x86, ioapic: Fix potential resume deadlock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / apic / io_apic.c
blobe43777835f6de8b31241ff2be2ec2a02b366064e
1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #include <linux/slab.h>
40 #ifdef CONFIG_ACPI
41 #include <acpi/acpi_bus.h>
42 #endif
43 #include <linux/bootmem.h>
44 #include <linux/dmar.h>
45 #include <linux/hpet.h>
47 #include <asm/idle.h>
48 #include <asm/io.h>
49 #include <asm/smp.h>
50 #include <asm/cpu.h>
51 #include <asm/desc.h>
52 #include <asm/proto.h>
53 #include <asm/acpi.h>
54 #include <asm/dma.h>
55 #include <asm/timer.h>
56 #include <asm/i8259.h>
57 #include <asm/msidef.h>
58 #include <asm/hypertransport.h>
59 #include <asm/setup.h>
60 #include <asm/irq_remapping.h>
61 #include <asm/hpet.h>
62 #include <asm/hw_irq.h>
64 #include <asm/apic.h>
66 #define __apicdebuginit(type) static type __init
67 #define for_each_irq_pin(entry, head) \
68 for (entry = head; entry; entry = entry->next)
71 * Is the SiS APIC rmw bug present ?
72 * -1 = don't know, 0 = no, 1 = yes
74 int sis_apic_bug = -1;
76 static DEFINE_RAW_SPINLOCK(ioapic_lock);
77 static DEFINE_RAW_SPINLOCK(vector_lock);
80 * # of IRQ routing registers
82 int nr_ioapic_registers[MAX_IO_APICS];
84 /* I/O APIC entries */
85 struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
86 int nr_ioapics;
88 /* IO APIC gsi routing info */
89 struct mp_ioapic_gsi mp_gsi_routing[MAX_IO_APICS];
91 /* The one past the highest gsi number used */
92 u32 gsi_top;
94 /* MP IRQ source entries */
95 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
97 /* # of MP IRQ source entries */
98 int mp_irq_entries;
100 /* GSI interrupts */
101 static int nr_irqs_gsi = NR_IRQS_LEGACY;
103 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
104 int mp_bus_id_to_type[MAX_MP_BUSSES];
105 #endif
107 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
109 int skip_ioapic_setup;
111 void arch_disable_smp_support(void)
113 #ifdef CONFIG_PCI
114 noioapicquirk = 1;
115 noioapicreroute = -1;
116 #endif
117 skip_ioapic_setup = 1;
120 static int __init parse_noapic(char *str)
122 /* disable IO-APIC */
123 arch_disable_smp_support();
124 return 0;
126 early_param("noapic", parse_noapic);
128 /* Will be called in mpparse/acpi/sfi codes for saving IRQ info */
129 void mp_save_irq(struct mpc_intsrc *m)
131 int i;
133 apic_printk(APIC_VERBOSE, "Int: type %d, pol %d, trig %d, bus %02x,"
134 " IRQ %02x, APIC ID %x, APIC INT %02x\n",
135 m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus,
136 m->srcbusirq, m->dstapic, m->dstirq);
138 for (i = 0; i < mp_irq_entries; i++) {
139 if (!memcmp(&mp_irqs[i], m, sizeof(*m)))
140 return;
143 memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m));
144 if (++mp_irq_entries == MAX_IRQ_SOURCES)
145 panic("Max # of irq sources exceeded!!\n");
148 struct irq_pin_list {
149 int apic, pin;
150 struct irq_pin_list *next;
153 static struct irq_pin_list *alloc_irq_pin_list(int node)
155 return kzalloc_node(sizeof(struct irq_pin_list), GFP_KERNEL, node);
159 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
160 #ifdef CONFIG_SPARSE_IRQ
161 static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
162 #else
163 static struct irq_cfg irq_cfgx[NR_IRQS];
164 #endif
166 int __init arch_early_irq_init(void)
168 struct irq_cfg *cfg;
169 int count, node, i;
171 if (!legacy_pic->nr_legacy_irqs) {
172 nr_irqs_gsi = 0;
173 io_apic_irqs = ~0UL;
176 cfg = irq_cfgx;
177 count = ARRAY_SIZE(irq_cfgx);
178 node = cpu_to_node(0);
180 /* Make sure the legacy interrupts are marked in the bitmap */
181 irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs);
183 for (i = 0; i < count; i++) {
184 set_irq_chip_data(i, &cfg[i]);
185 zalloc_cpumask_var_node(&cfg[i].domain, GFP_KERNEL, node);
186 zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_KERNEL, node);
188 * For legacy IRQ's, start with assigning irq0 to irq15 to
189 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
191 if (i < legacy_pic->nr_legacy_irqs) {
192 cfg[i].vector = IRQ0_VECTOR + i;
193 cpumask_set_cpu(0, cfg[i].domain);
197 return 0;
200 #ifdef CONFIG_SPARSE_IRQ
201 static struct irq_cfg *irq_cfg(unsigned int irq)
203 return get_irq_chip_data(irq);
206 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
208 struct irq_cfg *cfg;
210 cfg = kzalloc_node(sizeof(*cfg), GFP_KERNEL, node);
211 if (!cfg)
212 return NULL;
213 if (!zalloc_cpumask_var_node(&cfg->domain, GFP_KERNEL, node))
214 goto out_cfg;
215 if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_KERNEL, node))
216 goto out_domain;
217 return cfg;
218 out_domain:
219 free_cpumask_var(cfg->domain);
220 out_cfg:
221 kfree(cfg);
222 return NULL;
225 static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg)
227 if (!cfg)
228 return;
229 set_irq_chip_data(at, NULL);
230 free_cpumask_var(cfg->domain);
231 free_cpumask_var(cfg->old_domain);
232 kfree(cfg);
235 #else
237 struct irq_cfg *irq_cfg(unsigned int irq)
239 return irq < nr_irqs ? irq_cfgx + irq : NULL;
242 static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
244 return irq_cfgx + irq;
247 static inline void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { }
249 #endif
251 static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node)
253 int res = irq_alloc_desc_at(at, node);
254 struct irq_cfg *cfg;
256 if (res < 0) {
257 if (res != -EEXIST)
258 return NULL;
259 cfg = get_irq_chip_data(at);
260 if (cfg)
261 return cfg;
264 cfg = alloc_irq_cfg(at, node);
265 if (cfg)
266 set_irq_chip_data(at, cfg);
267 else
268 irq_free_desc(at);
269 return cfg;
272 static int alloc_irq_from(unsigned int from, int node)
274 return irq_alloc_desc_from(from, node);
277 static void free_irq_at(unsigned int at, struct irq_cfg *cfg)
279 free_irq_cfg(at, cfg);
280 irq_free_desc(at);
283 struct io_apic {
284 unsigned int index;
285 unsigned int unused[3];
286 unsigned int data;
287 unsigned int unused2[11];
288 unsigned int eoi;
291 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
293 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
294 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
297 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
299 struct io_apic __iomem *io_apic = io_apic_base(apic);
300 writel(vector, &io_apic->eoi);
303 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
305 struct io_apic __iomem *io_apic = io_apic_base(apic);
306 writel(reg, &io_apic->index);
307 return readl(&io_apic->data);
310 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
312 struct io_apic __iomem *io_apic = io_apic_base(apic);
313 writel(reg, &io_apic->index);
314 writel(value, &io_apic->data);
318 * Re-write a value: to be used for read-modify-write
319 * cycles where the read already set up the index register.
321 * Older SiS APIC requires we rewrite the index register
323 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
325 struct io_apic __iomem *io_apic = io_apic_base(apic);
327 if (sis_apic_bug)
328 writel(reg, &io_apic->index);
329 writel(value, &io_apic->data);
332 static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
334 struct irq_pin_list *entry;
335 unsigned long flags;
337 raw_spin_lock_irqsave(&ioapic_lock, flags);
338 for_each_irq_pin(entry, cfg->irq_2_pin) {
339 unsigned int reg;
340 int pin;
342 pin = entry->pin;
343 reg = io_apic_read(entry->apic, 0x10 + pin*2);
344 /* Is the remote IRR bit set? */
345 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
346 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
347 return true;
350 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
352 return false;
355 union entry_union {
356 struct { u32 w1, w2; };
357 struct IO_APIC_route_entry entry;
360 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
362 union entry_union eu;
363 unsigned long flags;
364 raw_spin_lock_irqsave(&ioapic_lock, flags);
365 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
366 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
367 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
368 return eu.entry;
372 * When we write a new IO APIC routing entry, we need to write the high
373 * word first! If the mask bit in the low word is clear, we will enable
374 * the interrupt, and we need to make sure the entry is fully populated
375 * before that happens.
377 static void
378 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
380 union entry_union eu = {{0, 0}};
382 eu.entry = e;
383 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
384 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
387 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
389 unsigned long flags;
390 raw_spin_lock_irqsave(&ioapic_lock, flags);
391 __ioapic_write_entry(apic, pin, e);
392 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
396 * When we mask an IO APIC routing entry, we need to write the low
397 * word first, in order to set the mask bit before we change the
398 * high bits!
400 static void ioapic_mask_entry(int apic, int pin)
402 unsigned long flags;
403 union entry_union eu = { .entry.mask = 1 };
405 raw_spin_lock_irqsave(&ioapic_lock, flags);
406 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
407 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
408 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
412 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
413 * shared ISA-space IRQs, so we have to support them. We are super
414 * fast in the common case, and fast for shared ISA-space IRQs.
416 static int
417 __add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
419 struct irq_pin_list **last, *entry;
421 /* don't allow duplicates */
422 last = &cfg->irq_2_pin;
423 for_each_irq_pin(entry, cfg->irq_2_pin) {
424 if (entry->apic == apic && entry->pin == pin)
425 return 0;
426 last = &entry->next;
429 entry = alloc_irq_pin_list(node);
430 if (!entry) {
431 printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
432 node, apic, pin);
433 return -ENOMEM;
435 entry->apic = apic;
436 entry->pin = pin;
438 *last = entry;
439 return 0;
442 static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
444 if (__add_pin_to_irq_node(cfg, node, apic, pin))
445 panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
449 * Reroute an IRQ to a different pin.
451 static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
452 int oldapic, int oldpin,
453 int newapic, int newpin)
455 struct irq_pin_list *entry;
457 for_each_irq_pin(entry, cfg->irq_2_pin) {
458 if (entry->apic == oldapic && entry->pin == oldpin) {
459 entry->apic = newapic;
460 entry->pin = newpin;
461 /* every one is different, right? */
462 return;
466 /* old apic/pin didn't exist, so just add new ones */
467 add_pin_to_irq_node(cfg, node, newapic, newpin);
470 static void __io_apic_modify_irq(struct irq_pin_list *entry,
471 int mask_and, int mask_or,
472 void (*final)(struct irq_pin_list *entry))
474 unsigned int reg, pin;
476 pin = entry->pin;
477 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
478 reg &= mask_and;
479 reg |= mask_or;
480 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
481 if (final)
482 final(entry);
485 static void io_apic_modify_irq(struct irq_cfg *cfg,
486 int mask_and, int mask_or,
487 void (*final)(struct irq_pin_list *entry))
489 struct irq_pin_list *entry;
491 for_each_irq_pin(entry, cfg->irq_2_pin)
492 __io_apic_modify_irq(entry, mask_and, mask_or, final);
495 static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
497 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
498 IO_APIC_REDIR_MASKED, NULL);
501 static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
503 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
504 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
507 static void io_apic_sync(struct irq_pin_list *entry)
510 * Synchronize the IO-APIC and the CPU by doing
511 * a dummy read from the IO-APIC
513 struct io_apic __iomem *io_apic;
514 io_apic = io_apic_base(entry->apic);
515 readl(&io_apic->data);
518 static void mask_ioapic(struct irq_cfg *cfg)
520 unsigned long flags;
522 raw_spin_lock_irqsave(&ioapic_lock, flags);
523 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
524 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
527 static void mask_ioapic_irq(struct irq_data *data)
529 mask_ioapic(data->chip_data);
532 static void __unmask_ioapic(struct irq_cfg *cfg)
534 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
537 static void unmask_ioapic(struct irq_cfg *cfg)
539 unsigned long flags;
541 raw_spin_lock_irqsave(&ioapic_lock, flags);
542 __unmask_ioapic(cfg);
543 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
546 static void unmask_ioapic_irq(struct irq_data *data)
548 unmask_ioapic(data->chip_data);
551 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
553 struct IO_APIC_route_entry entry;
555 /* Check delivery_mode to be sure we're not clearing an SMI pin */
556 entry = ioapic_read_entry(apic, pin);
557 if (entry.delivery_mode == dest_SMI)
558 return;
560 * Disable it in the IO-APIC irq-routing table:
562 ioapic_mask_entry(apic, pin);
565 static void clear_IO_APIC (void)
567 int apic, pin;
569 for (apic = 0; apic < nr_ioapics; apic++)
570 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
571 clear_IO_APIC_pin(apic, pin);
574 #ifdef CONFIG_X86_32
576 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
577 * specific CPU-side IRQs.
580 #define MAX_PIRQS 8
581 static int pirq_entries[MAX_PIRQS] = {
582 [0 ... MAX_PIRQS - 1] = -1
585 static int __init ioapic_pirq_setup(char *str)
587 int i, max;
588 int ints[MAX_PIRQS+1];
590 get_options(str, ARRAY_SIZE(ints), ints);
592 apic_printk(APIC_VERBOSE, KERN_INFO
593 "PIRQ redirection, working around broken MP-BIOS.\n");
594 max = MAX_PIRQS;
595 if (ints[0] < MAX_PIRQS)
596 max = ints[0];
598 for (i = 0; i < max; i++) {
599 apic_printk(APIC_VERBOSE, KERN_DEBUG
600 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
602 * PIRQs are mapped upside down, usually.
