eCryptfs: Remove ecryptfs_header_cache_2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / sunrpc / sched.c
blob6b43ee7221d5a830b8b0acea4375f9341aacfc90
1 /*
2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
22 #include <linux/sunrpc/clnt.h>
24 #include "sunrpc.h"
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY RPCDBG_SCHED
28 #endif
31 * RPC slabs and memory pools
33 #define RPC_BUFFER_MAXSIZE (2048)
34 #define RPC_BUFFER_POOLSIZE (8)
35 #define RPC_TASK_POOLSIZE (8)
36 static struct kmem_cache *rpc_task_slabp __read_mostly;
37 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
38 static mempool_t *rpc_task_mempool __read_mostly;
39 static mempool_t *rpc_buffer_mempool __read_mostly;
41 static void rpc_async_schedule(struct work_struct *);
42 static void rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
46 * RPC tasks sit here while waiting for conditions to improve.
48 static struct rpc_wait_queue delay_queue;
51 * rpciod-related stuff
53 struct workqueue_struct *rpciod_workqueue;
56 * Disable the timer for a given RPC task. Should be called with
57 * queue->lock and bh_disabled in order to avoid races within
58 * rpc_run_timer().
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
63 if (task->tk_timeout == 0)
64 return;
65 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66 task->tk_timeout = 0;
67 list_del(&task->u.tk_wait.timer_list);
68 if (list_empty(&queue->timer_list.list))
69 del_timer(&queue->timer_list.timer);
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
75 queue->timer_list.expires = expires;
76 mod_timer(&queue->timer_list.timer, expires);
80 * Set up a timer for the current task.
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 if (!task->tk_timeout)
86 return;
88 dprintk("RPC: %5u setting alarm for %lu ms\n",
89 task->tk_pid, task->tk_timeout * 1000 / HZ);
91 task->u.tk_wait.expires = jiffies + task->tk_timeout;
92 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
98 * Add new request to a priority queue.
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
102 struct list_head *q;
103 struct rpc_task *t;
105 INIT_LIST_HEAD(&task->u.tk_wait.links);
106 q = &queue->tasks[task->tk_priority];
107 if (unlikely(task->tk_priority > queue->maxpriority))
108 q = &queue->tasks[queue->maxpriority];
109 list_for_each_entry(t, q, u.tk_wait.list) {
110 if (t->tk_owner == task->tk_owner) {
111 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112 return;
115 list_add_tail(&task->u.tk_wait.list, q);
119 * Add new request to wait queue.
121 * Swapper tasks always get inserted at the head of the queue.
122 * This should avoid many nasty memory deadlocks and hopefully
123 * improve overall performance.
124 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
128 BUG_ON (RPC_IS_QUEUED(task));
130 if (RPC_IS_PRIORITY(queue))
131 __rpc_add_wait_queue_priority(queue, task);
132 else if (RPC_IS_SWAPPER(task))
133 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134 else
135 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136 task->tk_waitqueue = queue;
137 queue->qlen++;
138 rpc_set_queued(task);
140 dprintk("RPC: %5u added to queue %p \"%s\"\n",
141 task->tk_pid, queue, rpc_qname(queue));
145 * Remove request from a priority queue.
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
149 struct rpc_task *t;
151 if (!list_empty(&task->u.tk_wait.links)) {
152 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
159 * Remove request from queue.
160 * Note: must be called with spin lock held.
