794 return -EFAULT;
796 /* release the receive skb before sending the reply */
797 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
799 /* calculate over-all length */
800 xb = &rqstp->rq_res;
801 xb->len = xb->head[0].iov_len +
802 xb->page_len +
803 xb->tail[0].iov_len;
805 /* Grab mutex to serialize outgoing data. */
806 mutex_lock(&xprt->xpt_mutex);
807 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
808 len = -ENOTCONN;
809 else
810 len = xprt->xpt_ops->xpo_sendto(rqstp);
811 mutex_unlock(&xprt->xpt_mutex);
812 rpc_wake_up(&xprt->xpt_bc_pending);
813 svc_xprt_release(rqstp);
815 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
816 return 0;
817 return len;
821 * Timer function to close old temporary transports, using
822 * a mark-and-sweep algorithm.
824 static void svc_age_temp_xprts(unsigned long closure)
826 struct svc_serv *serv = (struct svc_serv *)closure;
827 struct svc_xprt *xprt;
828 struct list_head *le, *next;
829 LIST_HEAD(to_be_aged);
831 dprintk("svc_age_temp_xprts\n");
833 if (!spin_trylock_bh(&serv->sv_lock)) {
834 /* busy, try again 1 sec later */
835 dprintk("svc_age_temp_xprts: busy\n");
836 mod_timer(&serv->sv_temptimer, jiffies + HZ);
837 return;
840 list_for_each_safe(le, next, &serv->sv_tempsocks) {
841 xprt = list_entry(le, struct svc_xprt, xpt_list);
843 /* First time through, just mark it OLD. Second time
844 * through, close it. */
845 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
846 continue;
847 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
848 test_bit(XPT_BUSY, &xprt->xpt_flags))
849 continue;
850 svc_xprt_get(xprt);
851 list_move(le, &to_be_aged);
852 set_bit(XPT_CLOSE, &xprt->xpt_flags);
853 set_bit(XPT_DETACHED, &xprt->xpt_flags);
855 spin_unlock_bh(&serv->sv_lock);
857 while (!list_empty(&to_be_aged)) {
858 le = to_be_aged.next;
859 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
860 list_del_init(le);
861 xprt = list_entry(le, struct svc_xprt, xpt_list);
863 dprintk("queuing xprt %p for closing\n", xprt);
865 /* a thread will dequeue and close it soon */
866 svc_xprt_enqueue(xprt);
867 svc_xprt_put(xprt);
870 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
873 static void call_xpt_users(struct svc_xprt *xprt)
875 struct svc_xpt_user *u;
877 spin_lock(&xprt->xpt_lock);
878 while (!list_empty(&xprt->xpt_users)) {
879 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
880 list_del(&u->list);
881 u->callback(u);
883 spin_unlock(&xprt->xpt_lock);
887 * Remove a dead transport
889 void svc_delete_xprt(struct svc_xprt *xprt)
891 struct svc_serv *serv = xprt->xpt_server;
892 struct svc_deferred_req *dr;
894 /* Only do this once */
895 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
896 BUG();
898 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
899 xprt->xpt_ops->xpo_detach(xprt);
901 spin_lock_bh(&serv->sv_lock);
902 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
903 list_del_init(&xprt->xpt_list);
905 * We used to delete the transport from whichever list
906 * it's sk_xprt.xpt_ready node was on, but we don't actually
907 * need to. This is because the only time we're called
908 * while still attached to a queue, the queue itself
909 * is about to be destroyed (in svc_destroy).
911 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
912 serv->sv_tmpcnt--;
913 spin_unlock_bh(&serv->sv_lock);
915 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
916 kfree(dr);
918 call_xpt_users(xprt);
919 svc_xprt_put(xprt);
922 void svc_close_xprt(struct svc_xprt *xprt)
924 set_bit(XPT_CLOSE, &xprt->xpt_flags);
925 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
926 /* someone else will have to effect the close */
927 return;
929 * We expect svc_close_xprt() to work even when no threads are
930 * running (e.g., while configuring the server before starting
931 * any threads), so if the transport isn't busy, we delete
932 * it ourself:
934 svc_delete_xprt(xprt);
936 EXPORT_SYMBOL_GPL(svc_close_xprt);
938 void svc_close_all(struct list_head *xprt_list)
940 struct svc_xprt *xprt;
941 struct svc_xprt *tmp;
944 * The server is shutting down, and no more threads are running.