604 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
606 return 1;
609 __setup("pirq=", ioapic_pirq_setup);
610 #endif /* CONFIG_X86_32 */
612 struct IO_APIC_route_entry **alloc_ioapic_entries(void)
614 int apic;
615 struct IO_APIC_route_entry **ioapic_entries;
617 ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
618 GFP_ATOMIC);
619 if (!ioapic_entries)
620 return 0;
622 for (apic = 0; apic < nr_ioapics; apic++) {
623 ioapic_entries[apic] =
624 kzalloc(sizeof(struct IO_APIC_route_entry) *
625 nr_ioapic_registers[apic], GFP_ATOMIC);
626 if (!ioapic_entries[apic])
627 goto nomem;
630 return ioapic_entries;
632 nomem:
633 while (--apic >= 0)
634 kfree(ioapic_entries[apic]);
635 kfree(ioapic_entries);
637 return 0;
641 * Saves all the IO-APIC RTE's
643 int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
645 int apic, pin;
647 if (!ioapic_entries)
648 return -ENOMEM;
650 for (apic = 0; apic < nr_ioapics; apic++) {
651 if (!ioapic_entries[apic])
652 return -ENOMEM;
654 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
655 ioapic_entries[apic][pin] =
656 ioapic_read_entry(apic, pin);
659 return 0;
663 * Mask all IO APIC entries.
665 void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
667 int apic, pin;
669 if (!ioapic_entries)
670 return;
672 for (apic = 0; apic < nr_ioapics; apic++) {
673 if (!ioapic_entries[apic])
674 break;
676 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
677 struct IO_APIC_route_entry entry;
679 entry = ioapic_entries[apic][pin];
680 if (!entry.mask) {
681 entry.mask = 1;
682 ioapic_write_entry(apic, pin, entry);
689 * Restore IO APIC entries which was saved in ioapic_entries.
691 int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
693 int apic, pin;
695 if (!ioapic_entries)
696 return -ENOMEM;
698 for (apic = 0; apic < nr_ioapics; apic++) {
699 if (!ioapic_entries[apic])
700 return -ENOMEM;
702 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
703 ioapic_write_entry(apic, pin,
704 ioapic_entries[apic][pin]);
706 return 0;
709 void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
711 int apic;
713 for (apic = 0; apic < nr_ioapics; apic++)
714 kfree(ioapic_entries[apic]);
716 kfree(ioapic_entries);
720 * Find the IRQ entry number of a certain pin.
722 static int find_irq_entry(int apic, int pin, int type)
724 int i;
726 for (i = 0; i < mp_irq_entries; i++)
727 if (mp_irqs[i].irqtype == type &&
728 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
729 mp_irqs[i].dstapic == MP_APIC_ALL) &&
730 mp_irqs[i].dstirq == pin)
731 return i;
733 return -1;
737 * Find the pin to which IRQ[irq] (ISA) is connected
739 static int __init find_isa_irq_pin(int irq, int type)
741 int i;
743 for (i = 0; i < mp_irq_entries; i++) {
744 int lbus = mp_irqs[i].srcbus;
746 if (test_bit(lbus, mp_bus_not_pci) &&
747 (mp_irqs[i].irqtype == type) &&
748 (mp_irqs[i].srcbusirq == irq))
750 return mp_irqs[i].dstirq;
752 return -1;
755 static int __init find_isa_irq_apic(int irq, int type)
757 int i;
759 for (i = 0; i < mp_irq_entries; i++) {
760 int lbus = mp_irqs[i].srcbus;
762 if (test_bit(lbus, mp_bus_not_pci) &&
763 (mp_irqs[i].irqtype == type) &&
764 (mp_irqs[i].srcbusirq == irq))
765 break;
767 if (i < mp_irq_entries) {
768 int apic;
769 for(apic = 0; apic < nr_ioapics; apic++) {
770 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
771 return apic;
775 return -1;
778 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
780 * EISA Edge/Level control register, ELCR
782 static int EISA_ELCR(unsigned int irq)
784 if (irq < legacy_pic->nr_legacy_irqs) {
785 unsigned int port = 0x4d0 + (irq >> 3);
786 return (inb(port) >> (irq & 7)) & 1;
788 apic_printk(APIC_VERBOSE, KERN_INFO
789 "Broken MPtable reports ISA irq %d\n", irq);
790 return 0;
793 #endif
795 /* ISA interrupts are always polarity zero edge triggered,
796 * when listed as conforming in the MP table. */
798 #define default_ISA_trigger(idx) (0)
799 #define default_ISA_polarity(idx) (0)
801 /* EISA interrupts are always polarity zero and can be edge or level
802 * trigger depending on the ELCR value. If an interrupt is listed as
803 * EISA conforming in the MP table, that means its trigger type must
804 * be read in from the ELCR */
806 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
807 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
809 /* PCI interrupts are always polarity one level triggered,
810 * when listed as conforming in the MP table. */
812 #define default_PCI_trigger(idx) (1)
813 #define default_PCI_polarity(idx) (1)
815 /* MCA interrupts are always polarity zero level triggered,
816 * when listed as conforming in the MP table. */
818 #define default_MCA_trigger(idx) (1)
819 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
821 static int MPBIOS_polarity(int idx)
823 int bus = mp_irqs[idx].srcbus;
824 int polarity;
827 * Determine IRQ line polarity (high active or low active):
829 switch (mp_irqs[idx].irqflag & 3)
831 case 0: /* conforms, ie. bus-type dependent polarity */
832 if (test_bit(bus, mp_bus_not_pci))
833 polarity = default_ISA_polarity(idx);
834 else
835 polarity = default_PCI_polarity(idx);
836 break;
837 case 1: /* high active */
839 polarity = 0;
840 break;
842 case 2: /* reserved */
844 printk(KERN_WARNING "broken BIOS!!\n");
845 polarity = 1;
846 break;
848 case 3: /* low active */
850 polarity = 1;
851 break;
853 default: /* invalid */
855 printk(KERN_WARNING "broken BIOS!!\n");
856 polarity = 1;
857 break;
860 return polarity;
863 static int MPBIOS_trigger(int idx)
865 int bus = mp_irqs[idx].srcbus;
866 int trigger;
869 * Determine IRQ trigger mode (edge or level sensitive):
871 switch ((mp_irqs[idx].irqflag>>2) & 3)
873 case 0: /* conforms, ie. bus-type dependent */
874 if (test_bit(bus, mp_bus_not_pci))
875 trigger = default_ISA_trigger(idx);
876 else
877 trigger = default_PCI_trigger(idx);
878 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
879 switch (mp_bus_id_to_type[bus]) {
880 case MP_BUS_ISA: /* ISA pin */
882 /* set before the switch */
883 break;
885 case MP_BUS_EISA: /* EISA pin */
887 trigger = default_EISA_trigger(idx);
888 break;
890 case MP_BUS_PCI: /* PCI pin */
892 /* set before the switch */
893 break;
895 case MP_BUS_MCA: /* MCA pin */
897 trigger = default_MCA_trigger(idx);
898 break;
900 default:
902 printk(KERN_WARNING "broken BIOS!!\n");
903 trigger = 1;
904 break;
907 #endif
908 break;
909 case 1: /* edge */
911 trigger = 0;
912 break;
914 case 2: /* reserved */
916 printk(KERN_WARNING "broken BIOS!!\n");
917 trigger = 1;
918 break;
920 case 3: /* level */
922 trigger = 1;
923 break;
925 default: /* invalid */
927 printk(KERN_WARNING "broken BIOS!!\n");
928 trigger = 0;
929 break;
932 return trigger;
935 static inline int irq_polarity(int idx)
937 return MPBIOS_polarity(idx);
940 static inline int irq_trigger(int idx)
942 return MPBIOS_trigger(idx);
945 static int pin_2_irq(int idx, int apic, int pin)
947 int irq;
948 int bus = mp_irqs[idx].srcbus;
951 * Debugging check, we are in big trouble if this message pops up!
953 if (mp_irqs[idx].dstirq != pin)
954 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
956 if (test_bit(bus, mp_bus_not_pci)) {
957 irq = mp_irqs[idx].srcbusirq;
958 } else {
959 u32 gsi = mp_gsi_routing[apic].gsi_base + pin;
961 if (gsi >= NR_IRQS_LEGACY)
962 irq = gsi;
963 else
964 irq = gsi_top + gsi;
967 #ifdef CONFIG_X86_32
969 * PCI IRQ command line redirection. Yes, limits are hardcoded.
971 if ((pin >= 16) && (pin <= 23)) {
972 if (pirq_entries[pin-16] != -1) {
973 if (!pirq_entries[pin-16]) {
974 apic_printk(APIC_VERBOSE, KERN_DEBUG
975 "disabling PIRQ%d\n", pin-16);
976 } else {
977 irq = pirq_entries[pin-16];
978 apic_printk(APIC_VERBOSE, KERN_DEBUG
979 "using PIRQ%d -> IRQ %d\n",
980 pin-16, irq);
984 #endif
986 return irq;
990 * Find a specific PCI IRQ entry.
991 * Not an __init, possibly needed by modules
993 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
994 struct io_apic_irq_attr *irq_attr)
996 int apic, i, best_guess = -1;
998 apic_printk(APIC_DEBUG,
999 "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1000 bus, slot, pin);
1001 if (test_bit(bus, mp_bus_not_pci)) {
1002 apic_printk(APIC_VERBOSE,
1003 "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1004 return -1;
1006 for (i = 0; i < mp_irq_entries; i++) {
1007 int lbus = mp_irqs[i].srcbus;
1009 for (apic = 0; apic < nr_ioapics; apic++)
1010 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
1011 mp_irqs[i].dstapic == MP_APIC_ALL)
1012 break;
1014 if (!test_bit(lbus, mp_bus_not_pci) &&
1015 !mp_irqs[i].irqtype &&
1016 (bus == lbus) &&
1017 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
1018 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
1020 if (!(apic || IO_APIC_IRQ(irq)))
1021 continue;
1023 if (pin == (mp_irqs[i].srcbusirq & 3)) {
1024 set_io_apic_irq_attr(irq_attr, apic,
1025 mp_irqs[i].dstirq,
1026 irq_trigger(i),
1027 irq_polarity(i));
1028 return irq;
1031 * Use the first all-but-pin matching entry as a
1032 * best-guess fuzzy result for broken mptables.
1034 if (best_guess < 0) {
1035 set_io_apic_irq_attr(irq_attr, apic,
1036 mp_irqs[i].dstirq,
1037 irq_trigger(i),
1038 irq_polarity(i));
1039 best_guess = irq;
1043 return best_guess;
1045 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1047 void lock_vector_lock(void)
1049 /* Used to the online set of cpus does not change
1050 * during assign_irq_vector.
1052 raw_spin_lock(&vector_lock);
1055 void unlock_vector_lock(void)
1057 raw_spin_unlock(&vector_lock);
1060 static int
1061 __assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1064 * NOTE! The local APIC isn't very good at handling
1065 * multiple interrupts at the same interrupt level.
1066 * As the interrupt level is determined by taking the
1067 * vector number and shifting that right by 4, we
1068 * want to spread these out a bit so that they don't
1069 * all fall in the same interrupt level.
1071 * Also, we've got to be careful not to trash gate
1072 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1074 static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1075 static int current_offset = VECTOR_OFFSET_START % 8;
1076 unsigned int old_vector;
1077 int cpu, err;
1078 cpumask_var_t tmp_mask;
1080 if (cfg->move_in_progress)
1081 return -EBUSY;
1083 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1084 return -ENOMEM;
1086 old_vector = cfg->vector;
1087 if (old_vector) {
1088 cpumask_and(tmp_mask, mask, cpu_online_mask);
1089 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1090 if (!cpumask_empty(tmp_mask)) {
1091 free_cpumask_var(tmp_mask);
1092 return 0;
1096 /* Only try and allocate irqs on cpus that are present */
1097 err = -ENOSPC;
1098 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1099 int new_cpu;
1100 int vector, offset;
1102 apic->vector_allocation_domain(cpu, tmp_mask);
1104 vector = current_vector;
1105 offset = current_offset;
1106 next:
1107 vector += 8;
1108 if (vector >= first_system_vector) {
1109 /* If out of vectors on large boxen, must share them. */
1110 offset = (offset + 1) % 8;
1111 vector = FIRST_EXTERNAL_VECTOR + offset;
1113 if (unlikely(current_vector == vector))
1114 continue;
1116 if (test_bit(vector, used_vectors))
1117 goto next;
1119 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1120 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1121 goto next;
1122 /* Found one! */
1123 current_vector = vector;
1124 current_offset = offset;
1125 if (old_vector) {
1126 cfg->move_in_progress = 1;
1127 cpumask_copy(cfg->old_domain, cfg->domain);
1129 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1130 per_cpu(vector_irq, new_cpu)[vector] = irq;
1131 cfg->vector = vector;
1132 cpumask_copy(cfg->domain, tmp_mask);
1133 err = 0;
1134 break;
1136 free_cpumask_var(tmp_mask);
1137 return err;
1140 int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1142 int err;
1143 unsigned long flags;
1145 raw_spin_lock_irqsave(&vector_lock, flags);
1146 err = __assign_irq_vector(irq, cfg, mask);
1147 raw_spin_unlock_irqrestore(&vector_lock, flags);
1148 return err;
1151 static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1153 int cpu, vector;
1155 BUG_ON(!cfg->vector);
1157 vector = cfg->vector;
1158 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1159 per_cpu(vector_irq, cpu)[vector] = -1;
1161 cfg->vector = 0;
1162 cpumask_clear(cfg->domain);
1164 if (likely(!cfg->move_in_progress))
1165 return;
1166 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1167 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1168 vector++) {
1169 if (per_cpu(vector_irq, cpu)[vector] != irq)
1170 continue;
1171 per_cpu(vector_irq, cpu)[vector] = -1;
1172 break;
1175 cfg->move_in_progress = 0;
1178 void __setup_vector_irq(int cpu)
1180 /* Initialize vector_irq on a new cpu */
1181 int irq, vector;
1182 struct irq_cfg *cfg;
1185 * vector_lock will make sure that we don't run into irq vector
1186 * assignments that might be happening on another cpu in parallel,
1187 * while we setup our initial vector to irq mappings.