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
164 __rpc_disable_timer(queue, task);
165 if (RPC_IS_PRIORITY(queue))
166 __rpc_remove_wait_queue_priority(task);
167 list_del(&task->u.tk_wait.list);
168 queue->qlen--;
169 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170 task->tk_pid, queue, rpc_qname(queue));
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
175 queue->priority = priority;
176 queue->count = 1 << (priority * 2);
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
181 queue->owner = pid;
182 queue->nr = RPC_BATCH_COUNT;
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
187 rpc_set_waitqueue_priority(queue, queue->maxpriority);
188 rpc_set_waitqueue_owner(queue, 0);
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
193 int i;
195 spin_lock_init(&queue->lock);
196 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
197 INIT_LIST_HEAD(&queue->tasks[i]);
198 queue->maxpriority = nr_queues - 1;
199 rpc_reset_waitqueue_priority(queue);
200 queue->qlen = 0;
201 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
202 INIT_LIST_HEAD(&queue->timer_list.list);
203 #ifdef RPC_DEBUG
204 queue->name = qname;
205 #endif
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
210 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
212 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
216 __rpc_init_priority_wait_queue(queue, qname, 1);
218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
222 del_timer_sync(&queue->timer_list.timer);
224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
226 static int rpc_wait_bit_killable(void *word)
228 if (fatal_signal_pending(current))
229 return -ERESTARTSYS;
230 schedule();
231 return 0;
234 #ifdef RPC_DEBUG
235 static void rpc_task_set_debuginfo(struct rpc_task *task)
237 static atomic_t rpc_pid;
239 task->tk_pid = atomic_inc_return(&rpc_pid);
241 #else
242 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
245 #endif
247 static void rpc_set_active(struct rpc_task *task)
249 rpc_task_set_debuginfo(task);
250 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
254 * Mark an RPC call as having completed by clearing the 'active' bit
255 * and then waking up all tasks that were sleeping.
257 static int rpc_complete_task(struct rpc_task *task)
259 void *m = &task->tk_runstate;
260 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
261 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
262 unsigned long flags;
263 int ret;
265 spin_lock_irqsave(&wq->lock, flags);
266 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
267 ret = atomic_dec_and_test(&task->tk_count);
268 if (waitqueue_active(wq))
269 __wake_up_locked_key(wq, TASK_NORMAL, &k);
270 spin_unlock_irqrestore(&wq->lock, flags);
271 return ret;
275 * Allow callers to wait for completion of an RPC call
277 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
278 * to enforce taking of the wq->lock and hence avoid races with
279 * rpc_complete_task().
281 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
283 if (action == NULL)
284 action = rpc_wait_bit_killable;
285 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
286 action, TASK_KILLABLE);
288 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
291 * Make an RPC task runnable.
293 * Note: If the task is ASYNC, this must be called with
294 * the spinlock held to protect the wait queue operation.
296 static void rpc_make_runnable(struct rpc_task *task)
298 rpc_clear_queued(task);
299 if (rpc_test_and_set_running(task))
300 return;
301 if (RPC_IS_ASYNC(task)) {
302 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
303 queue_work(rpciod_workqueue, &task->u.tk_work);
304 } else
305 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
309 * Prepare for sleeping on a wait queue.
310 * By always appending tasks to the list we ensure FIFO behavior.
311 * NB: An RPC task will only receive interrupt-driven events as long
312 * as it's on a wait queue.
314 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
315 rpc_action action)
317 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
318 task->tk_pid, rpc_qname(q), jiffies);
320 __rpc_add_wait_queue(q, task);
322 BUG_ON(task->tk_callback != NULL);
323 task->tk_callback = action;
324 __rpc_add_timer(q, task);
327 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
328 rpc_action action)
330 /* We shouldn't ever put an inactive task to sleep */
331 BUG_ON(!RPC_IS_ACTIVATED(task));
334 * Protect the queue operations.
336 spin_lock_bh(&q->lock);
337 __rpc_sleep_on(q, task, action);
338 spin_unlock_bh(&q->lock);
340 EXPORT_SYMBOL_GPL(rpc_sleep_on);
343 * __rpc_do_wake_up_task - wake up a single rpc_task
344 * @queue: wait queue
345 * @task: task to be woken up
347 * Caller must hold queue->lock, and have cleared the task queued flag.
349 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
351 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
352 task->tk_pid, jiffies);
354 /* Has the task been executed yet? If not, we cannot wake it up! */
355 if (!RPC_IS_ACTIVATED(task)) {
356 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
357 return;
360 __rpc_remove_wait_queue(queue, task);
362 rpc_make_runnable(task);
364 dprintk("RPC: __rpc_wake_up_task done\n");
368 * Wake up a queued task while the queue lock is being held
370 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
372 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
373 __rpc_do_wake_up_task(queue, task);
377 * Tests whether rpc queue is empty
379 int rpc_queue_empty(struct rpc_wait_queue *queue)
381 int res;
383 spin_lock_bh(&queue->lock);
384 res = queue->qlen;
385 spin_unlock_bh(&queue->lock);
386 return res == 0;
388 EXPORT_SYMBOL_GPL(rpc_queue_empty);
391 * Wake up a task on a specific queue
393 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
395 spin_lock_bh(&queue->lock);
396 rpc_wake_up_task_queue_locked(queue, task);
397 spin_unlock_bh(&queue->lock);
399 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
402 * Wake up the next task on a priority queue.
