xhci: Fix USB 3.0 device restart on resume.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / host / xhci-ring.c
blobee0b4d771a5782f2b2072d8bc83faa04a1320278
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
82 unsigned long segment_offset;
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
129 static void next_trb(struct xhci_hcd *xhci,
130 struct xhci_ring *ring,
131 struct xhci_segment **seg,
132 union xhci_trb **trb)
134 if (last_trb(xhci, ring, *seg, *trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
148 union xhci_trb *next = ++(ring->dequeue);
149 unsigned long long addr;
151 ring->deq_updates++;
152 /* Update the dequeue pointer further if that was a link TRB or we're at
153 * the end of an event ring segment (which doesn't have link TRBS)
155 while (last_trb(xhci, ring, ring->deq_seg, next)) {
156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
157 ring->cycle_state = (ring->cycle_state ? 0 : 1);
158 if (!in_interrupt())
159 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
160 ring,
161 (unsigned int) ring->cycle_state);
163 ring->deq_seg = ring->deq_seg->next;
164 ring->dequeue = ring->deq_seg->trbs;
165 next = ring->dequeue;
167 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
171 * See Cycle bit rules. SW is the consumer for the event ring only.
172 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
174 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
175 * chain bit is set), then set the chain bit in all the following link TRBs.
176 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
177 * have their chain bit cleared (so that each Link TRB is a separate TD).
179 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
180 * set, but other sections talk about dealing with the chain bit set. This was
181 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
182 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
184 * @more_trbs_coming: Will you enqueue more TRBs before calling
185 * prepare_transfer()?
187 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
188 bool consumer, bool more_trbs_coming, bool isoc)
190 u32 chain;
191 union xhci_trb *next;
192 unsigned long long addr;
194 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195 next = ++(ring->enqueue);
197 ring->enq_updates++;
198 /* Update the dequeue pointer further if that was a link TRB or we're at
199 * the end of an event ring segment (which doesn't have link TRBS)
201 while (last_trb(xhci, ring, ring->enq_seg, next)) {
202 if (!consumer) {
203 if (ring != xhci->event_ring) {
205 * If the caller doesn't plan on enqueueing more
206 * TDs before ringing the doorbell, then we
207 * don't want to give the link TRB to the
208 * hardware just yet. We'll give the link TRB
209 * back in prepare_ring() just before we enqueue
210 * the TD at the top of the ring.
212 if (!chain && !more_trbs_coming)
213 break;
215 /* If we're not dealing with 0.95 hardware or
216 * isoc rings on AMD 0.96 host,
217 * carry over the chain bit of the previous TRB
218 * (which may mean the chain bit is cleared).
220 if (!(isoc && (xhci->quirks & XHCI_AMD_0x96_HOST))
221 && !xhci_link_trb_quirk(xhci)) {
222 next->link.control &=
223 cpu_to_le32(~TRB_CHAIN);
224 next->link.control |=
225 cpu_to_le32(chain);
227 /* Give this link TRB to the hardware */
228 wmb();
229 next->link.control ^= cpu_to_le32(TRB_CYCLE);
231 /* Toggle the cycle bit after the last ring segment. */
232 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
233 ring->cycle_state = (ring->cycle_state ? 0 : 1);
234 if (!in_interrupt())
235 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
236 ring,
237 (unsigned int) ring->cycle_state);
240 ring->enq_seg = ring->enq_seg->next;
241 ring->enqueue = ring->enq_seg->trbs;
242 next = ring->enqueue;
244 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
248 * Check to see if there's room to enqueue num_trbs on the ring. See rules
249 * above.
250 * FIXME: this would be simpler and faster if we just kept track of the number
251 * of free TRBs in a ring.
