x86, ioapic: Fix potential resume deadlock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / kvm.c
blob8dc44662394bebadcbbcbb70e6e938adbb2e8ced
1 /*
2 * KVM paravirt_ops implementation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
19 * Copyright IBM Corporation, 2007
20 * Authors: Anthony Liguori <aliguori@us.ibm.com>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/kvm_para.h>
26 #include <linux/cpu.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/hardirq.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/hash.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/kprobes.h>
36 #include <asm/timer.h>
37 #include <asm/cpu.h>
38 #include <asm/traps.h>
39 #include <asm/desc.h>
40 #include <asm/tlbflush.h>
42 #define MMU_QUEUE_SIZE 1024
44 static int kvmapf = 1;
46 static int parse_no_kvmapf(char *arg)
48 kvmapf = 0;
49 return 0;
52 early_param("no-kvmapf", parse_no_kvmapf);
54 struct kvm_para_state {
55 u8 mmu_queue[MMU_QUEUE_SIZE];
56 int mmu_queue_len;
59 static DEFINE_PER_CPU(struct kvm_para_state, para_state);
60 static DEFINE_PER_CPU(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
62 static struct kvm_para_state *kvm_para_state(void)
64 return &per_cpu(para_state, raw_smp_processor_id());
68 * No need for any "IO delay" on KVM
70 static void kvm_io_delay(void)
74 #define KVM_TASK_SLEEP_HASHBITS 8
75 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
77 struct kvm_task_sleep_node {
78 struct hlist_node link;
79 wait_queue_head_t wq;
80 u32 token;
81 int cpu;
82 bool halted;
83 struct mm_struct *mm;
86 static struct kvm_task_sleep_head {
87 spinlock_t lock;
88 struct hlist_head list;
89 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
91 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
92 u32 token)
94 struct hlist_node *p;
96 hlist_for_each(p, &b->list) {
97 struct kvm_task_sleep_node *n =
98 hlist_entry(p, typeof(*n), link);
99 if (n->token == token)
100 return n;
103 return NULL;
106 void kvm_async_pf_task_wait(u32 token)
108 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
109 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
110 struct kvm_task_sleep_node n, *e;
111 DEFINE_WAIT(wait);
112 int cpu, idle;
114 cpu = get_cpu();
115 idle = idle_cpu(cpu);
116 put_cpu();
118 spin_lock(&b->lock);
119 e = _find_apf_task(b, token);
120 if (e) {
121 /* dummy entry exist -> wake up was delivered ahead of PF */
122 hlist_del(&e->link);
123 kfree(e);
124 spin_unlock(&b->lock);
125 return;
128 n.token = token;
129 n.cpu = smp_processor_id();
130 n.mm = current->active_mm;
131 n.halted = idle || preempt_count() > 1;
132 atomic_inc(&n.mm->mm_count);
133 init_waitqueue_head(&n.wq);
134 hlist_add_head(&n.link, &b->list);
135 spin_unlock(&b->lock);
137 for (;;) {
138 if (!n.halted)
139 prepare_to_wait(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
140 if (hlist_unhashed(&n.link))
141 break;
143 if (!n.halted) {
144 local_irq_enable();
145 schedule();
146 local_irq_disable();
147 } else {
149 * We cannot reschedule. So halt.
151 native_safe_halt();
152 local_irq_disable();
155 if (!n.halted)
156 finish_wait(&n.wq, &wait);
158 return;
160 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait);
162 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
164 hlist_del_init(&n->link);
165 if (!n->mm)
166 return;
167 mmdrop(n->mm);
168 if (n->halted)
169 smp_send_reschedule(n->cpu);
170 else if (waitqueue_active(&n->wq))
171 wake_up(&n->wq);
174 static void apf_task_wake_all(void)
176 int i;
178 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
179 struct hlist_node *p, *next;
180 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
181 spin_lock(&b->lock);
182 hlist_for_each_safe(p, next, &b->list) {
183 struct kvm_task_sleep_node *n =
184 hlist_entry(p, typeof(*n), link);
185 if (n->cpu == smp_processor_id())
186 apf_task_wake_one(n);
188 spin_unlock(&b->lock);
192 void kvm_async_pf_task_wake(u32 token)
194 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
195 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
196 struct kvm_task_sleep_node *n;
198 if (token == ~0) {
199 apf_task_wake_all();
200 return;
203 again:
204 spin_lock(&b->lock);
205 n = _find_apf_task(b, token);
206 if (!n) {
208 * async PF was not yet handled.
