USB: usbsevseg: fix max length
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ecryptfs / keystore.c
blob8f1a525efea853bd4e522408438b0ee997b0075e
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 * In-kernel key management code. Includes functions to parse and
4 * write authentication token-related packets with the underlying
5 * file.
7 * Copyright (C) 2004-2006 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * Trevor S. Highland <trevor.highland@gmail.com>
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25 * 02111-1307, USA.
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
37 /**
38 * request_key returned an error instead of a valid key address;
39 * determine the type of error, make appropriate log entries, and
40 * return an error code.
42 static int process_request_key_err(long err_code)
44 int rc = 0;
46 switch (err_code) {
47 case -ENOKEY:
48 ecryptfs_printk(KERN_WARNING, "No key\n");
49 rc = -ENOENT;
50 break;
51 case -EKEYEXPIRED:
52 ecryptfs_printk(KERN_WARNING, "Key expired\n");
53 rc = -ETIME;
54 break;
55 case -EKEYREVOKED:
56 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57 rc = -EINVAL;
58 break;
59 default:
60 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61 "[0x%.16x]\n", err_code);
62 rc = -EINVAL;
64 return rc;
67 /**
68 * ecryptfs_parse_packet_length
69 * @data: Pointer to memory containing length at offset
70 * @size: This function writes the decoded size to this memory
71 * address; zero on error
72 * @length_size: The number of bytes occupied by the encoded length
74 * Returns zero on success; non-zero on error
76 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
77 size_t *length_size)
79 int rc = 0;
81 (*length_size) = 0;
82 (*size) = 0;
83 if (data[0] < 192) {
84 /* One-byte length */
85 (*size) = (unsigned char)data[0];
86 (*length_size) = 1;
87 } else if (data[0] < 224) {
88 /* Two-byte length */
89 (*size) = (((unsigned char)(data[0]) - 192) * 256);
90 (*size) += ((unsigned char)(data[1]) + 192);
91 (*length_size) = 2;
92 } else if (data[0] == 255) {
93 /* Five-byte length; we're not supposed to see this */
94 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
95 "supported\n");
96 rc = -EINVAL;
97 goto out;
98 } else {
99 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
100 rc = -EINVAL;
101 goto out;
103 out:
104 return rc;
108 * ecryptfs_write_packet_length
109 * @dest: The byte array target into which to write the length. Must
110 * have at least 5 bytes allocated.
111 * @size: The length to write.
112 * @packet_size_length: The number of bytes used to encode the packet
113 * length is written to this address.
115 * Returns zero on success; non-zero on error.
117 int ecryptfs_write_packet_length(char *dest, size_t size,
118 size_t *packet_size_length)
120 int rc = 0;
122 if (size < 192) {
123 dest[0] = size;
124 (*packet_size_length) = 1;
125 } else if (size < 65536) {
126 dest[0] = (((size - 192) / 256) + 192);
127 dest[1] = ((size - 192) % 256);
128 (*packet_size_length) = 2;
129 } else {
130 rc = -EINVAL;
131 ecryptfs_printk(KERN_WARNING,
132 "Unsupported packet size: [%d]\n", size);
134 return rc;
137 static int
138 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
139 char **packet, size_t *packet_len)
141 size_t i = 0;
142 size_t data_len;
143 size_t packet_size_len;
144 char *message;
145 int rc;
148 * ***** TAG 64 Packet Format *****
149 * | Content Type | 1 byte |
150 * | Key Identifier Size | 1 or 2 bytes |
151 * | Key Identifier | arbitrary |
152 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
153 * | Encrypted File Encryption Key | arbitrary |
155 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
156 + session_key->encrypted_key_size);
157 *packet = kmalloc(data_len, GFP_KERNEL);
158 message = *packet;
159 if (!message) {
160 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
161 rc = -ENOMEM;
162 goto out;
164 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
166 &packet_size_len);
167 if (rc) {
168 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
169 "header; cannot generate packet length\n");
170 goto out;
172 i += packet_size_len;
173 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
174 i += ECRYPTFS_SIG_SIZE_HEX;
175 rc = ecryptfs_write_packet_length(&message[i],
176 session_key->encrypted_key_size,
177 &packet_size_len);
178 if (rc) {
179 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
180 "header; cannot generate packet length\n");
181 goto out;
183 i += packet_size_len;
184 memcpy(&message[i], session_key->encrypted_key,
185 session_key->encrypted_key_size);
186 i += session_key->encrypted_key_size;
187 *packet_len = i;
188 out:
189 return rc;
192 static int
193 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
194 struct ecryptfs_message *msg)
196 size_t i = 0;
197 char *data;
198 size_t data_len;
199 size_t m_size;
200 size_t message_len;
201 u16 checksum = 0;
202 u16 expected_checksum = 0;
203 int rc;
206 * ***** TAG 65 Packet Format *****
207 * | Content Type | 1 byte |
208 * | Status Indicator | 1 byte |
209 * | File Encryption Key Size | 1 or 2 bytes |
210 * | File Encryption Key | arbitrary |
212 message_len = msg->data_len;
213 data = msg->data;
214 if (message_len < 4) {
215 rc = -EIO;
216 goto out;
218 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
219 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
220 rc = -EIO;
221 goto out;
223 if (data[i++]) {
224 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
225 "[%d]\n", data[i-1]);
226 rc = -EIO;
227 goto out;
229 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
230 if (rc) {
231 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
232 "rc = [%d]\n", rc);
233 goto out;
235 i += data_len;
236 if (message_len < (i + m_size)) {
237 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
238 "is shorter than expected\n");
239 rc = -EIO;
240 goto out;
242 if (m_size < 3) {
243 ecryptfs_printk(KERN_ERR,
244 "The decrypted key is not long enough to "
245 "include a cipher code and checksum\n");
246 rc = -EIO;
247 goto out;
249 *cipher_code = data[i++];
250 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
251 session_key->decrypted_key_size = m_size - 3;
252 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
253 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
254 "the maximum key size [%d]\n",
255 session_key->decrypted_key_size,
256 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
257 rc = -EIO;
258 goto out;
260 memcpy(session_key->decrypted_key, &data[i],
261 session_key->decrypted_key_size);
262 i += session_key->decrypted_key_size;
263 expected_checksum += (unsigned char)(data[i++]) << 8;
264 expected_checksum += (unsigned char)(data[i++]);
265 for (i = 0; i < session_key->decrypted_key_size; i++)
266 checksum += session_key->decrypted_key[i];
267 if (expected_checksum != checksum) {
268 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
269 "encryption key; expected [%x]; calculated "
270 "[%x]\n", expected_checksum, checksum);
271 rc = -EIO;
273 out:
274 return rc;
278 static int
279 write_tag_66_packet(char *signature, u8 cipher_code,
280 struct ecryptfs_crypt_stat *crypt_stat, char **packet,
281 size_t *packet_len)
283 size_t i = 0;
284 size_t j;
285 size_t data_len;
286 size_t checksum = 0;
287 size_t packet_size_len;
288 char *message;
289 int rc;
292 * ***** TAG 66 Packet Format *****
293 * | Content Type | 1 byte |
294 * | Key Identifier Size | 1 or 2 bytes |
295 * | Key Identifier | arbitrary |
296 * | File Encryption Key Size | 1 or 2 bytes |
297 * | File Encryption Key | arbitrary |
299 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
300 *packet = kmalloc(data_len, GFP_KERNEL);
301 message = *packet;
302 if (!message) {
303 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
304 rc = -ENOMEM;
305 goto out;
307 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
308 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
309 &packet_size_len);
310 if (rc) {
311 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
312 "header; cannot generate packet length\n");
313 goto out;
315 i += packet_size_len;
316 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
317 i += ECRYPTFS_SIG_SIZE_HEX;
318 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
319 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
320 &packet_size_len);
321 if (rc) {
322 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
323 "header; cannot generate packet length\n");
324 goto out;
326 i += packet_size_len;
327 message[i++] = cipher_code;
328 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
329 i += crypt_stat->key_size;
330 for (j = 0; j < crypt_stat->key_size; j++)
331 checksum += crypt_stat->key[j];
332 message[i++] = (checksum / 256) % 256;
333 message[i++] = (checksum % 256);
334 *packet_len = i;
335 out:
336 return rc;
339 static int
340 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
341 struct ecryptfs_message *msg)
343 size_t i = 0;
344 char *data;
345 size_t data_len;
346 size_t message_len;
347 int rc;
350 * ***** TAG 65 Packet Format *****
351 * | Content Type | 1 byte |
352 * | Status Indicator | 1 byte |
353 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
354 * | Encrypted File Encryption Key | arbitrary |
356 message_len = msg->data_len;
357 data = msg->data;
358 /* verify that everything through the encrypted FEK size is present */
359 if (message_len < 4) {
360 rc = -EIO;
361 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
362 "message length is [%d]\n", __func__, message_len, 4);
363 goto out;
365 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
366 rc = -EIO;
367 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
368 __func__);
369 goto out;
371 if (data[i++]) {
372 rc = -EIO;
373 printk(KERN_ERR "%s: Status indicator has non zero "
374 "value [%d]\n", __func__, data[i-1]);
376 goto out;
378 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
379 &data_len);
380 if (rc) {
381 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
382 "rc = [%d]\n", rc);
383 goto out;
385 i += data_len;
386 if (message_len < (i + key_rec->enc_key_size)) {
387 rc = -EIO;
388 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
389 __func__, message_len, (i + key_rec->enc_key_size));
390 goto out;
392 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
393 rc = -EIO;
394 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
395 "the maximum key size [%d]\n", __func__,
396 key_rec->enc_key_size,
397 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
398 goto out;
400 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
401 out:
402 return rc;
405 static int
406 ecryptfs_find_global_auth_tok_for_sig(
407 struct ecryptfs_global_auth_tok **global_auth_tok,
408 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
410 struct ecryptfs_global_auth_tok *walker;
411 int rc = 0;
413 (*global_auth_tok) = NULL;
414 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
415 list_for_each_entry(walker,
416 &mount_crypt_stat->global_auth_tok_list,
417 mount_crypt_stat_list) {
418 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
419 rc = key_validate(walker->global_auth_tok_key);
420 if (!rc)
421 (*global_auth_tok) = walker;
422 goto out;
425 rc = -EINVAL;
426 out:
427 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
428 return rc;
432 * ecryptfs_find_auth_tok_for_sig
433 * @auth_tok: Set to the matching auth_tok; NULL if not found
434 * @crypt_stat: inode crypt_stat crypto context
435 * @sig: Sig of auth_tok to find
437 * For now, this function simply looks at the registered auth_tok's
438 * linked off the mount_crypt_stat, so all the auth_toks that can be
439 * used must be registered at mount time. This function could
440 * potentially try a lot harder to find auth_tok's (e.g., by calling
441 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
442 * that static registration of auth_tok's will no longer be necessary.