253 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
254 unsigned int num_trbs)
256 int i;
257 union xhci_trb *enq = ring->enqueue;
258 struct xhci_segment *enq_seg = ring->enq_seg;
259 struct xhci_segment *cur_seg;
260 unsigned int left_on_ring;
262 /* If we are currently pointing to a link TRB, advance the
263 * enqueue pointer before checking for space */
264 while (last_trb(xhci, ring, enq_seg, enq)) {
265 enq_seg = enq_seg->next;
266 enq = enq_seg->trbs;
269 /* Check if ring is empty */
270 if (enq == ring->dequeue) {
271 /* Can't use link trbs */
272 left_on_ring = TRBS_PER_SEGMENT - 1;
273 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
274 cur_seg = cur_seg->next)
275 left_on_ring += TRBS_PER_SEGMENT - 1;
277 /* Always need one TRB free in the ring. */
278 left_on_ring -= 1;
279 if (num_trbs > left_on_ring) {
280 xhci_warn(xhci, "Not enough room on ring; "
281 "need %u TRBs, %u TRBs left\n",
282 num_trbs, left_on_ring);
283 return 0;
285 return 1;
287 /* Make sure there's an extra empty TRB available */
288 for (i = 0; i <= num_trbs; ++i) {
289 if (enq == ring->dequeue)
290 return 0;
291 enq++;
292 while (last_trb(xhci, ring, enq_seg, enq)) {
293 enq_seg = enq_seg->next;
294 enq = enq_seg->trbs;
297 return 1;
300 /* Ring the host controller doorbell after placing a command on the ring */
301 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
303 xhci_dbg(xhci, "// Ding dong!\n");
304 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
305 /* Flush PCI posted writes */
306 xhci_readl(xhci, &xhci->dba->doorbell[0]);
309 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
310 unsigned int slot_id,
311 unsigned int ep_index,
312 unsigned int stream_id)
314 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
315 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
316 unsigned int ep_state = ep->ep_state;
318 /* Don't ring the doorbell for this endpoint if there are pending
319 * cancellations because we don't want to interrupt processing.
320 * We don't want to restart any stream rings if there's a set dequeue
321 * pointer command pending because the device can choose to start any
322 * stream once the endpoint is on the HW schedule.
323 * FIXME - check all the stream rings for pending cancellations.
325 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
326 (ep_state & EP_HALTED))
327 return;
328 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
329 /* The CPU has better things to do at this point than wait for a
330 * write-posting flush. It'll get there soon enough.
334 /* Ring the doorbell for any rings with pending URBs */
335 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
336 unsigned int slot_id,
337 unsigned int ep_index)
339 unsigned int stream_id;
340 struct xhci_virt_ep *ep;
342 ep = &xhci->devs[slot_id]->eps[ep_index];
344 /* A ring has pending URBs if its TD list is not empty */
345 if (!(ep->ep_state & EP_HAS_STREAMS)) {
346 if (!(list_empty(&ep->ring->td_list)))
347 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
348 return;
351 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
352 stream_id++) {
353 struct xhci_stream_info *stream_info = ep->stream_info;
354 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
355 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
356 stream_id);
361 * Find the segment that trb is in. Start searching in start_seg.
362 * If we must move past a segment that has a link TRB with a toggle cycle state
363 * bit set, then we will toggle the value pointed at by cycle_state.
365 static struct xhci_segment *find_trb_seg(
366 struct xhci_segment *start_seg,
367 union xhci_trb *trb, int *cycle_state)
369 struct xhci_segment *cur_seg = start_seg;
370 struct xhci_generic_trb *generic_trb;
372 while (cur_seg->trbs > trb ||
373 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
374 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
375 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
376 *cycle_state ^= 0x1;
377 cur_seg = cur_seg->next;
378 if (cur_seg == start_seg)
379 /* Looped over the entire list. Oops! */
380 return NULL;
382 return cur_seg;
386 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
387 unsigned int slot_id, unsigned int ep_index,
388 unsigned int stream_id)
390 struct xhci_virt_ep *ep;
392 ep = &xhci->devs[slot_id]->eps[ep_index];
393 /* Common case: no streams */
394 if (!(ep->ep_state & EP_HAS_STREAMS))
395 return ep->ring;
397 if (stream_id == 0) {
398 xhci_warn(xhci,
399 "WARN: Slot ID %u, ep index %u has streams, "
400 "but URB has no stream ID.\n",
401 slot_id, ep_index);
402 return NULL;
405 if (stream_id < ep->stream_info->num_streams)
406 return ep->stream_info->stream_rings[stream_id];
408 xhci_warn(xhci,
409 "WARN: Slot ID %u, ep index %u has "
410 "stream IDs 1 to %u allocated, "
411 "but stream ID %u is requested.\n",
412 slot_id, ep_index,
413 ep->stream_info->num_streams - 1,
414 stream_id);
415 return NULL;
418 /* Get the right ring for the given URB.