209 * Add dummy entry for the token.
211 n = kmalloc(sizeof(*n), GFP_ATOMIC);
212 if (!n) {
214 * Allocation failed! Busy wait while other cpu
215 * handles async PF.
217 spin_unlock(&b->lock);
218 cpu_relax();
219 goto again;
221 n->token = token;
222 n->cpu = smp_processor_id();
223 n->mm = NULL;
224 init_waitqueue_head(&n->wq);
225 hlist_add_head(&n->link, &b->list);
226 } else
227 apf_task_wake_one(n);
228 spin_unlock(&b->lock);
229 return;
231 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
233 u32 kvm_read_and_reset_pf_reason(void)
235 u32 reason = 0;
237 if (__get_cpu_var(apf_reason).enabled) {
238 reason = __get_cpu_var(apf_reason).reason;
239 __get_cpu_var(apf_reason).reason = 0;
242 return reason;
244 EXPORT_SYMBOL_GPL(kvm_read_and_reset_pf_reason);
246 dotraplinkage void __kprobes
247 do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
249 switch (kvm_read_and_reset_pf_reason()) {
250 default:
251 do_page_fault(regs, error_code);
252 break;
253 case KVM_PV_REASON_PAGE_NOT_PRESENT:
254 /* page is swapped out by the host. */
255 kvm_async_pf_task_wait((u32)read_cr2());
256 break;
257 case KVM_PV_REASON_PAGE_READY:
258 kvm_async_pf_task_wake((u32)read_cr2());
259 break;
263 static void kvm_mmu_op(void *buffer, unsigned len)
265 int r;
266 unsigned long a1, a2;
268 do {
269 a1 = __pa(buffer);
270 a2 = 0; /* on i386 __pa() always returns <4G */
271 r = kvm_hypercall3(KVM_HC_MMU_OP, len, a1, a2);
272 buffer += r;
273 len -= r;
274 } while (len);
277 static void mmu_queue_flush(struct kvm_para_state *state)
279 if (state->mmu_queue_len) {
280 kvm_mmu_op(state->mmu_queue, state->mmu_queue_len);
281 state->mmu_queue_len = 0;
285 static void kvm_deferred_mmu_op(void *buffer, int len)
287 struct kvm_para_state *state = kvm_para_state();
289 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) {
290 kvm_mmu_op(buffer, len);
291 return;
293 if (state->mmu_queue_len + len > sizeof state->mmu_queue)
294 mmu_queue_flush(state);
295 memcpy(state->mmu_queue + state->mmu_queue_len, buffer, len);
296 state->mmu_queue_len += len;
299 static void kvm_mmu_write(void *dest, u64 val)
301 __u64 pte_phys;
302 struct kvm_mmu_op_write_pte wpte;
304 #ifdef CONFIG_HIGHPTE
305 struct page *page;
306 unsigned long dst = (unsigned long) dest;
308 page = kmap_atomic_to_page(dest);
309 pte_phys = page_to_pfn(page);
310 pte_phys <<= PAGE_SHIFT;
311 pte_phys += (dst & ~(PAGE_MASK));
312 #else
313 pte_phys = (unsigned long)__pa(dest);
314 #endif
315 wpte.header.op = KVM_MMU_OP_WRITE_PTE;
316 wpte.pte_val = val;
317 wpte.pte_phys = pte_phys;
319 kvm_deferred_mmu_op(&wpte, sizeof wpte);
323 * We only need to hook operations that are MMU writes. We hook these so that
324 * we can use lazy MMU mode to batch these operations. We could probably
325 * improve the performance of the host code if we used some of the information
326 * here to simplify processing of batched writes.
