staging: comedi: fix oops for USB DAQ devices.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memory.c
blob6c836d36f2f0ab3a0979c1bf978f060f457ab9b5
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
60 #include <asm/io.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
67 #include "internal.h"
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
78 unsigned long num_physpages;
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
86 void * high_memory;
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
92 * Randomize the address space (stacks, mmaps, brk, etc.).
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
100 #else
102 #endif
104 static int __init disable_randmaps(char *s)
106 randomize_va_space = 0;
107 return 1;
109 __setup("norandmaps", disable_randmaps);
111 unsigned long zero_pfn __read_mostly;
112 unsigned long highest_memmap_pfn __read_mostly;
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 static int __init init_zero_pfn(void)
119 zero_pfn = page_to_pfn(ZERO_PAGE(0));
120 return 0;
122 core_initcall(init_zero_pfn);
125 * If a p?d_bad entry is found while walking page tables, report
126 * the error, before resetting entry to p?d_none. Usually (but
127 * very seldom) called out from the p?d_none_or_clear_bad macros.
130 void pgd_clear_bad(pgd_t *pgd)
132 pgd_ERROR(*pgd);
133 pgd_clear(pgd);
136 void pud_clear_bad(pud_t *pud)
138 pud_ERROR(*pud);
139 pud_clear(pud);
142 void pmd_clear_bad(pmd_t *pmd)
144 pmd_ERROR(*pmd);
145 pmd_clear(pmd);
149 * Note: this doesn't free the actual pages themselves. That
150 * has been handled earlier when unmapping all the memory regions.
152 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
153 unsigned long addr)
155 pgtable_t token = pmd_pgtable(*pmd);
156 pmd_clear(pmd);
157 pte_free_tlb(tlb, token, addr);
158 tlb->mm->nr_ptes--;
161 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
162 unsigned long addr, unsigned long end,
163 unsigned long floor, unsigned long ceiling)
165 pmd_t *pmd;
166 unsigned long next;
167 unsigned long start;
169 start = addr;
170 pmd = pmd_offset(pud, addr);
171 do {
172 next = pmd_addr_end(addr, end);
173 if (pmd_none_or_clear_bad(pmd))
174 continue;
175 free_pte_range(tlb, pmd, addr);
176 } while (pmd++, addr = next, addr != end);
178 start &= PUD_MASK;
179 if (start < floor)
180 return;
181 if (ceiling) {
182 ceiling &= PUD_MASK;
183 if (!ceiling)
184 return;
186 if (end - 1 > ceiling - 1)
187 return;
189 pmd = pmd_offset(pud, start);
190 pud_clear(pud);
191 pmd_free_tlb(tlb, pmd, start);
194 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
195 unsigned long addr, unsigned long end,
196 unsigned long floor, unsigned long ceiling)
198 pud_t *pud;
199 unsigned long next;
200 unsigned long start;
202 start = addr;
203 pud = pud_offset(pgd, addr);
204 do {
205 next = pud_addr_end(addr, end);
206 if (pud_none_or_clear_bad(pud))
207 continue;
208 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
209 } while (pud++, addr = next, addr != end);
211 start &= PGDIR_MASK;
212 if (start < floor)
213 return;
214 if (ceiling) {
215 ceiling &= PGDIR_MASK;
216 if (!ceiling)
217 return;
219 if (end - 1 > ceiling - 1)
220 return;
222 pud = pud_offset(pgd, start);
223 pgd_clear(pgd);
224 pud_free_tlb(tlb, pud, start);
228 * This function frees user-level page tables of a process.
230 * Must be called with pagetable lock held.
232 void free_pgd_range(struct mmu_gather *tlb,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
236 pgd_t *pgd;
237 unsigned long next;
238 unsigned long start;
241 * The next few lines have given us lots of grief...
243 * Why are we testing PMD* at this top level? Because often
244 * there will be no work to do at all, and we'd prefer not to
245 * go all the way down to the bottom just to discover that.
247 * Why all these "- 1"s? Because 0 represents both the bottom
248 * of the address space and the top of it (using -1 for the
249 * top wouldn't help much: the masks would do the wrong thing).
250 * The rule is that addr 0 and floor 0 refer to the bottom of
251 * the address space, but end 0 and ceiling 0 refer to the top
252 * Comparisons need to use "end - 1" and "ceiling - 1" (though
253 * that end 0 case should be mythical).
255 * Wherever addr is brought up or ceiling brought down, we must
256 * be careful to reject "the opposite 0" before it confuses the
257 * subsequent tests. But what about where end is brought down
258 * by PMD_SIZE below? no, end can't go down to 0 there.
260 * Whereas we round start (addr) and ceiling down, by different
261 * masks at different levels, in order to test whether a table
262 * now has no other vmas using it, so can be freed, we don't
263 * bother to round floor or end up - the tests don't need that.
266 addr &= PMD_MASK;
267 if (addr < floor) {
268 addr += PMD_SIZE;
269 if (!addr)
270 return;
272 if (ceiling) {
273 ceiling &= PMD_MASK;
274 if (!ceiling)
275 return;
277 if (end - 1 > ceiling - 1)
278 end -= PMD_SIZE;
279 if (addr > end - 1)
280 return;
282 start = addr;
283 pgd = pgd_offset(tlb->mm, addr);
284 do {
285 next = pgd_addr_end(addr, end);
286 if (pgd_none_or_clear_bad(pgd))
287 continue;
288 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
289 } while (pgd++, addr = next, addr != end);
292 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
293 unsigned long floor, unsigned long ceiling)
295 while (vma) {
296 struct vm_area_struct *next = vma->vm_next;
297 unsigned long addr = vma->vm_start;
300 * Hide vma from rmap and truncate_pagecache before freeing
301 * pgtables
303 anon_vma_unlink(vma);
304 unlink_file_vma(vma);
306 if (is_vm_hugetlb_page(vma)) {
307 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
308 floor, next? next->vm_start: ceiling);
309 } else {
311 * Optimization: gather nearby vmas into one call down
313 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
314 && !is_vm_hugetlb_page(next)) {
315 vma = next;
316 next = vma->vm_next;
317 anon_vma_unlink(vma);
318 unlink_file_vma(vma);
320 free_pgd_range(tlb, addr, vma->vm_end,
321 floor, next? next->vm_start: ceiling);
323 vma = next;
327 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
329 pgtable_t new = pte_alloc_one(mm, address);
330 if (!new)
331 return -ENOMEM;
334 * Ensure all pte setup (eg. pte page lock and page clearing) are
335 * visible before the pte is made visible to other CPUs by being
336 * put into page tables.
338 * The other side of the story is the pointer chasing in the page
339 * table walking code (when walking the page table without locking;
340 * ie. most of the time). Fortunately, these data accesses consist
341 * of a chain of data-dependent loads, meaning most CPUs (alpha
342 * being the notable exception) will already guarantee loads are
343 * seen in-order. See the alpha page table accessors for the
344 * smp_read_barrier_depends() barriers in page table walking code.
346 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
348 spin_lock(&mm->page_table_lock);
349 if (!pmd_present(*pmd)) { /* Has another populated it ? */
350 mm->nr_ptes++;
351 pmd_populate(mm, pmd, new);
352 new = NULL;
354 spin_unlock(&mm->page_table_lock);
355 if (new)
356 pte_free(mm, new);
357 return 0;
360 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
362 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
363 if (!new)
364 return -ENOMEM;
366 smp_wmb(); /* See comment in __pte_alloc */
368 spin_lock(&init_mm.page_table_lock);
369 if (!pmd_present(*pmd)) { /* Has another populated it ? */
370 pmd_populate_kernel(&init_mm, pmd, new);
371 new = NULL;
373 spin_unlock(&init_mm.page_table_lock);
374 if (new)
375 pte_free_kernel(&init_mm, new);
376 return 0;
379 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
381 if (file_rss)
382 add_mm_counter(mm, file_rss, file_rss);
383 if (anon_rss)
384 add_mm_counter(mm, anon_rss, anon_rss);
388 * This function is called to print an error when a bad pte
389 * is found. For example, we might have a PFN-mapped pte in
390 * a region that doesn't allow it.
392 * The calling function must still handle the error.
394 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
395 pte_t pte, struct page *page)
397 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
398 pud_t *pud = pud_offset(pgd, addr);
399 pmd_t *pmd = pmd_offset(pud, addr);
400 struct address_space *mapping;
401 pgoff_t index;
402 static unsigned long resume;
403 static unsigned long nr_shown;
404 static unsigned long nr_unshown;
407 * Allow a burst of 60 reports, then keep quiet for that minute;
408 * or allow a steady drip of one report per second.
410 if (nr_shown == 60) {
411 if (time_before(jiffies, resume)) {
412 nr_unshown++;
413 return;
415 if (nr_unshown) {
416 printk(KERN_ALERT
417 "BUG: Bad page map: %lu messages suppressed\n",
418 nr_unshown);
419 nr_unshown = 0;
421 nr_shown = 0;
423 if (nr_shown++ == 0)
424 resume = jiffies + 60 * HZ;
426 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
427 index = linear_page_index(vma, addr);
429 printk(KERN_ALERT
430 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
431 current->comm,
432 (long long)pte_val(pte), (long long)pmd_val(*pmd));
433 if (page) {
434 printk(KERN_ALERT
435 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
436 page, (void *)page->flags, page_count(page),
437 page_mapcount(page), page->mapping, page->index);
439 printk(KERN_ALERT
440 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
441 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
443 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
445 if (vma->vm_ops)
446 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
447 (unsigned long)vma->vm_ops->fault);
448 if (vma->vm_file && vma->vm_file->f_op)
449 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
450 (unsigned long)vma->vm_file->f_op->mmap);
451 dump_stack();
452 add_taint(TAINT_BAD_PAGE);
455 static inline int is_cow_mapping(unsigned int flags)
457 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
460 #ifndef is_zero_pfn
461 static inline int is_zero_pfn(unsigned long pfn)
463 return pfn == zero_pfn;
465 #endif
467 #ifndef my_zero_pfn
468 static inline unsigned long my_zero_pfn(unsigned long addr)
470 return zero_pfn;
472 #endif
475 * vm_normal_page -- This function gets the "struct page" associated with a pte.
477 * "Special" mappings do not wish to be associated with a "struct page" (either
478 * it doesn't exist, or it exists but they don't want to touch it). In this
479 * case, NULL is returned here. "Normal" mappings do have a struct page.
481 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
482 * pte bit, in which case this function is trivial. Secondly, an architecture
483 * may not have a spare pte bit, which requires a more complicated scheme,
484 * described below.
486 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
487 * special mapping (even if there are underlying and valid "struct pages").
488 * COWed pages of a VM_PFNMAP are always normal.
490 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
491 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
492 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
493 * mapping will always honor the rule
495 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
497 * And for normal mappings this is false.
499 * This restricts such mappings to be a linear translation from virtual address
500 * to pfn. To get around this restriction, we allow arbitrary mappings so long
501 * as the vma is not a COW mapping; in that case, we know that all ptes are
502 * special (because none can have been COWed).
505 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
507 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
508 * page" backing, however the difference is that _all_ pages with a struct
509 * page (that is, those where pfn_valid is true) are refcounted and considered
510 * normal pages by the VM. The disadvantage is that pages are refcounted
511 * (which can be slower and simply not an option for some PFNMAP users). The
512 * advantage is that we don't have to follow the strict linearity rule of
513 * PFNMAP mappings in order to support COWable mappings.
516 #ifdef __HAVE_ARCH_PTE_SPECIAL
517 # define HAVE_PTE_SPECIAL 1
518 #else
519 # define HAVE_PTE_SPECIAL 0
520 #endif
521 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
522 pte_t pte)
524 unsigned long pfn = pte_pfn(pte);
526 if (HAVE_PTE_SPECIAL) {
527 if (likely(!pte_special(pte)))
528 goto check_pfn;
529 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
530 return NULL;
531 if (!is_zero_pfn(pfn))
532 print_bad_pte(vma, addr, pte, NULL);
533 return NULL;
536 /* !HAVE_PTE_SPECIAL case follows: */
538 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
539 if (vma->vm_flags & VM_MIXEDMAP) {
540 if (!pfn_valid(pfn))
541 return NULL;
542 goto out;
543 } else {
544 unsigned long off;
545 off = (addr - vma->vm_start) >> PAGE_SHIFT;
546 if (pfn == vma->vm_pgoff + off)
547 return NULL;
548 if (!is_cow_mapping(vma->vm_flags))
549 return NULL;
553 if (is_zero_pfn(pfn))
554 return NULL;
555 check_pfn:
556 if (unlikely(pfn > highest_memmap_pfn)) {
557 print_bad_pte(vma, addr, pte, NULL);
558 return NULL;
562 * NOTE! We still have PageReserved() pages in the page tables.