419 * If the endpoint supports streams, boundary check the URB's stream ID.
420 * If the endpoint doesn't support streams, return the singular endpoint ring.
422 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
423 struct urb *urb)
425 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
426 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
430 * Move the xHC's endpoint ring dequeue pointer past cur_td.
431 * Record the new state of the xHC's endpoint ring dequeue segment,
432 * dequeue pointer, and new consumer cycle state in state.
433 * Update our internal representation of the ring's dequeue pointer.
435 * We do this in three jumps:
436 * - First we update our new ring state to be the same as when the xHC stopped.
437 * - Then we traverse the ring to find the segment that contains
438 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
439 * any link TRBs with the toggle cycle bit set.
440 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
441 * if we've moved it past a link TRB with the toggle cycle bit set.
443 * Some of the uses of xhci_generic_trb are grotty, but if they're done
444 * with correct __le32 accesses they should work fine. Only users of this are
445 * in here.
447 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
448 unsigned int slot_id, unsigned int ep_index,
449 unsigned int stream_id, struct xhci_td *cur_td,
450 struct xhci_dequeue_state *state)
452 struct xhci_virt_device *dev = xhci->devs[slot_id];
453 struct xhci_ring *ep_ring;
454 struct xhci_generic_trb *trb;
455 struct xhci_ep_ctx *ep_ctx;
456 dma_addr_t addr;
458 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
459 ep_index, stream_id);
460 if (!ep_ring) {
461 xhci_warn(xhci, "WARN can't find new dequeue state "
462 "for invalid stream ID %u.\n",
463 stream_id);
464 return;
466 state->new_cycle_state = 0;
467 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
468 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
469 dev->eps[ep_index].stopped_trb,
470 &state->new_cycle_state);
471 if (!state->new_deq_seg) {
472 WARN_ON(1);
473 return;
476 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
477 xhci_dbg(xhci, "Finding endpoint context\n");
478 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
479 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
481 state->new_deq_ptr = cur_td->last_trb;
482 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
483 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
484 state->new_deq_ptr,
485 &state->new_cycle_state);
486 if (!state->new_deq_seg) {
487 WARN_ON(1);
488 return;
491 trb = &state->new_deq_ptr->generic;
492 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
493 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
494 state->new_cycle_state ^= 0x1;
495 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
498 * If there is only one segment in a ring, find_trb_seg()'s while loop
499 * will not run, and it will return before it has a chance to see if it
500 * needs to toggle the cycle bit. It can't tell if the stalled transfer
501 * ended just before the link TRB on a one-segment ring, or if the TD
502 * wrapped around the top of the ring, because it doesn't have the TD in
503 * question. Look for the one-segment case where stalled TRB's address
504 * is greater than the new dequeue pointer address.
506 if (ep_ring->first_seg == ep_ring->first_seg->next &&
507 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
508 state->new_cycle_state ^= 0x1;
509 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
511 /* Don't update the ring cycle state for the producer (us). */
512 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
513 state->new_deq_seg);
514 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
515 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
516 (unsigned long long) addr);
519 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
520 * (The last TRB actually points to the ring enqueue pointer, which is not part
521 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
523 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
524 struct xhci_td *cur_td, bool flip_cycle)
526 struct xhci_segment *cur_seg;
527 union xhci_trb *cur_trb;
529 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
530 true;
531 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
532 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
533 /* Unchain any chained Link TRBs, but
534 * leave the pointers intact.
536 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
537 /* Flip the cycle bit (link TRBs can't be the first
538 * or last TRB).