945 * svc_xprt_enqueue() might still be running, but at worst it
946 * will re-add the xprt to sp_sockets, which will soon get
947 * freed. So we don't bother with any more locking, and don't
948 * leave the close to the (nonexistent) server threads:
950 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
951 set_bit(XPT_CLOSE, &xprt->xpt_flags);
952 svc_delete_xprt(xprt);
957 * Handle defer and revisit of requests
960 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
962 struct svc_deferred_req *dr =
963 container_of(dreq, struct svc_deferred_req, handle);
964 struct svc_xprt *xprt = dr->xprt;
966 spin_lock(&xprt->xpt_lock);
967 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
968 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
969 spin_unlock(&xprt->xpt_lock);
970 dprintk("revisit canceled\n");
971 svc_xprt_put(xprt);
972 kfree(dr);
973 return;
975 dprintk("revisit queued\n");
976 dr->xprt = NULL;
977 list_add(&dr->handle.recent, &xprt->xpt_deferred);
978 spin_unlock(&xprt->xpt_lock);
979 svc_xprt_enqueue(xprt);
980 svc_xprt_put(xprt);
984 * Save the request off for later processing. The request buffer looks
985 * like this:
987 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
989 * This code can only handle requests that consist of an xprt-header
990 * and rpc-header.
992 static struct cache_deferred_req *svc_defer(struct cache_req *req)
994 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
995 struct svc_deferred_req *dr;
997 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
998 return NULL; /* if more than a page, give up FIXME */
999 if (rqstp->rq_deferred) {
1000 dr = rqstp->rq_deferred;
1001 rqstp->rq_deferred = NULL;
1002 } else {
1003 size_t skip;
1004 size_t size;
1005 /* FIXME maybe discard if size too large */
1006 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1007 dr = kmalloc(size, GFP_KERNEL);
1008 if (dr == NULL)
1009 return NULL;
1011 dr->handle.owner = rqstp->rq_server;
1012 dr->prot = rqstp->rq_prot;
1013 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1014 dr->addrlen = rqstp->rq_addrlen;
1015 dr->daddr = rqstp->rq_daddr;
1016 dr->argslen = rqstp->rq_arg.len >> 2;
1017 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1019 /* back up head to the start of the buffer and copy */
1020 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1021 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1022 dr->argslen << 2);
1024 svc_xprt_get(rqstp->rq_xprt);
1025 dr->xprt = rqstp->rq_xprt;
1026 rqstp->rq_dropme = true;
1028 dr->handle.revisit = svc_revisit;
1029 return &dr->handle;
1033 * recv data from a deferred request into an active one
1035 static int svc_deferred_recv(struct svc_rqst *rqstp)
1037 struct svc_deferred_req *dr = rqstp->rq_deferred;
1039 /* setup iov_base past transport header */
1040 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1041 /* The iov_len does not include the transport header bytes */
1042 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1043 rqstp->rq_arg.page_len = 0;
1044 /* The rq_arg.len includes the transport header bytes */
1045 rqstp->rq_arg.len = dr->argslen<<2;
1046 rqstp->rq_prot = dr->prot;
1047 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1048 rqstp->rq_addrlen = dr->addrlen;
1049 /* Save off transport header len in case we get deferred again */
1050 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1051 rqstp->rq_daddr = dr->daddr;
1052 rqstp->rq_respages = rqstp->rq_pages;
1053 return (dr->argslen<<2) - dr->xprt_hlen;
1057 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1059 struct svc_deferred_req *dr = NULL;
1061 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1062 return NULL;
1063 spin_lock(&xprt->xpt_lock);
1064 if (!list_empty(&xprt->xpt_deferred)) {
1065 dr = list_entry(xprt->xpt_deferred.next,
1066 struct svc_deferred_req,
1067 handle.recent);
1068 list_del_init(&dr->handle.recent);
1069 } else
1070 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1071 spin_unlock(&xprt->xpt_lock);
1072 return dr;
1076 * svc_find_xprt - find an RPC transport instance
1077 * @serv: pointer to svc_serv to search
1078 * @xcl_name: C string containing transport's class name
1079 * @af: Address family of transport's local address
1080 * @port: transport's IP port number
1082 * Return the transport instance pointer for the endpoint accepting
1083 * connections/peer traffic from the specified transport class,
1084 * address family and port.