1189 raw_spin_lock(&vector_lock);
1190 /* Mark the inuse vectors */
1191 for_each_active_irq(irq) {
1192 cfg = get_irq_chip_data(irq);
1193 if (!cfg)
1194 continue;
1196 * If it is a legacy IRQ handled by the legacy PIC, this cpu
1197 * will be part of the irq_cfg's domain.
1199 if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1200 cpumask_set_cpu(cpu, cfg->domain);
1202 if (!cpumask_test_cpu(cpu, cfg->domain))
1203 continue;
1204 vector = cfg->vector;
1205 per_cpu(vector_irq, cpu)[vector] = irq;
1207 /* Mark the free vectors */
1208 for (vector = 0; vector < NR_VECTORS; ++vector) {
1209 irq = per_cpu(vector_irq, cpu)[vector];
1210 if (irq < 0)
1211 continue;
1213 cfg = irq_cfg(irq);
1214 if (!cpumask_test_cpu(cpu, cfg->domain))
1215 per_cpu(vector_irq, cpu)[vector] = -1;
1217 raw_spin_unlock(&vector_lock);
1220 static struct irq_chip ioapic_chip;
1221 static struct irq_chip ir_ioapic_chip;
1223 #define IOAPIC_AUTO -1
1224 #define IOAPIC_EDGE 0
1225 #define IOAPIC_LEVEL 1
1227 #ifdef CONFIG_X86_32
1228 static inline int IO_APIC_irq_trigger(int irq)
1230 int apic, idx, pin;
1232 for (apic = 0; apic < nr_ioapics; apic++) {
1233 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1234 idx = find_irq_entry(apic, pin, mp_INT);
1235 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1236 return irq_trigger(idx);
1240 * nonexistent IRQs are edge default
1242 return 0;
1244 #else
1245 static inline int IO_APIC_irq_trigger(int irq)
1247 return 1;
1249 #endif
1251 static void ioapic_register_intr(unsigned int irq, unsigned long trigger)
1254 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1255 trigger == IOAPIC_LEVEL)
1256 irq_set_status_flags(irq, IRQ_LEVEL);
1257 else
1258 irq_clear_status_flags(irq, IRQ_LEVEL);
1260 if (irq_remapped(get_irq_chip_data(irq))) {
1261 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
1262 if (trigger)
1263 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1264 handle_fasteoi_irq,
1265 "fasteoi");
1266 else
1267 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1268 handle_edge_irq, "edge");
1269 return;
1272 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1273 trigger == IOAPIC_LEVEL)
1274 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1275 handle_fasteoi_irq,
1276 "fasteoi");
1277 else
1278 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1279 handle_edge_irq, "edge");
1282 static int setup_ioapic_entry(int apic_id, int irq,
1283 struct IO_APIC_route_entry *entry,
1284 unsigned int destination, int trigger,
1285 int polarity, int vector, int pin)
1288 * add it to the IO-APIC irq-routing table:
1290 memset(entry,0,sizeof(*entry));
1292 if (intr_remapping_enabled) {
1293 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1294 struct irte irte;
1295 struct IR_IO_APIC_route_entry *ir_entry =
1296 (struct IR_IO_APIC_route_entry *) entry;
1297 int index;
1299 if (!iommu)
1300 panic("No mapping iommu for ioapic %d\n", apic_id);
1302 index = alloc_irte(iommu, irq, 1);
1303 if (index < 0)
1304 panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1306 prepare_irte(&irte, vector, destination);
1308 /* Set source-id of interrupt request */
1309 set_ioapic_sid(&irte, apic_id);
1311 modify_irte(irq, &irte);
1313 ir_entry->index2 = (index >> 15) & 0x1;
1314 ir_entry->zero = 0;
1315 ir_entry->format = 1;
1316 ir_entry->index = (index & 0x7fff);
1318 * IO-APIC RTE will be configured with virtual vector.
1319 * irq handler will do the explicit EOI to the io-apic.
1321 ir_entry->vector = pin;
1322 } else {
1323 entry->delivery_mode = apic->irq_delivery_mode;
1324 entry->dest_mode = apic->irq_dest_mode;
1325 entry->dest = destination;
1326 entry->vector = vector;
1329 entry->mask = 0; /* enable IRQ */
1330 entry->trigger = trigger;
1331 entry->polarity = polarity;
1333 /* Mask level triggered irqs.
1334 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1336 if (trigger)
1337 entry->mask = 1;
1338 return 0;
1341 static void setup_ioapic_irq(int apic_id, int pin, unsigned int irq,
1342 struct irq_cfg *cfg, int trigger, int polarity)
1344 struct IO_APIC_route_entry entry;
1345 unsigned int dest;
1347 if (!IO_APIC_IRQ(irq))
1348 return;
1350 * For legacy irqs, cfg->domain starts with cpu 0 for legacy
1351 * controllers like 8259. Now that IO-APIC can handle this irq, update
1352 * the cfg->domain.
1354 if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1355 apic->vector_allocation_domain(0, cfg->domain);
1357 if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1358 return;
1360 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1362 apic_printk(APIC_VERBOSE,KERN_DEBUG
1363 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1364 "IRQ %d Mode:%i Active:%i)\n",
1365 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1366 irq, trigger, polarity);
1369 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1370 dest, trigger, polarity, cfg->vector, pin)) {
1371 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1372 mp_ioapics[apic_id].apicid, pin);
1373 __clear_irq_vector(irq, cfg);
1374 return;
1377 ioapic_register_intr(irq, trigger);
1378 if (irq < legacy_pic->nr_legacy_irqs)
1379 legacy_pic->mask(irq);
1381 ioapic_write_entry(apic_id, pin, entry);
1384 static struct {
1385 DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1386 } mp_ioapic_routing[MAX_IO_APICS];
1388 static void __init setup_IO_APIC_irqs(void)
1390 int apic_id, pin, idx, irq, notcon = 0;
1391 int node = cpu_to_node(0);
1392 struct irq_cfg *cfg;
1394 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1396 for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
1397 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1398 idx = find_irq_entry(apic_id, pin, mp_INT);
1399 if (idx == -1) {
1400 if (!notcon) {
1401 notcon = 1;
1402 apic_printk(APIC_VERBOSE,
1403 KERN_DEBUG " %d-%d",
1404 mp_ioapics[apic_id].apicid, pin);
1405 } else
1406 apic_printk(APIC_VERBOSE, " %d-%d",
1407 mp_ioapics[apic_id].apicid, pin);
1408 continue;
1410 if (notcon) {
1411 apic_printk(APIC_VERBOSE,
1412 " (apicid-pin) not connected\n");
1413 notcon = 0;
1416 irq = pin_2_irq(idx, apic_id, pin);
1418 if ((apic_id > 0) && (irq > 16))
1419 continue;
1422 * Skip the timer IRQ if there's a quirk handler
1423 * installed and if it returns 1:
1425 if (apic->multi_timer_check &&
1426 apic->multi_timer_check(apic_id, irq))
1427 continue;
1429 cfg = alloc_irq_and_cfg_at(irq, node);
1430 if (!cfg)
1431 continue;
1433 add_pin_to_irq_node(cfg, node, apic_id, pin);
1435 * don't mark it in pin_programmed, so later acpi could
1436 * set it correctly when irq < 16
1438 setup_ioapic_irq(apic_id, pin, irq, cfg, irq_trigger(idx),
1439 irq_polarity(idx));
1442 if (notcon)
1443 apic_printk(APIC_VERBOSE,
1444 " (apicid-pin) not connected\n");
1448 * for the gsit that is not in first ioapic
1449 * but could not use acpi_register_gsi()
1450 * like some special sci in IBM x3330
1452 void setup_IO_APIC_irq_extra(u32 gsi)
1454 int apic_id = 0, pin, idx, irq, node = cpu_to_node(0);
1455 struct irq_cfg *cfg;
1458 * Convert 'gsi' to 'ioapic.pin'.
1460 apic_id = mp_find_ioapic(gsi);
1461 if (apic_id < 0)
1462 return;
1464 pin = mp_find_ioapic_pin(apic_id, gsi);
1465 idx = find_irq_entry(apic_id, pin, mp_INT);
1466 if (idx == -1)
1467 return;
1469 irq = pin_2_irq(idx, apic_id, pin);
1471 /* Only handle the non legacy irqs on secondary ioapics */
1472 if (apic_id == 0 || irq < NR_IRQS_LEGACY)
1473 return;
1475 cfg = alloc_irq_and_cfg_at(irq, node);
1476 if (!cfg)
1477 return;
1479 add_pin_to_irq_node(cfg, node, apic_id, pin);
1481 if (test_bit(pin, mp_ioapic_routing[apic_id].pin_programmed)) {
1482 pr_debug("Pin %d-%d already programmed\n",
1483 mp_ioapics[apic_id].apicid, pin);
1484 return;
1486 set_bit(pin, mp_ioapic_routing[apic_id].pin_programmed);
1488 setup_ioapic_irq(apic_id, pin, irq, cfg,
1489 irq_trigger(idx), irq_polarity(idx));
1493 * Set up the timer pin, possibly with the 8259A-master behind.
1495 static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1496 int vector)
1498 struct IO_APIC_route_entry entry;
1500 if (intr_remapping_enabled)
1501 return;
1503 memset(&entry, 0, sizeof(entry));
1506 * We use logical delivery to get the timer IRQ
1507 * to the first CPU.
1509 entry.dest_mode = apic->irq_dest_mode;
1510 entry.mask = 0; /* don't mask IRQ for edge */
1511 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1512 entry.delivery_mode = apic->irq_delivery_mode;
1513 entry.polarity = 0;
1514 entry.trigger = 0;
1515 entry.vector = vector;
1518 * The timer IRQ doesn't have to know that behind the
1519 * scene we may have a 8259A-master in AEOI mode ...
1521 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1524 * Add it to the IO-APIC irq-routing table:
1526 ioapic_write_entry(apic_id, pin, entry);
1530 __apicdebuginit(void) print_IO_APIC(void)
1532 int apic, i;
1533 union IO_APIC_reg_00 reg_00;
1534 union IO_APIC_reg_01 reg_01;
1535 union IO_APIC_reg_02 reg_02;
1536 union IO_APIC_reg_03 reg_03;
1537 unsigned long flags;
1538 struct irq_cfg *cfg;
1539 unsigned int irq;
1541 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1542 for (i = 0; i < nr_ioapics; i++)
1543 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1544 mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1547 * We are a bit conservative about what we expect. We have to
1548 * know about every hardware change ASAP.
1550 printk(KERN_INFO "testing the IO APIC.......................\n");
1552 for (apic = 0; apic < nr_ioapics; apic++) {
1554 raw_spin_lock_irqsave(&ioapic_lock, flags);
1555 reg_00.raw = io_apic_read(apic, 0);
1556 reg_01.raw = io_apic_read(apic, 1);
1557 if (reg_01.bits.version >= 0x10)
1558 reg_02.raw = io_apic_read(apic, 2);
1559 if (reg_01.bits.version >= 0x20)
1560 reg_03.raw = io_apic_read(apic, 3);
1561 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1563 printk("\n");
1564 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1565 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1566 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1567 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1568 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1570 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1571 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1573 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1574 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1577 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1578 * but the value of reg_02 is read as the previous read register
1579 * value, so ignore it if reg_02 == reg_01.
1581 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1582 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1583 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1587 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1588 * or reg_03, but the value of reg_0[23] is read as the previous read
1589 * register value, so ignore it if reg_03 == reg_0[12].
1591 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1592 reg_03.raw != reg_01.raw) {
1593 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1594 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1597 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1599 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1600 " Stat Dmod Deli Vect:\n");
1602 for (i = 0; i <= reg_01.bits.entries; i++) {
1603 struct IO_APIC_route_entry entry;
1605 entry = ioapic_read_entry(apic, i);
1607 printk(KERN_DEBUG " %02x %03X ",
1609 entry.dest
1612 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1613 entry.mask,
1614 entry.trigger,
1615 entry.irr,
1616 entry.polarity,
1617 entry.delivery_status,
1618 entry.dest_mode,
1619 entry.delivery_mode,
1620 entry.vector
1624 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1625 for_each_active_irq(irq) {
1626 struct irq_pin_list *entry;
1628 cfg = get_irq_chip_data(irq);
1629 if (!cfg)
1630 continue;
1631 entry = cfg->irq_2_pin;
1632 if (!entry)
1633 continue;
1634 printk(KERN_DEBUG "IRQ%d ", irq);
1635 for_each_irq_pin(entry, cfg->irq_2_pin)
1636 printk("-> %d:%d", entry->apic, entry->pin);
1637 printk("\n");
1640 printk(KERN_INFO ".................................... done.\n");
1642 return;
1645 __apicdebuginit(void) print_APIC_field(int base)
1647 int i;
1649 printk(KERN_DEBUG);
1651 for (i = 0; i < 8; i++)
1652 printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1654 printk(KERN_CONT "\n");
1657 __apicdebuginit(void) print_local_APIC(void *dummy)
1659 unsigned int i, v, ver, maxlvt;
1660 u64 icr;
1662 printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1663 smp_processor_id(), hard_smp_processor_id());
1664 v = apic_read(APIC_ID);
1665 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1666 v = apic_read(APIC_LVR);
1667 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1668 ver = GET_APIC_VERSION(v);
1669 maxlvt = lapic_get_maxlvt();
1671 v = apic_read(APIC_TASKPRI);
1672 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1674 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1675 if (!APIC_XAPIC(ver)) {
1676 v = apic_read(APIC_ARBPRI);
1677 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1678 v & APIC_ARBPRI_MASK);
1680 v = apic_read(APIC_PROCPRI);
1681 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1685 * Remote read supported only in the 82489DX and local APIC for
1686 * Pentium processors.