444 * Returns zero on no error; non-zero on error
446 static int
447 ecryptfs_find_auth_tok_for_sig(
448 struct ecryptfs_auth_tok **auth_tok,
449 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
450 char *sig)
452 struct ecryptfs_global_auth_tok *global_auth_tok;
453 int rc = 0;
455 (*auth_tok) = NULL;
456 if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
457 mount_crypt_stat, sig)) {
458 struct key *auth_tok_key;
460 rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
461 sig);
462 } else
463 (*auth_tok) = global_auth_tok->global_auth_tok;
464 return rc;
468 * write_tag_70_packet can gobble a lot of stack space. We stuff most
469 * of the function's parameters in a kmalloc'd struct to help reduce
470 * eCryptfs' overall stack usage.
472 struct ecryptfs_write_tag_70_packet_silly_stack {
473 u8 cipher_code;
474 size_t max_packet_size;
475 size_t packet_size_len;
476 size_t block_aligned_filename_size;
477 size_t block_size;
478 size_t i;
479 size_t j;
480 size_t num_rand_bytes;
481 struct mutex *tfm_mutex;
482 char *block_aligned_filename;
483 struct ecryptfs_auth_tok *auth_tok;
484 struct scatterlist src_sg[2];
485 struct scatterlist dst_sg[2];
486 struct blkcipher_desc desc;
487 char iv[ECRYPTFS_MAX_IV_BYTES];
488 char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
489 char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
490 struct hash_desc hash_desc;
491 struct scatterlist hash_sg;
495 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
496 * @filename: NULL-terminated filename string
498 * This is the simplest mechanism for achieving filename encryption in
499 * eCryptfs. It encrypts the given filename with the mount-wide
500 * filename encryption key (FNEK) and stores it in a packet to @dest,
501 * which the callee will encode and write directly into the dentry
502 * name.
505 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
506 size_t *packet_size,
507 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
508 char *filename, size_t filename_size)
510 struct ecryptfs_write_tag_70_packet_silly_stack *s;
511 int rc = 0;
513 s = kmalloc(sizeof(*s), GFP_KERNEL);
514 if (!s) {
515 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
516 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
517 goto out;
519 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
520 (*packet_size) = 0;
521 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
522 &s->desc.tfm,
523 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
524 if (unlikely(rc)) {
525 printk(KERN_ERR "Internal error whilst attempting to get "
526 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
527 mount_crypt_stat->global_default_fn_cipher_name, rc);
528 goto out;
530 mutex_lock(s->tfm_mutex);
531 s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
532 /* Plus one for the \0 separator between the random prefix
533 * and the plaintext filename */
534 s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
535 s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
536 if ((s->block_aligned_filename_size % s->block_size) != 0) {
537 s->num_rand_bytes += (s->block_size
538 - (s->block_aligned_filename_size
539 % s->block_size));
540 s->block_aligned_filename_size = (s->num_rand_bytes
541 + filename_size);
543 /* Octet 0: Tag 70 identifier
544 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
545 * and block-aligned encrypted filename size)
546 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
547 * Octet N2-N3: Cipher identifier (1 octet)
548 * Octets N3-N4: Block-aligned encrypted filename
549 * - Consists of a minimum number of random characters, a \0
550 * separator, and then the filename */
551 s->max_packet_size = (1 /* Tag 70 identifier */
552 + 3 /* Max Tag 70 packet size */
553 + ECRYPTFS_SIG_SIZE /* FNEK sig */
554 + 1 /* Cipher identifier */
555 + s->block_aligned_filename_size);
556 if (dest == NULL) {
557 (*packet_size) = s->max_packet_size;
558 goto out_unlock;
560 if (s->max_packet_size > (*remaining_bytes)) {
561 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
562 "[%zd] available\n", __func__, s->max_packet_size,
563 (*remaining_bytes));
564 rc = -EINVAL;
565 goto out_unlock;
567 s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
568 GFP_KERNEL);
569 if (!s->block_aligned_filename) {
570 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
571 "kzalloc [%zd] bytes\n", __func__,
572 s->block_aligned_filename_size);
573 rc = -ENOMEM;
574 goto out_unlock;
576 s->i = 0;
577 dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
578 rc = ecryptfs_write_packet_length(&dest[s->i],
579 (ECRYPTFS_SIG_SIZE
580 + 1 /* Cipher code */
581 + s->block_aligned_filename_size),
582 &s->packet_size_len);
583 if (rc) {
584 printk(KERN_ERR "%s: Error generating tag 70 packet "
585 "header; cannot generate packet length; rc = [%d]\n",
586 __func__, rc);
587 goto out_free_unlock;
589 s->i += s->packet_size_len;
590 ecryptfs_from_hex(&dest[s->i],
591 mount_crypt_stat->global_default_fnek_sig,
592 ECRYPTFS_SIG_SIZE);
593 s->i += ECRYPTFS_SIG_SIZE;
594 s->cipher_code = ecryptfs_code_for_cipher_string(
595 mount_crypt_stat->global_default_fn_cipher_name,
596 mount_crypt_stat->global_default_fn_cipher_key_bytes);
597 if (s->cipher_code == 0) {
598 printk(KERN_WARNING "%s: Unable to generate code for "
599 "cipher [%s] with key bytes [%zd]\n", __func__,
600 mount_crypt_stat->global_default_fn_cipher_name,
601 mount_crypt_stat->global_default_fn_cipher_key_bytes);
602 rc = -EINVAL;
603 goto out_free_unlock;
605 dest[s->i++] = s->cipher_code;
606 rc = ecryptfs_find_auth_tok_for_sig(
607 &s->auth_tok, mount_crypt_stat,
608 mount_crypt_stat->global_default_fnek_sig);
609 if (rc) {
610 printk(KERN_ERR "%s: Error attempting to find auth tok for "
611 "fnek sig [%s]; rc = [%d]\n", __func__,
612 mount_crypt_stat->global_default_fnek_sig, rc);
613 goto out_free_unlock;
615 /* TODO: Support other key modules than passphrase for
616 * filename encryption */
617 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
618 rc = -EOPNOTSUPP;
619 printk(KERN_INFO "%s: Filename encryption only supports "
620 "password tokens\n", __func__);
621 goto out_free_unlock;
623 sg_init_one(
624 &s->hash_sg,
625 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
626 s->auth_tok->token.password.session_key_encryption_key_bytes);
627 s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
628 s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
629 CRYPTO_ALG_ASYNC);
630 if (IS_ERR(s->hash_desc.tfm)) {
631 rc = PTR_ERR(s->hash_desc.tfm);
632 printk(KERN_ERR "%s: Error attempting to "
633 "allocate hash crypto context; rc = [%d]\n",
634 __func__, rc);
635 goto out_free_unlock;
637 rc = crypto_hash_init(&s->hash_desc);
638 if (rc) {
639 printk(KERN_ERR
640 "%s: Error initializing crypto hash; rc = [%d]\n",
641 __func__, rc);
642 goto out_release_free_unlock;
644 rc = crypto_hash_update(
645 &s->hash_desc, &s->hash_sg,
646 s->auth_tok->token.password.session_key_encryption_key_bytes);
647 if (rc) {
648 printk(KERN_ERR
649 "%s: Error updating crypto hash; rc = [%d]\n",
650 __func__, rc);
651 goto out_release_free_unlock;
653 rc = crypto_hash_final(&s->hash_desc, s->hash);
654 if (rc) {
655 printk(KERN_ERR
656 "%s: Error finalizing crypto hash; rc = [%d]\n",
657 __func__, rc);
658 goto out_release_free_unlock;
660 for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
661 s->block_aligned_filename[s->j] =
662 s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
663 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
664 == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
665 sg_init_one(&s->hash_sg, (u8 *)s->hash,
666 ECRYPTFS_TAG_70_DIGEST_SIZE);
667 rc = crypto_hash_init(&s->hash_desc);
668 if (rc) {
669 printk(KERN_ERR
670 "%s: Error initializing crypto hash; "
671 "rc = [%d]\n", __func__, rc);
672 goto out_release_free_unlock;
674 rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
675 ECRYPTFS_TAG_70_DIGEST_SIZE);
676 if (rc) {
677 printk(KERN_ERR
678 "%s: Error updating crypto hash; "
679 "rc = [%d]\n", __func__, rc);
680 goto out_release_free_unlock;
682 rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
683 if (rc) {
684 printk(KERN_ERR
685 "%s: Error finalizing crypto hash; "
686 "rc = [%d]\n", __func__, rc);
687 goto out_release_free_unlock;
689 memcpy(s->hash, s->tmp_hash,
690 ECRYPTFS_TAG_70_DIGEST_SIZE);
692 if (s->block_aligned_filename[s->j] == '\0')
693 s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
695 memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
696 filename_size);
697 rc = virt_to_scatterlist(s->block_aligned_filename,
698 s->block_aligned_filename_size, s->src_sg, 2);
699 if (rc < 1) {
700 printk(KERN_ERR "%s: Internal error whilst attempting to "
701 "convert filename memory to scatterlist; rc = [%d]. "
702 "block_aligned_filename_size = [%zd]\n", __func__, rc,
703 s->block_aligned_filename_size);
704 goto out_release_free_unlock;
706 rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
707 s->dst_sg, 2);
708 if (rc < 1) {
709 printk(KERN_ERR "%s: Internal error whilst attempting to "
710 "convert encrypted filename memory to scatterlist; "
711 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
712 __func__, rc, s->block_aligned_filename_size);
713 goto out_release_free_unlock;
715 /* The characters in the first block effectively do the job
716 * of the IV here, so we just use 0's for the IV. Note the
717 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
718 * >= ECRYPTFS_MAX_IV_BYTES. */
719 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
720 s->desc.info = s->iv;
721 rc = crypto_blkcipher_setkey(
722 s->desc.tfm,
723 s->auth_tok->token.password.session_key_encryption_key,
724 mount_crypt_stat->global_default_fn_cipher_key_bytes);