563 * eg. VDSO mappings can cause them to exist.
565 out:
566 return pfn_to_page(pfn);
570 * copy one vm_area from one task to the other. Assumes the page tables
571 * already present in the new task to be cleared in the whole range
572 * covered by this vma.
575 static inline void
576 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
577 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
578 unsigned long addr, int *rss)
580 unsigned long vm_flags = vma->vm_flags;
581 pte_t pte = *src_pte;
582 struct page *page;
584 /* pte contains position in swap or file, so copy. */
585 if (unlikely(!pte_present(pte))) {
586 if (!pte_file(pte)) {
587 swp_entry_t entry = pte_to_swp_entry(pte);
589 swap_duplicate(entry);
590 /* make sure dst_mm is on swapoff's mmlist. */
591 if (unlikely(list_empty(&dst_mm->mmlist))) {
592 spin_lock(&mmlist_lock);
593 if (list_empty(&dst_mm->mmlist))
594 list_add(&dst_mm->mmlist,
595 &src_mm->mmlist);
596 spin_unlock(&mmlist_lock);
598 if (is_write_migration_entry(entry) &&
599 is_cow_mapping(vm_flags)) {
601 * COW mappings require pages in both parent
602 * and child to be set to read.
604 make_migration_entry_read(&entry);
605 pte = swp_entry_to_pte(entry);
606 set_pte_at(src_mm, addr, src_pte, pte);
609 goto out_set_pte;
613 * If it's a COW mapping, write protect it both
614 * in the parent and the child
616 if (is_cow_mapping(vm_flags)) {
617 ptep_set_wrprotect(src_mm, addr, src_pte);
618 pte = pte_wrprotect(pte);
622 * If it's a shared mapping, mark it clean in
623 * the child
625 if (vm_flags & VM_SHARED)
626 pte = pte_mkclean(pte);
627 pte = pte_mkold(pte);
629 page = vm_normal_page(vma, addr, pte);
630 if (page) {
631 get_page(page);
632 page_dup_rmap(page);
633 rss[PageAnon(page)]++;
636 out_set_pte:
637 set_pte_at(dst_mm, addr, dst_pte, pte);
640 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
641 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
642 unsigned long addr, unsigned long end)
644 pte_t *orig_src_pte, *orig_dst_pte;
645 pte_t *src_pte, *dst_pte;
646 spinlock_t *src_ptl, *dst_ptl;
647 int progress = 0;
648 int rss[2];
650 again:
651 rss[1] = rss[0] = 0;
652 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
653 if (!dst_pte)
654 return -ENOMEM;
655 src_pte = pte_offset_map_nested(src_pmd, addr);
656 src_ptl = pte_lockptr(src_mm, src_pmd);
657 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
658 orig_src_pte = src_pte;
659 orig_dst_pte = dst_pte;
660 arch_enter_lazy_mmu_mode();
662 do {
664 * We are holding two locks at this point - either of them
665 * could generate latencies in another task on another CPU.
667 if (progress >= 32) {
668 progress = 0;
669 if (need_resched() ||
670 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
671 break;
673 if (pte_none(*src_pte)) {
674 progress++;
675 continue;
677 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
678 progress += 8;
679 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
681 arch_leave_lazy_mmu_mode();
682 spin_unlock(src_ptl);
683 pte_unmap_nested(orig_src_pte);
684 add_mm_rss(dst_mm, rss[0], rss[1]);
685 pte_unmap_unlock(orig_dst_pte, dst_ptl);
686 cond_resched();
687 if (addr != end)
688 goto again;
689 return 0;
692 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
693 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
694 unsigned long addr, unsigned long end)
696 pmd_t *src_pmd, *dst_pmd;
697 unsigned long next;
699 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
700 if (!dst_pmd)
701 return -ENOMEM;
702 src_pmd = pmd_offset(src_pud, addr);
703 do {
704 next = pmd_addr_end(addr, end);
705 if (pmd_none_or_clear_bad(src_pmd))
706 continue;
707 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
708 vma, addr, next))
709 return -ENOMEM;
710 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
711 return 0;
714 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
715 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
716 unsigned long addr, unsigned long end)
718 pud_t *src_pud, *dst_pud;
719 unsigned long next;
721 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
722 if (!dst_pud)
723 return -ENOMEM;
724 src_pud = pud_offset(src_pgd, addr);
725 do {
726 next = pud_addr_end(addr, end);
727 if (pud_none_or_clear_bad(src_pud))
728 continue;
729 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
730 vma, addr, next))
731 return -ENOMEM;
732 } while (dst_pud++, src_pud++, addr = next, addr != end);
733 return 0;
736 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
737 struct vm_area_struct *vma)
739 pgd_t *src_pgd, *dst_pgd;
740 unsigned long next;
741 unsigned long addr = vma->vm_start;
742 unsigned long end = vma->vm_end;
743 int ret;
746 * Don't copy ptes where a page fault will fill them correctly.
747 * Fork becomes much lighter when there are big shared or private
748 * readonly mappings. The tradeoff is that copy_page_range is more
749 * efficient than faulting.
751 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
752 if (!vma->anon_vma)
753 return 0;
756 if (is_vm_hugetlb_page(vma))
757 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
759 if (unlikely(is_pfn_mapping(vma))) {
761 * We do not free on error cases below as remove_vma
762 * gets called on error from higher level routine
764 ret = track_pfn_vma_copy(vma);
765 if (ret)
766 return ret;
770 * We need to invalidate the secondary MMU mappings only when
771 * there could be a permission downgrade on the ptes of the
772 * parent mm. And a permission downgrade will only happen if
773 * is_cow_mapping() returns true.
775 if (is_cow_mapping(vma->vm_flags))
776 mmu_notifier_invalidate_range_start(src_mm, addr, end);
778 ret = 0;
779 dst_pgd = pgd_offset(dst_mm, addr);
780 src_pgd = pgd_offset(src_mm, addr);
781 do {
782 next = pgd_addr_end(addr, end);
783 if (pgd_none_or_clear_bad(src_pgd))
784 continue;
785 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
786 vma, addr, next))) {
787 ret = -ENOMEM;
788 break;
790 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
792 if (is_cow_mapping(vma->vm_flags))
793 mmu_notifier_invalidate_range_end(src_mm,
794 vma->vm_start, end);
795 return ret;
798 static unsigned long zap_pte_range(struct mmu_gather *tlb,
799 struct vm_area_struct *vma, pmd_t *pmd,
800 unsigned long addr, unsigned long end,
801 long *zap_work, struct zap_details *details)
803 struct mm_struct *mm = tlb->mm;
804 pte_t *pte;
805 spinlock_t *ptl;
806 int file_rss = 0;
807 int anon_rss = 0;
809 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
810 arch_enter_lazy_mmu_mode();
811 do {
812 pte_t ptent = *pte;
813 if (pte_none(ptent)) {
814 (*zap_work)--;
815 continue;
818 (*zap_work) -= PAGE_SIZE;
820 if (pte_present(ptent)) {
821 struct page *page;
823 page = vm_normal_page(vma, addr, ptent);
824 if (unlikely(details) && page) {
826 * unmap_shared_mapping_pages() wants to
827 * invalidate cache without truncating:
828 * unmap shared but keep private pages.
830 if (details->check_mapping &&
831 details->check_mapping != page->mapping)
832 continue;
834 * Each page->index must be checked when
835 * invalidating or truncating nonlinear.
837 if (details->nonlinear_vma &&
838 (page->index < details->first_index ||
839 page->index > details->last_index))
840 continue;
842 ptent = ptep_get_and_clear_full(mm, addr, pte,
843 tlb->fullmm);
844 tlb_remove_tlb_entry(tlb, pte, addr);
845 if (unlikely(!page))
846 continue;
847 if (unlikely(details) && details->nonlinear_vma
848 && linear_page_index(details->nonlinear_vma,
849 addr) != page->index)
850 set_pte_at(mm, addr, pte,
851 pgoff_to_pte(page->index));
852 if (PageAnon(page))
853 anon_rss--;
854 else {
855 if (pte_dirty(ptent))
856 set_page_dirty(page);
857 if (pte_young(ptent) &&
858 likely(!VM_SequentialReadHint(vma)))
859 mark_page_accessed(page);
860 file_rss--;
862 page_remove_rmap(page);
863 if (unlikely(page_mapcount(page) < 0))
864 print_bad_pte(vma, addr, ptent, page);
865 tlb_remove_page(tlb, page);
866 continue;
869 * If details->check_mapping, we leave swap entries;
870 * if details->nonlinear_vma, we leave file entries.
872 if (unlikely(details))
873 continue;
874 if (pte_file(ptent)) {
875 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
876 print_bad_pte(vma, addr, ptent, NULL);
877 } else if
878 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
879 print_bad_pte(vma, addr, ptent, NULL);
880 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
881 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
883 add_mm_rss(mm, file_rss, anon_rss);
884 arch_leave_lazy_mmu_mode();
885 pte_unmap_unlock(pte - 1, ptl);
887 return addr;
890 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
891 struct vm_area_struct *vma, pud_t *pud,
892 unsigned long addr, unsigned long end,
893 long *zap_work, struct zap_details *details)
895 pmd_t *pmd;
896 unsigned long next;
898 pmd = pmd_offset(pud, addr);
899 do {
900 next = pmd_addr_end(addr, end);
901 if (pmd_none_or_clear_bad(pmd)) {
902 (*zap_work)--;
903 continue;
905 next = zap_pte_range(tlb, vma, pmd, addr, next,
906 zap_work, details);
907 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
909 return addr;
912 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
913 struct vm_area_struct *vma, pgd_t *pgd,
914 unsigned long addr, unsigned long end,
915 long *zap_work, struct zap_details *details)
917 pud_t *pud;
918 unsigned long next;
920 pud = pud_offset(pgd, addr);
921 do {
922 next = pud_addr_end(addr, end);
923 if (pud_none_or_clear_bad(pud)) {
924 (*zap_work)--;
925 continue;
927 next = zap_pmd_range(tlb, vma, pud, addr, next,
928 zap_work, details);
929 } while (pud++, addr = next, (addr != end && *zap_work > 0));
931 return addr;
934 static unsigned long unmap_page_range(struct mmu_gather *tlb,
935 struct vm_area_struct *vma,
936 unsigned long addr, unsigned long end,
937 long *zap_work, struct zap_details *details)
939 pgd_t *pgd;
940 unsigned long next;
942 if (details && !details->check_mapping && !details->nonlinear_vma)
943 details = NULL;
945 BUG_ON(addr >= end);
946 tlb_start_vma(tlb, vma);
947 pgd = pgd_offset(vma->vm_mm, addr);
948 do {
949 next = pgd_addr_end(addr, end);
950 if (pgd_none_or_clear_bad(pgd)) {
951 (*zap_work)--;
952 continue;
954 next = zap_pud_range(tlb, vma, pgd, addr, next,
955 zap_work, details);
956 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
957 tlb_end_vma(tlb, vma);
959 return addr;
962 #ifdef CONFIG_PREEMPT
963 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
964 #else
965 /* No preempt: go for improved straight-line efficiency */
966 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
967 #endif
970 * unmap_vmas - unmap a range of memory covered by a list of vma's
971 * @tlbp: address of the caller's struct mmu_gather
972 * @vma: the starting vma
973 * @start_addr: virtual address at which to start unmapping
974 * @end_addr: virtual address at which to end unmapping
975 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
976 * @details: details of nonlinear truncation or shared cache invalidation
978 * Returns the end address of the unmapping (restart addr if interrupted).