1688 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1689 v = apic_read(APIC_RRR);
1690 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1693 v = apic_read(APIC_LDR);
1694 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1695 if (!x2apic_enabled()) {
1696 v = apic_read(APIC_DFR);
1697 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1699 v = apic_read(APIC_SPIV);
1700 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1702 printk(KERN_DEBUG "... APIC ISR field:\n");
1703 print_APIC_field(APIC_ISR);
1704 printk(KERN_DEBUG "... APIC TMR field:\n");
1705 print_APIC_field(APIC_TMR);
1706 printk(KERN_DEBUG "... APIC IRR field:\n");
1707 print_APIC_field(APIC_IRR);
1709 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1710 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1711 apic_write(APIC_ESR, 0);
1713 v = apic_read(APIC_ESR);
1714 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1717 icr = apic_icr_read();
1718 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1719 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1721 v = apic_read(APIC_LVTT);
1722 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1724 if (maxlvt > 3) { /* PC is LVT#4. */
1725 v = apic_read(APIC_LVTPC);
1726 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1728 v = apic_read(APIC_LVT0);
1729 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1730 v = apic_read(APIC_LVT1);
1731 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1733 if (maxlvt > 2) { /* ERR is LVT#3. */
1734 v = apic_read(APIC_LVTERR);
1735 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1738 v = apic_read(APIC_TMICT);
1739 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1740 v = apic_read(APIC_TMCCT);
1741 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1742 v = apic_read(APIC_TDCR);
1743 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1745 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1746 v = apic_read(APIC_EFEAT);
1747 maxlvt = (v >> 16) & 0xff;
1748 printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1749 v = apic_read(APIC_ECTRL);
1750 printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1751 for (i = 0; i < maxlvt; i++) {
1752 v = apic_read(APIC_EILVTn(i));
1753 printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1756 printk("\n");
1759 __apicdebuginit(void) print_local_APICs(int maxcpu)
1761 int cpu;
1763 if (!maxcpu)
1764 return;
1766 preempt_disable();
1767 for_each_online_cpu(cpu) {
1768 if (cpu >= maxcpu)
1769 break;
1770 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1772 preempt_enable();
1775 __apicdebuginit(void) print_PIC(void)
1777 unsigned int v;
1778 unsigned long flags;
1780 if (!legacy_pic->nr_legacy_irqs)
1781 return;
1783 printk(KERN_DEBUG "\nprinting PIC contents\n");
1785 raw_spin_lock_irqsave(&i8259A_lock, flags);
1787 v = inb(0xa1) << 8 | inb(0x21);
1788 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1790 v = inb(0xa0) << 8 | inb(0x20);
1791 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1793 outb(0x0b,0xa0);
1794 outb(0x0b,0x20);
1795 v = inb(0xa0) << 8 | inb(0x20);
1796 outb(0x0a,0xa0);
1797 outb(0x0a,0x20);
1799 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1801 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1803 v = inb(0x4d1) << 8 | inb(0x4d0);
1804 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1807 static int __initdata show_lapic = 1;
1808 static __init int setup_show_lapic(char *arg)
1810 int num = -1;
1812 if (strcmp(arg, "all") == 0) {
1813 show_lapic = CONFIG_NR_CPUS;
1814 } else {
1815 get_option(&arg, &num);
1816 if (num >= 0)
1817 show_lapic = num;
1820 return 1;
1822 __setup("show_lapic=", setup_show_lapic);
1824 __apicdebuginit(int) print_ICs(void)
1826 if (apic_verbosity == APIC_QUIET)
1827 return 0;
1829 print_PIC();
1831 /* don't print out if apic is not there */
1832 if (!cpu_has_apic && !apic_from_smp_config())
1833 return 0;
1835 print_local_APICs(show_lapic);
1836 print_IO_APIC();
1838 return 0;
1841 fs_initcall(print_ICs);
1844 /* Where if anywhere is the i8259 connect in external int mode */
1845 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1847 void __init enable_IO_APIC(void)
1849 int i8259_apic, i8259_pin;
1850 int apic;
1852 if (!legacy_pic->nr_legacy_irqs)
1853 return;
1855 for(apic = 0; apic < nr_ioapics; apic++) {
1856 int pin;
1857 /* See if any of the pins is in ExtINT mode */
1858 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1859 struct IO_APIC_route_entry entry;
1860 entry = ioapic_read_entry(apic, pin);
1862 /* If the interrupt line is enabled and in ExtInt mode
1863 * I have found the pin where the i8259 is connected.
1865 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1866 ioapic_i8259.apic = apic;
1867 ioapic_i8259.pin = pin;
1868 goto found_i8259;
1872 found_i8259:
1873 /* Look to see what if the MP table has reported the ExtINT */
1874 /* If we could not find the appropriate pin by looking at the ioapic
1875 * the i8259 probably is not connected the ioapic but give the
1876 * mptable a chance anyway.
1878 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1879 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1880 /* Trust the MP table if nothing is setup in the hardware */
1881 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1882 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1883 ioapic_i8259.pin = i8259_pin;
1884 ioapic_i8259.apic = i8259_apic;
1886 /* Complain if the MP table and the hardware disagree */
1887 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1888 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1890 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1894 * Do not trust the IO-APIC being empty at bootup
1896 clear_IO_APIC();
1900 * Not an __init, needed by the reboot code
1902 void disable_IO_APIC(void)
1905 * Clear the IO-APIC before rebooting:
1907 clear_IO_APIC();
1909 if (!legacy_pic->nr_legacy_irqs)
1910 return;
1913 * If the i8259 is routed through an IOAPIC
1914 * Put that IOAPIC in virtual wire mode
1915 * so legacy interrupts can be delivered.
1917 * With interrupt-remapping, for now we will use virtual wire A mode,
1918 * as virtual wire B is little complex (need to configure both
1919 * IOAPIC RTE aswell as interrupt-remapping table entry).
1920 * As this gets called during crash dump, keep this simple for now.
1922 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1923 struct IO_APIC_route_entry entry;
1925 memset(&entry, 0, sizeof(entry));
1926 entry.mask = 0; /* Enabled */
1927 entry.trigger = 0; /* Edge */
1928 entry.irr = 0;
1929 entry.polarity = 0; /* High */
1930 entry.delivery_status = 0;
1931 entry.dest_mode = 0; /* Physical */
1932 entry.delivery_mode = dest_ExtINT; /* ExtInt */
1933 entry.vector = 0;
1934 entry.dest = read_apic_id();
1937 * Add it to the IO-APIC irq-routing table:
1939 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1943 * Use virtual wire A mode when interrupt remapping is enabled.
1945 if (cpu_has_apic || apic_from_smp_config())
1946 disconnect_bsp_APIC(!intr_remapping_enabled &&
1947 ioapic_i8259.pin != -1);
1950 #ifdef CONFIG_X86_32
1952 * function to set the IO-APIC physical IDs based on the
1953 * values stored in the MPC table.
1955 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
1957 void __init setup_ioapic_ids_from_mpc_nocheck(void)
1959 union IO_APIC_reg_00 reg_00;
1960 physid_mask_t phys_id_present_map;
1961 int apic_id;
1962 int i;
1963 unsigned char old_id;
1964 unsigned long flags;
1967 * This is broken; anything with a real cpu count has to
1968 * circumvent this idiocy regardless.
1970 apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
1973 * Set the IOAPIC ID to the value stored in the MPC table.
1975 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1977 /* Read the register 0 value */
1978 raw_spin_lock_irqsave(&ioapic_lock, flags);
1979 reg_00.raw = io_apic_read(apic_id, 0);
1980 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1982 old_id = mp_ioapics[apic_id].apicid;
1984 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
1985 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
1986 apic_id, mp_ioapics[apic_id].apicid);
1987 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1988 reg_00.bits.ID);
1989 mp_ioapics[apic_id].apicid = reg_00.bits.ID;
1993 * Sanity check, is the ID really free? Every APIC in a
1994 * system must have a unique ID or we get lots of nice
1995 * 'stuck on smp_invalidate_needed IPI wait' messages.
1997 if (apic->check_apicid_used(&phys_id_present_map,
1998 mp_ioapics[apic_id].apicid)) {
1999 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2000 apic_id, mp_ioapics[apic_id].apicid);
2001 for (i = 0; i < get_physical_broadcast(); i++)
2002 if (!physid_isset(i, phys_id_present_map))
2003 break;
2004 if (i >= get_physical_broadcast())
2005 panic("Max APIC ID exceeded!\n");
2006 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2008 physid_set(i, phys_id_present_map);
2009 mp_ioapics[apic_id].apicid = i;
2010 } else {
2011 physid_mask_t tmp;
2012 apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp);
2013 apic_printk(APIC_VERBOSE, "Setting %d in the "
2014 "phys_id_present_map\n",
2015 mp_ioapics[apic_id].apicid);
2016 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2020 * We need to adjust the IRQ routing table
2021 * if the ID changed.
2023 if (old_id != mp_ioapics[apic_id].apicid)
2024 for (i = 0; i < mp_irq_entries; i++)
2025 if (mp_irqs[i].dstapic == old_id)
2026 mp_irqs[i].dstapic
2027 = mp_ioapics[apic_id].apicid;
2030 * Update the ID register according to the right value
2031 * from the MPC table if they are different.
2033 if (mp_ioapics[apic_id].apicid == reg_00.bits.ID)
2034 continue;
2036 apic_printk(APIC_VERBOSE, KERN_INFO
2037 "...changing IO-APIC physical APIC ID to %d ...",
2038 mp_ioapics[apic_id].apicid);
2040 reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2041 raw_spin_lock_irqsave(&ioapic_lock, flags);
2042 io_apic_write(apic_id, 0, reg_00.raw);
2043 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2046 * Sanity check
2048 raw_spin_lock_irqsave(&ioapic_lock, flags);
2049 reg_00.raw = io_apic_read(apic_id, 0);
2050 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2051 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2052 printk("could not set ID!\n");
2053 else
2054 apic_printk(APIC_VERBOSE, " ok.\n");
2058 void __init setup_ioapic_ids_from_mpc(void)
2061 if (acpi_ioapic)
2062 return;
2064 * Don't check I/O APIC IDs for xAPIC systems. They have
2065 * no meaning without the serial APIC bus.
2067 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2068 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2069 return;
2070 setup_ioapic_ids_from_mpc_nocheck();
2072 #endif
2074 int no_timer_check __initdata;
2076 static int __init notimercheck(char *s)
2078 no_timer_check = 1;
2079 return 1;
2081 __setup("no_timer_check", notimercheck);
2084 * There is a nasty bug in some older SMP boards, their mptable lies
2085 * about the timer IRQ. We do the following to work around the situation:
2087 * - timer IRQ defaults to IO-APIC IRQ
2088 * - if this function detects that timer IRQs are defunct, then we fall
2089 * back to ISA timer IRQs
2091 static int __init timer_irq_works(void)
2093 unsigned long t1 = jiffies;
2094 unsigned long flags;
2096 if (no_timer_check)
2097 return 1;
2099 local_save_flags(flags);
2100 local_irq_enable();
2101 /* Let ten ticks pass... */
2102 mdelay((10 * 1000) / HZ);
2103 local_irq_restore(flags);
2106 * Expect a few ticks at least, to be sure some possible
2107 * glue logic does not lock up after one or two first
2108 * ticks in a non-ExtINT mode. Also the local APIC
2109 * might have cached one ExtINT interrupt. Finally, at
2110 * least one tick may be lost due to delays.
2113 /* jiffies wrap? */
2114 if (time_after(jiffies, t1 + 4))
2115 return 1;
2116 return 0;
2120 * In the SMP+IOAPIC case it might happen that there are an unspecified
2121 * number of pending IRQ events unhandled. These cases are very rare,
2122 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2123 * better to do it this way as thus we do not have to be aware of
2124 * 'pending' interrupts in the IRQ path, except at this point.
2127 * Edge triggered needs to resend any interrupt
2128 * that was delayed but this is now handled in the device
2129 * independent code.
2133 * Starting up a edge-triggered IO-APIC interrupt is
2134 * nasty - we need to make sure that we get the edge.
2135 * If it is already asserted for some reason, we need
2136 * return 1 to indicate that is was pending.
2138 * This is not complete - we should be able to fake
2139 * an edge even if it isn't on the 8259A...