540 if (flip_cycle)
541 cur_trb->generic.field[3] ^=
542 cpu_to_le32(TRB_CYCLE);
543 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
544 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
545 "in seg %p (0x%llx dma)\n",
546 cur_trb,
547 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
548 cur_seg,
549 (unsigned long long)cur_seg->dma);
550 } else {
551 cur_trb->generic.field[0] = 0;
552 cur_trb->generic.field[1] = 0;
553 cur_trb->generic.field[2] = 0;
554 /* Preserve only the cycle bit of this TRB */
555 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
556 /* Flip the cycle bit except on the first or last TRB */
557 if (flip_cycle && cur_trb != cur_td->first_trb &&
558 cur_trb != cur_td->last_trb)
559 cur_trb->generic.field[3] ^=
560 cpu_to_le32(TRB_CYCLE);
561 cur_trb->generic.field[3] |= cpu_to_le32(
562 TRB_TYPE(TRB_TR_NOOP));
563 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
564 "in seg %p (0x%llx dma)\n",
565 cur_trb,
566 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
567 cur_seg,
568 (unsigned long long)cur_seg->dma);
570 if (cur_trb == cur_td->last_trb)
571 break;
575 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
576 unsigned int ep_index, unsigned int stream_id,
577 struct xhci_segment *deq_seg,
578 union xhci_trb *deq_ptr, u32 cycle_state);
580 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
581 unsigned int slot_id, unsigned int ep_index,
582 unsigned int stream_id,
583 struct xhci_dequeue_state *deq_state)
585 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
587 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
588 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
589 deq_state->new_deq_seg,
590 (unsigned long long)deq_state->new_deq_seg->dma,
591 deq_state->new_deq_ptr,
592 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
593 deq_state->new_cycle_state);
594 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
595 deq_state->new_deq_seg,
596 deq_state->new_deq_ptr,
597 (u32) deq_state->new_cycle_state);
598 /* Stop the TD queueing code from ringing the doorbell until
599 * this command completes. The HC won't set the dequeue pointer
600 * if the ring is running, and ringing the doorbell starts the
601 * ring running.
603 ep->ep_state |= SET_DEQ_PENDING;
606 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
607 struct xhci_virt_ep *ep)
609 ep->ep_state &= ~EP_HALT_PENDING;
610 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
611 * timer is running on another CPU, we don't decrement stop_cmds_pending
612 * (since we didn't successfully stop the watchdog timer).
614 if (del_timer(&ep->stop_cmd_timer))
615 ep->stop_cmds_pending--;
618 /* Must be called with xhci->lock held in interrupt context */
619 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
620 struct xhci_td *cur_td, int status, char *adjective)
622 struct usb_hcd *hcd;
623 struct urb *urb;
624 struct urb_priv *urb_priv;
626 urb = cur_td->urb;
627 urb_priv = urb->hcpriv;
628 urb_priv->td_cnt++;
629 hcd = bus_to_hcd(urb->dev->bus);
631 /* Only giveback urb when this is the last td in urb */
632 if (urb_priv->td_cnt == urb_priv->length) {
633 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
634 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
635 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
636 if (xhci->quirks & XHCI_AMD_PLL_FIX)
637 usb_amd_quirk_pll_enable();
640 usb_hcd_unlink_urb_from_ep(hcd, urb);
642 spin_unlock(&xhci->lock);
643 usb_hcd_giveback_urb(hcd, urb, status);
644 xhci_urb_free_priv(xhci, urb_priv);
645 spin_lock(&xhci->lock);
650 * When we get a command completion for a Stop Endpoint Command, we need to
651 * unlink any cancelled TDs from the ring. There are two ways to do that:
653 * 1. If the HW was in the middle of processing the TD that needs to be
654 * cancelled, then we must move the ring's dequeue pointer past the last TRB
655 * in the TD with a Set Dequeue Pointer Command.
656 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
657 * bit cleared) so that the HW will skip over them.