328 static void kvm_set_pte(pte_t *ptep, pte_t pte)
330 kvm_mmu_write(ptep, pte_val(pte));
333 static void kvm_set_pte_at(struct mm_struct *mm, unsigned long addr,
334 pte_t *ptep, pte_t pte)
336 kvm_mmu_write(ptep, pte_val(pte));
339 static void kvm_set_pmd(pmd_t *pmdp, pmd_t pmd)
341 kvm_mmu_write(pmdp, pmd_val(pmd));
344 #if PAGETABLE_LEVELS >= 3
345 #ifdef CONFIG_X86_PAE
346 static void kvm_set_pte_atomic(pte_t *ptep, pte_t pte)
348 kvm_mmu_write(ptep, pte_val(pte));
351 static void kvm_pte_clear(struct mm_struct *mm,
352 unsigned long addr, pte_t *ptep)
354 kvm_mmu_write(ptep, 0);
357 static void kvm_pmd_clear(pmd_t *pmdp)
359 kvm_mmu_write(pmdp, 0);
361 #endif
363 static void kvm_set_pud(pud_t *pudp, pud_t pud)
365 kvm_mmu_write(pudp, pud_val(pud));
368 #if PAGETABLE_LEVELS == 4
369 static void kvm_set_pgd(pgd_t *pgdp, pgd_t pgd)
371 kvm_mmu_write(pgdp, pgd_val(pgd));
373 #endif
374 #endif /* PAGETABLE_LEVELS >= 3 */
376 static void kvm_flush_tlb(void)
378 struct kvm_mmu_op_flush_tlb ftlb = {
379 .header.op = KVM_MMU_OP_FLUSH_TLB,
382 kvm_deferred_mmu_op(&ftlb, sizeof ftlb);
385 static void kvm_release_pt(unsigned long pfn)
387 struct kvm_mmu_op_release_pt rpt = {
388 .header.op = KVM_MMU_OP_RELEASE_PT,
389 .pt_phys = (u64)pfn << PAGE_SHIFT,
392 kvm_mmu_op(&rpt, sizeof rpt);
395 static void kvm_enter_lazy_mmu(void)
397 paravirt_enter_lazy_mmu();
400 static void kvm_leave_lazy_mmu(void)
402 struct kvm_para_state *state = kvm_para_state();
404 mmu_queue_flush(state);
405 paravirt_leave_lazy_mmu();
408 static void __init paravirt_ops_setup(void)
410 pv_info.name = "KVM";
411 pv_info.paravirt_enabled = 1;
413 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
414 pv_cpu_ops.io_delay = kvm_io_delay;
416 if (kvm_para_has_feature(KVM_FEATURE_MMU_OP)) {
417 pv_mmu_ops.set_pte = kvm_set_pte;
418 pv_mmu_ops.set_pte_at = kvm_set_pte_at;
419 pv_mmu_ops.set_pmd = kvm_set_pmd;
420 #if PAGETABLE_LEVELS >= 3
421 #ifdef CONFIG_X86_PAE
422 pv_mmu_ops.set_pte_atomic = kvm_set_pte_atomic;
423 pv_mmu_ops.pte_clear = kvm_pte_clear;
424 pv_mmu_ops.pmd_clear = kvm_pmd_clear;
425 #endif
426 pv_mmu_ops.set_pud = kvm_set_pud;
427 #if PAGETABLE_LEVELS == 4
428 pv_mmu_ops.set_pgd = kvm_set_pgd;
429 #endif
430 #endif
431 pv_mmu_ops.flush_tlb_user = kvm_flush_tlb;
432 pv_mmu_ops.release_pte = kvm_release_pt;
433 pv_mmu_ops.release_pmd = kvm_release_pt;
434 pv_mmu_ops.release_pud = kvm_release_pt;
436 pv_mmu_ops.lazy_mode.enter = kvm_enter_lazy_mmu;
437 pv_mmu_ops.lazy_mode.leave = kvm_leave_lazy_mmu;
439 #ifdef CONFIG_X86_IO_APIC
440 no_timer_check = 1;
441 #endif
444 void __cpuinit kvm_guest_cpu_init(void)
446 if (!kvm_para_available())