2142 static unsigned int startup_ioapic_irq(struct irq_data *data)
2144 int was_pending = 0, irq = data->irq;
2145 unsigned long flags;
2147 raw_spin_lock_irqsave(&ioapic_lock, flags);
2148 if (irq < legacy_pic->nr_legacy_irqs) {
2149 legacy_pic->mask(irq);
2150 if (legacy_pic->irq_pending(irq))
2151 was_pending = 1;
2153 __unmask_ioapic(data->chip_data);
2154 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2156 return was_pending;
2159 static int ioapic_retrigger_irq(struct irq_data *data)
2161 struct irq_cfg *cfg = data->chip_data;
2162 unsigned long flags;
2164 raw_spin_lock_irqsave(&vector_lock, flags);
2165 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2166 raw_spin_unlock_irqrestore(&vector_lock, flags);
2168 return 1;
2172 * Level and edge triggered IO-APIC interrupts need different handling,
2173 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2174 * handled with the level-triggered descriptor, but that one has slightly
2175 * more overhead. Level-triggered interrupts cannot be handled with the
2176 * edge-triggered handler, without risking IRQ storms and other ugly
2177 * races.
2180 #ifdef CONFIG_SMP
2181 void send_cleanup_vector(struct irq_cfg *cfg)
2183 cpumask_var_t cleanup_mask;
2185 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2186 unsigned int i;
2187 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2188 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2189 } else {
2190 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2191 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2192 free_cpumask_var(cleanup_mask);
2194 cfg->move_in_progress = 0;
2197 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2199 int apic, pin;
2200 struct irq_pin_list *entry;
2201 u8 vector = cfg->vector;
2203 for_each_irq_pin(entry, cfg->irq_2_pin) {
2204 unsigned int reg;
2206 apic = entry->apic;
2207 pin = entry->pin;
2209 * With interrupt-remapping, destination information comes
2210 * from interrupt-remapping table entry.
2212 if (!irq_remapped(cfg))
2213 io_apic_write(apic, 0x11 + pin*2, dest);
2214 reg = io_apic_read(apic, 0x10 + pin*2);
2215 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2216 reg |= vector;
2217 io_apic_modify(apic, 0x10 + pin*2, reg);
2222 * Either sets data->affinity to a valid value, and returns
2223 * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2224 * leaves data->affinity untouched.
2226 int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2227 unsigned int *dest_id)
2229 struct irq_cfg *cfg = data->chip_data;
2231 if (!cpumask_intersects(mask, cpu_online_mask))
2232 return -1;
2234 if (assign_irq_vector(data->irq, data->chip_data, mask))
2235 return -1;
2237 cpumask_copy(data->affinity, mask);
2239 *dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain);
2240 return 0;
2243 static int
2244 ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2245 bool force)
2247 unsigned int dest, irq = data->irq;
2248 unsigned long flags;
2249 int ret;
2251 raw_spin_lock_irqsave(&ioapic_lock, flags);
2252 ret = __ioapic_set_affinity(data, mask, &dest);
2253 if (!ret) {
2254 /* Only the high 8 bits are valid. */
2255 dest = SET_APIC_LOGICAL_ID(dest);
2256 __target_IO_APIC_irq(irq, dest, data->chip_data);
2258 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2259 return ret;
2262 #ifdef CONFIG_INTR_REMAP
2265 * Migrate the IO-APIC irq in the presence of intr-remapping.
2267 * For both level and edge triggered, irq migration is a simple atomic
2268 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2270 * For level triggered, we eliminate the io-apic RTE modification (with the
2271 * updated vector information), by using a virtual vector (io-apic pin number).
2272 * Real vector that is used for interrupting cpu will be coming from
2273 * the interrupt-remapping table entry.
2275 static int
2276 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2277 bool force)
2279 struct irq_cfg *cfg = data->chip_data;
2280 unsigned int dest, irq = data->irq;
2281 struct irte irte;
2283 if (!cpumask_intersects(mask, cpu_online_mask))
2284 return -EINVAL;
2286 if (get_irte(irq, &irte))
2287 return -EBUSY;
2289 if (assign_irq_vector(irq, cfg, mask))
2290 return -EBUSY;
2292 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2294 irte.vector = cfg->vector;
2295 irte.dest_id = IRTE_DEST(dest);
2298 * Modified the IRTE and flushes the Interrupt entry cache.
2300 modify_irte(irq, &irte);
2302 if (cfg->move_in_progress)
2303 send_cleanup_vector(cfg);
2305 cpumask_copy(data->affinity, mask);
2306 return 0;
2309 #else
2310 static inline int
2311 ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2312 bool force)
2314 return 0;
2316 #endif
2318 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2320 unsigned vector, me;
2322 ack_APIC_irq();
2323 exit_idle();
2324 irq_enter();
2326 me = smp_processor_id();
2327 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2328 unsigned int irq;
2329 unsigned int irr;
2330 struct irq_desc *desc;
2331 struct irq_cfg *cfg;
2332 irq = __this_cpu_read(vector_irq[vector]);
2334 if (irq == -1)
2335 continue;
2337 desc = irq_to_desc(irq);
2338 if (!desc)
2339 continue;
2341 cfg = irq_cfg(irq);
2342 raw_spin_lock(&desc->lock);
2345 * Check if the irq migration is in progress. If so, we
2346 * haven't received the cleanup request yet for this irq.
2348 if (cfg->move_in_progress)
2349 goto unlock;
2351 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2352 goto unlock;
2354 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2356 * Check if the vector that needs to be cleanedup is
2357 * registered at the cpu's IRR. If so, then this is not
2358 * the best time to clean it up. Lets clean it up in the
2359 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2360 * to myself.
2362 if (irr & (1 << (vector % 32))) {
2363 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2364 goto unlock;
2366 __this_cpu_write(vector_irq[vector], -1);
2367 unlock:
2368 raw_spin_unlock(&desc->lock);
2371 irq_exit();
2374 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
2376 unsigned me;
2378 if (likely(!cfg->move_in_progress))
2379 return;
2381 me = smp_processor_id();
2383 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2384 send_cleanup_vector(cfg);
2387 static void irq_complete_move(struct irq_cfg *cfg)
2389 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
2392 void irq_force_complete_move(int irq)
2394 struct irq_cfg *cfg = get_irq_chip_data(irq);
2396 if (!cfg)
2397 return;
2399 __irq_complete_move(cfg, cfg->vector);
2401 #else
2402 static inline void irq_complete_move(struct irq_cfg *cfg) { }
2403 #endif
2405 static void ack_apic_edge(struct irq_data *data)
2407 irq_complete_move(data->chip_data);
2408 move_native_irq(data->irq);
2409 ack_APIC_irq();
2412 atomic_t irq_mis_count;
2415 * IO-APIC versions below 0x20 don't support EOI register.
2416 * For the record, here is the information about various versions:
2417 * 0Xh 82489DX
2418 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2419 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant
2420 * 30h-FFh Reserved
2422 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2423 * version as 0x2. This is an error with documentation and these ICH chips
2424 * use io-apic's of version 0x20.
2426 * For IO-APIC's with EOI register, we use that to do an explicit EOI.
2427 * Otherwise, we simulate the EOI message manually by changing the trigger
2428 * mode to edge and then back to level, with RTE being masked during this.
2430 static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2432 struct irq_pin_list *entry;
2433 unsigned long flags;
2435 raw_spin_lock_irqsave(&ioapic_lock, flags);
2436 for_each_irq_pin(entry, cfg->irq_2_pin) {
2437 if (mp_ioapics[entry->apic].apicver >= 0x20) {
2439 * Intr-remapping uses pin number as the virtual vector
2440 * in the RTE. Actual vector is programmed in
2441 * intr-remapping table entry. Hence for the io-apic
2442 * EOI we use the pin number.
2444 if (irq_remapped(cfg))
2445 io_apic_eoi(entry->apic, entry->pin);
2446 else
2447 io_apic_eoi(entry->apic, cfg->vector);
2448 } else {
2449 __mask_and_edge_IO_APIC_irq(entry);
2450 __unmask_and_level_IO_APIC_irq(entry);
2453 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2456 static void ack_apic_level(struct irq_data *data)
2458 struct irq_cfg *cfg = data->chip_data;
2459 int i, do_unmask_irq = 0, irq = data->irq;
2460 unsigned long v;
2462 irq_complete_move(cfg);
2463 #ifdef CONFIG_GENERIC_PENDING_IRQ
2464 /* If we are moving the irq we need to mask it */
2465 if (unlikely(irq_to_desc(irq)->status & IRQ_MOVE_PENDING)) {
2466 do_unmask_irq = 1;
2467 mask_ioapic(cfg);
2469 #endif
2472 * It appears there is an erratum which affects at least version 0x11
2473 * of I/O APIC (that's the 82093AA and cores integrated into various
2474 * chipsets). Under certain conditions a level-triggered interrupt is
2475 * erroneously delivered as edge-triggered one but the respective IRR
2476 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2477 * message but it will never arrive and further interrupts are blocked
2478 * from the source. The exact reason is so far unknown, but the
2479 * phenomenon was observed when two consecutive interrupt requests
2480 * from a given source get delivered to the same CPU and the source is
2481 * temporarily disabled in between.
2483 * A workaround is to simulate an EOI message manually. We achieve it
2484 * by setting the trigger mode to edge and then to level when the edge
2485 * trigger mode gets detected in the TMR of a local APIC for a
2486 * level-triggered interrupt. We mask the source for the time of the
2487 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2488 * The idea is from Manfred Spraul. --macro
2490 * Also in the case when cpu goes offline, fixup_irqs() will forward
2491 * any unhandled interrupt on the offlined cpu to the new cpu
2492 * destination that is handling the corresponding interrupt. This
2493 * interrupt forwarding is done via IPI's. Hence, in this case also
2494 * level-triggered io-apic interrupt will be seen as an edge
2495 * interrupt in the IRR. And we can't rely on the cpu's EOI
2496 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2497 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2498 * supporting EOI register, we do an explicit EOI to clear the
2499 * remote IRR and on IO-APIC's which don't have an EOI register,
2500 * we use the above logic (mask+edge followed by unmask+level) from
2501 * Manfred Spraul to clear the remote IRR.
2503 i = cfg->vector;
2504 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2507 * We must acknowledge the irq before we move it or the acknowledge will
2508 * not propagate properly.
2510 ack_APIC_irq();
2513 * Tail end of clearing remote IRR bit (either by delivering the EOI
2514 * message via io-apic EOI register write or simulating it using
2515 * mask+edge followed by unnask+level logic) manually when the
2516 * level triggered interrupt is seen as the edge triggered interrupt
2517 * at the cpu.
2519 if (!(v & (1 << (i & 0x1f)))) {
2520 atomic_inc(&irq_mis_count);
2522 eoi_ioapic_irq(irq, cfg);
2525 /* Now we can move and renable the irq */
2526 if (unlikely(do_unmask_irq)) {
2527 /* Only migrate the irq if the ack has been received.
2529 * On rare occasions the broadcast level triggered ack gets
2530 * delayed going to ioapics, and if we reprogram the
2531 * vector while Remote IRR is still set the irq will never
2532 * fire again.
2534 * To prevent this scenario we read the Remote IRR bit
2535 * of the ioapic. This has two effects.
2536 * - On any sane system the read of the ioapic will
2537 * flush writes (and acks) going to the ioapic from
2538 * this cpu.
2539 * - We get to see if the ACK has actually been delivered.
2541 * Based on failed experiments of reprogramming the
2542 * ioapic entry from outside of irq context starting
2543 * with masking the ioapic entry and then polling until
2544 * Remote IRR was clear before reprogramming the
2545 * ioapic I don't trust the Remote IRR bit to be
2546 * completey accurate.
2548 * However there appears to be no other way to plug
2549 * this race, so if the Remote IRR bit is not
2550 * accurate and is causing problems then it is a hardware bug
2551 * and you can go talk to the chipset vendor about it.
2553 if (!io_apic_level_ack_pending(cfg))
2554 move_masked_irq(irq);
2555 unmask_ioapic(cfg);
2559 #ifdef CONFIG_INTR_REMAP
2560 static void ir_ack_apic_edge(struct irq_data *data)
2562 ack_APIC_irq();
2565 static void ir_ack_apic_level(struct irq_data *data)
2567 ack_APIC_irq();
2568 eoi_ioapic_irq(data->irq, data->chip_data);
2570 #endif /* CONFIG_INTR_REMAP */
2572 static struct irq_chip ioapic_chip __read_mostly = {
2573 .name = "IO-APIC",
2574 .irq_startup = startup_ioapic_irq,
2575 .irq_mask = mask_ioapic_irq,
2576 .irq_unmask = unmask_ioapic_irq,
2577 .irq_ack = ack_apic_edge,
2578 .irq_eoi = ack_apic_level,
2579 #ifdef CONFIG_SMP
2580 .irq_set_affinity = ioapic_set_affinity,
2581 #endif
2582 .irq_retrigger = ioapic_retrigger_irq,
2585 static struct irq_chip ir_ioapic_chip __read_mostly = {
2586 .name = "IR-IO-APIC",
2587 .irq_startup = startup_ioapic_irq,
2588 .irq_mask = mask_ioapic_irq,
2589 .irq_unmask = unmask_ioapic_irq,
2590 #ifdef CONFIG_INTR_REMAP
2591 .irq_ack = ir_ack_apic_edge,
2592 .irq_eoi = ir_ack_apic_level,
2593 #ifdef CONFIG_SMP
2594 .irq_set_affinity = ir_ioapic_set_affinity,
2595 #endif
2596 #endif
2597 .irq_retrigger = ioapic_retrigger_irq,
2600 static inline void init_IO_APIC_traps(void)
2602 struct irq_cfg *cfg;
2603 unsigned int irq;
2606 * NOTE! The local APIC isn't very good at handling
2607 * multiple interrupts at the same interrupt level.
2608 * As the interrupt level is determined by taking the
2609 * vector number and shifting that right by 4, we
2610 * want to spread these out a bit so that they don't
2611 * all fall in the same interrupt level.