980 * Unmap all pages in the vma list.
982 * We aim to not hold locks for too long (for scheduling latency reasons).
983 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
984 * return the ending mmu_gather to the caller.
986 * Only addresses between `start' and `end' will be unmapped.
988 * The VMA list must be sorted in ascending virtual address order.
990 * unmap_vmas() assumes that the caller will flush the whole unmapped address
991 * range after unmap_vmas() returns. So the only responsibility here is to
992 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
993 * drops the lock and schedules.
995 unsigned long unmap_vmas(struct mmu_gather **tlbp,
996 struct vm_area_struct *vma, unsigned long start_addr,
997 unsigned long end_addr, unsigned long *nr_accounted,
998 struct zap_details *details)
1000 long zap_work = ZAP_BLOCK_SIZE;
1001 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1002 int tlb_start_valid = 0;
1003 unsigned long start = start_addr;
1004 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1005 int fullmm = (*tlbp)->fullmm;
1006 struct mm_struct *mm = vma->vm_mm;
1008 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1009 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1010 unsigned long end;
1012 start = max(vma->vm_start, start_addr);
1013 if (start >= vma->vm_end)
1014 continue;
1015 end = min(vma->vm_end, end_addr);
1016 if (end <= vma->vm_start)
1017 continue;
1019 if (vma->vm_flags & VM_ACCOUNT)
1020 *nr_accounted += (end - start) >> PAGE_SHIFT;
1022 if (unlikely(is_pfn_mapping(vma)))
1023 untrack_pfn_vma(vma, 0, 0);
1025 while (start != end) {
1026 if (!tlb_start_valid) {
1027 tlb_start = start;
1028 tlb_start_valid = 1;
1031 if (unlikely(is_vm_hugetlb_page(vma))) {
1033 * It is undesirable to test vma->vm_file as it
1034 * should be non-null for valid hugetlb area.
1035 * However, vm_file will be NULL in the error
1036 * cleanup path of do_mmap_pgoff. When
1037 * hugetlbfs ->mmap method fails,
1038 * do_mmap_pgoff() nullifies vma->vm_file
1039 * before calling this function to clean up.
1040 * Since no pte has actually been setup, it is
1041 * safe to do nothing in this case.
1043 if (vma->vm_file) {
1044 unmap_hugepage_range(vma, start, end, NULL);
1045 zap_work -= (end - start) /
1046 pages_per_huge_page(hstate_vma(vma));
1049 start = end;
1050 } else
1051 start = unmap_page_range(*tlbp, vma,
1052 start, end, &zap_work, details);
1054 if (zap_work > 0) {
1055 BUG_ON(start != end);
1056 break;
1059 tlb_finish_mmu(*tlbp, tlb_start, start);
1061 if (need_resched() ||
1062 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1063 if (i_mmap_lock) {
1064 *tlbp = NULL;
1065 goto out;
1067 cond_resched();
1070 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1071 tlb_start_valid = 0;
1072 zap_work = ZAP_BLOCK_SIZE;
1075 out:
1076 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1077 return start; /* which is now the end (or restart) address */
1081 * zap_page_range - remove user pages in a given range
1082 * @vma: vm_area_struct holding the applicable pages
1083 * @address: starting address of pages to zap
1084 * @size: number of bytes to zap
1085 * @details: details of nonlinear truncation or shared cache invalidation
1087 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1088 unsigned long size, struct zap_details *details)
1090 struct mm_struct *mm = vma->vm_mm;
1091 struct mmu_gather *tlb;
1092 unsigned long end = address + size;
1093 unsigned long nr_accounted = 0;
1095 lru_add_drain();
1096 tlb = tlb_gather_mmu(mm, 0);
1097 update_hiwater_rss(mm);
1098 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1099 if (tlb)
1100 tlb_finish_mmu(tlb, address, end);
1101 return end;
1105 * zap_vma_ptes - remove ptes mapping the vma
1106 * @vma: vm_area_struct holding ptes to be zapped
1107 * @address: starting address of pages to zap
1108 * @size: number of bytes to zap
1110 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1112 * The entire address range must be fully contained within the vma.
1114 * Returns 0 if successful.
1116 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1117 unsigned long size)
1119 if (address < vma->vm_start || address + size > vma->vm_end ||
1120 !(vma->vm_flags & VM_PFNMAP))
1121 return -1;
1122 zap_page_range(vma, address, size, NULL);
1123 return 0;
1125 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1128 * Do a quick page-table lookup for a single page.
1130 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1131 unsigned int flags)
1133 pgd_t *pgd;
1134 pud_t *pud;
1135 pmd_t *pmd;
1136 pte_t *ptep, pte;
1137 spinlock_t *ptl;
1138 struct page *page;
1139 struct mm_struct *mm = vma->vm_mm;
1141 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1142 if (!IS_ERR(page)) {
1143 BUG_ON(flags & FOLL_GET);
1144 goto out;
1147 page = NULL;
1148 pgd = pgd_offset(mm, address);
1149 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1150 goto no_page_table;
1152 pud = pud_offset(pgd, address);
1153 if (pud_none(*pud))
1154 goto no_page_table;
1155 if (pud_huge(*pud)) {
1156 BUG_ON(flags & FOLL_GET);
1157 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1158 goto out;
1160 if (unlikely(pud_bad(*pud)))
1161 goto no_page_table;
1163 pmd = pmd_offset(pud, address);
1164 if (pmd_none(*pmd))
1165 goto no_page_table;
1166 if (pmd_huge(*pmd)) {
1167 BUG_ON(flags & FOLL_GET);
1168 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1169 goto out;
1171 if (unlikely(pmd_bad(*pmd)))
1172 goto no_page_table;
1174 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1176 pte = *ptep;
1177 if (!pte_present(pte))
1178 goto no_page;
1179 if ((flags & FOLL_WRITE) && !pte_write(pte))
1180 goto unlock;
1182 page = vm_normal_page(vma, address, pte);
1183 if (unlikely(!page)) {
1184 if ((flags & FOLL_DUMP) ||
1185 !is_zero_pfn(pte_pfn(pte)))
1186 goto bad_page;
1187 page = pte_page(pte);
1190 if (flags & FOLL_GET)
1191 get_page(page);
1192 if (flags & FOLL_TOUCH) {
1193 if ((flags & FOLL_WRITE) &&
1194 !pte_dirty(pte) && !PageDirty(page))
1195 set_page_dirty(page);
1197 * pte_mkyoung() would be more correct here, but atomic care
1198 * is needed to avoid losing the dirty bit: it is easier to use
1199 * mark_page_accessed().
1201 mark_page_accessed(page);
1203 unlock:
1204 pte_unmap_unlock(ptep, ptl);
1205 out:
1206 return page;
1208 bad_page:
1209 pte_unmap_unlock(ptep, ptl);
1210 return ERR_PTR(-EFAULT);
1212 no_page:
1213 pte_unmap_unlock(ptep, ptl);
1214 if (!pte_none(pte))
1215 return page;
1217 no_page_table:
1219 * When core dumping an enormous anonymous area that nobody
1220 * has touched so far, we don't want to allocate unnecessary pages or
1221 * page tables. Return error instead of NULL to skip handle_mm_fault,
1222 * then get_dump_page() will return NULL to leave a hole in the dump.
1223 * But we can only make this optimization where a hole would surely
1224 * be zero-filled if handle_mm_fault() actually did handle it.
1226 if ((flags & FOLL_DUMP) &&
1227 (!vma->vm_ops || !vma->vm_ops->fault))
1228 return ERR_PTR(-EFAULT);
1229 return page;
1232 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1233 unsigned long start, int nr_pages, unsigned int gup_flags,
1234 struct page **pages, struct vm_area_struct **vmas)
1236 int i;
1237 unsigned long vm_flags;
1239 if (nr_pages <= 0)
1240 return 0;
1242 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1245 * Require read or write permissions.
1246 * If FOLL_FORCE is set, we only require the "MAY" flags.
1248 vm_flags = (gup_flags & FOLL_WRITE) ?
1249 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1250 vm_flags &= (gup_flags & FOLL_FORCE) ?
1251 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1252 i = 0;
1254 do {
1255 struct vm_area_struct *vma;
1257 vma = find_extend_vma(mm, start);
1258 if (!vma && in_gate_area(tsk, start)) {
1259 unsigned long pg = start & PAGE_MASK;
1260 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1261 pgd_t *pgd;
1262 pud_t *pud;
1263 pmd_t *pmd;
1264 pte_t *pte;
1266 /* user gate pages are read-only */
1267 if (gup_flags & FOLL_WRITE)
1268 return i ? : -EFAULT;
1269 if (pg > TASK_SIZE)
1270 pgd = pgd_offset_k(pg);
1271 else
1272 pgd = pgd_offset_gate(mm, pg);
1273 BUG_ON(pgd_none(*pgd));
1274 pud = pud_offset(pgd, pg);
1275 BUG_ON(pud_none(*pud));
1276 pmd = pmd_offset(pud, pg);
1277 if (pmd_none(*pmd))
1278 return i ? : -EFAULT;
1279 pte = pte_offset_map(pmd, pg);
1280 if (pte_none(*pte)) {
1281 pte_unmap(pte);
1282 return i ? : -EFAULT;
1284 if (pages) {
1285 struct page *page;
1287 page = vm_normal_page(gate_vma, start, *pte);
1288 if (!page) {
1289 if (!(gup_flags & FOLL_DUMP) &&
1290 is_zero_pfn(pte_pfn(*pte)))
1291 page = pte_page(*pte);
1292 else {
1293 pte_unmap(pte);
1294 return i ? : -EFAULT;
1297 pages[i] = page;
1298 get_page(page);
1300 pte_unmap(pte);
1301 if (vmas)
1302 vmas[i] = gate_vma;
1303 i++;
1304 start += PAGE_SIZE;
1305 nr_pages--;
1306 continue;
1309 if (!vma ||
1310 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1311 !(vm_flags & vma->vm_flags))
1312 return i ? : -EFAULT;
1314 if (is_vm_hugetlb_page(vma)) {
1315 i = follow_hugetlb_page(mm, vma, pages, vmas,
1316 &start, &nr_pages, i, gup_flags);
1317 continue;
1320 do {
1321 struct page *page;
1322 unsigned int foll_flags = gup_flags;
1325 * If we have a pending SIGKILL, don't keep faulting
1326 * pages and potentially allocating memory.
1328 if (unlikely(fatal_signal_pending(current)))
1329 return i ? i : -ERESTARTSYS;
1331 cond_resched();
1332 while (!(page = follow_page(vma, start, foll_flags))) {
1333 int ret;
1335 ret = handle_mm_fault(mm, vma, start,
1336 (foll_flags & FOLL_WRITE) ?
1337 FAULT_FLAG_WRITE : 0);
1339 if (ret & VM_FAULT_ERROR) {
1340 if (ret & VM_FAULT_OOM)
1341 return i ? i : -ENOMEM;
1342 if (ret &
1343 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1344 return i ? i : -EFAULT;
1345 BUG();
1347 if (ret & VM_FAULT_MAJOR)
1348 tsk->maj_flt++;
1349 else
1350 tsk->min_flt++;
1353 * The VM_FAULT_WRITE bit tells us that
1354 * do_wp_page has broken COW when necessary,
1355 * even if maybe_mkwrite decided not to set
1356 * pte_write. We can thus safely do subsequent
1357 * page lookups as if they were reads. But only
1358 * do so when looping for pte_write is futile:
1359 * in some cases userspace may also be wanting
1360 * to write to the gotten user page, which a
1361 * read fault here might prevent (a readonly
1362 * page might get reCOWed by userspace write).