725 if (rc < 0) {
726 printk(KERN_ERR "%s: Error setting key for crypto context; "
727 "rc = [%d]. s->auth_tok->token.password.session_key_"
728 "encryption_key = [0x%p]; mount_crypt_stat->"
729 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
731 s->auth_tok->token.password.session_key_encryption_key,
732 mount_crypt_stat->global_default_fn_cipher_key_bytes);
733 goto out_release_free_unlock;
735 rc = crypto_blkcipher_encrypt_iv(&s->desc, s->dst_sg, s->src_sg,
736 s->block_aligned_filename_size);
737 if (rc) {
738 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
739 "rc = [%d]\n", __func__, rc);
740 goto out_release_free_unlock;
742 s->i += s->block_aligned_filename_size;
743 (*packet_size) = s->i;
744 (*remaining_bytes) -= (*packet_size);
745 out_release_free_unlock:
746 crypto_free_hash(s->hash_desc.tfm);
747 out_free_unlock:
748 kzfree(s->block_aligned_filename);
749 out_unlock:
750 mutex_unlock(s->tfm_mutex);
751 out:
752 kfree(s);
753 return rc;
756 struct ecryptfs_parse_tag_70_packet_silly_stack {
757 u8 cipher_code;
758 size_t max_packet_size;
759 size_t packet_size_len;
760 size_t parsed_tag_70_packet_size;
761 size_t block_aligned_filename_size;
762 size_t block_size;
763 size_t i;
764 struct mutex *tfm_mutex;
765 char *decrypted_filename;
766 struct ecryptfs_auth_tok *auth_tok;
767 struct scatterlist src_sg[2];
768 struct scatterlist dst_sg[2];
769 struct blkcipher_desc desc;
770 char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
771 char iv[ECRYPTFS_MAX_IV_BYTES];
772 char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
776 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
777 * @filename: This function kmalloc's the memory for the filename
778 * @filename_size: This function sets this to the amount of memory
779 * kmalloc'd for the filename
780 * @packet_size: This function sets this to the the number of octets
781 * in the packet parsed
782 * @mount_crypt_stat: The mount-wide cryptographic context
783 * @data: The memory location containing the start of the tag 70
784 * packet
785 * @max_packet_size: The maximum legal size of the packet to be parsed
786 * from @data
788 * Returns zero on success; non-zero otherwise
791 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
792 size_t *packet_size,
793 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
794 char *data, size_t max_packet_size)
796 struct ecryptfs_parse_tag_70_packet_silly_stack *s;
797 int rc = 0;
799 (*packet_size) = 0;
800 (*filename_size) = 0;
801 (*filename) = NULL;
802 s = kmalloc(sizeof(*s), GFP_KERNEL);
803 if (!s) {
804 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
805 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
806 goto out;
808 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
809 if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
810 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
811 "at least [%d]\n", __func__, max_packet_size,
812 (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
813 rc = -EINVAL;
814 goto out;
816 /* Octet 0: Tag 70 identifier
817 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
818 * and block-aligned encrypted filename size)
819 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
820 * Octet N2-N3: Cipher identifier (1 octet)
821 * Octets N3-N4: Block-aligned encrypted filename
822 * - Consists of a minimum number of random numbers, a \0
823 * separator, and then the filename */
824 if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
825 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
826 "tag [0x%.2x]\n", __func__,
827 data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
828 rc = -EINVAL;
829 goto out;
831 rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
832 &s->parsed_tag_70_packet_size,
833 &s->packet_size_len);
834 if (rc) {
835 printk(KERN_WARNING "%s: Error parsing packet length; "
836 "rc = [%d]\n", __func__, rc);
837 goto out;
839 s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
840 - ECRYPTFS_SIG_SIZE - 1);
841 if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
842 > max_packet_size) {
843 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
844 "size is [%zd]\n", __func__, max_packet_size,
845 (1 + s->packet_size_len + 1
846 + s->block_aligned_filename_size));
847 rc = -EINVAL;
848 goto out;
850 (*packet_size) += s->packet_size_len;
851 ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
852 ECRYPTFS_SIG_SIZE);
853 s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
854 (*packet_size) += ECRYPTFS_SIG_SIZE;
855 s->cipher_code = data[(*packet_size)++];
856 rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
857 if (rc) {
858 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
859 __func__, s->cipher_code);
860 goto out;
862 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
863 &s->tfm_mutex,
864 s->cipher_string);
865 if (unlikely(rc)) {
866 printk(KERN_ERR "Internal error whilst attempting to get "
867 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
868 s->cipher_string, rc);
869 goto out;
871 mutex_lock(s->tfm_mutex);
872 rc = virt_to_scatterlist(&data[(*packet_size)],
873 s->block_aligned_filename_size, s->src_sg, 2);
874 if (rc < 1) {
875 printk(KERN_ERR "%s: Internal error whilst attempting to "
876 "convert encrypted filename memory to scatterlist; "
877 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
878 __func__, rc, s->block_aligned_filename_size);
879 goto out_unlock;
881 (*packet_size) += s->block_aligned_filename_size;
882 s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
883 GFP_KERNEL);
884 if (!s->decrypted_filename) {
885 printk(KERN_ERR "%s: Out of memory whilst attempting to "
886 "kmalloc [%zd] bytes\n", __func__,
887 s->block_aligned_filename_size);
888 rc = -ENOMEM;
889 goto out_unlock;
891 rc = virt_to_scatterlist(s->decrypted_filename,
892 s->block_aligned_filename_size, s->dst_sg, 2);
893 if (rc < 1) {
894 printk(KERN_ERR "%s: Internal error whilst attempting to "
895 "convert decrypted filename memory to scatterlist; "
896 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
897 __func__, rc, s->block_aligned_filename_size);
898 goto out_free_unlock;
900 /* The characters in the first block effectively do the job of
901 * the IV here, so we just use 0's for the IV. Note the
902 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
903 * >= ECRYPTFS_MAX_IV_BYTES. */
904 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
905 s->desc.info = s->iv;
906 rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
907 s->fnek_sig_hex);
908 if (rc) {
909 printk(KERN_ERR "%s: Error attempting to find auth tok for "
910 "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
911 rc);
912 goto out_free_unlock;
914 /* TODO: Support other key modules than passphrase for
915 * filename encryption */
916 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
917 rc = -EOPNOTSUPP;
918 printk(KERN_INFO "%s: Filename encryption only supports "
919 "password tokens\n", __func__);
920 goto out_free_unlock;
922 rc = crypto_blkcipher_setkey(
923 s->desc.tfm,
924 s->auth_tok->token.password.session_key_encryption_key,
925 mount_crypt_stat->global_default_fn_cipher_key_bytes);
926 if (rc < 0) {
927 printk(KERN_ERR "%s: Error setting key for crypto context; "
928 "rc = [%d]. s->auth_tok->token.password.session_key_"
929 "encryption_key = [0x%p]; mount_crypt_stat->"
930 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
932 s->auth_tok->token.password.session_key_encryption_key,
933 mount_crypt_stat->global_default_fn_cipher_key_bytes);
934 goto out_free_unlock;
936 rc = crypto_blkcipher_decrypt_iv(&s->desc, s->dst_sg, s->src_sg,
937 s->block_aligned_filename_size);
938 if (rc) {
939 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
940 "rc = [%d]\n", __func__, rc);
941 goto out_free_unlock;
943 s->i = 0;
944 while (s->decrypted_filename[s->i] != '\0'
945 && s->i < s->block_aligned_filename_size)
946 s->i++;
947 if (s->i == s->block_aligned_filename_size) {
948 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
949 "find valid separator between random characters and "
950 "the filename\n", __func__);
951 rc = -EINVAL;
952 goto out_free_unlock;
954 s->i++;
955 (*filename_size) = (s->block_aligned_filename_size - s->i);
956 if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
957 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
958 "invalid\n", __func__, (*filename_size));
959 rc = -EINVAL;
960 goto out_free_unlock;
962 (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
963 if (!(*filename)) {
964 printk(KERN_ERR "%s: Out of memory whilst attempting to "
965 "kmalloc [%zd] bytes\n", __func__,
966 ((*filename_size) + 1));
967 rc = -ENOMEM;
968 goto out_free_unlock;
970 memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
971 (*filename)[(*filename_size)] = '\0';
972 out_free_unlock:
973 kfree(s->decrypted_filename);
974 out_unlock:
975 mutex_unlock(s->tfm_mutex);
976 out:
977 if (rc) {
978 (*packet_size) = 0;
979 (*filename_size) = 0;
980 (*filename) = NULL;
982 kfree(s);
983 return rc;
986 static int
987 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
989 int rc = 0;
991 (*sig) = NULL;
992 switch (auth_tok->token_type) {
993 case ECRYPTFS_PASSWORD:
994 (*sig) = auth_tok->token.password.signature;
995 break;
996 case ECRYPTFS_PRIVATE_KEY:
997 (*sig) = auth_tok->token.private_key.signature;
998 break;
999 default:
1000 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1001 auth_tok->token_type);
1002 rc = -EINVAL;
1004 return rc;
1008 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1009 * @auth_tok: The key authentication token used to decrypt the session key
1010 * @crypt_stat: The cryptographic context
1012 * Returns zero on success; non-zero error otherwise.