2613 * Also, we've got to be careful not to trash gate
2614 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2616 for_each_active_irq(irq) {
2617 cfg = get_irq_chip_data(irq);
2618 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2620 * Hmm.. We don't have an entry for this,
2621 * so default to an old-fashioned 8259
2622 * interrupt if we can..
2624 if (irq < legacy_pic->nr_legacy_irqs)
2625 legacy_pic->make_irq(irq);
2626 else
2627 /* Strange. Oh, well.. */
2628 set_irq_chip(irq, &no_irq_chip);
2634 * The local APIC irq-chip implementation:
2637 static void mask_lapic_irq(struct irq_data *data)
2639 unsigned long v;
2641 v = apic_read(APIC_LVT0);
2642 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2645 static void unmask_lapic_irq(struct irq_data *data)
2647 unsigned long v;
2649 v = apic_read(APIC_LVT0);
2650 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2653 static void ack_lapic_irq(struct irq_data *data)
2655 ack_APIC_irq();
2658 static struct irq_chip lapic_chip __read_mostly = {
2659 .name = "local-APIC",
2660 .irq_mask = mask_lapic_irq,
2661 .irq_unmask = unmask_lapic_irq,
2662 .irq_ack = ack_lapic_irq,
2665 static void lapic_register_intr(int irq)
2667 irq_clear_status_flags(irq, IRQ_LEVEL);
2668 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2669 "edge");
2673 * This looks a bit hackish but it's about the only one way of sending
2674 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2675 * not support the ExtINT mode, unfortunately. We need to send these
2676 * cycles as some i82489DX-based boards have glue logic that keeps the
2677 * 8259A interrupt line asserted until INTA. --macro
2679 static inline void __init unlock_ExtINT_logic(void)
2681 int apic, pin, i;
2682 struct IO_APIC_route_entry entry0, entry1;
2683 unsigned char save_control, save_freq_select;
2685 pin = find_isa_irq_pin(8, mp_INT);
2686 if (pin == -1) {
2687 WARN_ON_ONCE(1);
2688 return;
2690 apic = find_isa_irq_apic(8, mp_INT);
2691 if (apic == -1) {
2692 WARN_ON_ONCE(1);
2693 return;
2696 entry0 = ioapic_read_entry(apic, pin);
2697 clear_IO_APIC_pin(apic, pin);
2699 memset(&entry1, 0, sizeof(entry1));
2701 entry1.dest_mode = 0; /* physical delivery */
2702 entry1.mask = 0; /* unmask IRQ now */
2703 entry1.dest = hard_smp_processor_id();
2704 entry1.delivery_mode = dest_ExtINT;
2705 entry1.polarity = entry0.polarity;
2706 entry1.trigger = 0;
2707 entry1.vector = 0;
2709 ioapic_write_entry(apic, pin, entry1);
2711 save_control = CMOS_READ(RTC_CONTROL);
2712 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2713 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2714 RTC_FREQ_SELECT);
2715 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2717 i = 100;
2718 while (i-- > 0) {
2719 mdelay(10);
2720 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2721 i -= 10;
2724 CMOS_WRITE(save_control, RTC_CONTROL);
2725 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2726 clear_IO_APIC_pin(apic, pin);
2728 ioapic_write_entry(apic, pin, entry0);
2731 static int disable_timer_pin_1 __initdata;
2732 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2733 static int __init disable_timer_pin_setup(char *arg)
2735 disable_timer_pin_1 = 1;
2736 return 0;
2738 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2740 int timer_through_8259 __initdata;
2743 * This code may look a bit paranoid, but it's supposed to cooperate with
2744 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2745 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2746 * fanatically on his truly buggy board.
2748 * FIXME: really need to revamp this for all platforms.
2750 static inline void __init check_timer(void)
2752 struct irq_cfg *cfg = get_irq_chip_data(0);
2753 int node = cpu_to_node(0);
2754 int apic1, pin1, apic2, pin2;
2755 unsigned long flags;
2756 int no_pin1 = 0;
2758 local_irq_save(flags);
2761 * get/set the timer IRQ vector:
2763 legacy_pic->mask(0);
2764 assign_irq_vector(0, cfg, apic->target_cpus());
2767 * As IRQ0 is to be enabled in the 8259A, the virtual
2768 * wire has to be disabled in the local APIC. Also
2769 * timer interrupts need to be acknowledged manually in
2770 * the 8259A for the i82489DX when using the NMI
2771 * watchdog as that APIC treats NMIs as level-triggered.
2772 * The AEOI mode will finish them in the 8259A
2773 * automatically.
2775 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2776 legacy_pic->init(1);
2778 pin1 = find_isa_irq_pin(0, mp_INT);
2779 apic1 = find_isa_irq_apic(0, mp_INT);
2780 pin2 = ioapic_i8259.pin;
2781 apic2 = ioapic_i8259.apic;
2783 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2784 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2785 cfg->vector, apic1, pin1, apic2, pin2);
2788 * Some BIOS writers are clueless and report the ExtINTA
2789 * I/O APIC input from the cascaded 8259A as the timer
2790 * interrupt input. So just in case, if only one pin
2791 * was found above, try it both directly and through the
2792 * 8259A.
2794 if (pin1 == -1) {
2795 if (intr_remapping_enabled)
2796 panic("BIOS bug: timer not connected to IO-APIC");
2797 pin1 = pin2;
2798 apic1 = apic2;
2799 no_pin1 = 1;
2800 } else if (pin2 == -1) {
2801 pin2 = pin1;
2802 apic2 = apic1;
2805 if (pin1 != -1) {
2807 * Ok, does IRQ0 through the IOAPIC work?
2809 if (no_pin1) {
2810 add_pin_to_irq_node(cfg, node, apic1, pin1);
2811 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2812 } else {
2813 /* for edge trigger, setup_ioapic_irq already
2814 * leave it unmasked.
2815 * so only need to unmask if it is level-trigger
2816 * do we really have level trigger timer?
2818 int idx;
2819 idx = find_irq_entry(apic1, pin1, mp_INT);
2820 if (idx != -1 && irq_trigger(idx))
2821 unmask_ioapic(cfg);
2823 if (timer_irq_works()) {
2824 if (disable_timer_pin_1 > 0)
2825 clear_IO_APIC_pin(0, pin1);
2826 goto out;
2828 if (intr_remapping_enabled)
2829 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2830 local_irq_disable();
2831 clear_IO_APIC_pin(apic1, pin1);
2832 if (!no_pin1)
2833 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2834 "8254 timer not connected to IO-APIC\n");
2836 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2837 "(IRQ0) through the 8259A ...\n");
2838 apic_printk(APIC_QUIET, KERN_INFO
2839 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2841 * legacy devices should be connected to IO APIC #0
2843 replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2844 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2845 legacy_pic->unmask(0);
2846 if (timer_irq_works()) {
2847 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2848 timer_through_8259 = 1;
2849 goto out;
2852 * Cleanup, just in case ...
2854 local_irq_disable();
2855 legacy_pic->mask(0);
2856 clear_IO_APIC_pin(apic2, pin2);
2857 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2860 apic_printk(APIC_QUIET, KERN_INFO
2861 "...trying to set up timer as Virtual Wire IRQ...\n");
2863 lapic_register_intr(0);
2864 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
2865 legacy_pic->unmask(0);
2867 if (timer_irq_works()) {
2868 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2869 goto out;
2871 local_irq_disable();
2872 legacy_pic->mask(0);
2873 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2874 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2876 apic_printk(APIC_QUIET, KERN_INFO
2877 "...trying to set up timer as ExtINT IRQ...\n");
2879 legacy_pic->init(0);
2880 legacy_pic->make_irq(0);
2881 apic_write(APIC_LVT0, APIC_DM_EXTINT);
2883 unlock_ExtINT_logic();
2885 if (timer_irq_works()) {
2886 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2887 goto out;
2889 local_irq_disable();
2890 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
2891 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
2892 "report. Then try booting with the 'noapic' option.\n");
2893 out:
2894 local_irq_restore(flags);
2898 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2899 * to devices. However there may be an I/O APIC pin available for
2900 * this interrupt regardless. The pin may be left unconnected, but
2901 * typically it will be reused as an ExtINT cascade interrupt for
2902 * the master 8259A. In the MPS case such a pin will normally be
2903 * reported as an ExtINT interrupt in the MP table. With ACPI
2904 * there is no provision for ExtINT interrupts, and in the absence
2905 * of an override it would be treated as an ordinary ISA I/O APIC
2906 * interrupt, that is edge-triggered and unmasked by default. We
2907 * used to do this, but it caused problems on some systems because
2908 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2909 * the same ExtINT cascade interrupt to drive the local APIC of the
2910 * bootstrap processor. Therefore we refrain from routing IRQ2 to
2911 * the I/O APIC in all cases now. No actual device should request
2912 * it anyway. --macro
2914 #define PIC_IRQS (1UL << PIC_CASCADE_IR)
2916 void __init setup_IO_APIC(void)
2920 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
2922 io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
2924 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2926 * Set up IO-APIC IRQ routing.
2928 x86_init.mpparse.setup_ioapic_ids();
2930 sync_Arb_IDs();
2931 setup_IO_APIC_irqs();
2932 init_IO_APIC_traps();
2933 if (legacy_pic->nr_legacy_irqs)
2934 check_timer();
2938 * Called after all the initialization is done. If we didnt find any
2939 * APIC bugs then we can allow the modify fast path
2942 static int __init io_apic_bug_finalize(void)
2944 if (sis_apic_bug == -1)
2945 sis_apic_bug = 0;
2946 return 0;
2949 late_initcall(io_apic_bug_finalize);
2951 struct sysfs_ioapic_data {
2952 struct sys_device dev;
2953 struct IO_APIC_route_entry entry[0];
2955 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
2957 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
2959 struct IO_APIC_route_entry *entry;
2960 struct sysfs_ioapic_data *data;
2961 int i;
2963 data = container_of(dev, struct sysfs_ioapic_data, dev);
2964 entry = data->entry;
2965 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
2966 *entry = ioapic_read_entry(dev->id, i);
2968 return 0;
2971 static int ioapic_resume(struct sys_device *dev)
2973 struct IO_APIC_route_entry *entry;
2974 struct sysfs_ioapic_data *data;
2975 unsigned long flags;
2976 union IO_APIC_reg_00 reg_00;
2977 int i;
2979 data = container_of(dev, struct sysfs_ioapic_data, dev);
2980 entry = data->entry;
2982 raw_spin_lock_irqsave(&ioapic_lock, flags);
2983 reg_00.raw = io_apic_read(dev->id, 0);
2984 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
2985 reg_00.bits.ID = mp_ioapics[dev->id].apicid;
2986 io_apic_write(dev->id, 0, reg_00.raw);
2988 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2989 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
2990 ioapic_write_entry(dev->id, i, entry[i]);
2992 return 0;
2995 static struct sysdev_class ioapic_sysdev_class = {
2996 .name = "ioapic",
2997 .suspend = ioapic_suspend,
2998 .resume = ioapic_resume,
3001 static int __init ioapic_init_sysfs(void)
3003 struct sys_device * dev;
3004 int i, size, error;
3006 error = sysdev_class_register(&ioapic_sysdev_class);
3007 if (error)
3008 return error;
3010 for (i = 0; i < nr_ioapics; i++ ) {
3011 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3012 * sizeof(struct IO_APIC_route_entry);
3013 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3014 if (!mp_ioapic_data[i]) {
3015 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3016 continue;
3018 dev = &mp_ioapic_data[i]->dev;
3019 dev->id = i;
3020 dev->cls = &ioapic_sysdev_class;
3021 error = sysdev_register(dev);
3022 if (error) {
3023 kfree(mp_ioapic_data[i]);
3024 mp_ioapic_data[i] = NULL;
3025 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3026 continue;
3030 return 0;
3033 device_initcall(ioapic_init_sysfs);
3036 * Dynamic irq allocate and deallocation
3038 unsigned int create_irq_nr(unsigned int from, int node)
3040 struct irq_cfg *cfg;
3041 unsigned long flags;
3042 unsigned int ret = 0;
3043 int irq;
3045 if (from < nr_irqs_gsi)
3046 from = nr_irqs_gsi;
3048 irq = alloc_irq_from(from, node);
3049 if (irq < 0)
3050 return 0;
3051 cfg = alloc_irq_cfg(irq, node);
3052 if (!cfg) {
3053 free_irq_at(irq, NULL);
3054 return 0;
3057 raw_spin_lock_irqsave(&vector_lock, flags);
3058 if (!__assign_irq_vector(irq, cfg, apic->target_cpus()))
3059 ret = irq;
3060 raw_spin_unlock_irqrestore(&vector_lock, flags);
3062 if (ret) {
3063 set_irq_chip_data(irq, cfg);
3064 irq_clear_status_flags(irq, IRQ_NOREQUEST);
3065 } else {
3066 free_irq_at(irq, cfg);
3068 return ret;
3071 int create_irq(void)
3073 int node = cpu_to_node(0);
3074 unsigned int irq_want;
3075 int irq;
3077 irq_want = nr_irqs_gsi;
3078 irq = create_irq_nr(irq_want, node);
3080 if (irq == 0)
3081 irq = -1;
3083 return irq;
3086 void destroy_irq(unsigned int irq)
3088 struct irq_cfg *cfg = get_irq_chip_data(irq);
3089 unsigned long flags;
3091 irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE);
3093 if (irq_remapped(cfg))
3094 free_irte(irq);
3095 raw_spin_lock_irqsave(&vector_lock, flags);
3096 __clear_irq_vector(irq, cfg);
3097 raw_spin_unlock_irqrestore(&vector_lock, flags);
3098 free_irq_at(irq, cfg);
3102 * MSI message composition
3104 #ifdef CONFIG_PCI_MSI
3105 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3106 struct msi_msg *msg, u8 hpet_id)
3108 struct irq_cfg *cfg;
3109 int err;
3110 unsigned dest;
3112 if (disable_apic)
3113 return -ENXIO;
3115 cfg = irq_cfg(irq);
3116 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3117 if (err)
3118 return err;
3120 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3122 if (irq_remapped(get_irq_chip_data(irq))) {
3123 struct irte irte;
3124 int ir_index;
3125 u16 sub_handle;
3127 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3128 BUG_ON(ir_index == -1);
3130 prepare_irte(&irte, cfg->vector, dest);
3132 /* Set source-id of interrupt request */
3133 if (pdev)
3134 set_msi_sid(&irte, pdev);
3135 else
3136 set_hpet_sid(&irte, hpet_id);
3138 modify_irte(irq, &irte);
3140 msg->address_hi = MSI_ADDR_BASE_HI;
3141 msg->data = sub_handle;
3142 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3143 MSI_ADDR_IR_SHV |
3144 MSI_ADDR_IR_INDEX1(ir_index) |
3145 MSI_ADDR_IR_INDEX2(ir_index);
3146 } else {
3147 if (x2apic_enabled())
3148 msg->address_hi = MSI_ADDR_BASE_HI |
3149 MSI_ADDR_EXT_DEST_ID(dest);
3150 else
3151 msg->address_hi = MSI_ADDR_BASE_HI;
3153 msg->address_lo =
3154 MSI_ADDR_BASE_LO |
3155 ((apic->irq_dest_mode == 0) ?