1364 if ((ret & VM_FAULT_WRITE) &&
1365 !(vma->vm_flags & VM_WRITE))
1366 foll_flags &= ~FOLL_WRITE;
1368 cond_resched();
1370 if (IS_ERR(page))
1371 return i ? i : PTR_ERR(page);
1372 if (pages) {
1373 pages[i] = page;
1375 flush_anon_page(vma, page, start);
1376 flush_dcache_page(page);
1378 if (vmas)
1379 vmas[i] = vma;
1380 i++;
1381 start += PAGE_SIZE;
1382 nr_pages--;
1383 } while (nr_pages && start < vma->vm_end);
1384 } while (nr_pages);
1385 return i;
1389 * get_user_pages() - pin user pages in memory
1390 * @tsk: task_struct of target task
1391 * @mm: mm_struct of target mm
1392 * @start: starting user address
1393 * @nr_pages: number of pages from start to pin
1394 * @write: whether pages will be written to by the caller
1395 * @force: whether to force write access even if user mapping is
1396 * readonly. This will result in the page being COWed even
1397 * in MAP_SHARED mappings. You do not want this.
1398 * @pages: array that receives pointers to the pages pinned.
1399 * Should be at least nr_pages long. Or NULL, if caller
1400 * only intends to ensure the pages are faulted in.
1401 * @vmas: array of pointers to vmas corresponding to each page.
1402 * Or NULL if the caller does not require them.
1404 * Returns number of pages pinned. This may be fewer than the number
1405 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1406 * were pinned, returns -errno. Each page returned must be released
1407 * with a put_page() call when it is finished with. vmas will only
1408 * remain valid while mmap_sem is held.
1410 * Must be called with mmap_sem held for read or write.
1412 * get_user_pages walks a process's page tables and takes a reference to
1413 * each struct page that each user address corresponds to at a given
1414 * instant. That is, it takes the page that would be accessed if a user
1415 * thread accesses the given user virtual address at that instant.
1417 * This does not guarantee that the page exists in the user mappings when
1418 * get_user_pages returns, and there may even be a completely different
1419 * page there in some cases (eg. if mmapped pagecache has been invalidated
1420 * and subsequently re faulted). However it does guarantee that the page
1421 * won't be freed completely. And mostly callers simply care that the page
1422 * contains data that was valid *at some point in time*. Typically, an IO
1423 * or similar operation cannot guarantee anything stronger anyway because
1424 * locks can't be held over the syscall boundary.
1426 * If write=0, the page must not be written to. If the page is written to,
1427 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1428 * after the page is finished with, and before put_page is called.
1430 * get_user_pages is typically used for fewer-copy IO operations, to get a
1431 * handle on the memory by some means other than accesses via the user virtual
1432 * addresses. The pages may be submitted for DMA to devices or accessed via
1433 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1434 * use the correct cache flushing APIs.
1436 * See also get_user_pages_fast, for performance critical applications.
1438 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1439 unsigned long start, int nr_pages, int write, int force,
1440 struct page **pages, struct vm_area_struct **vmas)
1442 int flags = FOLL_TOUCH;
1444 if (pages)
1445 flags |= FOLL_GET;
1446 if (write)
1447 flags |= FOLL_WRITE;
1448 if (force)
1449 flags |= FOLL_FORCE;
1451 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1453 EXPORT_SYMBOL(get_user_pages);
1456 * get_dump_page() - pin user page in memory while writing it to core dump
1457 * @addr: user address
1459 * Returns struct page pointer of user page pinned for dump,
1460 * to be freed afterwards by page_cache_release() or put_page().
1462 * Returns NULL on any kind of failure - a hole must then be inserted into
1463 * the corefile, to preserve alignment with its headers; and also returns
1464 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1465 * allowing a hole to be left in the corefile to save diskspace.
1467 * Called without mmap_sem, but after all other threads have been killed.
1469 #ifdef CONFIG_ELF_CORE
1470 struct page *get_dump_page(unsigned long addr)
1472 struct vm_area_struct *vma;
1473 struct page *page;
1475 if (__get_user_pages(current, current->mm, addr, 1,
1476 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1477 return NULL;
1478 flush_cache_page(vma, addr, page_to_pfn(page));
1479 return page;
1481 #endif /* CONFIG_ELF_CORE */
1483 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1484 spinlock_t **ptl)
1486 pgd_t * pgd = pgd_offset(mm, addr);
1487 pud_t * pud = pud_alloc(mm, pgd, addr);
1488 if (pud) {
1489 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1490 if (pmd)
1491 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1493 return NULL;
1497 * This is the old fallback for page remapping.
1499 * For historical reasons, it only allows reserved pages. Only
1500 * old drivers should use this, and they needed to mark their
1501 * pages reserved for the old functions anyway.
1503 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1504 struct page *page, pgprot_t prot)
1506 struct mm_struct *mm = vma->vm_mm;
1507 int retval;
1508 pte_t *pte;
1509 spinlock_t *ptl;
1511 retval = -EINVAL;
1512 if (PageAnon(page))
1513 goto out;
1514 retval = -ENOMEM;
1515 flush_dcache_page(page);
1516 pte = get_locked_pte(mm, addr, &ptl);
1517 if (!pte)
1518 goto out;
1519 retval = -EBUSY;
1520 if (!pte_none(*pte))
1521 goto out_unlock;
1523 /* Ok, finally just insert the thing.. */
1524 get_page(page);
1525 inc_mm_counter(mm, file_rss);
1526 page_add_file_rmap(page);
1527 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1529 retval = 0;
1530 pte_unmap_unlock(pte, ptl);
1531 return retval;
1532 out_unlock:
1533 pte_unmap_unlock(pte, ptl);
1534 out:
1535 return retval;
1539 * vm_insert_page - insert single page into user vma
1540 * @vma: user vma to map to
1541 * @addr: target user address of this page
1542 * @page: source kernel page
1544 * This allows drivers to insert individual pages they've allocated
1545 * into a user vma.
1547 * The page has to be a nice clean _individual_ kernel allocation.
1548 * If you allocate a compound page, you need to have marked it as
1549 * such (__GFP_COMP), or manually just split the page up yourself
1550 * (see split_page()).
1552 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1553 * took an arbitrary page protection parameter. This doesn't allow
1554 * that. Your vma protection will have to be set up correctly, which
1555 * means that if you want a shared writable mapping, you'd better
1556 * ask for a shared writable mapping!
1558 * The page does not need to be reserved.
1560 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1561 struct page *page)
1563 if (addr < vma->vm_start || addr >= vma->vm_end)
1564 return -EFAULT;
1565 if (!page_count(page))
1566 return -EINVAL;
1567 vma->vm_flags |= VM_INSERTPAGE;
1568 return insert_page(vma, addr, page, vma->vm_page_prot);
1570 EXPORT_SYMBOL(vm_insert_page);
1572 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1573 unsigned long pfn, pgprot_t prot)
1575 struct mm_struct *mm = vma->vm_mm;
1576 int retval;
1577 pte_t *pte, entry;
1578 spinlock_t *ptl;
1580 retval = -ENOMEM;
1581 pte = get_locked_pte(mm, addr, &ptl);
1582 if (!pte)
1583 goto out;
1584 retval = -EBUSY;
1585 if (!pte_none(*pte))
1586 goto out_unlock;
1588 /* Ok, finally just insert the thing.. */
1589 entry = pte_mkspecial(pfn_pte(pfn, prot));
1590 set_pte_at(mm, addr, pte, entry);
1591 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1593 retval = 0;
1594 out_unlock:
1595 pte_unmap_unlock(pte, ptl);
1596 out:
1597 return retval;
1601 * vm_insert_pfn - insert single pfn into user vma
1602 * @vma: user vma to map to
1603 * @addr: target user address of this page
1604 * @pfn: source kernel pfn
1606 * Similar to vm_inert_page, this allows drivers to insert individual pages
1607 * they've allocated into a user vma. Same comments apply.
1609 * This function should only be called from a vm_ops->fault handler, and
1610 * in that case the handler should return NULL.
1612 * vma cannot be a COW mapping.
1614 * As this is called only for pages that do not currently exist, we
1615 * do not need to flush old virtual caches or the TLB.
1617 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1618 unsigned long pfn)
1620 int ret;
1621 pgprot_t pgprot = vma->vm_page_prot;
1623 * Technically, architectures with pte_special can avoid all these
1624 * restrictions (same for remap_pfn_range). However we would like
1625 * consistency in testing and feature parity among all, so we should
1626 * try to keep these invariants in place for everybody.
1628 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1629 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1630 (VM_PFNMAP|VM_MIXEDMAP));
1631 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1632 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1634 if (addr < vma->vm_start || addr >= vma->vm_end)
1635 return -EFAULT;
1636 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1637 return -EINVAL;
1639 ret = insert_pfn(vma, addr, pfn, pgprot);
1641 if (ret)
1642 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1644 return ret;
1646 EXPORT_SYMBOL(vm_insert_pfn);
1648 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1649 unsigned long pfn)
1651 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1653 if (addr < vma->vm_start || addr >= vma->vm_end)
1654 return -EFAULT;
1657 * If we don't have pte special, then we have to use the pfn_valid()
1658 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1659 * refcount the page if pfn_valid is true (hence insert_page rather
1660 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1661 * without pte special, it would there be refcounted as a normal page.
1663 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1664 struct page *page;
1666 page = pfn_to_page(pfn);
1667 return insert_page(vma, addr, page, vma->vm_page_prot);
1669 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1671 EXPORT_SYMBOL(vm_insert_mixed);
1674 * maps a range of physical memory into the requested pages. the old
1675 * mappings are removed. any references to nonexistent pages results
1676 * in null mappings (currently treated as "copy-on-access")
1678 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1679 unsigned long addr, unsigned long end,
1680 unsigned long pfn, pgprot_t prot)
1682 pte_t *pte;
1683 spinlock_t *ptl;
1685 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1686 if (!pte)
1687 return -ENOMEM;
1688 arch_enter_lazy_mmu_mode();
1689 do {
1690 BUG_ON(!pte_none(*pte));
1691 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1692 pfn++;
1693 } while (pte++, addr += PAGE_SIZE, addr != end);
1694 arch_leave_lazy_mmu_mode();
1695 pte_unmap_unlock(pte - 1, ptl);
1696 return 0;
1699 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1700 unsigned long addr, unsigned long end,
1701 unsigned long pfn, pgprot_t prot)
1703 pmd_t *pmd;
1704 unsigned long next;
1706 pfn -= addr >> PAGE_SHIFT;
1707 pmd = pmd_alloc(mm, pud, addr);
1708 if (!pmd)
1709 return -ENOMEM;
1710 do {
1711 next = pmd_addr_end(addr, end);
1712 if (remap_pte_range(mm, pmd, addr, next,
1713 pfn + (addr >> PAGE_SHIFT), prot))
1714 return -ENOMEM;
1715 } while (pmd++, addr = next, addr != end);
1716 return 0;
1719 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1720 unsigned long addr, unsigned long end,
1721 unsigned long pfn, pgprot_t prot)
1723 pud_t *pud;
1724 unsigned long next;
1726 pfn -= addr >> PAGE_SHIFT;
1727 pud = pud_alloc(mm, pgd, addr);
1728 if (!pud)
1729 return -ENOMEM;
1730 do {
1731 next = pud_addr_end(addr, end);
1732 if (remap_pmd_range(mm, pud, addr, next,
1733 pfn + (addr >> PAGE_SHIFT), prot))
1734 return -ENOMEM;
1735 } while (pud++, addr = next, addr != end);
1736 return 0;
1740 * remap_pfn_range - remap kernel memory to userspace
1741 * @vma: user vma to map to
1742 * @addr: target user address to start at
1743 * @pfn: physical address of kernel memory
1744 * @size: size of map area
1745 * @prot: page protection flags for this mapping
1747 * Note: this is only safe if the mm semaphore is held when called.
1749 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1750 unsigned long pfn, unsigned long size, pgprot_t prot)
1752 pgd_t *pgd;
1753 unsigned long next;
1754 unsigned long end = addr + PAGE_ALIGN(size);
1755 struct mm_struct *mm = vma->vm_mm;
1756 int err;
1759 * Physically remapped pages are special. Tell the
1760 * rest of the world about it:
1761 * VM_IO tells people not to look at these pages
1762 * (accesses can have side effects).
1763 * VM_RESERVED is specified all over the place, because
1764 * in 2.4 it kept swapout's vma scan off this vma; but
1765 * in 2.6 the LRU scan won't even find its pages, so this
1766 * flag means no more than count its pages in reserved_vm,
1767 * and omit it from core dump, even when VM_IO turned off.