1014 static int
1015 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1016 struct ecryptfs_crypt_stat *crypt_stat)
1018 u8 cipher_code = 0;
1019 struct ecryptfs_msg_ctx *msg_ctx;
1020 struct ecryptfs_message *msg = NULL;
1021 char *auth_tok_sig;
1022 char *payload;
1023 size_t payload_len;
1024 int rc;
1026 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1027 if (rc) {
1028 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1029 auth_tok->token_type);
1030 goto out;
1032 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1033 &payload, &payload_len);
1034 if (rc) {
1035 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1036 goto out;
1038 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1039 if (rc) {
1040 ecryptfs_printk(KERN_ERR, "Error sending message to "
1041 "ecryptfsd\n");
1042 goto out;
1044 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1045 if (rc) {
1046 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1047 "from the user space daemon\n");
1048 rc = -EIO;
1049 goto out;
1051 rc = parse_tag_65_packet(&(auth_tok->session_key),
1052 &cipher_code, msg);
1053 if (rc) {
1054 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1055 rc);
1056 goto out;
1058 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1059 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1060 auth_tok->session_key.decrypted_key_size);
1061 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1062 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1063 if (rc) {
1064 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1065 cipher_code)
1066 goto out;
1068 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1069 if (ecryptfs_verbosity > 0) {
1070 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1071 ecryptfs_dump_hex(crypt_stat->key,
1072 crypt_stat->key_size);
1074 out:
1075 if (msg)
1076 kfree(msg);
1077 return rc;
1080 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1082 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1083 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1085 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1086 auth_tok_list_head, list) {
1087 list_del(&auth_tok_list_item->list);
1088 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1089 auth_tok_list_item);
1093 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1096 * parse_tag_1_packet
1097 * @crypt_stat: The cryptographic context to modify based on packet contents
1098 * @data: The raw bytes of the packet.
1099 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1100 * a new authentication token will be placed at the
1101 * end of this list for this packet.
1102 * @new_auth_tok: Pointer to a pointer to memory that this function
1103 * allocates; sets the memory address of the pointer to
1104 * NULL on error. This object is added to the
1105 * auth_tok_list.
1106 * @packet_size: This function writes the size of the parsed packet
1107 * into this memory location; zero on error.
1108 * @max_packet_size: The maximum allowable packet size
1110 * Returns zero on success; non-zero on error.
1112 static int
1113 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1114 unsigned char *data, struct list_head *auth_tok_list,
1115 struct ecryptfs_auth_tok **new_auth_tok,
1116 size_t *packet_size, size_t max_packet_size)
1118 size_t body_size;
1119 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1120 size_t length_size;
1121 int rc = 0;
1123 (*packet_size) = 0;
1124 (*new_auth_tok) = NULL;
1126 * This format is inspired by OpenPGP; see RFC 2440
1127 * packet tag 1
1129 * Tag 1 identifier (1 byte)
1130 * Max Tag 1 packet size (max 3 bytes)
1131 * Version (1 byte)
1132 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1133 * Cipher identifier (1 byte)
1134 * Encrypted key size (arbitrary)
1136 * 12 bytes minimum packet size
1138 if (unlikely(max_packet_size < 12)) {
1139 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1140 rc = -EINVAL;
1141 goto out;
1143 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1144 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1145 ECRYPTFS_TAG_1_PACKET_TYPE);
1146 rc = -EINVAL;
1147 goto out;
1149 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1150 * at end of function upon failure */
1151 auth_tok_list_item =
1152 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1153 GFP_KERNEL);
1154 if (!auth_tok_list_item) {
1155 printk(KERN_ERR "Unable to allocate memory\n");
1156 rc = -ENOMEM;
1157 goto out;
1159 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1160 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1161 &length_size);
1162 if (rc) {
1163 printk(KERN_WARNING "Error parsing packet length; "
1164 "rc = [%d]\n", rc);
1165 goto out_free;
1167 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1168 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1169 rc = -EINVAL;
1170 goto out_free;
1172 (*packet_size) += length_size;
1173 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1174 printk(KERN_WARNING "Packet size exceeds max\n");
1175 rc = -EINVAL;
1176 goto out_free;
1178 if (unlikely(data[(*packet_size)++] != 0x03)) {
1179 printk(KERN_WARNING "Unknown version number [%d]\n",
1180 data[(*packet_size) - 1]);
1181 rc = -EINVAL;
1182 goto out_free;
1184 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1185 &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1186 *packet_size += ECRYPTFS_SIG_SIZE;
1187 /* This byte is skipped because the kernel does not need to
1188 * know which public key encryption algorithm was used */
1189 (*packet_size)++;
1190 (*new_auth_tok)->session_key.encrypted_key_size =
1191 body_size - (ECRYPTFS_SIG_SIZE + 2);
1192 if ((*new_auth_tok)->session_key.encrypted_key_size
1193 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1194 printk(KERN_WARNING "Tag 1 packet contains key larger "
1195 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1196 rc = -EINVAL;
1197 goto out;
1199 memcpy((*new_auth_tok)->session_key.encrypted_key,
1200 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1201 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1202 (*new_auth_tok)->session_key.flags &=
1203 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1204 (*new_auth_tok)->session_key.flags |=
1205 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1206 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1207 (*new_auth_tok)->flags = 0;
1208 (*new_auth_tok)->session_key.flags &=
1209 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1210 (*new_auth_tok)->session_key.flags &=
1211 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1212 list_add(&auth_tok_list_item->list, auth_tok_list);
1213 goto out;
1214 out_free:
1215 (*new_auth_tok) = NULL;
1216 memset(auth_tok_list_item, 0,
1217 sizeof(struct ecryptfs_auth_tok_list_item));
1218 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1219 auth_tok_list_item);
1220 out:
1221 if (rc)
1222 (*packet_size) = 0;
1223 return rc;
1227 * parse_tag_3_packet
1228 * @crypt_stat: The cryptographic context to modify based on packet
1229 * contents.
1230 * @data: The raw bytes of the packet.
1231 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1232 * a new authentication token will be placed at the end
1233 * of this list for this packet.
1234 * @new_auth_tok: Pointer to a pointer to memory that this function
1235 * allocates; sets the memory address of the pointer to
1236 * NULL on error. This object is added to the
1237 * auth_tok_list.
1238 * @packet_size: This function writes the size of the parsed packet
1239 * into this memory location; zero on error.
1240 * @max_packet_size: maximum number of bytes to parse
1242 * Returns zero on success; non-zero on error.