3156 MSI_ADDR_DEST_MODE_PHYSICAL:
3157 MSI_ADDR_DEST_MODE_LOGICAL) |
3158 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3159 MSI_ADDR_REDIRECTION_CPU:
3160 MSI_ADDR_REDIRECTION_LOWPRI) |
3161 MSI_ADDR_DEST_ID(dest);
3163 msg->data =
3164 MSI_DATA_TRIGGER_EDGE |
3165 MSI_DATA_LEVEL_ASSERT |
3166 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3167 MSI_DATA_DELIVERY_FIXED:
3168 MSI_DATA_DELIVERY_LOWPRI) |
3169 MSI_DATA_VECTOR(cfg->vector);
3171 return err;
3174 #ifdef CONFIG_SMP
3175 static int
3176 msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3178 struct irq_cfg *cfg = data->chip_data;
3179 struct msi_msg msg;
3180 unsigned int dest;
3182 if (__ioapic_set_affinity(data, mask, &dest))
3183 return -1;
3185 __get_cached_msi_msg(data->msi_desc, &msg);
3187 msg.data &= ~MSI_DATA_VECTOR_MASK;
3188 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3189 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3190 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3192 __write_msi_msg(data->msi_desc, &msg);
3194 return 0;
3196 #ifdef CONFIG_INTR_REMAP
3198 * Migrate the MSI irq to another cpumask. This migration is
3199 * done in the process context using interrupt-remapping hardware.
3201 static int
3202 ir_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3203 bool force)
3205 struct irq_cfg *cfg = data->chip_data;
3206 unsigned int dest, irq = data->irq;
3207 struct irte irte;
3209 if (get_irte(irq, &irte))
3210 return -1;
3212 if (__ioapic_set_affinity(data, mask, &dest))
3213 return -1;
3215 irte.vector = cfg->vector;
3216 irte.dest_id = IRTE_DEST(dest);
3219 * atomically update the IRTE with the new destination and vector.
3221 modify_irte(irq, &irte);
3224 * After this point, all the interrupts will start arriving
3225 * at the new destination. So, time to cleanup the previous
3226 * vector allocation.
3228 if (cfg->move_in_progress)
3229 send_cleanup_vector(cfg);
3231 return 0;
3234 #endif
3235 #endif /* CONFIG_SMP */
3238 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3239 * which implement the MSI or MSI-X Capability Structure.
3241 static struct irq_chip msi_chip = {
3242 .name = "PCI-MSI",
3243 .irq_unmask = unmask_msi_irq,
3244 .irq_mask = mask_msi_irq,
3245 .irq_ack = ack_apic_edge,
3246 #ifdef CONFIG_SMP
3247 .irq_set_affinity = msi_set_affinity,
3248 #endif
3249 .irq_retrigger = ioapic_retrigger_irq,
3252 static struct irq_chip msi_ir_chip = {
3253 .name = "IR-PCI-MSI",
3254 .irq_unmask = unmask_msi_irq,
3255 .irq_mask = mask_msi_irq,
3256 #ifdef CONFIG_INTR_REMAP
3257 .irq_ack = ir_ack_apic_edge,
3258 #ifdef CONFIG_SMP
3259 .irq_set_affinity = ir_msi_set_affinity,
3260 #endif
3261 #endif
3262 .irq_retrigger = ioapic_retrigger_irq,
3266 * Map the PCI dev to the corresponding remapping hardware unit
3267 * and allocate 'nvec' consecutive interrupt-remapping table entries
3268 * in it.
3270 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3272 struct intel_iommu *iommu;
3273 int index;
3275 iommu = map_dev_to_ir(dev);
3276 if (!iommu) {
3277 printk(KERN_ERR
3278 "Unable to map PCI %s to iommu\n", pci_name(dev));
3279 return -ENOENT;
3282 index = alloc_irte(iommu, irq, nvec);
3283 if (index < 0) {
3284 printk(KERN_ERR
3285 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3286 pci_name(dev));
3287 return -ENOSPC;
3289 return index;
3292 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3294 struct msi_msg msg;
3295 int ret;
3297 ret = msi_compose_msg(dev, irq, &msg, -1);
3298 if (ret < 0)
3299 return ret;
3301 set_irq_msi(irq, msidesc);
3302 write_msi_msg(irq, &msg);
3304 if (irq_remapped(get_irq_chip_data(irq))) {
3305 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3306 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3307 } else
3308 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3310 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3312 return 0;
3315 int native_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3317 int node, ret, sub_handle, index = 0;
3318 unsigned int irq, irq_want;
3319 struct msi_desc *msidesc;
3320 struct intel_iommu *iommu = NULL;
3322 /* x86 doesn't support multiple MSI yet */
3323 if (type == PCI_CAP_ID_MSI && nvec > 1)
3324 return 1;
3326 node = dev_to_node(&dev->dev);
3327 irq_want = nr_irqs_gsi;
3328 sub_handle = 0;
3329 list_for_each_entry(msidesc, &dev->msi_list, list) {
3330 irq = create_irq_nr(irq_want, node);
3331 if (irq == 0)
3332 return -1;
3333 irq_want = irq + 1;
3334 if (!intr_remapping_enabled)
3335 goto no_ir;
3337 if (!sub_handle) {
3339 * allocate the consecutive block of IRTE's
3340 * for 'nvec'
3342 index = msi_alloc_irte(dev, irq, nvec);
3343 if (index < 0) {
3344 ret = index;
3345 goto error;
3347 } else {
3348 iommu = map_dev_to_ir(dev);
3349 if (!iommu) {
3350 ret = -ENOENT;
3351 goto error;
3354 * setup the mapping between the irq and the IRTE
3355 * base index, the sub_handle pointing to the
3356 * appropriate interrupt remap table entry.
3358 set_irte_irq(irq, iommu, index, sub_handle);
3360 no_ir:
3361 ret = setup_msi_irq(dev, msidesc, irq);
3362 if (ret < 0)
3363 goto error;
3364 sub_handle++;
3366 return 0;
3368 error:
3369 destroy_irq(irq);
3370 return ret;
3373 void native_teardown_msi_irq(unsigned int irq)
3375 destroy_irq(irq);
3378 #if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3379 #ifdef CONFIG_SMP
3380 static int
3381 dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3382 bool force)
3384 struct irq_cfg *cfg = data->chip_data;
3385 unsigned int dest, irq = data->irq;
3386 struct msi_msg msg;
3388 if (__ioapic_set_affinity(data, mask, &dest))
3389 return -1;
3391 dmar_msi_read(irq, &msg);
3393 msg.data &= ~MSI_DATA_VECTOR_MASK;
3394 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3395 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3396 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3397 msg.address_hi = MSI_ADDR_BASE_HI | MSI_ADDR_EXT_DEST_ID(dest);
3399 dmar_msi_write(irq, &msg);
3401 return 0;
3404 #endif /* CONFIG_SMP */
3406 static struct irq_chip dmar_msi_type = {
3407 .name = "DMAR_MSI",
3408 .irq_unmask = dmar_msi_unmask,
3409 .irq_mask = dmar_msi_mask,
3410 .irq_ack = ack_apic_edge,
3411 #ifdef CONFIG_SMP
3412 .irq_set_affinity = dmar_msi_set_affinity,
3413 #endif
3414 .irq_retrigger = ioapic_retrigger_irq,
3417 int arch_setup_dmar_msi(unsigned int irq)
3419 int ret;
3420 struct msi_msg msg;
3422 ret = msi_compose_msg(NULL, irq, &msg, -1);
3423 if (ret < 0)
3424 return ret;
3425 dmar_msi_write(irq, &msg);
3426 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3427 "edge");
3428 return 0;
3430 #endif
3432 #ifdef CONFIG_HPET_TIMER
3434 #ifdef CONFIG_SMP
3435 static int hpet_msi_set_affinity(struct irq_data *data,
3436 const struct cpumask *mask, bool force)
3438 struct irq_cfg *cfg = data->chip_data;
3439 struct msi_msg msg;
3440 unsigned int dest;
3442 if (__ioapic_set_affinity(data, mask, &dest))
3443 return -1;
3445 hpet_msi_read(data->handler_data, &msg);
3447 msg.data &= ~MSI_DATA_VECTOR_MASK;
3448 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3449 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3450 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3452 hpet_msi_write(data->handler_data, &msg);
3454 return 0;
3457 #endif /* CONFIG_SMP */
3459 static struct irq_chip ir_hpet_msi_type = {
3460 .name = "IR-HPET_MSI",
3461 .irq_unmask = hpet_msi_unmask,
3462 .irq_mask = hpet_msi_mask,
3463 #ifdef CONFIG_INTR_REMAP
3464 .irq_ack = ir_ack_apic_edge,
3465 #ifdef CONFIG_SMP
3466 .irq_set_affinity = ir_msi_set_affinity,
3467 #endif
3468 #endif
3469 .irq_retrigger = ioapic_retrigger_irq,
3472 static struct irq_chip hpet_msi_type = {
3473 .name = "HPET_MSI",
3474 .irq_unmask = hpet_msi_unmask,
3475 .irq_mask = hpet_msi_mask,
3476 .irq_ack = ack_apic_edge,
3477 #ifdef CONFIG_SMP
3478 .irq_set_affinity = hpet_msi_set_affinity,
3479 #endif
3480 .irq_retrigger = ioapic_retrigger_irq,
3483 int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3485 struct msi_msg msg;
3486 int ret;
3488 if (intr_remapping_enabled) {
3489 struct intel_iommu *iommu = map_hpet_to_ir(id);
3490 int index;
3492 if (!iommu)
3493 return -1;
3495 index = alloc_irte(iommu, irq, 1);
3496 if (index < 0)
3497 return -1;
3500 ret = msi_compose_msg(NULL, irq, &msg, id);
3501 if (ret < 0)
3502 return ret;
3504 hpet_msi_write(get_irq_data(irq), &msg);
3505 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3506 if (irq_remapped(get_irq_chip_data(irq)))
3507 set_irq_chip_and_handler_name(irq, &ir_hpet_msi_type,
3508 handle_edge_irq, "edge");
3509 else
3510 set_irq_chip_and_handler_name(irq, &hpet_msi_type,
3511 handle_edge_irq, "edge");
3513 return 0;
3515 #endif
3517 #endif /* CONFIG_PCI_MSI */
3519 * Hypertransport interrupt support
3521 #ifdef CONFIG_HT_IRQ
3523 #ifdef CONFIG_SMP
3525 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3527 struct ht_irq_msg msg;
3528 fetch_ht_irq_msg(irq, &msg);
3530 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3531 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3533 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3534 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3536 write_ht_irq_msg(irq, &msg);
3539 static int
3540 ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3542 struct irq_cfg *cfg = data->chip_data;
3543 unsigned int dest;
3545 if (__ioapic_set_affinity(data, mask, &dest))
3546 return -1;
3548 target_ht_irq(data->irq, dest, cfg->vector);
3549 return 0;
3552 #endif
3554 static struct irq_chip ht_irq_chip = {
3555 .name = "PCI-HT",
3556 .irq_mask = mask_ht_irq,
3557 .irq_unmask = unmask_ht_irq,
3558 .irq_ack = ack_apic_edge,
3559 #ifdef CONFIG_SMP
3560 .irq_set_affinity = ht_set_affinity,
3561 #endif
3562 .irq_retrigger = ioapic_retrigger_irq,
3565 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3567 struct irq_cfg *cfg;
3568 int err;
3570 if (disable_apic)
3571 return -ENXIO;
3573 cfg = irq_cfg(irq);
3574 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3575 if (!err) {
3576 struct ht_irq_msg msg;
3577 unsigned dest;
3579 dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3580 apic->target_cpus());
3582 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3584 msg.address_lo =
3585 HT_IRQ_LOW_BASE |
3586 HT_IRQ_LOW_DEST_ID(dest) |
3587 HT_IRQ_LOW_VECTOR(cfg->vector) |
3588 ((apic->irq_dest_mode == 0) ?