1768 * VM_PFNMAP tells the core MM that the base pages are just
1769 * raw PFN mappings, and do not have a "struct page" associated
1770 * with them.
1772 * There's a horrible special case to handle copy-on-write
1773 * behaviour that some programs depend on. We mark the "original"
1774 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1776 if (addr == vma->vm_start && end == vma->vm_end) {
1777 vma->vm_pgoff = pfn;
1778 vma->vm_flags |= VM_PFN_AT_MMAP;
1779 } else if (is_cow_mapping(vma->vm_flags))
1780 return -EINVAL;
1782 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1784 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1785 if (err) {
1787 * To indicate that track_pfn related cleanup is not
1788 * needed from higher level routine calling unmap_vmas
1790 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1791 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1792 return -EINVAL;
1795 BUG_ON(addr >= end);
1796 pfn -= addr >> PAGE_SHIFT;
1797 pgd = pgd_offset(mm, addr);
1798 flush_cache_range(vma, addr, end);
1799 do {
1800 next = pgd_addr_end(addr, end);
1801 err = remap_pud_range(mm, pgd, addr, next,
1802 pfn + (addr >> PAGE_SHIFT), prot);
1803 if (err)
1804 break;
1805 } while (pgd++, addr = next, addr != end);
1807 if (err)
1808 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1810 return err;
1812 EXPORT_SYMBOL(remap_pfn_range);
1814 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1815 unsigned long addr, unsigned long end,
1816 pte_fn_t fn, void *data)
1818 pte_t *pte;
1819 int err;
1820 pgtable_t token;
1821 spinlock_t *uninitialized_var(ptl);
1823 pte = (mm == &init_mm) ?
1824 pte_alloc_kernel(pmd, addr) :
1825 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1826 if (!pte)
1827 return -ENOMEM;
1829 BUG_ON(pmd_huge(*pmd));
1831 arch_enter_lazy_mmu_mode();
1833 token = pmd_pgtable(*pmd);
1835 do {
1836 err = fn(pte++, token, addr, data);
1837 if (err)
1838 break;
1839 } while (addr += PAGE_SIZE, addr != end);
1841 arch_leave_lazy_mmu_mode();
1843 if (mm != &init_mm)
1844 pte_unmap_unlock(pte-1, ptl);
1845 return err;
1848 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1849 unsigned long addr, unsigned long end,
1850 pte_fn_t fn, void *data)
1852 pmd_t *pmd;
1853 unsigned long next;
1854 int err;
1856 BUG_ON(pud_huge(*pud));
1858 pmd = pmd_alloc(mm, pud, addr);
1859 if (!pmd)
1860 return -ENOMEM;
1861 do {
1862 next = pmd_addr_end(addr, end);
1863 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1864 if (err)
1865 break;
1866 } while (pmd++, addr = next, addr != end);
1867 return err;
1870 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1871 unsigned long addr, unsigned long end,
1872 pte_fn_t fn, void *data)
1874 pud_t *pud;
1875 unsigned long next;
1876 int err;
1878 pud = pud_alloc(mm, pgd, addr);
1879 if (!pud)
1880 return -ENOMEM;
1881 do {
1882 next = pud_addr_end(addr, end);
1883 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1884 if (err)
1885 break;
1886 } while (pud++, addr = next, addr != end);
1887 return err;
1891 * Scan a region of virtual memory, filling in page tables as necessary
1892 * and calling a provided function on each leaf page table.
1894 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1895 unsigned long size, pte_fn_t fn, void *data)
1897 pgd_t *pgd;
1898 unsigned long next;
1899 unsigned long start = addr, end = addr + size;
1900 int err;
1902 BUG_ON(addr >= end);
1903 mmu_notifier_invalidate_range_start(mm, start, end);
1904 pgd = pgd_offset(mm, addr);
1905 do {
1906 next = pgd_addr_end(addr, end);
1907 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1908 if (err)
1909 break;
1910 } while (pgd++, addr = next, addr != end);
1911 mmu_notifier_invalidate_range_end(mm, start, end);
1912 return err;
1914 EXPORT_SYMBOL_GPL(apply_to_page_range);
1917 * handle_pte_fault chooses page fault handler according to an entry
1918 * which was read non-atomically. Before making any commitment, on
1919 * those architectures or configurations (e.g. i386 with PAE) which
1920 * might give a mix of unmatched parts, do_swap_page and do_file_page
1921 * must check under lock before unmapping the pte and proceeding
1922 * (but do_wp_page is only called after already making such a check;
1923 * and do_anonymous_page and do_no_page can safely check later on).
1925 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1926 pte_t *page_table, pte_t orig_pte)
1928 int same = 1;
1929 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1930 if (sizeof(pte_t) > sizeof(unsigned long)) {
1931 spinlock_t *ptl = pte_lockptr(mm, pmd);
1932 spin_lock(ptl);
1933 same = pte_same(*page_table, orig_pte);
1934 spin_unlock(ptl);
1936 #endif
1937 pte_unmap(page_table);
1938 return same;
1942 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1943 * servicing faults for write access. In the normal case, do always want
1944 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1945 * that do not have writing enabled, when used by access_process_vm.
1947 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1949 if (likely(vma->vm_flags & VM_WRITE))
1950 pte = pte_mkwrite(pte);
1951 return pte;
1954 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1957 * If the source page was a PFN mapping, we don't have
1958 * a "struct page" for it. We do a best-effort copy by
1959 * just copying from the original user address. If that
1960 * fails, we just zero-fill it. Live with it.
1962 if (unlikely(!src)) {
1963 void *kaddr = kmap_atomic(dst, KM_USER0);
1964 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1967 * This really shouldn't fail, because the page is there
1968 * in the page tables. But it might just be unreadable,
1969 * in which case we just give up and fill the result with
1970 * zeroes.
1972 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1973 memset(kaddr, 0, PAGE_SIZE);
1974 kunmap_atomic(kaddr, KM_USER0);
1975 flush_dcache_page(dst);
1976 } else
1977 copy_user_highpage(dst, src, va, vma);
1981 * This routine handles present pages, when users try to write
1982 * to a shared page. It is done by copying the page to a new address
1983 * and decrementing the shared-page counter for the old page.
1985 * Note that this routine assumes that the protection checks have been
1986 * done by the caller (the low-level page fault routine in most cases).
1987 * Thus we can safely just mark it writable once we've done any necessary
1988 * COW.
1990 * We also mark the page dirty at this point even though the page will
1991 * change only once the write actually happens. This avoids a few races,
1992 * and potentially makes it more efficient.
1994 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1995 * but allow concurrent faults), with pte both mapped and locked.
1996 * We return with mmap_sem still held, but pte unmapped and unlocked.
1998 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1999 unsigned long address, pte_t *page_table, pmd_t *pmd,
2000 spinlock_t *ptl, pte_t orig_pte)
2002 struct page *old_page, *new_page;
2003 pte_t entry;
2004 int reuse = 0, ret = 0;
2005 int page_mkwrite = 0;
2006 struct page *dirty_page = NULL;
2008 old_page = vm_normal_page(vma, address, orig_pte);
2009 if (!old_page) {
2011 * VM_MIXEDMAP !pfn_valid() case
2013 * We should not cow pages in a shared writeable mapping.
2014 * Just mark the pages writable as we can't do any dirty
2015 * accounting on raw pfn maps.
2017 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2018 (VM_WRITE|VM_SHARED))
2019 goto reuse;
2020 goto gotten;
2024 * Take out anonymous pages first, anonymous shared vmas are
2025 * not dirty accountable.
2027 if (PageAnon(old_page) && !PageKsm(old_page)) {
2028 if (!trylock_page(old_page)) {
2029 page_cache_get(old_page);
2030 pte_unmap_unlock(page_table, ptl);
2031 lock_page(old_page);
2032 page_table = pte_offset_map_lock(mm, pmd, address,
2033 &ptl);
2034 if (!pte_same(*page_table, orig_pte)) {
2035 unlock_page(old_page);
2036 page_cache_release(old_page);
2037 goto unlock;
2039 page_cache_release(old_page);
2041 reuse = reuse_swap_page(old_page);
2042 unlock_page(old_page);
2043 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2044 (VM_WRITE|VM_SHARED))) {
2046 * Only catch write-faults on shared writable pages,
2047 * read-only shared pages can get COWed by
2048 * get_user_pages(.write=1, .force=1).
2050 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2051 struct vm_fault vmf;
2052 int tmp;
2054 vmf.virtual_address = (void __user *)(address &
2055 PAGE_MASK);
2056 vmf.pgoff = old_page->index;
2057 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2058 vmf.page = old_page;
2061 * Notify the address space that the page is about to
2062 * become writable so that it can prohibit this or wait
2063 * for the page to get into an appropriate state.
2065 * We do this without the lock held, so that it can
2066 * sleep if it needs to.
2068 page_cache_get(old_page);
2069 pte_unmap_unlock(page_table, ptl);
2071 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2072 if (unlikely(tmp &
2073 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2074 ret = tmp;
2075 goto unwritable_page;
2077 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2078 lock_page(old_page);
2079 if (!old_page->mapping) {
2080 ret = 0; /* retry the fault */
2081 unlock_page(old_page);
2082 goto unwritable_page;
2084 } else
2085 VM_BUG_ON(!PageLocked(old_page));
2088 * Since we dropped the lock we need to revalidate
2089 * the PTE as someone else may have changed it. If
2090 * they did, we just return, as we can count on the
2091 * MMU to tell us if they didn't also make it writable.
2093 page_table = pte_offset_map_lock(mm, pmd, address,
2094 &ptl);
2095 if (!pte_same(*page_table, orig_pte)) {
2096 unlock_page(old_page);
2097 page_cache_release(old_page);
2098 goto unlock;
2101 page_mkwrite = 1;
2103 dirty_page = old_page;
2104 get_page(dirty_page);
2105 reuse = 1;
2108 if (reuse) {
2109 reuse:
2110 flush_cache_page(vma, address, pte_pfn(orig_pte));
2111 entry = pte_mkyoung(orig_pte);
2112 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2113 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2114 update_mmu_cache(vma, address, entry);
2115 ret |= VM_FAULT_WRITE;
2116 goto unlock;
2120 * Ok, we need to copy. Oh, well..
2122 page_cache_get(old_page);
2123 gotten:
2124 pte_unmap_unlock(page_table, ptl);
2126 if (unlikely(anon_vma_prepare(vma)))
2127 goto oom;
2129 if (is_zero_pfn(pte_pfn(orig_pte))) {
2130 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2131 if (!new_page)
2132 goto oom;
2133 } else {
2134 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2135 if (!new_page)
2136 goto oom;
2137 cow_user_page(new_page, old_page, address, vma);
2139 __SetPageUptodate(new_page);
2142 * Don't let another task, with possibly unlocked vma,
2143 * keep the mlocked page.
2145 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2146 lock_page(old_page); /* for LRU manipulation */
2147 clear_page_mlock(old_page);
2148 unlock_page(old_page);
2151 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2152 goto oom_free_new;
2155 * Re-check the pte - we dropped the lock
2157 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2158 if (likely(pte_same(*page_table, orig_pte))) {
2159 if (old_page) {
2160 if (!PageAnon(old_page)) {
2161 dec_mm_counter(mm, file_rss);
2162 inc_mm_counter(mm, anon_rss);
2164 } else
2165 inc_mm_counter(mm, anon_rss);
2166 flush_cache_page(vma, address, pte_pfn(orig_pte));
2167 entry = mk_pte(new_page, vma->vm_page_prot);
2168 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2170 * Clear the pte entry and flush it first, before updating the
2171 * pte with the new entry. This will avoid a race condition
2172 * seen in the presence of one thread doing SMC and another
2173 * thread doing COW.
2175 ptep_clear_flush(vma, address, page_table);
2176 page_add_new_anon_rmap(new_page, vma, address);
2178 * We call the notify macro here because, when using secondary
2179 * mmu page tables (such as kvm shadow page tables), we want the
2180 * new page to be mapped directly into the secondary page table.