1244 static int
1245 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1246 unsigned char *data, struct list_head *auth_tok_list,
1247 struct ecryptfs_auth_tok **new_auth_tok,
1248 size_t *packet_size, size_t max_packet_size)
1250 size_t body_size;
1251 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1252 size_t length_size;
1253 int rc = 0;
1255 (*packet_size) = 0;
1256 (*new_auth_tok) = NULL;
1258 *This format is inspired by OpenPGP; see RFC 2440
1259 * packet tag 3
1261 * Tag 3 identifier (1 byte)
1262 * Max Tag 3 packet size (max 3 bytes)
1263 * Version (1 byte)
1264 * Cipher code (1 byte)
1265 * S2K specifier (1 byte)
1266 * Hash identifier (1 byte)
1267 * Salt (ECRYPTFS_SALT_SIZE)
1268 * Hash iterations (1 byte)
1269 * Encrypted key (arbitrary)
1271 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1273 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1274 printk(KERN_ERR "Max packet size too large\n");
1275 rc = -EINVAL;
1276 goto out;
1278 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1279 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1280 ECRYPTFS_TAG_3_PACKET_TYPE);
1281 rc = -EINVAL;
1282 goto out;
1284 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1285 * at end of function upon failure */
1286 auth_tok_list_item =
1287 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1288 if (!auth_tok_list_item) {
1289 printk(KERN_ERR "Unable to allocate memory\n");
1290 rc = -ENOMEM;
1291 goto out;
1293 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1294 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1295 &length_size);
1296 if (rc) {
1297 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1298 rc);
1299 goto out_free;
1301 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1302 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1303 rc = -EINVAL;
1304 goto out_free;
1306 (*packet_size) += length_size;
1307 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1308 printk(KERN_ERR "Packet size exceeds max\n");
1309 rc = -EINVAL;
1310 goto out_free;
1312 (*new_auth_tok)->session_key.encrypted_key_size =
1313 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1314 if ((*new_auth_tok)->session_key.encrypted_key_size
1315 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1316 printk(KERN_WARNING "Tag 3 packet contains key larger "
1317 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1318 rc = -EINVAL;
1319 goto out_free;
1321 if (unlikely(data[(*packet_size)++] != 0x04)) {
1322 printk(KERN_WARNING "Unknown version number [%d]\n",
1323 data[(*packet_size) - 1]);
1324 rc = -EINVAL;
1325 goto out_free;
1327 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1328 (u16)data[(*packet_size)]);
1329 if (rc)
1330 goto out_free;
1331 /* A little extra work to differentiate among the AES key
1332 * sizes; see RFC2440 */
1333 switch(data[(*packet_size)++]) {
1334 case RFC2440_CIPHER_AES_192:
1335 crypt_stat->key_size = 24;
1336 break;
1337 default:
1338 crypt_stat->key_size =
1339 (*new_auth_tok)->session_key.encrypted_key_size;
1341 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1342 if (rc)
1343 goto out_free;
1344 if (unlikely(data[(*packet_size)++] != 0x03)) {
1345 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1346 rc = -ENOSYS;
1347 goto out_free;
1349 /* TODO: finish the hash mapping */
1350 switch (data[(*packet_size)++]) {
1351 case 0x01: /* See RFC2440 for these numbers and their mappings */
1352 /* Choose MD5 */
1353 memcpy((*new_auth_tok)->token.password.salt,
1354 &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1355 (*packet_size) += ECRYPTFS_SALT_SIZE;
1356 /* This conversion was taken straight from RFC2440 */
1357 (*new_auth_tok)->token.password.hash_iterations =
1358 ((u32) 16 + (data[(*packet_size)] & 15))
1359 << ((data[(*packet_size)] >> 4) + 6);
1360 (*packet_size)++;
1361 /* Friendly reminder:
1362 * (*new_auth_tok)->session_key.encrypted_key_size =
1363 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1364 memcpy((*new_auth_tok)->session_key.encrypted_key,
1365 &data[(*packet_size)],
1366 (*new_auth_tok)->session_key.encrypted_key_size);
1367 (*packet_size) +=
1368 (*new_auth_tok)->session_key.encrypted_key_size;
1369 (*new_auth_tok)->session_key.flags &=
1370 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1371 (*new_auth_tok)->session_key.flags |=
1372 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1373 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1374 break;
1375 default:
1376 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1377 "[%d]\n", data[(*packet_size) - 1]);
1378 rc = -ENOSYS;
1379 goto out_free;
1381 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1382 /* TODO: Parametarize; we might actually want userspace to
1383 * decrypt the session key. */
1384 (*new_auth_tok)->session_key.flags &=
1385 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1386 (*new_auth_tok)->session_key.flags &=
1387 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1388 list_add(&auth_tok_list_item->list, auth_tok_list);
1389 goto out;
1390 out_free:
1391 (*new_auth_tok) = NULL;
1392 memset(auth_tok_list_item, 0,
1393 sizeof(struct ecryptfs_auth_tok_list_item));
1394 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1395 auth_tok_list_item);
1396 out:
1397 if (rc)
1398 (*packet_size) = 0;
1399 return rc;
1403 * parse_tag_11_packet
1404 * @data: The raw bytes of the packet
1405 * @contents: This function writes the data contents of the literal
1406 * packet into this memory location
1407 * @max_contents_bytes: The maximum number of bytes that this function
1408 * is allowed to write into contents
1409 * @tag_11_contents_size: This function writes the size of the parsed
1410 * contents into this memory location; zero on
1411 * error
1412 * @packet_size: This function writes the size of the parsed packet
1413 * into this memory location; zero on error
1414 * @max_packet_size: maximum number of bytes to parse
1416 * Returns zero on success; non-zero on error.
1418 static int
1419 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1420 size_t max_contents_bytes, size_t *tag_11_contents_size,
1421 size_t *packet_size, size_t max_packet_size)
1423 size_t body_size;
1424 size_t length_size;
1425 int rc = 0;
1427 (*packet_size) = 0;
1428 (*tag_11_contents_size) = 0;
1429 /* This format is inspired by OpenPGP; see RFC 2440
1430 * packet tag 11
1432 * Tag 11 identifier (1 byte)
1433 * Max Tag 11 packet size (max 3 bytes)
1434 * Binary format specifier (1 byte)
1435 * Filename length (1 byte)
1436 * Filename ("_CONSOLE") (8 bytes)
1437 * Modification date (4 bytes)
1438 * Literal data (arbitrary)
1440 * We need at least 16 bytes of data for the packet to even be
1441 * valid.
1443 if (max_packet_size < 16) {
1444 printk(KERN_ERR "Maximum packet size too small\n");
1445 rc = -EINVAL;
1446 goto out;
1448 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1449 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1450 rc = -EINVAL;
1451 goto out;
1453 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1454 &length_size);
1455 if (rc) {
1456 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1457 goto out;
1459 if (body_size < 14) {
1460 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1461 rc = -EINVAL;
1462 goto out;
1464 (*packet_size) += length_size;
1465 (*tag_11_contents_size) = (body_size - 14);
1466 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1467 printk(KERN_ERR "Packet size exceeds max\n");
1468 rc = -EINVAL;
1469 goto out;
1471 if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1472 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1473 "expected size\n");
1474 rc = -EINVAL;
1475 goto out;
1477 if (data[(*packet_size)++] != 0x62) {
1478 printk(KERN_WARNING "Unrecognizable packet\n");
1479 rc = -EINVAL;
1480 goto out;
1482 if (data[(*packet_size)++] != 0x08) {
1483 printk(KERN_WARNING "Unrecognizable packet\n");
1484 rc = -EINVAL;
1485 goto out;
1487 (*packet_size) += 12; /* Ignore filename and modification date */
1488 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1489 (*packet_size) += (*tag_11_contents_size);
1490 out:
1491 if (rc) {
1492 (*packet_size) = 0;
1493 (*tag_11_contents_size) = 0;
1495 return rc;
1499 * ecryptfs_verify_version
1500 * @version: The version number to confirm
1502 * Returns zero on good version; non-zero otherwise
1504 static int ecryptfs_verify_version(u16 version)
1506 int rc = 0;
1507 unsigned char major;
1508 unsigned char minor;
1510 major = ((version >> 8) & 0xFF);
1511 minor = (version & 0xFF);
1512 if (major != ECRYPTFS_VERSION_MAJOR) {
1513 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1514 "Expected [%d]; got [%d]\n",
1515 ECRYPTFS_VERSION_MAJOR, major);
1516 rc = -EINVAL;
1517 goto out;
1519 if (minor != ECRYPTFS_VERSION_MINOR) {
1520 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1521 "Expected [%d]; got [%d]\n",
1522 ECRYPTFS_VERSION_MINOR, minor);
1523 rc = -EINVAL;
1524 goto out;
1526 out:
1527 return rc;
1530 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1531 struct ecryptfs_auth_tok **auth_tok,
1532 char *sig)
1534 int rc = 0;
1536 (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1537 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1538 printk(KERN_ERR "Could not find key with description: [%s]\n",
1539 sig);
1540 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1541 (*auth_tok_key) = NULL;
1542 goto out;
1544 (*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1545 if (ecryptfs_verify_version((*auth_tok)->version)) {
1546 printk(KERN_ERR
1547 "Data structure version mismatch. "
1548 "Userspace tools must match eCryptfs "
1549 "kernel module with major version [%d] "
1550 "and minor version [%d]\n",
1551 ECRYPTFS_VERSION_MAJOR,
1552 ECRYPTFS_VERSION_MINOR);
1553 rc = -EINVAL;
1554 goto out;
1556 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1557 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1558 printk(KERN_ERR "Invalid auth_tok structure "
1559 "returned from key query\n");
1560 rc = -EINVAL;
1561 goto out;
1563 out:
1564 return rc;
1568 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1569 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1570 * @crypt_stat: The cryptographic context
1572 * Returns zero on success; non-zero error otherwise
1574 static int
1575 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1576 struct ecryptfs_crypt_stat *crypt_stat)
1578 struct scatterlist dst_sg[2];
1579 struct scatterlist src_sg[2];
1580 struct mutex *tfm_mutex;
1581 struct blkcipher_desc desc = {
1582 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1584 int rc = 0;
1586 if (unlikely(ecryptfs_verbosity > 0)) {
1587 ecryptfs_printk(
1588 KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1589 auth_tok->token.password.session_key_encryption_key_bytes);
1590 ecryptfs_dump_hex(
1591 auth_tok->token.password.session_key_encryption_key,
1592 auth_tok->token.password.session_key_encryption_key_bytes);
1594 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1595 crypt_stat->cipher);
1596 if (unlikely(rc)) {
1597 printk(KERN_ERR "Internal error whilst attempting to get "
1598 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1599 crypt_stat->cipher, rc);
1600 goto out;
1602 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1603 auth_tok->session_key.encrypted_key_size,
1604 src_sg, 2);
1605 if (rc < 1 || rc > 2) {
1606 printk(KERN_ERR "Internal error whilst attempting to convert "
1607 "auth_tok->session_key.encrypted_key to scatterlist; "
1608 "expected rc = 1; got rc = [%d]. "
1609 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1610 auth_tok->session_key.encrypted_key_size);
1611 goto out;
1613 auth_tok->session_key.decrypted_key_size =
1614 auth_tok->session_key.encrypted_key_size;
1615 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1616 auth_tok->session_key.decrypted_key_size,
1617 dst_sg, 2);
1618 if (rc < 1 || rc > 2) {
1619 printk(KERN_ERR "Internal error whilst attempting to convert "
1620 "auth_tok->session_key.decrypted_key to scatterlist; "
1621 "expected rc = 1; got rc = [%d]\n", rc);
1622 goto out;
1624 mutex_lock(tfm_mutex);
1625 rc = crypto_blkcipher_setkey(
1626 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1627 crypt_stat->key_size);
1628 if (unlikely(rc < 0)) {
1629 mutex_unlock(tfm_mutex);
1630 printk(KERN_ERR "Error setting key for crypto context\n");
1631 rc = -EINVAL;
1632 goto out;
1634 rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1635 auth_tok->session_key.encrypted_key_size);
1636 mutex_unlock(tfm_mutex);
1637 if (unlikely(rc)) {
1638 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1639 goto out;
1641 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1642 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1643 auth_tok->session_key.decrypted_key_size);
1644 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1645 if (unlikely(ecryptfs_verbosity > 0)) {
1646 ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1647 crypt_stat->key_size);
1648 ecryptfs_dump_hex(crypt_stat->key,
1649 crypt_stat->key_size);
1651 out:
1652 return rc;
1656 * ecryptfs_parse_packet_set
1657 * @crypt_stat: The cryptographic context
1658 * @src: Virtual address of region of memory containing the packets
1659 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1661 * Get crypt_stat to have the file's session key if the requisite key
1662 * is available to decrypt the session key.