404 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
406 struct list_head *q;
407 struct rpc_task *task;
410 * Service a batch of tasks from a single owner.
412 q = &queue->tasks[queue->priority];
413 if (!list_empty(q)) {
414 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
415 if (queue->owner == task->tk_owner) {
416 if (--queue->nr)
417 goto out;
418 list_move_tail(&task->u.tk_wait.list, q);
421 * Check if we need to switch queues.
423 if (--queue->count)
424 goto new_owner;
428 * Service the next queue.
430 do {
431 if (q == &queue->tasks[0])
432 q = &queue->tasks[queue->maxpriority];
433 else
434 q = q - 1;
435 if (!list_empty(q)) {
436 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
437 goto new_queue;
439 } while (q != &queue->tasks[queue->priority]);
441 rpc_reset_waitqueue_priority(queue);
442 return NULL;
444 new_queue:
445 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
446 new_owner:
447 rpc_set_waitqueue_owner(queue, task->tk_owner);
448 out:
449 rpc_wake_up_task_queue_locked(queue, task);
450 return task;
454 * Wake up the next task on the wait queue.
456 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
458 struct rpc_task *task = NULL;
460 dprintk("RPC: wake_up_next(%p \"%s\")\n",
461 queue, rpc_qname(queue));
462 spin_lock_bh(&queue->lock);
463 if (RPC_IS_PRIORITY(queue))
464 task = __rpc_wake_up_next_priority(queue);
465 else {
466 task_for_first(task, &queue->tasks[0])
467 rpc_wake_up_task_queue_locked(queue, task);
469 spin_unlock_bh(&queue->lock);
471 return task;
473 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
476 * rpc_wake_up - wake up all rpc_tasks
477 * @queue: rpc_wait_queue on which the tasks are sleeping
479 * Grabs queue->lock
481 void rpc_wake_up(struct rpc_wait_queue *queue)
483 struct rpc_task *task, *next;
484 struct list_head *head;
486 spin_lock_bh(&queue->lock);
487 head = &queue->tasks[queue->maxpriority];
488 for (;;) {
489 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
490 rpc_wake_up_task_queue_locked(queue, task);
491 if (head == &queue->tasks[0])
492 break;
493 head--;
495 spin_unlock_bh(&queue->lock);
497 EXPORT_SYMBOL_GPL(rpc_wake_up);
500 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
501 * @queue: rpc_wait_queue on which the tasks are sleeping
502 * @status: status value to set
504 * Grabs queue->lock
506 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
508 struct rpc_task *task, *next;
509 struct list_head *head;
511 spin_lock_bh(&queue->lock);
512 head = &queue->tasks[queue->maxpriority];
513 for (;;) {
514 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
515 task->tk_status = status;
516 rpc_wake_up_task_queue_locked(queue, task);
518 if (head == &queue->tasks[0])
519 break;
520 head--;
522 spin_unlock_bh(&queue->lock);
524 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
526 static void __rpc_queue_timer_fn(unsigned long ptr)
528 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
529 struct rpc_task *task, *n;
530 unsigned long expires, now, timeo;
532 spin_lock(&queue->lock);
533 expires = now = jiffies;
534 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
535 timeo = task->u.tk_wait.expires;
536 if (time_after_eq(now, timeo)) {
537 dprintk("RPC: %5u timeout\n", task->tk_pid);
538 task->tk_status = -ETIMEDOUT;
539 rpc_wake_up_task_queue_locked(queue, task);
540 continue;
542 if (expires == now || time_after(expires, timeo))
543 expires = timeo;
545 if (!list_empty(&queue->timer_list.list))
546 rpc_set_queue_timer(queue, expires);
547 spin_unlock(&queue->lock);
550 static void __rpc_atrun(struct rpc_task *task)
552 task->tk_status = 0;
556 * Run a task at a later time
558 void rpc_delay(struct rpc_task *task, unsigned long delay)
560 task->tk_timeout = delay;