2182 set_pte_at_notify(mm, address, page_table, entry);
2183 update_mmu_cache(vma, address, entry);
2184 if (old_page) {
2186 * Only after switching the pte to the new page may
2187 * we remove the mapcount here. Otherwise another
2188 * process may come and find the rmap count decremented
2189 * before the pte is switched to the new page, and
2190 * "reuse" the old page writing into it while our pte
2191 * here still points into it and can be read by other
2192 * threads.
2194 * The critical issue is to order this
2195 * page_remove_rmap with the ptp_clear_flush above.
2196 * Those stores are ordered by (if nothing else,)
2197 * the barrier present in the atomic_add_negative
2198 * in page_remove_rmap.
2200 * Then the TLB flush in ptep_clear_flush ensures that
2201 * no process can access the old page before the
2202 * decremented mapcount is visible. And the old page
2203 * cannot be reused until after the decremented
2204 * mapcount is visible. So transitively, TLBs to
2205 * old page will be flushed before it can be reused.
2207 page_remove_rmap(old_page);
2210 /* Free the old page.. */
2211 new_page = old_page;
2212 ret |= VM_FAULT_WRITE;
2213 } else
2214 mem_cgroup_uncharge_page(new_page);
2216 if (new_page)
2217 page_cache_release(new_page);
2218 if (old_page)
2219 page_cache_release(old_page);
2220 unlock:
2221 pte_unmap_unlock(page_table, ptl);
2222 if (dirty_page) {
2224 * Yes, Virginia, this is actually required to prevent a race
2225 * with clear_page_dirty_for_io() from clearing the page dirty
2226 * bit after it clear all dirty ptes, but before a racing
2227 * do_wp_page installs a dirty pte.
2229 * do_no_page is protected similarly.
2231 if (!page_mkwrite) {
2232 wait_on_page_locked(dirty_page);
2233 set_page_dirty_balance(dirty_page, page_mkwrite);
2235 put_page(dirty_page);
2236 if (page_mkwrite) {
2237 struct address_space *mapping = dirty_page->mapping;
2239 set_page_dirty(dirty_page);
2240 unlock_page(dirty_page);
2241 page_cache_release(dirty_page);
2242 if (mapping) {
2244 * Some device drivers do not set page.mapping
2245 * but still dirty their pages
2247 balance_dirty_pages_ratelimited(mapping);
2251 /* file_update_time outside page_lock */
2252 if (vma->vm_file)
2253 file_update_time(vma->vm_file);
2255 return ret;
2256 oom_free_new:
2257 page_cache_release(new_page);
2258 oom:
2259 if (old_page) {
2260 if (page_mkwrite) {
2261 unlock_page(old_page);
2262 page_cache_release(old_page);
2264 page_cache_release(old_page);
2266 return VM_FAULT_OOM;
2268 unwritable_page:
2269 page_cache_release(old_page);
2270 return ret;
2274 * Helper functions for unmap_mapping_range().
2276 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2278 * We have to restart searching the prio_tree whenever we drop the lock,
2279 * since the iterator is only valid while the lock is held, and anyway
2280 * a later vma might be split and reinserted earlier while lock dropped.
2282 * The list of nonlinear vmas could be handled more efficiently, using
2283 * a placeholder, but handle it in the same way until a need is shown.
2284 * It is important to search the prio_tree before nonlinear list: a vma
2285 * may become nonlinear and be shifted from prio_tree to nonlinear list
2286 * while the lock is dropped; but never shifted from list to prio_tree.
2288 * In order to make forward progress despite restarting the search,
2289 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2290 * quickly skip it next time around. Since the prio_tree search only
2291 * shows us those vmas affected by unmapping the range in question, we
2292 * can't efficiently keep all vmas in step with mapping->truncate_count:
2293 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2294 * mapping->truncate_count and vma->vm_truncate_count are protected by
2295 * i_mmap_lock.
2297 * In order to make forward progress despite repeatedly restarting some
2298 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2299 * and restart from that address when we reach that vma again. It might
2300 * have been split or merged, shrunk or extended, but never shifted: so
2301 * restart_addr remains valid so long as it remains in the vma's range.
2302 * unmap_mapping_range forces truncate_count to leap over page-aligned
2303 * values so we can save vma's restart_addr in its truncate_count field.
2305 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2307 static void reset_vma_truncate_counts(struct address_space *mapping)
2309 struct vm_area_struct *vma;
2310 struct prio_tree_iter iter;
2312 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2313 vma->vm_truncate_count = 0;
2314 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2315 vma->vm_truncate_count = 0;
2318 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2319 unsigned long start_addr, unsigned long end_addr,
2320 struct zap_details *details)
2322 unsigned long restart_addr;
2323 int need_break;
2326 * files that support invalidating or truncating portions of the
2327 * file from under mmaped areas must have their ->fault function
2328 * return a locked page (and set VM_FAULT_LOCKED in the return).
2329 * This provides synchronisation against concurrent unmapping here.
2332 again:
2333 restart_addr = vma->vm_truncate_count;
2334 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2335 start_addr = restart_addr;
2336 if (start_addr >= end_addr) {
2337 /* Top of vma has been split off since last time */
2338 vma->vm_truncate_count = details->truncate_count;
2339 return 0;
2343 restart_addr = zap_page_range(vma, start_addr,
2344 end_addr - start_addr, details);
2345 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2347 if (restart_addr >= end_addr) {
2348 /* We have now completed this vma: mark it so */
2349 vma->vm_truncate_count = details->truncate_count;
2350 if (!need_break)
2351 return 0;
2352 } else {
2353 /* Note restart_addr in vma's truncate_count field */
2354 vma->vm_truncate_count = restart_addr;
2355 if (!need_break)
2356 goto again;
2359 spin_unlock(details->i_mmap_lock);
2360 cond_resched();
2361 spin_lock(details->i_mmap_lock);
2362 return -EINTR;
2365 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2366 struct zap_details *details)
2368 struct vm_area_struct *vma;
2369 struct prio_tree_iter iter;
2370 pgoff_t vba, vea, zba, zea;
2372 restart:
2373 vma_prio_tree_foreach(vma, &iter, root,
2374 details->first_index, details->last_index) {
2375 /* Skip quickly over those we have already dealt with */
2376 if (vma->vm_truncate_count == details->truncate_count)
2377 continue;
2379 vba = vma->vm_pgoff;
2380 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2381 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2382 zba = details->first_index;
2383 if (zba < vba)
2384 zba = vba;
2385 zea = details->last_index;
2386 if (zea > vea)
2387 zea = vea;
2389 if (unmap_mapping_range_vma(vma,
2390 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2391 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2392 details) < 0)
2393 goto restart;
2397 static inline void unmap_mapping_range_list(struct list_head *head,
2398 struct zap_details *details)
2400 struct vm_area_struct *vma;
2403 * In nonlinear VMAs there is no correspondence between virtual address
2404 * offset and file offset. So we must perform an exhaustive search
2405 * across *all* the pages in each nonlinear VMA, not just the pages
2406 * whose virtual address lies outside the file truncation point.
2408 restart:
2409 list_for_each_entry(vma, head, shared.vm_set.list) {
2410 /* Skip quickly over those we have already dealt with */
2411 if (vma->vm_truncate_count == details->truncate_count)
2412 continue;
2413 details->nonlinear_vma = vma;
2414 if (unmap_mapping_range_vma(vma, vma->vm_start,
2415 vma->vm_end, details) < 0)
2416 goto restart;
2421 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2422 * @mapping: the address space containing mmaps to be unmapped.
2423 * @holebegin: byte in first page to unmap, relative to the start of
2424 * the underlying file. This will be rounded down to a PAGE_SIZE
2425 * boundary. Note that this is different from truncate_pagecache(), which
2426 * must keep the partial page. In contrast, we must get rid of
2427 * partial pages.
2428 * @holelen: size of prospective hole in bytes. This will be rounded
2429 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2430 * end of the file.
2431 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2432 * but 0 when invalidating pagecache, don't throw away private data.
2434 void unmap_mapping_range(struct address_space *mapping,
2435 loff_t const holebegin, loff_t const holelen, int even_cows)
2437 struct zap_details details;
2438 pgoff_t hba = holebegin >> PAGE_SHIFT;
2439 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2441 /* Check for overflow. */
2442 if (sizeof(holelen) > sizeof(hlen)) {
2443 long long holeend =
2444 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2445 if (holeend & ~(long long)ULONG_MAX)
2446 hlen = ULONG_MAX - hba + 1;
2449 details.check_mapping = even_cows? NULL: mapping;
2450 details.nonlinear_vma = NULL;
2451 details.first_index = hba;
2452 details.last_index = hba + hlen - 1;
2453 if (details.last_index < details.first_index)
2454 details.last_index = ULONG_MAX;
2455 details.i_mmap_lock = &mapping->i_mmap_lock;
2457 mutex_lock(&mapping->unmap_mutex);
2458 spin_lock(&mapping->i_mmap_lock);
2460 /* Protect against endless unmapping loops */
2461 mapping->truncate_count++;
2462 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2463 if (mapping->truncate_count == 0)
2464 reset_vma_truncate_counts(mapping);
2465 mapping->truncate_count++;
2467 details.truncate_count = mapping->truncate_count;
2469 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2470 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2471 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2472 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2473 spin_unlock(&mapping->i_mmap_lock);
2474 mutex_unlock(&mapping->unmap_mutex);
2476 EXPORT_SYMBOL(unmap_mapping_range);
2478 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2480 struct address_space *mapping = inode->i_mapping;
2483 * If the underlying filesystem is not going to provide
2484 * a way to truncate a range of blocks (punch a hole) -
2485 * we should return failure right now.
2487 if (!inode->i_op->truncate_range)
2488 return -ENOSYS;
2490 mutex_lock(&inode->i_mutex);
2491 down_write(&inode->i_alloc_sem);
2492 unmap_mapping_range(mapping, offset, (end - offset), 1);
2493 truncate_inode_pages_range(mapping, offset, end);
2494 unmap_mapping_range(mapping, offset, (end - offset), 1);
2495 inode->i_op->truncate_range(inode, offset, end);
2496 up_write(&inode->i_alloc_sem);
2497 mutex_unlock(&inode->i_mutex);
2499 return 0;
2503 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2504 * but allow concurrent faults), and pte mapped but not yet locked.
2505 * We return with mmap_sem still held, but pte unmapped and unlocked.
2507 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2508 unsigned long address, pte_t *page_table, pmd_t *pmd,
2509 unsigned int flags, pte_t orig_pte)
2511 spinlock_t *ptl;
2512 struct page *page;
2513 swp_entry_t entry;
2514 pte_t pte;
2515 struct mem_cgroup *ptr = NULL;
2516 int ret = 0;
2518 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2519 goto out;
2521 entry = pte_to_swp_entry(orig_pte);
2522 if (unlikely(non_swap_entry(entry))) {
2523 if (is_migration_entry(entry)) {
2524 migration_entry_wait(mm, pmd, address);
2525 } else if (is_hwpoison_entry(entry)) {
2526 ret = VM_FAULT_HWPOISON;
2527 } else {
2528 print_bad_pte(vma, address, orig_pte, NULL);
2529 ret = VM_FAULT_SIGBUS;
2531 goto out;
2533 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2534 page = lookup_swap_cache(entry);
2535 if (!page) {
2536 grab_swap_token(mm); /* Contend for token _before_ read-in */
2537 page = swapin_readahead(entry,
2538 GFP_HIGHUSER_MOVABLE, vma, address);
2539 if (!page) {
2541 * Back out if somebody else faulted in this pte
2542 * while we released the pte lock.
2544 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2545 if (likely(pte_same(*page_table, orig_pte)))
2546 ret = VM_FAULT_OOM;
2547 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2548 goto unlock;
2551 /* Had to read the page from swap area: Major fault */
2552 ret = VM_FAULT_MAJOR;
2553 count_vm_event(PGMAJFAULT);
2554 } else if (PageHWPoison(page)) {
2555 ret = VM_FAULT_HWPOISON;
2556 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2557 goto out_release;
2560 lock_page(page);
2561 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2563 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2564 ret = VM_FAULT_OOM;
2565 goto out_page;
2569 * Back out if somebody else already faulted in this pte.