1664 * Returns Zero if a valid authentication token was retrieved and
1665 * processed; negative value for file not encrypted or for error
1666 * conditions.
1668 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1669 unsigned char *src,
1670 struct dentry *ecryptfs_dentry)
1672 size_t i = 0;
1673 size_t found_auth_tok;
1674 size_t next_packet_is_auth_tok_packet;
1675 struct list_head auth_tok_list;
1676 struct ecryptfs_auth_tok *matching_auth_tok;
1677 struct ecryptfs_auth_tok *candidate_auth_tok;
1678 char *candidate_auth_tok_sig;
1679 size_t packet_size;
1680 struct ecryptfs_auth_tok *new_auth_tok;
1681 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1682 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1683 size_t tag_11_contents_size;
1684 size_t tag_11_packet_size;
1685 int rc = 0;
1687 INIT_LIST_HEAD(&auth_tok_list);
1688 /* Parse the header to find as many packets as we can; these will be
1689 * added the our &auth_tok_list */
1690 next_packet_is_auth_tok_packet = 1;
1691 while (next_packet_is_auth_tok_packet) {
1692 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1694 switch (src[i]) {
1695 case ECRYPTFS_TAG_3_PACKET_TYPE:
1696 rc = parse_tag_3_packet(crypt_stat,
1697 (unsigned char *)&src[i],
1698 &auth_tok_list, &new_auth_tok,
1699 &packet_size, max_packet_size);
1700 if (rc) {
1701 ecryptfs_printk(KERN_ERR, "Error parsing "
1702 "tag 3 packet\n");
1703 rc = -EIO;
1704 goto out_wipe_list;
1706 i += packet_size;
1707 rc = parse_tag_11_packet((unsigned char *)&src[i],
1708 sig_tmp_space,
1709 ECRYPTFS_SIG_SIZE,
1710 &tag_11_contents_size,
1711 &tag_11_packet_size,
1712 max_packet_size);
1713 if (rc) {
1714 ecryptfs_printk(KERN_ERR, "No valid "
1715 "(ecryptfs-specific) literal "
1716 "packet containing "
1717 "authentication token "
1718 "signature found after "
1719 "tag 3 packet\n");
1720 rc = -EIO;
1721 goto out_wipe_list;
1723 i += tag_11_packet_size;
1724 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1725 ecryptfs_printk(KERN_ERR, "Expected "
1726 "signature of size [%d]; "
1727 "read size [%d]\n",
1728 ECRYPTFS_SIG_SIZE,
1729 tag_11_contents_size);
1730 rc = -EIO;
1731 goto out_wipe_list;
1733 ecryptfs_to_hex(new_auth_tok->token.password.signature,
1734 sig_tmp_space, tag_11_contents_size);
1735 new_auth_tok->token.password.signature[
1736 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1737 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1738 break;
1739 case ECRYPTFS_TAG_1_PACKET_TYPE:
1740 rc = parse_tag_1_packet(crypt_stat,
1741 (unsigned char *)&src[i],
1742 &auth_tok_list, &new_auth_tok,
1743 &packet_size, max_packet_size);
1744 if (rc) {
1745 ecryptfs_printk(KERN_ERR, "Error parsing "
1746 "tag 1 packet\n");
1747 rc = -EIO;
1748 goto out_wipe_list;
1750 i += packet_size;
1751 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1752 break;
1753 case ECRYPTFS_TAG_11_PACKET_TYPE:
1754 ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1755 "(Tag 11 not allowed by itself)\n");
1756 rc = -EIO;
1757 goto out_wipe_list;
1758 break;
1759 default:
1760 ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1761 "[%d] of the file header; hex value of "
1762 "character is [0x%.2x]\n", i, src[i]);
1763 next_packet_is_auth_tok_packet = 0;
1766 if (list_empty(&auth_tok_list)) {
1767 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1768 "eCryptfs file; this is not supported in this version "
1769 "of the eCryptfs kernel module\n");
1770 rc = -EINVAL;
1771 goto out;
1773 /* auth_tok_list contains the set of authentication tokens
1774 * parsed from the metadata. We need to find a matching
1775 * authentication token that has the secret component(s)
1776 * necessary to decrypt the EFEK in the auth_tok parsed from
1777 * the metadata. There may be several potential matches, but
1778 * just one will be sufficient to decrypt to get the FEK. */
1779 find_next_matching_auth_tok:
1780 found_auth_tok = 0;
1781 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1782 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1783 if (unlikely(ecryptfs_verbosity > 0)) {
1784 ecryptfs_printk(KERN_DEBUG,
1785 "Considering cadidate auth tok:\n");
1786 ecryptfs_dump_auth_tok(candidate_auth_tok);
1788 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1789 candidate_auth_tok);
1790 if (rc) {
1791 printk(KERN_ERR
1792 "Unrecognized candidate auth tok type: [%d]\n",
1793 candidate_auth_tok->token_type);
1794 rc = -EINVAL;
1795 goto out_wipe_list;
1797 ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1798 crypt_stat->mount_crypt_stat,
1799 candidate_auth_tok_sig);
1800 if (matching_auth_tok) {
1801 found_auth_tok = 1;
1802 goto found_matching_auth_tok;
1805 if (!found_auth_tok) {
1806 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1807 "authentication token\n");
1808 rc = -EIO;
1809 goto out_wipe_list;
1811 found_matching_auth_tok:
1812 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1813 memcpy(&(candidate_auth_tok->token.private_key),
1814 &(matching_auth_tok->token.private_key),
1815 sizeof(struct ecryptfs_private_key));
1816 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1817 crypt_stat);
1818 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1819 memcpy(&(candidate_auth_tok->token.password),
1820 &(matching_auth_tok->token.password),
1821 sizeof(struct ecryptfs_password));
1822 rc = decrypt_passphrase_encrypted_session_key(
1823 candidate_auth_tok, crypt_stat);
1825 if (rc) {
1826 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1828 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1829 "session key for authentication token with sig "
1830 "[%.*s]; rc = [%d]. Removing auth tok "
1831 "candidate from the list and searching for "
1832 "the next match.\n", candidate_auth_tok_sig,
1833 ECRYPTFS_SIG_SIZE_HEX, rc);
1834 list_for_each_entry_safe(auth_tok_list_item,
1835 auth_tok_list_item_tmp,
1836 &auth_tok_list, list) {
1837 if (candidate_auth_tok
1838 == &auth_tok_list_item->auth_tok) {
1839 list_del(&auth_tok_list_item->list);
1840 kmem_cache_free(
1841 ecryptfs_auth_tok_list_item_cache,
1842 auth_tok_list_item);
1843 goto find_next_matching_auth_tok;
1846 BUG();
1848 rc = ecryptfs_compute_root_iv(crypt_stat);
1849 if (rc) {
1850 ecryptfs_printk(KERN_ERR, "Error computing "
1851 "the root IV\n");
1852 goto out_wipe_list;
1854 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1855 if (rc) {
1856 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1857 "context for cipher [%s]; rc = [%d]\n",
1858 crypt_stat->cipher, rc);
1860 out_wipe_list:
1861 wipe_auth_tok_list(&auth_tok_list);
1862 out:
1863 return rc;
1866 static int
1867 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1868 struct ecryptfs_crypt_stat *crypt_stat,
1869 struct ecryptfs_key_record *key_rec)
1871 struct ecryptfs_msg_ctx *msg_ctx = NULL;
1872 char *payload = NULL;
1873 size_t payload_len;
1874 struct ecryptfs_message *msg;
1875 int rc;
1877 rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1878 ecryptfs_code_for_cipher_string(
1879 crypt_stat->cipher,
1880 crypt_stat->key_size),
1881 crypt_stat, &payload, &payload_len);
1882 if (rc) {
1883 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1884 goto out;
1886 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1887 if (rc) {
1888 ecryptfs_printk(KERN_ERR, "Error sending message to "
1889 "ecryptfsd\n");
1890 goto out;
1892 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1893 if (rc) {
1894 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1895 "from the user space daemon\n");
1896 rc = -EIO;
1897 goto out;
1899 rc = parse_tag_67_packet(key_rec, msg);
1900 if (rc)
1901 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1902 kfree(msg);
1903 out:
1904 kfree(payload);
1905 return rc;
1908 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1909 * @dest: Buffer into which to write the packet
1910 * @remaining_bytes: Maximum number of bytes that can be writtn
1911 * @auth_tok: The authentication token used for generating the tag 1 packet
1912 * @crypt_stat: The cryptographic context
1913 * @key_rec: The key record struct for the tag 1 packet
1914 * @packet_size: This function will write the number of bytes that end
1915 * up constituting the packet; set to zero on error
1917 * Returns zero on success; non-zero on error.