561 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
563 EXPORT_SYMBOL_GPL(rpc_delay);
566 * Helper to call task->tk_ops->rpc_call_prepare
568 void rpc_prepare_task(struct rpc_task *task)
570 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
574 * Helper that calls task->tk_ops->rpc_call_done if it exists
576 void rpc_exit_task(struct rpc_task *task)
578 task->tk_action = NULL;
579 if (task->tk_ops->rpc_call_done != NULL) {
580 task->tk_ops->rpc_call_done(task, task->tk_calldata);
581 if (task->tk_action != NULL) {
582 WARN_ON(RPC_ASSASSINATED(task));
583 /* Always release the RPC slot and buffer memory */
584 xprt_release(task);
589 void rpc_exit(struct rpc_task *task, int status)
591 task->tk_status = status;
592 task->tk_action = rpc_exit_task;
593 if (RPC_IS_QUEUED(task))
594 rpc_wake_up_queued_task(task->tk_waitqueue, task);
596 EXPORT_SYMBOL_GPL(rpc_exit);
598 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
600 if (ops->rpc_release != NULL)
601 ops->rpc_release(calldata);
605 * This is the RPC `scheduler' (or rather, the finite state machine).
607 static void __rpc_execute(struct rpc_task *task)
609 struct rpc_wait_queue *queue;
610 int task_is_async = RPC_IS_ASYNC(task);
611 int status = 0;
613 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
614 task->tk_pid, task->tk_flags);
616 BUG_ON(RPC_IS_QUEUED(task));
618 for (;;) {
621 * Execute any pending callback.
623 if (task->tk_callback) {
624 void (*save_callback)(struct rpc_task *);
627 * We set tk_callback to NULL before calling it,
628 * in case it sets the tk_callback field itself:
630 save_callback = task->tk_callback;
631 task->tk_callback = NULL;
632 save_callback(task);
633 } else {
635 * Perform the next FSM step.
636 * tk_action may be NULL when the task has been killed
637 * by someone else.
639 if (task->tk_action == NULL)
640 break;
641 task->tk_action(task);
645 * Lockless check for whether task is sleeping or not.
647 if (!RPC_IS_QUEUED(task))
648 continue;
650 * The queue->lock protects against races with
651 * rpc_make_runnable().
653 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
654 * rpc_task, rpc_make_runnable() can assign it to a
655 * different workqueue. We therefore cannot assume that the
656 * rpc_task pointer may still be dereferenced.
658 queue = task->tk_waitqueue;
659 spin_lock_bh(&queue->lock);
660 if (!RPC_IS_QUEUED(task)) {
661 spin_unlock_bh(&queue->lock);
662 continue;
664 rpc_clear_running(task);
665 spin_unlock_bh(&queue->lock);
666 if (task_is_async)
667 return;
669 /* sync task: sleep here */
670 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
671 status = out_of_line_wait_on_bit(&task->tk_runstate,
672 RPC_TASK_QUEUED, rpc_wait_bit_killable,
673 TASK_KILLABLE);
674 if (status == -ERESTARTSYS) {
676 * When a sync task receives a signal, it exits with
677 * -ERESTARTSYS. In order to catch any callbacks that
678 * clean up after sleeping on some queue, we don't
679 * break the loop here, but go around once more.
681 dprintk("RPC: %5u got signal\n", task->tk_pid);
682 task->tk_flags |= RPC_TASK_KILLED;
683 rpc_exit(task, -ERESTARTSYS);
685 rpc_set_running(task);
686 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
689 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
690 task->tk_status);
691 /* Release all resources associated with the task */
692 rpc_release_task(task);
696 * User-visible entry point to the scheduler.
698 * This may be called recursively if e.g. an async NFS task updates
699 * the attributes and finds that dirty pages must be flushed.
700 * NOTE: Upon exit of this function the task is guaranteed to be
701 * released. In particular note that tk_release() will have
702 * been called, so your task memory may have been freed.