2571 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2572 if (unlikely(!pte_same(*page_table, orig_pte)))
2573 goto out_nomap;
2575 if (unlikely(!PageUptodate(page))) {
2576 ret = VM_FAULT_SIGBUS;
2577 goto out_nomap;
2581 * The page isn't present yet, go ahead with the fault.
2583 * Be careful about the sequence of operations here.
2584 * To get its accounting right, reuse_swap_page() must be called
2585 * while the page is counted on swap but not yet in mapcount i.e.
2586 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2587 * must be called after the swap_free(), or it will never succeed.
2588 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2589 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2590 * in page->private. In this case, a record in swap_cgroup is silently
2591 * discarded at swap_free().
2594 inc_mm_counter(mm, anon_rss);
2595 pte = mk_pte(page, vma->vm_page_prot);
2596 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2597 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2598 flags &= ~FAULT_FLAG_WRITE;
2600 flush_icache_page(vma, page);
2601 set_pte_at(mm, address, page_table, pte);
2602 page_add_anon_rmap(page, vma, address);
2603 /* It's better to call commit-charge after rmap is established */
2604 mem_cgroup_commit_charge_swapin(page, ptr);
2606 swap_free(entry);
2607 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2608 try_to_free_swap(page);
2609 unlock_page(page);
2611 if (flags & FAULT_FLAG_WRITE) {
2612 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2613 if (ret & VM_FAULT_ERROR)
2614 ret &= VM_FAULT_ERROR;
2615 goto out;
2618 /* No need to invalidate - it was non-present before */
2619 update_mmu_cache(vma, address, pte);
2620 unlock:
2621 pte_unmap_unlock(page_table, ptl);
2622 out:
2623 return ret;
2624 out_nomap:
2625 mem_cgroup_cancel_charge_swapin(ptr);
2626 pte_unmap_unlock(page_table, ptl);
2627 out_page:
2628 unlock_page(page);
2629 out_release:
2630 page_cache_release(page);
2631 return ret;
2635 * This is like a special single-page "expand_{down|up}wards()",
2636 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2637 * doesn't hit another vma.
2639 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2641 address &= PAGE_MASK;
2642 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2643 struct vm_area_struct *prev = vma->vm_prev;
2646 * Is there a mapping abutting this one below?
2648 * That's only ok if it's the same stack mapping
2649 * that has gotten split..
2651 if (prev && prev->vm_end == address)
2652 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2654 expand_stack(vma, address - PAGE_SIZE);
2656 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2657 struct vm_area_struct *next = vma->vm_next;
2659 /* As VM_GROWSDOWN but s/below/above/ */
2660 if (next && next->vm_start == address + PAGE_SIZE)
2661 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2663 expand_upwards(vma, address + PAGE_SIZE);
2665 return 0;
2669 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2670 * but allow concurrent faults), and pte mapped but not yet locked.
2671 * We return with mmap_sem still held, but pte unmapped and unlocked.
2673 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2674 unsigned long address, pte_t *page_table, pmd_t *pmd,
2675 unsigned int flags)
2677 struct page *page;
2678 spinlock_t *ptl;
2679 pte_t entry;
2681 pte_unmap(page_table);
2683 /* Check if we need to add a guard page to the stack */
2684 if (check_stack_guard_page(vma, address) < 0)
2685 return VM_FAULT_SIGBUS;
2687 /* Use the zero-page for reads */
2688 if (!(flags & FAULT_FLAG_WRITE)) {
2689 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2690 vma->vm_page_prot));
2691 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2692 if (!pte_none(*page_table))
2693 goto unlock;
2694 goto setpte;
2697 /* Allocate our own private page. */
2698 if (unlikely(anon_vma_prepare(vma)))
2699 goto oom;
2700 page = alloc_zeroed_user_highpage_movable(vma, address);
2701 if (!page)
2702 goto oom;
2703 __SetPageUptodate(page);
2705 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2706 goto oom_free_page;
2708 entry = mk_pte(page, vma->vm_page_prot);
2709 if (vma->vm_flags & VM_WRITE)
2710 entry = pte_mkwrite(pte_mkdirty(entry));
2712 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2713 if (!pte_none(*page_table))
2714 goto release;
2716 inc_mm_counter(mm, anon_rss);
2717 page_add_new_anon_rmap(page, vma, address);
2718 setpte:
2719 set_pte_at(mm, address, page_table, entry);
2721 /* No need to invalidate - it was non-present before */
2722 update_mmu_cache(vma, address, entry);
2723 unlock:
2724 pte_unmap_unlock(page_table, ptl);
2725 return 0;
2726 release:
2727 mem_cgroup_uncharge_page(page);
2728 page_cache_release(page);
2729 goto unlock;
2730 oom_free_page:
2731 page_cache_release(page);
2732 oom:
2733 return VM_FAULT_OOM;
2737 * __do_fault() tries to create a new page mapping. It aggressively
2738 * tries to share with existing pages, but makes a separate copy if
2739 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2740 * the next page fault.
2742 * As this is called only for pages that do not currently exist, we
2743 * do not need to flush old virtual caches or the TLB.
2745 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2746 * but allow concurrent faults), and pte neither mapped nor locked.
2747 * We return with mmap_sem still held, but pte unmapped and unlocked.
2749 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2750 unsigned long address, pmd_t *pmd,
2751 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2753 pte_t *page_table;
2754 spinlock_t *ptl;
2755 struct page *page;
2756 pte_t entry;
2757 int anon = 0;
2758 int charged = 0;
2759 struct page *dirty_page = NULL;
2760 struct vm_fault vmf;
2761 int ret;
2762 int page_mkwrite = 0;
2764 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2765 vmf.pgoff = pgoff;
2766 vmf.flags = flags;
2767 vmf.page = NULL;
2769 ret = vma->vm_ops->fault(vma, &vmf);
2770 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2771 return ret;
2773 if (unlikely(PageHWPoison(vmf.page))) {
2774 if (ret & VM_FAULT_LOCKED)
2775 unlock_page(vmf.page);
2776 return VM_FAULT_HWPOISON;
2780 * For consistency in subsequent calls, make the faulted page always
2781 * locked.
2783 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2784 lock_page(vmf.page);
2785 else
2786 VM_BUG_ON(!PageLocked(vmf.page));
2789 * Should we do an early C-O-W break?
2791 page = vmf.page;
2792 if (flags & FAULT_FLAG_WRITE) {
2793 if (!(vma->vm_flags & VM_SHARED)) {
2794 anon = 1;
2795 if (unlikely(anon_vma_prepare(vma))) {
2796 ret = VM_FAULT_OOM;
2797 goto out;
2799 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2800 vma, address);
2801 if (!page) {
2802 ret = VM_FAULT_OOM;
2803 goto out;
2805 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2806 ret = VM_FAULT_OOM;
2807 page_cache_release(page);
2808 goto out;
2810 charged = 1;
2812 * Don't let another task, with possibly unlocked vma,
2813 * keep the mlocked page.
2815 if (vma->vm_flags & VM_LOCKED)
2816 clear_page_mlock(vmf.page);
2817 copy_user_highpage(page, vmf.page, address, vma);
2818 __SetPageUptodate(page);
2819 } else {
2821 * If the page will be shareable, see if the backing
2822 * address space wants to know that the page is about
2823 * to become writable
2825 if (vma->vm_ops->page_mkwrite) {
2826 int tmp;
2828 unlock_page(page);
2829 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2830 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2831 if (unlikely(tmp &
2832 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2833 ret = tmp;
2834 goto unwritable_page;
2836 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2837 lock_page(page);
2838 if (!page->mapping) {
2839 ret = 0; /* retry the fault */
2840 unlock_page(page);
2841 goto unwritable_page;
2843 } else
2844 VM_BUG_ON(!PageLocked(page));
2845 page_mkwrite = 1;
2851 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2854 * This silly early PAGE_DIRTY setting removes a race
2855 * due to the bad i386 page protection. But it's valid
2856 * for other architectures too.
2858 * Note that if FAULT_FLAG_WRITE is set, we either now have
2859 * an exclusive copy of the page, or this is a shared mapping,
2860 * so we can make it writable and dirty to avoid having to
2861 * handle that later.
2863 /* Only go through if we didn't race with anybody else... */
2864 if (likely(pte_same(*page_table, orig_pte))) {
2865 flush_icache_page(vma, page);
2866 entry = mk_pte(page, vma->vm_page_prot);
2867 if (flags & FAULT_FLAG_WRITE)
2868 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2869 if (anon) {
2870 inc_mm_counter(mm, anon_rss);
2871 page_add_new_anon_rmap(page, vma, address);
2872 } else {
2873 inc_mm_counter(mm, file_rss);
2874 page_add_file_rmap(page);
2875 if (flags & FAULT_FLAG_WRITE) {
2876 dirty_page = page;
2877 get_page(dirty_page);
2880 set_pte_at(mm, address, page_table, entry);
2882 /* no need to invalidate: a not-present page won't be cached */
2883 update_mmu_cache(vma, address, entry);
2884 } else {
2885 if (charged)
2886 mem_cgroup_uncharge_page(page);
2887 if (anon)
2888 page_cache_release(page);
2889 else
2890 anon = 1; /* no anon but release faulted_page */
2893 pte_unmap_unlock(page_table, ptl);
2895 out:
2896 if (dirty_page) {
2897 struct address_space *mapping = page->mapping;
2899 if (set_page_dirty(dirty_page))
2900 page_mkwrite = 1;
2901 unlock_page(dirty_page);
2902 put_page(dirty_page);
2903 if (page_mkwrite && mapping) {
2905 * Some device drivers do not set page.mapping but still
2906 * dirty their pages
2908 balance_dirty_pages_ratelimited(mapping);
2911 /* file_update_time outside page_lock */
2912 if (vma->vm_file)
2913 file_update_time(vma->vm_file);
2914 } else {
2915 unlock_page(vmf.page);
2916 if (anon)
2917 page_cache_release(vmf.page);
2920 return ret;
2922 unwritable_page:
2923 page_cache_release(page);
2924 return ret;
2927 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2928 unsigned long address, pte_t *page_table, pmd_t *pmd,
2929 unsigned int flags, pte_t orig_pte)
2931 pgoff_t pgoff = (((address & PAGE_MASK)
2932 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2934 pte_unmap(page_table);
2935 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2939 * Fault of a previously existing named mapping. Repopulate the pte
2940 * from the encoded file_pte if possible. This enables swappable
2941 * nonlinear vmas.
2943 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2944 * but allow concurrent faults), and pte mapped but not yet locked.
2945 * We return with mmap_sem still held, but pte unmapped and unlocked.
2947 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2948 unsigned long address, pte_t *page_table, pmd_t *pmd,
2949 unsigned int flags, pte_t orig_pte)
2951 pgoff_t pgoff;
2953 flags |= FAULT_FLAG_NONLINEAR;
2955 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2956 return 0;
2958 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2960 * Page table corrupted: show pte and kill process.
2962 print_bad_pte(vma, address, orig_pte, NULL);
2963 return VM_FAULT_SIGBUS;
2966 pgoff = pte_to_pgoff(orig_pte);
2967 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2971 * These routines also need to handle stuff like marking pages dirty
2972 * and/or accessed for architectures that don't do it in hardware (most
2973 * RISC architectures). The early dirtying is also good on the i386.
2975 * There is also a hook called "update_mmu_cache()" that architectures
2976 * with external mmu caches can use to update those (ie the Sparc or
2977 * PowerPC hashed page tables that act as extended TLBs).
2979 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2980 * but allow concurrent faults), and pte mapped but not yet locked.
2981 * We return with mmap_sem still held, but pte unmapped and unlocked.