3589 HT_IRQ_LOW_DM_PHYSICAL :
3590 HT_IRQ_LOW_DM_LOGICAL) |
3591 HT_IRQ_LOW_RQEOI_EDGE |
3592 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3593 HT_IRQ_LOW_MT_FIXED :
3594 HT_IRQ_LOW_MT_ARBITRATED) |
3595 HT_IRQ_LOW_IRQ_MASKED;
3597 write_ht_irq_msg(irq, &msg);
3599 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3600 handle_edge_irq, "edge");
3602 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3604 return err;
3606 #endif /* CONFIG_HT_IRQ */
3608 int __init io_apic_get_redir_entries (int ioapic)
3610 union IO_APIC_reg_01 reg_01;
3611 unsigned long flags;
3613 raw_spin_lock_irqsave(&ioapic_lock, flags);
3614 reg_01.raw = io_apic_read(ioapic, 1);
3615 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3617 /* The register returns the maximum index redir index
3618 * supported, which is one less than the total number of redir
3619 * entries.
3621 return reg_01.bits.entries + 1;
3624 static void __init probe_nr_irqs_gsi(void)
3626 int nr;
3628 nr = gsi_top + NR_IRQS_LEGACY;
3629 if (nr > nr_irqs_gsi)
3630 nr_irqs_gsi = nr;
3632 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3635 int get_nr_irqs_gsi(void)
3637 return nr_irqs_gsi;
3640 #ifdef CONFIG_SPARSE_IRQ
3641 int __init arch_probe_nr_irqs(void)
3643 int nr;
3645 if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3646 nr_irqs = NR_VECTORS * nr_cpu_ids;
3648 nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3649 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3651 * for MSI and HT dyn irq
3653 nr += nr_irqs_gsi * 16;
3654 #endif
3655 if (nr < nr_irqs)
3656 nr_irqs = nr;
3658 return NR_IRQS_LEGACY;
3660 #endif
3662 static int __io_apic_set_pci_routing(struct device *dev, int irq,
3663 struct io_apic_irq_attr *irq_attr)
3665 struct irq_cfg *cfg;
3666 int node;
3667 int ioapic, pin;
3668 int trigger, polarity;
3670 ioapic = irq_attr->ioapic;
3671 if (!IO_APIC_IRQ(irq)) {
3672 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3673 ioapic);
3674 return -EINVAL;
3677 if (dev)
3678 node = dev_to_node(dev);
3679 else
3680 node = cpu_to_node(0);
3682 cfg = alloc_irq_and_cfg_at(irq, node);
3683 if (!cfg)
3684 return 0;
3686 pin = irq_attr->ioapic_pin;
3687 trigger = irq_attr->trigger;
3688 polarity = irq_attr->polarity;
3691 * IRQs < 16 are already in the irq_2_pin[] map
3693 if (irq >= legacy_pic->nr_legacy_irqs) {
3694 if (__add_pin_to_irq_node(cfg, node, ioapic, pin)) {
3695 printk(KERN_INFO "can not add pin %d for irq %d\n",
3696 pin, irq);
3697 return 0;
3701 setup_ioapic_irq(ioapic, pin, irq, cfg, trigger, polarity);
3703 return 0;
3706 int io_apic_set_pci_routing(struct device *dev, int irq,
3707 struct io_apic_irq_attr *irq_attr)
3709 int ioapic, pin;
3711 * Avoid pin reprogramming. PRTs typically include entries
3712 * with redundant pin->gsi mappings (but unique PCI devices);
3713 * we only program the IOAPIC on the first.
3715 ioapic = irq_attr->ioapic;
3716 pin = irq_attr->ioapic_pin;
3717 if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) {
3718 pr_debug("Pin %d-%d already programmed\n",
3719 mp_ioapics[ioapic].apicid, pin);
3720 return 0;
3722 set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed);
3724 return __io_apic_set_pci_routing(dev, irq, irq_attr);
3727 u8 __init io_apic_unique_id(u8 id)
3729 #ifdef CONFIG_X86_32
3730 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3731 !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3732 return io_apic_get_unique_id(nr_ioapics, id);
3733 else
3734 return id;
3735 #else
3736 int i;
3737 DECLARE_BITMAP(used, 256);
3739 bitmap_zero(used, 256);
3740 for (i = 0; i < nr_ioapics; i++) {
3741 struct mpc_ioapic *ia = &mp_ioapics[i];
3742 __set_bit(ia->apicid, used);
3744 if (!test_bit(id, used))
3745 return id;
3746 return find_first_zero_bit(used, 256);
3747 #endif
3750 #ifdef CONFIG_X86_32
3751 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3753 union IO_APIC_reg_00 reg_00;
3754 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3755 physid_mask_t tmp;
3756 unsigned long flags;
3757 int i = 0;
3760 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3761 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3762 * supports up to 16 on one shared APIC bus.
3764 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3765 * advantage of new APIC bus architecture.
3768 if (physids_empty(apic_id_map))
3769 apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3771 raw_spin_lock_irqsave(&ioapic_lock, flags);
3772 reg_00.raw = io_apic_read(ioapic, 0);
3773 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3775 if (apic_id >= get_physical_broadcast()) {
3776 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3777 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3778 apic_id = reg_00.bits.ID;
3782 * Every APIC in a system must have a unique ID or we get lots of nice
3783 * 'stuck on smp_invalidate_needed IPI wait' messages.
3785 if (apic->check_apicid_used(&apic_id_map, apic_id)) {
3787 for (i = 0; i < get_physical_broadcast(); i++) {
3788 if (!apic->check_apicid_used(&apic_id_map, i))
3789 break;
3792 if (i == get_physical_broadcast())
3793 panic("Max apic_id exceeded!\n");
3795 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3796 "trying %d\n", ioapic, apic_id, i);
3798 apic_id = i;
3801 apic->apicid_to_cpu_present(apic_id, &tmp);
3802 physids_or(apic_id_map, apic_id_map, tmp);
3804 if (reg_00.bits.ID != apic_id) {
3805 reg_00.bits.ID = apic_id;
3807 raw_spin_lock_irqsave(&ioapic_lock, flags);
3808 io_apic_write(ioapic, 0, reg_00.raw);
3809 reg_00.raw = io_apic_read(ioapic, 0);
3810 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3812 /* Sanity check */
3813 if (reg_00.bits.ID != apic_id) {
3814 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3815 return -1;
3819 apic_printk(APIC_VERBOSE, KERN_INFO
3820 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3822 return apic_id;
3824 #endif
3826 int __init io_apic_get_version(int ioapic)
3828 union IO_APIC_reg_01 reg_01;
3829 unsigned long flags;
3831 raw_spin_lock_irqsave(&ioapic_lock, flags);
3832 reg_01.raw = io_apic_read(ioapic, 1);
3833 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3835 return reg_01.bits.version;
3838 int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
3840 int ioapic, pin, idx;
3842 if (skip_ioapic_setup)
3843 return -1;
3845 ioapic = mp_find_ioapic(gsi);
3846 if (ioapic < 0)
3847 return -1;
3849 pin = mp_find_ioapic_pin(ioapic, gsi);
3850 if (pin < 0)
3851 return -1;
3853 idx = find_irq_entry(ioapic, pin, mp_INT);
3854 if (idx < 0)
3855 return -1;
3857 *trigger = irq_trigger(idx);
3858 *polarity = irq_polarity(idx);
3859 return 0;
3863 * This function currently is only a helper for the i386 smp boot process where
3864 * we need to reprogram the ioredtbls to cater for the cpus which have come online
3865 * so mask in all cases should simply be apic->target_cpus()
3867 #ifdef CONFIG_SMP
3868 void __init setup_ioapic_dest(void)
3870 int pin, ioapic, irq, irq_entry;
3871 struct irq_desc *desc;
3872 const struct cpumask *mask;
3874 if (skip_ioapic_setup == 1)
3875 return;
3877 for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
3878 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
3879 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3880 if (irq_entry == -1)
3881 continue;
3882 irq = pin_2_irq(irq_entry, ioapic, pin);
3884 if ((ioapic > 0) && (irq > 16))
3885 continue;
3887 desc = irq_to_desc(irq);
3890 * Honour affinities which have been set in early boot
3892 if (desc->status &
3893 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
3894 mask = desc->irq_data.affinity;
3895 else
3896 mask = apic->target_cpus();
3898 if (intr_remapping_enabled)
3899 ir_ioapic_set_affinity(&desc->irq_data, mask, false);
3900 else
3901 ioapic_set_affinity(&desc->irq_data, mask, false);
3905 #endif
3907 #define IOAPIC_RESOURCE_NAME_SIZE 11
3909 static struct resource *ioapic_resources;
3911 static struct resource * __init ioapic_setup_resources(int nr_ioapics)
3913 unsigned long n;
3914 struct resource *res;
3915 char *mem;
3916 int i;
3918 if (nr_ioapics <= 0)
3919 return NULL;
3921 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3922 n *= nr_ioapics;
3924 mem = alloc_bootmem(n);
3925 res = (void *)mem;
3927 mem += sizeof(struct resource) * nr_ioapics;
3929 for (i = 0; i < nr_ioapics; i++) {
3930 res[i].name = mem;
3931 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3932 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
3933 mem += IOAPIC_RESOURCE_NAME_SIZE;
3936 ioapic_resources = res;
3938 return res;
3941 void __init ioapic_and_gsi_init(void)
3943 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3944 struct resource *ioapic_res;
3945 int i;
3947 ioapic_res = ioapic_setup_resources(nr_ioapics);
3948 for (i = 0; i < nr_ioapics; i++) {
3949 if (smp_found_config) {
3950 ioapic_phys = mp_ioapics[i].apicaddr;
3951 #ifdef CONFIG_X86_32
3952 if (!ioapic_phys) {
3953 printk(KERN_ERR
3954 "WARNING: bogus zero IO-APIC "
3955 "address found in MPTABLE, "
3956 "disabling IO/APIC support!\n");
3957 smp_found_config = 0;
3958 skip_ioapic_setup = 1;
3959 goto fake_ioapic_page;
3961 #endif
3962 } else {
3963 #ifdef CONFIG_X86_32
3964 fake_ioapic_page:
3965 #endif
3966 ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
3967 ioapic_phys = __pa(ioapic_phys);
3969 set_fixmap_nocache(idx, ioapic_phys);
3970 apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
3971 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
3972 ioapic_phys);
3973 idx++;
3975 ioapic_res->start = ioapic_phys;
3976 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
3977 ioapic_res++;
3980 probe_nr_irqs_gsi();
3983 void __init ioapic_insert_resources(void)
3985 int i;
3986 struct resource *r = ioapic_resources;
3988 if (!r) {
3989 if (nr_ioapics > 0)
3990 printk(KERN_ERR
3991 "IO APIC resources couldn't be allocated.\n");
3992 return;
3995 for (i = 0; i < nr_ioapics; i++) {
3996 insert_resource(&iomem_resource, r);
3997 r++;
4001 int mp_find_ioapic(u32 gsi)
4003 int i = 0;
4005 if (nr_ioapics == 0)
4006 return -1;
4008 /* Find the IOAPIC that manages this GSI. */
4009 for (i = 0; i < nr_ioapics; i++) {
4010 if ((gsi >= mp_gsi_routing[i].gsi_base)
4011 && (gsi <= mp_gsi_routing[i].gsi_end))
4012 return i;
4015 printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
4016 return -1;
4019 int mp_find_ioapic_pin(int ioapic, u32 gsi)
4021 if (WARN_ON(ioapic == -1))
4022 return -1;
4023 if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end))
4024 return -1;
4026 return gsi - mp_gsi_routing[ioapic].gsi_base;
4029 static int bad_ioapic(unsigned long address)
4031 if (nr_ioapics >= MAX_IO_APICS) {
4032 printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded "
4033 "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
4034 return 1;
4036 if (!address) {
4037 printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
4038 " found in table, skipping!\n");
4039 return 1;
4041 return 0;
4044 void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
4046 int idx = 0;
4047 int entries;
4049 if (bad_ioapic(address))
4050 return;
4052 idx = nr_ioapics;
4054 mp_ioapics[idx].type = MP_IOAPIC;
4055 mp_ioapics[idx].flags = MPC_APIC_USABLE;
4056 mp_ioapics[idx].apicaddr = address;
4058 set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
4059 mp_ioapics[idx].apicid = io_apic_unique_id(id);
4060 mp_ioapics[idx].apicver = io_apic_get_version(idx);
4063 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
4064 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
4066 entries = io_apic_get_redir_entries(idx);
4067 mp_gsi_routing[idx].gsi_base = gsi_base;
4068 mp_gsi_routing[idx].gsi_end = gsi_base + entries - 1;
4071 * The number of IO-APIC IRQ registers (== #pins):
4073 nr_ioapic_registers[idx] = entries;
4075 if (mp_gsi_routing[idx].gsi_end >= gsi_top)
4076 gsi_top = mp_gsi_routing[idx].gsi_end + 1;
4078 printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
4079 "GSI %d-%d\n", idx, mp_ioapics[idx].apicid,
4080 mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr,
4081 mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end);
4083 nr_ioapics++;
4086 /* Enable IOAPIC early just for system timer */
4087 void __init pre_init_apic_IRQ0(void)
4089 struct irq_cfg *cfg;
4091 printk(KERN_INFO "Early APIC setup for system timer0\n");
4092 #ifndef CONFIG_SMP
4093 physid_set_mask_of_physid(boot_cpu_physical_apicid,
4094 &phys_cpu_present_map);
4095 #endif
4096 /* Make sure the irq descriptor is set up */
4097 cfg = alloc_irq_and_cfg_at(0, 0);
4099 setup_local_APIC();
4101 add_pin_to_irq_node(cfg, 0, 0, 0);
4102 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
4104 setup_ioapic_irq(0, 0, 0, cfg, 0, 0);