1919 static int
1920 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1921 struct ecryptfs_auth_tok *auth_tok,
1922 struct ecryptfs_crypt_stat *crypt_stat,
1923 struct ecryptfs_key_record *key_rec, size_t *packet_size)
1925 size_t i;
1926 size_t encrypted_session_key_valid = 0;
1927 size_t packet_size_length;
1928 size_t max_packet_size;
1929 int rc = 0;
1931 (*packet_size) = 0;
1932 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1933 ECRYPTFS_SIG_SIZE);
1934 encrypted_session_key_valid = 0;
1935 for (i = 0; i < crypt_stat->key_size; i++)
1936 encrypted_session_key_valid |=
1937 auth_tok->session_key.encrypted_key[i];
1938 if (encrypted_session_key_valid) {
1939 memcpy(key_rec->enc_key,
1940 auth_tok->session_key.encrypted_key,
1941 auth_tok->session_key.encrypted_key_size);
1942 goto encrypted_session_key_set;
1944 if (auth_tok->session_key.encrypted_key_size == 0)
1945 auth_tok->session_key.encrypted_key_size =
1946 auth_tok->token.private_key.key_size;
1947 rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1948 if (rc) {
1949 printk(KERN_ERR "Failed to encrypt session key via a key "
1950 "module; rc = [%d]\n", rc);
1951 goto out;
1953 if (ecryptfs_verbosity > 0) {
1954 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1955 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1957 encrypted_session_key_set:
1958 /* This format is inspired by OpenPGP; see RFC 2440
1959 * packet tag 1 */
1960 max_packet_size = (1 /* Tag 1 identifier */
1961 + 3 /* Max Tag 1 packet size */
1962 + 1 /* Version */
1963 + ECRYPTFS_SIG_SIZE /* Key identifier */
1964 + 1 /* Cipher identifier */
1965 + key_rec->enc_key_size); /* Encrypted key size */
1966 if (max_packet_size > (*remaining_bytes)) {
1967 printk(KERN_ERR "Packet length larger than maximum allowable; "
1968 "need up to [%td] bytes, but there are only [%td] "
1969 "available\n", max_packet_size, (*remaining_bytes));
1970 rc = -EINVAL;
1971 goto out;
1973 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1974 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1975 (max_packet_size - 4),
1976 &packet_size_length);
1977 if (rc) {
1978 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1979 "header; cannot generate packet length\n");
1980 goto out;
1982 (*packet_size) += packet_size_length;
1983 dest[(*packet_size)++] = 0x03; /* version 3 */
1984 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1985 (*packet_size) += ECRYPTFS_SIG_SIZE;
1986 dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1987 memcpy(&dest[(*packet_size)], key_rec->enc_key,
1988 key_rec->enc_key_size);
1989 (*packet_size) += key_rec->enc_key_size;
1990 out:
1991 if (rc)
1992 (*packet_size) = 0;
1993 else
1994 (*remaining_bytes) -= (*packet_size);
1995 return rc;
1999 * write_tag_11_packet
2000 * @dest: Target into which Tag 11 packet is to be written
2001 * @remaining_bytes: Maximum packet length
2002 * @contents: Byte array of contents to copy in
2003 * @contents_length: Number of bytes in contents
2004 * @packet_length: Length of the Tag 11 packet written; zero on error
2006 * Returns zero on success; non-zero on error.
2008 static int
2009 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2010 size_t contents_length, size_t *packet_length)
2012 size_t packet_size_length;
2013 size_t max_packet_size;
2014 int rc = 0;
2016 (*packet_length) = 0;
2017 /* This format is inspired by OpenPGP; see RFC 2440
2018 * packet tag 11 */
2019 max_packet_size = (1 /* Tag 11 identifier */
2020 + 3 /* Max Tag 11 packet size */
2021 + 1 /* Binary format specifier */
2022 + 1 /* Filename length */
2023 + 8 /* Filename ("_CONSOLE") */
2024 + 4 /* Modification date */
2025 + contents_length); /* Literal data */
2026 if (max_packet_size > (*remaining_bytes)) {
2027 printk(KERN_ERR "Packet length larger than maximum allowable; "
2028 "need up to [%td] bytes, but there are only [%td] "
2029 "available\n", max_packet_size, (*remaining_bytes));
2030 rc = -EINVAL;
2031 goto out;
2033 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2034 rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2035 (max_packet_size - 4),
2036 &packet_size_length);
2037 if (rc) {
2038 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2039 "generate packet length. rc = [%d]\n", rc);
2040 goto out;
2042 (*packet_length) += packet_size_length;
2043 dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2044 dest[(*packet_length)++] = 8;
2045 memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2046 (*packet_length) += 8;
2047 memset(&dest[(*packet_length)], 0x00, 4);
2048 (*packet_length) += 4;
2049 memcpy(&dest[(*packet_length)], contents, contents_length);
2050 (*packet_length) += contents_length;
2051 out:
2052 if (rc)
2053 (*packet_length) = 0;
2054 else
2055 (*remaining_bytes) -= (*packet_length);
2056 return rc;
2060 * write_tag_3_packet
2061 * @dest: Buffer into which to write the packet
2062 * @remaining_bytes: Maximum number of bytes that can be written
2063 * @auth_tok: Authentication token
2064 * @crypt_stat: The cryptographic context
2065 * @key_rec: encrypted key
2066 * @packet_size: This function will write the number of bytes that end
2067 * up constituting the packet; set to zero on error
2069 * Returns zero on success; non-zero on error.
2071 static int
2072 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2073 struct ecryptfs_auth_tok *auth_tok,
2074 struct ecryptfs_crypt_stat *crypt_stat,
2075 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2077 size_t i;
2078 size_t encrypted_session_key_valid = 0;
2079 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2080 struct scatterlist dst_sg[2];
2081 struct scatterlist src_sg[2];
2082 struct mutex *tfm_mutex = NULL;
2083 u8 cipher_code;
2084 size_t packet_size_length;
2085 size_t max_packet_size;
2086 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2087 crypt_stat->mount_crypt_stat;
2088 struct blkcipher_desc desc = {
2089 .tfm = NULL,
2090 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
2092 int rc = 0;
2094 (*packet_size) = 0;
2095 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2096 ECRYPTFS_SIG_SIZE);
2097 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2098 crypt_stat->cipher);
2099 if (unlikely(rc)) {
2100 printk(KERN_ERR "Internal error whilst attempting to get "
2101 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2102 crypt_stat->cipher, rc);
2103 goto out;
2105 if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2106 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2108 printk(KERN_WARNING "No key size specified at mount; "
2109 "defaulting to [%d]\n", alg->max_keysize);
2110 mount_crypt_stat->global_default_cipher_key_size =
2111 alg->max_keysize;
2113 if (crypt_stat->key_size == 0)
2114 crypt_stat->key_size =
2115 mount_crypt_stat->global_default_cipher_key_size;
2116 if (auth_tok->session_key.encrypted_key_size == 0)
2117 auth_tok->session_key.encrypted_key_size =
2118 crypt_stat->key_size;
2119 if (crypt_stat->key_size == 24
2120 && strcmp("aes", crypt_stat->cipher) == 0) {
2121 memset((crypt_stat->key + 24), 0, 8);
2122 auth_tok->session_key.encrypted_key_size = 32;
2123 } else
2124 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2125 key_rec->enc_key_size =
2126 auth_tok->session_key.encrypted_key_size;
2127 encrypted_session_key_valid = 0;
2128 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2129 encrypted_session_key_valid |=
2130 auth_tok->session_key.encrypted_key[i];
2131 if (encrypted_session_key_valid) {
2132 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2133 "using auth_tok->session_key.encrypted_key, "
2134 "where key_rec->enc_key_size = [%d]\n",
2135 key_rec->enc_key_size);
2136 memcpy(key_rec->enc_key,
2137 auth_tok->session_key.encrypted_key,
2138 key_rec->enc_key_size);
2139 goto encrypted_session_key_set;
2141 if (auth_tok->token.password.flags &
2142 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2143 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2144 "session key encryption key of size [%d]\n",
2145 auth_tok->token.password.