447 return;
449 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
450 u64 pa = __pa(&__get_cpu_var(apf_reason));
452 #ifdef CONFIG_PREEMPT
453 pa |= KVM_ASYNC_PF_SEND_ALWAYS;
454 #endif
455 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa | KVM_ASYNC_PF_ENABLED);
456 __get_cpu_var(apf_reason).enabled = 1;
457 printk(KERN_INFO"KVM setup async PF for cpu %d\n",
458 smp_processor_id());
462 static void kvm_pv_disable_apf(void *unused)
464 if (!__get_cpu_var(apf_reason).enabled)
465 return;
467 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
468 __get_cpu_var(apf_reason).enabled = 0;
470 printk(KERN_INFO"Unregister pv shared memory for cpu %d\n",
471 smp_processor_id());
474 static int kvm_pv_reboot_notify(struct notifier_block *nb,
475 unsigned long code, void *unused)
477 if (code == SYS_RESTART)
478 on_each_cpu(kvm_pv_disable_apf, NULL, 1);
479 return NOTIFY_DONE;
482 static struct notifier_block kvm_pv_reboot_nb = {
483 .notifier_call = kvm_pv_reboot_notify,
486 #ifdef CONFIG_SMP
487 static void __init kvm_smp_prepare_boot_cpu(void)
489 #ifdef CONFIG_KVM_CLOCK
490 WARN_ON(kvm_register_clock("primary cpu clock"));
491 #endif
492 kvm_guest_cpu_init();
493 native_smp_prepare_boot_cpu();
496 static void kvm_guest_cpu_online(void *dummy)
498 kvm_guest_cpu_init();
501 static void kvm_guest_cpu_offline(void *dummy)
503 kvm_pv_disable_apf(NULL);
504 apf_task_wake_all();
507 static int __cpuinit kvm_cpu_notify(struct notifier_block *self,
508 unsigned long action, void *hcpu)
510 int cpu = (unsigned long)hcpu;
511 switch (action) {
512 case CPU_ONLINE:
513 case CPU_DOWN_FAILED:
514 case CPU_ONLINE_FROZEN:
515 smp_call_function_single(cpu, kvm_guest_cpu_online, NULL, 0);
516 break;
517 case CPU_DOWN_PREPARE:
518 case CPU_DOWN_PREPARE_FROZEN:
519 smp_call_function_single(cpu, kvm_guest_cpu_offline, NULL, 1);
520 break;
521 default:
522 break;
524 return NOTIFY_OK;
527 static struct notifier_block __cpuinitdata kvm_cpu_notifier = {
528 .notifier_call = kvm_cpu_notify,
530 #endif
532 static void __init kvm_apf_trap_init(void)
534 set_intr_gate(14, &async_page_fault);
537 void __init kvm_guest_init(void)
539 int i;
541 if (!kvm_para_available())
542 return;
544 paravirt_ops_setup();
545 register_reboot_notifier(&kvm_pv_reboot_nb);
546 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
547 spin_lock_init(&async_pf_sleepers[i].lock);
548 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF))
549 x86_init.irqs.trap_init = kvm_apf_trap_init;
551 #ifdef CONFIG_SMP
552 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
553 register_cpu_notifier(&kvm_cpu_notifier);
554 #else
555 kvm_guest_cpu_init();
556 #endif