2983 static inline int handle_pte_fault(struct mm_struct *mm,
2984 struct vm_area_struct *vma, unsigned long address,
2985 pte_t *pte, pmd_t *pmd, unsigned int flags)
2987 pte_t entry;
2988 spinlock_t *ptl;
2990 entry = *pte;
2991 if (!pte_present(entry)) {
2992 if (pte_none(entry)) {
2993 if (vma->vm_ops) {
2994 if (likely(vma->vm_ops->fault))
2995 return do_linear_fault(mm, vma, address,
2996 pte, pmd, flags, entry);
2998 return do_anonymous_page(mm, vma, address,
2999 pte, pmd, flags);
3001 if (pte_file(entry))
3002 return do_nonlinear_fault(mm, vma, address,
3003 pte, pmd, flags, entry);
3004 return do_swap_page(mm, vma, address,
3005 pte, pmd, flags, entry);
3008 ptl = pte_lockptr(mm, pmd);
3009 spin_lock(ptl);
3010 if (unlikely(!pte_same(*pte, entry)))
3011 goto unlock;
3012 if (flags & FAULT_FLAG_WRITE) {
3013 if (!pte_write(entry))
3014 return do_wp_page(mm, vma, address,
3015 pte, pmd, ptl, entry);
3016 entry = pte_mkdirty(entry);
3018 entry = pte_mkyoung(entry);
3019 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3020 update_mmu_cache(vma, address, entry);
3021 } else {
3023 * This is needed only for protection faults but the arch code
3024 * is not yet telling us if this is a protection fault or not.
3025 * This still avoids useless tlb flushes for .text page faults
3026 * with threads.
3028 if (flags & FAULT_FLAG_WRITE)
3029 flush_tlb_page(vma, address);
3031 unlock:
3032 pte_unmap_unlock(pte, ptl);
3033 return 0;
3037 * By the time we get here, we already hold the mm semaphore
3039 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3040 unsigned long address, unsigned int flags)
3042 pgd_t *pgd;
3043 pud_t *pud;
3044 pmd_t *pmd;
3045 pte_t *pte;
3047 __set_current_state(TASK_RUNNING);
3049 count_vm_event(PGFAULT);
3051 if (unlikely(is_vm_hugetlb_page(vma)))
3052 return hugetlb_fault(mm, vma, address, flags);
3054 pgd = pgd_offset(mm, address);
3055 pud = pud_alloc(mm, pgd, address);
3056 if (!pud)
3057 return VM_FAULT_OOM;
3058 pmd = pmd_alloc(mm, pud, address);
3059 if (!pmd)
3060 return VM_FAULT_OOM;
3061 pte = pte_alloc_map(mm, pmd, address);
3062 if (!pte)
3063 return VM_FAULT_OOM;
3065 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3068 #ifndef __PAGETABLE_PUD_FOLDED
3070 * Allocate page upper directory.
3071 * We've already handled the fast-path in-line.
3073 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3075 pud_t *new = pud_alloc_one(mm, address);
3076 if (!new)
3077 return -ENOMEM;
3079 smp_wmb(); /* See comment in __pte_alloc */
3081 spin_lock(&mm->page_table_lock);
3082 if (pgd_present(*pgd)) /* Another has populated it */
3083 pud_free(mm, new);
3084 else
3085 pgd_populate(mm, pgd, new);
3086 spin_unlock(&mm->page_table_lock);
3087 return 0;
3089 #endif /* __PAGETABLE_PUD_FOLDED */
3091 #ifndef __PAGETABLE_PMD_FOLDED
3093 * Allocate page middle directory.
3094 * We've already handled the fast-path in-line.
3096 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3098 pmd_t *new = pmd_alloc_one(mm, address);
3099 if (!new)
3100 return -ENOMEM;
3102 smp_wmb(); /* See comment in __pte_alloc */
3104 spin_lock(&mm->page_table_lock);
3105 #ifndef __ARCH_HAS_4LEVEL_HACK
3106 if (pud_present(*pud)) /* Another has populated it */
3107 pmd_free(mm, new);
3108 else
3109 pud_populate(mm, pud, new);
3110 #else
3111 if (pgd_present(*pud)) /* Another has populated it */
3112 pmd_free(mm, new);
3113 else
3114 pgd_populate(mm, pud, new);
3115 #endif /* __ARCH_HAS_4LEVEL_HACK */
3116 spin_unlock(&mm->page_table_lock);
3117 return 0;
3119 #endif /* __PAGETABLE_PMD_FOLDED */
3121 int make_pages_present(unsigned long addr, unsigned long end)
3123 int ret, len, write;
3124 struct vm_area_struct * vma;
3126 vma = find_vma(current->mm, addr);
3127 if (!vma)
3128 return -ENOMEM;
3129 write = (vma->vm_flags & VM_WRITE) != 0;
3130 BUG_ON(addr >= end);
3131 BUG_ON(end > vma->vm_end);
3132 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3133 ret = get_user_pages(current, current->mm, addr,
3134 len, write, 0, NULL, NULL);
3135 if (ret < 0)
3136 return ret;
3137 return ret == len ? 0 : -EFAULT;
3140 #if !defined(__HAVE_ARCH_GATE_AREA)
3142 #if defined(AT_SYSINFO_EHDR)
3143 static struct vm_area_struct gate_vma;
3145 static int __init gate_vma_init(void)
3147 gate_vma.vm_mm = NULL;
3148 gate_vma.vm_start = FIXADDR_USER_START;
3149 gate_vma.vm_end = FIXADDR_USER_END;
3150 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3151 gate_vma.vm_page_prot = __P101;
3153 * Make sure the vDSO gets into every core dump.
3154 * Dumping its contents makes post-mortem fully interpretable later
3155 * without matching up the same kernel and hardware config to see
3156 * what PC values meant.
3158 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3159 return 0;
3161 __initcall(gate_vma_init);
3162 #endif
3164 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3166 #ifdef AT_SYSINFO_EHDR
3167 return &gate_vma;
3168 #else
3169 return NULL;
3170 #endif
3173 int in_gate_area_no_task(unsigned long addr)
3175 #ifdef AT_SYSINFO_EHDR
3176 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3177 return 1;
3178 #endif
3179 return 0;
3182 #endif /* __HAVE_ARCH_GATE_AREA */
3184 static int follow_pte(struct mm_struct *mm, unsigned long address,
3185 pte_t **ptepp, spinlock_t **ptlp)
3187 pgd_t *pgd;
3188 pud_t *pud;
3189 pmd_t *pmd;
3190 pte_t *ptep;
3192 pgd = pgd_offset(mm, address);
3193 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3194 goto out;
3196 pud = pud_offset(pgd, address);
3197 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3198 goto out;
3200 pmd = pmd_offset(pud, address);
3201 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3202 goto out;
3204 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3205 if (pmd_huge(*pmd))
3206 goto out;
3208 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3209 if (!ptep)
3210 goto out;
3211 if (!pte_present(*ptep))
3212 goto unlock;
3213 *ptepp = ptep;
3214 return 0;
3215 unlock:
3216 pte_unmap_unlock(ptep, *ptlp);
3217 out:
3218 return -EINVAL;
3222 * follow_pfn - look up PFN at a user virtual address
3223 * @vma: memory mapping
3224 * @address: user virtual address
3225 * @pfn: location to store found PFN
3227 * Only IO mappings and raw PFN mappings are allowed.
3229 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3231 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3232 unsigned long *pfn)
3234 int ret = -EINVAL;
3235 spinlock_t *ptl;
3236 pte_t *ptep;
3238 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3239 return ret;
3241 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3242 if (ret)
3243 return ret;
3244 *pfn = pte_pfn(*ptep);
3245 pte_unmap_unlock(ptep, ptl);
3246 return 0;
3248 EXPORT_SYMBOL(follow_pfn);
3250 #ifdef CONFIG_HAVE_IOREMAP_PROT
3251 int follow_phys(struct vm_area_struct *vma,
3252 unsigned long address, unsigned int flags,
3253 unsigned long *prot, resource_size_t *phys)
3255 int ret = -EINVAL;
3256 pte_t *ptep, pte;
3257 spinlock_t *ptl;
3259 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3260 goto out;
3262 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3263 goto out;
3264 pte = *ptep;
3266 if ((flags & FOLL_WRITE) && !pte_write(pte))
3267 goto unlock;
3269 *prot = pgprot_val(pte_pgprot(pte));
3270 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3272 ret = 0;
3273 unlock:
3274 pte_unmap_unlock(ptep, ptl);
3275 out:
3276 return ret;
3279 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3280 void *buf, int len, int write)
3282 resource_size_t phys_addr;
3283 unsigned long prot = 0;
3284 void __iomem *maddr;
3285 int offset = addr & (PAGE_SIZE-1);
3287 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3288 return -EINVAL;
3290 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3291 if (write)
3292 memcpy_toio(maddr + offset, buf, len);
3293 else
3294 memcpy_fromio(buf, maddr + offset, len);
3295 iounmap(maddr);
3297 return len;
3299 #endif
3302 * Access another process' address space.
3303 * Source/target buffer must be kernel space,
3304 * Do not walk the page table directly, use get_user_pages
3306 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3308 struct mm_struct *mm;
3309 struct vm_area_struct *vma;
3310 void *old_buf = buf;
3312 mm = get_task_mm(tsk);
3313 if (!mm)
3314 return 0;
3316 down_read(&mm->mmap_sem);
3317 /* ignore errors, just check how much was successfully transferred */
3318 while (len) {
3319 int bytes, ret, offset;
3320 void *maddr;
3321 struct page *page = NULL;
3323 ret = get_user_pages(tsk, mm, addr, 1,
3324 write, 1, &page, &vma);
3325 if (ret <= 0) {
3327 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3328 * we can access using slightly different code.
3330 #ifdef CONFIG_HAVE_IOREMAP_PROT
3331 vma = find_vma(mm, addr);
3332 if (!vma)
3333 break;
3334 if (vma->vm_ops && vma->vm_ops->access)
3335 ret = vma->vm_ops->access(vma, addr, buf,
3336 len, write);
3337 if (ret <= 0)
3338 #endif
3339 break;
3340 bytes = ret;
3341 } else {
3342 bytes = len;
3343 offset = addr & (PAGE_SIZE-1);
3344 if (bytes > PAGE_SIZE-offset)
3345 bytes = PAGE_SIZE-offset;
3347 maddr = kmap(page);
3348 if (write) {
3349 copy_to_user_page(vma, page, addr,
3350 maddr + offset, buf, bytes);
3351 set_page_dirty_lock(page);
3352 } else {
3353 copy_from_user_page(vma, page, addr,
3354 buf, maddr + offset, bytes);
3356 kunmap(page);
3357 page_cache_release(page);
3359 len -= bytes;
3360 buf += bytes;
3361 addr += bytes;
3363 up_read(&mm->mmap_sem);
3364 mmput(mm);
3366 return buf - old_buf;
3370 * Print the name of a VMA.
3372 void print_vma_addr(char *prefix, unsigned long ip)
3374 struct mm_struct *mm = current->mm;
3375 struct vm_area_struct *vma;
3378 * Do not print if we are in atomic
3379 * contexts (in exception stacks, etc.):
3381 if (preempt_count())
3382 return;
3384 down_read(&mm->mmap_sem);
3385 vma = find_vma(mm, ip);
3386 if (vma && vma->vm_file) {
3387 struct file *f = vma->vm_file;
3388 char *buf = (char *)__get_free_page(GFP_KERNEL);
3389 if (buf) {
3390 char *p, *s;
3392 p = d_path(&f->f_path, buf, PAGE_SIZE);
3393 if (IS_ERR(p))
3394 p = "?";
3395 s = strrchr(p, '/');
3396 if (s)
3397 p = s+1;
3398 printk("%s%s[%lx+%lx]", prefix, p,
3399 vma->vm_start,
3400 vma->vm_end - vma->vm_start);
3401 free_page((unsigned long)buf);
3404 up_read(&current->mm->mmap_sem);
3407 #ifdef CONFIG_PROVE_LOCKING
3408 void might_fault(void)
3411 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3412 * holding the mmap_sem, this is safe because kernel memory doesn't
3413 * get paged out, therefore we'll never actually fault, and the
3414 * below annotations will generate false positives.
3416 if (segment_eq(get_fs(), KERNEL_DS))
3417 return;
3419 might_sleep();
3421 * it would be nicer only to annotate paths which are not under
3422 * pagefault_disable, however that requires a larger audit and
3423 * providing helpers like get_user_atomic.
3425 if (!in_atomic() && current->mm)
3426 might_lock_read(&current->mm->mmap_sem);
3428 EXPORT_SYMBOL(might_fault);
3429 #endif