2146 session_key_encryption_key_bytes);
2147 memcpy(session_key_encryption_key,
2148 auth_tok->token.password.session_key_encryption_key,
2149 crypt_stat->key_size);
2150 ecryptfs_printk(KERN_DEBUG,
2151 "Cached session key " "encryption key: \n");
2152 if (ecryptfs_verbosity > 0)
2153 ecryptfs_dump_hex(session_key_encryption_key, 16);
2155 if (unlikely(ecryptfs_verbosity > 0)) {
2156 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2157 ecryptfs_dump_hex(session_key_encryption_key, 16);
2159 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2160 src_sg, 2);
2161 if (rc < 1 || rc > 2) {
2162 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2163 "for crypt_stat session key; expected rc = 1; "
2164 "got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2165 rc, key_rec->enc_key_size);
2166 rc = -ENOMEM;
2167 goto out;
2169 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2170 dst_sg, 2);
2171 if (rc < 1 || rc > 2) {
2172 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2173 "for crypt_stat encrypted session key; "
2174 "expected rc = 1; got rc = [%d]. "
2175 "key_rec->enc_key_size = [%d]\n", rc,
2176 key_rec->enc_key_size);
2177 rc = -ENOMEM;
2178 goto out;
2180 mutex_lock(tfm_mutex);
2181 rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2182 crypt_stat->key_size);
2183 if (rc < 0) {
2184 mutex_unlock(tfm_mutex);
2185 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2186 "context; rc = [%d]\n", rc);
2187 goto out;
2189 rc = 0;
2190 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2191 crypt_stat->key_size);
2192 rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2193 (*key_rec).enc_key_size);
2194 mutex_unlock(tfm_mutex);
2195 if (rc) {
2196 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2197 goto out;
2199 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2200 if (ecryptfs_verbosity > 0) {
2201 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2202 key_rec->enc_key_size);
2203 ecryptfs_dump_hex(key_rec->enc_key,
2204 key_rec->enc_key_size);
2206 encrypted_session_key_set:
2207 /* This format is inspired by OpenPGP; see RFC 2440
2208 * packet tag 3 */
2209 max_packet_size = (1 /* Tag 3 identifier */
2210 + 3 /* Max Tag 3 packet size */
2211 + 1 /* Version */
2212 + 1 /* Cipher code */
2213 + 1 /* S2K specifier */
2214 + 1 /* Hash identifier */
2215 + ECRYPTFS_SALT_SIZE /* Salt */
2216 + 1 /* Hash iterations */
2217 + key_rec->enc_key_size); /* Encrypted key size */
2218 if (max_packet_size > (*remaining_bytes)) {
2219 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2220 "there are only [%td] available\n", max_packet_size,
2221 (*remaining_bytes));
2222 rc = -EINVAL;
2223 goto out;
2225 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2226 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2227 * to get the number of octets in the actual Tag 3 packet */
2228 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2229 (max_packet_size - 4),
2230 &packet_size_length);
2231 if (rc) {
2232 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2233 "generate packet length. rc = [%d]\n", rc);
2234 goto out;
2236 (*packet_size) += packet_size_length;
2237 dest[(*packet_size)++] = 0x04; /* version 4 */
2238 /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2239 * specified with strings */
2240 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2241 crypt_stat->key_size);
2242 if (cipher_code == 0) {
2243 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2244 "cipher [%s]\n", crypt_stat->cipher);
2245 rc = -EINVAL;
2246 goto out;
2248 dest[(*packet_size)++] = cipher_code;
2249 dest[(*packet_size)++] = 0x03; /* S2K */
2250 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */
2251 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2252 ECRYPTFS_SALT_SIZE);
2253 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */
2254 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */
2255 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2256 key_rec->enc_key_size);
2257 (*packet_size) += key_rec->enc_key_size;
2258 out:
2259 if (rc)
2260 (*packet_size) = 0;
2261 else
2262 (*remaining_bytes) -= (*packet_size);
2263 return rc;
2266 struct kmem_cache *ecryptfs_key_record_cache;
2269 * ecryptfs_generate_key_packet_set
2270 * @dest_base: Virtual address from which to write the key record set
2271 * @crypt_stat: The cryptographic context from which the
2272 * authentication tokens will be retrieved
2273 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2274 * for the global parameters
2275 * @len: The amount written
2276 * @max: The maximum amount of data allowed to be written
2278 * Generates a key packet set and writes it to the virtual address
2279 * passed in.
2281 * Returns zero on success; non-zero on error.
2284 ecryptfs_generate_key_packet_set(char *dest_base,
2285 struct ecryptfs_crypt_stat *crypt_stat,
2286 struct dentry *ecryptfs_dentry, size_t *len,
2287 size_t max)
2289 struct ecryptfs_auth_tok *auth_tok;
2290 struct ecryptfs_global_auth_tok *global_auth_tok;
2291 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2292 &ecryptfs_superblock_to_private(
2293 ecryptfs_dentry->d_sb)->mount_crypt_stat;
2294 size_t written;
2295 struct ecryptfs_key_record *key_rec;
2296 struct ecryptfs_key_sig *key_sig;
2297 int rc = 0;
2299 (*len) = 0;
2300 mutex_lock(&crypt_stat->keysig_list_mutex);
2301 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2302 if (!key_rec) {
2303 rc = -ENOMEM;
2304 goto out;
2306 list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2307 crypt_stat_list) {
2308 memset(key_rec, 0, sizeof(*key_rec));
2309 rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2310 mount_crypt_stat,
2311 key_sig->keysig);
2312 if (rc) {
2313 printk(KERN_ERR "Error attempting to get the global "
2314 "auth_tok; rc = [%d]\n", rc);
2315 goto out_free;
2317 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2318 printk(KERN_WARNING
2319 "Skipping invalid auth tok with sig = [%s]\n",
2320 global_auth_tok->sig);
2321 continue;
2323 auth_tok = global_auth_tok->global_auth_tok;
2324 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2325 rc = write_tag_3_packet((dest_base + (*len)),
2326 &max, auth_tok,
2327 crypt_stat, key_rec,
2328 &written);
2329 if (rc) {
2330 ecryptfs_printk(KERN_WARNING, "Error "
2331 "writing tag 3 packet\n");
2332 goto out_free;
2334 (*len) += written;
2335 /* Write auth tok signature packet */
2336 rc = write_tag_11_packet((dest_base + (*len)), &max,
2337 key_rec->sig,
2338 ECRYPTFS_SIG_SIZE, &written);
2339 if (rc) {
2340 ecryptfs_printk(KERN_ERR, "Error writing "
2341 "auth tok signature packet\n");
2342 goto out_free;
2344 (*len) += written;
2345 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2346 rc = write_tag_1_packet(dest_base + (*len),
2347 &max, auth_tok,
2348 crypt_stat, key_rec, &written);
2349 if (rc) {
2350 ecryptfs_printk(KERN_WARNING, "Error "
2351 "writing tag 1 packet\n");
2352 goto out_free;
2354 (*len) += written;
2355 } else {
2356 ecryptfs_printk(KERN_WARNING, "Unsupported "
2357 "authentication token type\n");
2358 rc = -EINVAL;
2359 goto out_free;
2362 if (likely(max > 0)) {
2363 dest_base[(*len)] = 0x00;
2364 } else {
2365 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2366 rc = -EIO;
2368 out_free:
2369 kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2370 out:
2371 if (rc)
2372 (*len) = 0;
2373 mutex_unlock(&crypt_stat->keysig_list_mutex);
2374 return rc;
2377 struct kmem_cache *ecryptfs_key_sig_cache;
2379 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2381 struct ecryptfs_key_sig *new_key_sig;
2383 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2384 if (!new_key_sig) {
2385 printk(KERN_ERR
2386 "Error allocating from ecryptfs_key_sig_cache\n");
2387 return -ENOMEM;
2389 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2390 /* Caller must hold keysig_list_mutex */
2391 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2393 return 0;
2396 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2399 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2400 char *sig, u32 global_auth_tok_flags)
2402 struct ecryptfs_global_auth_tok *new_auth_tok;
2403 int rc = 0;
2405 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2406 GFP_KERNEL);
2407 if (!new_auth_tok) {
2408 rc = -ENOMEM;
2409 printk(KERN_ERR "Error allocating from "
2410 "ecryptfs_global_auth_tok_cache\n");
2411 goto out;
2413 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2414 new_auth_tok->flags = global_auth_tok_flags;
2415 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2416 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2417 list_add(&new_auth_tok->mount_crypt_stat_list,
2418 &mount_crypt_stat->global_auth_tok_list);
2419 mount_crypt_stat->num_global_auth_toks++;
2420 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2421 out:
2422 return rc;