1086 * Specifying 0 for the address family or port is effectively a
1087 * wild-card, and will result in matching the first transport in the
1088 * service's list that has a matching class name.
1090 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1091 const sa_family_t af, const unsigned short port)
1093 struct svc_xprt *xprt;
1094 struct svc_xprt *found = NULL;
1096 /* Sanity check the args */
1097 if (serv == NULL || xcl_name == NULL)
1098 return found;
1100 spin_lock_bh(&serv->sv_lock);
1101 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1102 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1103 continue;
1104 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1105 continue;
1106 if (port != 0 && port != svc_xprt_local_port(xprt))
1107 continue;
1108 found = xprt;
1109 svc_xprt_get(xprt);
1110 break;
1112 spin_unlock_bh(&serv->sv_lock);
1113 return found;
1115 EXPORT_SYMBOL_GPL(svc_find_xprt);
1117 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1118 char *pos, int remaining)
1120 int len;
1122 len = snprintf(pos, remaining, "%s %u\n",
1123 xprt->xpt_class->xcl_name,
1124 svc_xprt_local_port(xprt));
1125 if (len >= remaining)
1126 return -ENAMETOOLONG;
1127 return len;
1131 * svc_xprt_names - format a buffer with a list of transport names
1132 * @serv: pointer to an RPC service
1133 * @buf: pointer to a buffer to be filled in
1134 * @buflen: length of buffer to be filled in
1136 * Fills in @buf with a string containing a list of transport names,
1137 * each name terminated with '\n'.
1139 * Returns positive length of the filled-in string on success; otherwise
1140 * a negative errno value is returned if an error occurs.
1142 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1144 struct svc_xprt *xprt;
1145 int len, totlen;
1146 char *pos;
1148 /* Sanity check args */
1149 if (!serv)
1150 return 0;
1152 spin_lock_bh(&serv->sv_lock);
1154 pos = buf;
1155 totlen = 0;
1156 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1157 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1158 if (len < 0) {
1159 *buf = '\0';
1160 totlen = len;
1162 if (len <= 0)
1163 break;
1165 pos += len;
1166 totlen += len;
1169 spin_unlock_bh(&serv->sv_lock);
1170 return totlen;
1172 EXPORT_SYMBOL_GPL(svc_xprt_names);
1175 /*----------------------------------------------------------------------------*/
1177 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1179 unsigned int pidx = (unsigned int)*pos;
1180 struct svc_serv *serv = m->private;
1182 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1184 if (!pidx)
1185 return SEQ_START_TOKEN;
1186 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1189 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1191 struct svc_pool *pool = p;
1192 struct svc_serv *serv = m->private;
1194 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1196 if (p == SEQ_START_TOKEN) {
1197 pool = &serv->sv_pools[0];
1198 } else {
1199 unsigned int pidx = (pool - &serv->sv_pools[0]);
1200 if (pidx < serv->sv_nrpools-1)
1201 pool = &serv->sv_pools[pidx+1];
1202 else
1203 pool = NULL;
1205 ++*pos;
1206 return pool;
1209 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1213 static int svc_pool_stats_show(struct seq_file *m, void *p)
1215 struct svc_pool *pool = p;
1217 if (p == SEQ_START_TOKEN) {
1218 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1219 return 0;
1222 seq_printf(m, "%u %lu %lu %lu %lu\n",
1223 pool->sp_id,
1224 pool->sp_stats.packets,
1225 pool->sp_stats.sockets_queued,
1226 pool->sp_stats.threads_woken,
1227 pool->sp_stats.threads_timedout);
1229 return 0;
1232 static const struct seq_operations svc_pool_stats_seq_ops = {
1233 .start = svc_pool_stats_start,
1234 .next = svc_pool_stats_next,
1235 .stop = svc_pool_stats_stop,
1236 .show = svc_pool_stats_show,
1239 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1241 int err;
1243 err = seq_open(file, &svc_pool_stats_seq_ops);
1244 if (!err)
1245 ((struct seq_file *) file->private_data)->private = serv;
1246 return err;
1248 EXPORT_SYMBOL(svc_pool_stats_open);
1250 /*----------------------------------------------------------------------------*/