704 void rpc_execute(struct rpc_task *task)
706 rpc_set_active(task);
707 rpc_make_runnable(task);
708 if (!RPC_IS_ASYNC(task))
709 __rpc_execute(task);
712 static void rpc_async_schedule(struct work_struct *work)
714 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
718 * rpc_malloc - allocate an RPC buffer
719 * @task: RPC task that will use this buffer
720 * @size: requested byte size
722 * To prevent rpciod from hanging, this allocator never sleeps,
723 * returning NULL if the request cannot be serviced immediately.
724 * The caller can arrange to sleep in a way that is safe for rpciod.
726 * Most requests are 'small' (under 2KiB) and can be serviced from a
727 * mempool, ensuring that NFS reads and writes can always proceed,
728 * and that there is good locality of reference for these buffers.
730 * In order to avoid memory starvation triggering more writebacks of
731 * NFS requests, we avoid using GFP_KERNEL.
733 void *rpc_malloc(struct rpc_task *task, size_t size)
735 struct rpc_buffer *buf;
736 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
738 size += sizeof(struct rpc_buffer);
739 if (size <= RPC_BUFFER_MAXSIZE)
740 buf = mempool_alloc(rpc_buffer_mempool, gfp);
741 else
742 buf = kmalloc(size, gfp);
744 if (!buf)
745 return NULL;
747 buf->len = size;
748 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
749 task->tk_pid, size, buf);
750 return &buf->data;
752 EXPORT_SYMBOL_GPL(rpc_malloc);
755 * rpc_free - free buffer allocated via rpc_malloc
756 * @buffer: buffer to free
759 void rpc_free(void *buffer)
761 size_t size;
762 struct rpc_buffer *buf;
764 if (!buffer)
765 return;
767 buf = container_of(buffer, struct rpc_buffer, data);
768 size = buf->len;
770 dprintk("RPC: freeing buffer of size %zu at %p\n",
771 size, buf);
773 if (size <= RPC_BUFFER_MAXSIZE)
774 mempool_free(buf, rpc_buffer_mempool);
775 else
776 kfree(buf);
778 EXPORT_SYMBOL_GPL(rpc_free);
781 * Creation and deletion of RPC task structures
783 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
785 memset(task, 0, sizeof(*task));
786 atomic_set(&task->tk_count, 1);
787 task->tk_flags = task_setup_data->flags;
788 task->tk_ops = task_setup_data->callback_ops;
789 task->tk_calldata = task_setup_data->callback_data;
790 INIT_LIST_HEAD(&task->tk_task);
792 /* Initialize retry counters */
793 task->tk_garb_retry = 2;
794 task->tk_cred_retry = 2;
796 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
797 task->tk_owner = current->tgid;
799 /* Initialize workqueue for async tasks */
800 task->tk_workqueue = task_setup_data->workqueue;
802 if (task->tk_ops->rpc_call_prepare != NULL)
803 task->tk_action = rpc_prepare_task;
805 /* starting timestamp */
806 task->tk_start = ktime_get();
808 dprintk("RPC: new task initialized, procpid %u\n",
809 task_pid_nr(current));
812 static struct rpc_task *
813 rpc_alloc_task(void)
815 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
819 * Create a new task for the specified client.
821 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
823 struct rpc_task *task = setup_data->task;
824 unsigned short flags = 0;
826 if (task == NULL) {
827 task = rpc_alloc_task();
828 if (task == NULL) {
829 rpc_release_calldata(setup_data->callback_ops,
830 setup_data->callback_data);
831 return ERR_PTR(-ENOMEM);
833 flags = RPC_TASK_DYNAMIC;
836 rpc_init_task(task, setup_data);
837 task->tk_flags |= flags;
838 dprintk("RPC: allocated task %p\n", task);
839 return task;
842 static void rpc_free_task(struct rpc_task *task)
844 const struct rpc_call_ops *tk_ops = task->tk_ops;
845 void *calldata = task->tk_calldata;
847 if (task->tk_flags & RPC_TASK_DYNAMIC) {
848 dprintk("RPC: %5u freeing task\n", task->tk_pid);
849 mempool_free(task, rpc_task_mempool);
851 rpc_release_calldata(tk_ops, calldata);
854 static void rpc_async_release(struct work_struct *work)
856 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
859 static void rpc_release_resources_task(struct rpc_task *task)
861 if (task->tk_rqstp)
862 xprt_release(task);
863 if (task->tk_msg.rpc_cred) {
864 put_rpccred(task->tk_msg.rpc_cred);
865 task->tk_msg.rpc_cred = NULL;
867 rpc_task_release_client(task);
870 static void rpc_final_put_task(struct rpc_task *task,
871 struct workqueue_struct *q)
873 if (q != NULL) {
874 INIT_WORK(&task->u.tk_work, rpc_async_release);
875 queue_work(q, &task->u.tk_work);
876 } else
877 rpc_free_task(task);
880 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
882 if (atomic_dec_and_test(&task->tk_count)) {
883 rpc_release_resources_task(task);
884 rpc_final_put_task(task, q);
888 void rpc_put_task(struct rpc_task *task)
890 rpc_do_put_task(task, NULL);
892 EXPORT_SYMBOL_GPL(rpc_put_task);
894 void rpc_put_task_async(struct rpc_task *task)
896 rpc_do_put_task(task, task->tk_workqueue);
898 EXPORT_SYMBOL_GPL(rpc_put_task_async);
900 static void rpc_release_task(struct rpc_task *task)
902 dprintk("RPC: %5u release task\n", task->tk_pid);
904 BUG_ON (RPC_IS_QUEUED(task));
906 rpc_release_resources_task(task);
909 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
910 * so it should be safe to use task->tk_count as a test for whether
911 * or not any other processes still hold references to our rpc_task.
913 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
914 /* Wake up anyone who may be waiting for task completion */
915 if (!rpc_complete_task(task))
916 return;
917 } else {
918 if (!atomic_dec_and_test(&task->tk_count))
919 return;
921 rpc_final_put_task(task, task->tk_workqueue);
924 int rpciod_up(void)
926 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
929 void rpciod_down(void)
931 module_put(THIS_MODULE);
935 * Start up the rpciod workqueue.
937 static int rpciod_start(void)
939 struct workqueue_struct *wq;
942 * Create the rpciod thread and wait for it to start.
944 dprintk("RPC: creating workqueue rpciod\n");
945 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
946 rpciod_workqueue = wq;
947 return rpciod_workqueue != NULL;
950 static void rpciod_stop(void)
952 struct workqueue_struct *wq = NULL;
954 if (rpciod_workqueue == NULL)
955 return;
956 dprintk("RPC: destroying workqueue rpciod\n");
958 wq = rpciod_workqueue;
959 rpciod_workqueue = NULL;
960 destroy_workqueue(wq);
963 void
964 rpc_destroy_mempool(void)
966 rpciod_stop();
967 if (rpc_buffer_mempool)
968 mempool_destroy(rpc_buffer_mempool);
969 if (rpc_task_mempool)
970 mempool_destroy(rpc_task_mempool);
971 if (rpc_task_slabp)
972 kmem_cache_destroy(rpc_task_slabp);
973 if (rpc_buffer_slabp)
974 kmem_cache_destroy(rpc_buffer_slabp);
975 rpc_destroy_wait_queue(&delay_queue);
979 rpc_init_mempool(void)
982 * The following is not strictly a mempool initialisation,
983 * but there is no harm in doing it here
985 rpc_init_wait_queue(&delay_queue, "delayq");
986 if (!rpciod_start())
987 goto err_nomem;
989 rpc_task_slabp = kmem_cache_create("rpc_tasks",
990 sizeof(struct rpc_task),
991 0, SLAB_HWCACHE_ALIGN,
992 NULL);
993 if (!rpc_task_slabp)
994 goto err_nomem;
995 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
996 RPC_BUFFER_MAXSIZE,
997 0, SLAB_HWCACHE_ALIGN,
998 NULL);
999 if (!rpc_buffer_slabp)
1000 goto err_nomem;
1001 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1002 rpc_task_slabp);
1003 if (!rpc_task_mempool)
1004 goto err_nomem;
1005 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1006 rpc_buffer_slabp);
1007 if (!rpc_buffer_mempool)
1008 goto err_nomem;
1009 return 0;
1010 err_nomem:
1011 rpc_destroy_mempool();
1012 return -ENOMEM;