659 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
660 union xhci_trb *trb, struct xhci_event_cmd *event)
662 unsigned int slot_id;
663 unsigned int ep_index;
664 struct xhci_virt_device *virt_dev;
665 struct xhci_ring *ep_ring;
666 struct xhci_virt_ep *ep;
667 struct list_head *entry;
668 struct xhci_td *cur_td = NULL;
669 struct xhci_td *last_unlinked_td;
671 struct xhci_dequeue_state deq_state;
673 if (unlikely(TRB_TO_SUSPEND_PORT(
674 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
675 slot_id = TRB_TO_SLOT_ID(
676 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
677 virt_dev = xhci->devs[slot_id];
678 if (virt_dev)
679 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
680 event);
681 else
682 xhci_warn(xhci, "Stop endpoint command "
683 "completion for disabled slot %u\n",
684 slot_id);
685 return;
688 memset(&deq_state, 0, sizeof(deq_state));
689 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
690 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
691 ep = &xhci->devs[slot_id]->eps[ep_index];
693 if (list_empty(&ep->cancelled_td_list)) {
694 xhci_stop_watchdog_timer_in_irq(xhci, ep);
695 ep->stopped_td = NULL;
696 ep->stopped_trb = NULL;
697 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
698 return;
701 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
702 * We have the xHCI lock, so nothing can modify this list until we drop
703 * it. We're also in the event handler, so we can't get re-interrupted
704 * if another Stop Endpoint command completes
706 list_for_each(entry, &ep->cancelled_td_list) {
707 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
708 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
709 cur_td->first_trb,
710 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
711 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
712 if (!ep_ring) {
713 /* This shouldn't happen unless a driver is mucking
714 * with the stream ID after submission. This will
715 * leave the TD on the hardware ring, and the hardware
716 * will try to execute it, and may access a buffer
717 * that has already been freed. In the best case, the
718 * hardware will execute it, and the event handler will
719 * ignore the completion event for that TD, since it was
720 * removed from the td_list for that endpoint. In
721 * short, don't muck with the stream ID after
722 * submission.
724 xhci_warn(xhci, "WARN Cancelled URB %p "
725 "has invalid stream ID %u.\n",
726 cur_td->urb,
727 cur_td->urb->stream_id);
728 goto remove_finished_td;
731 * If we stopped on the TD we need to cancel, then we have to
732 * move the xHC endpoint ring dequeue pointer past this TD.
734 if (cur_td == ep->stopped_td)
735 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
736 cur_td->urb->stream_id,
737 cur_td, &deq_state);
738 else
739 td_to_noop(xhci, ep_ring, cur_td, false);
740 remove_finished_td:
742 * The event handler won't see a completion for this TD anymore,
743 * so remove it from the endpoint ring's TD list. Keep it in
744 * the cancelled TD list for URB completion later.
746 list_del_init(&cur_td->td_list);
748 last_unlinked_td = cur_td;
749 xhci_stop_watchdog_timer_in_irq(xhci, ep);
751 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
752 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
753 xhci_queue_new_dequeue_state(xhci,
754 slot_id, ep_index,
755 ep->stopped_td->urb->stream_id,
756 &deq_state);
757 xhci_ring_cmd_db(xhci);
758 } else {
759 /* Otherwise ring the doorbell(s) to restart queued transfers */
760 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
762 ep->stopped_td = NULL;
763 ep->stopped_trb = NULL;
766 * Drop the lock and complete the URBs in the cancelled TD list.
767 * New TDs to be cancelled might be added to the end of the list before
768 * we can complete all the URBs for the TDs we already unlinked.
769 * So stop when we've completed the URB for the last TD we unlinked.
771 do {
772 cur_td = list_entry(ep->cancelled_td_list.next,
773 struct xhci_td, cancelled_td_list);
774 list_del_init(&cur_td->cancelled_td_list);
776 /* Clean up the cancelled URB */
777 /* Doesn't matter what we pass for status, since the core will
778 * just overwrite it (because the URB has been unlinked).
780 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
782 /* Stop processing the cancelled list if the watchdog timer is
783 * running.
785 if (xhci->xhc_state & XHCI_STATE_DYING)
786 return;
787 } while (cur_td != last_unlinked_td);
789 /* Return to the event handler with xhci->lock re-acquired */
792 /* Watchdog timer function for when a stop endpoint command fails to complete.
793 * In this case, we assume the host controller is broken or dying or dead. The
794 * host may still be completing some other events, so we have to be careful to
795 * let the event ring handler and the URB dequeueing/enqueueing functions know
796 * through xhci->state.
798 * The timer may also fire if the host takes a very long time to respond to the
799 * command, and the stop endpoint command completion handler cannot delete the
800 * timer before the timer function is called. Another endpoint cancellation may
801 * sneak in before the timer function can grab the lock, and that may queue
802 * another stop endpoint command and add the timer back. So we cannot use a
803 * simple flag to say whether there is a pending stop endpoint command for a
804 * particular endpoint.
806 * Instead we use a combination of that flag and a counter for the number of
807 * pending stop endpoint commands. If the timer is the tail end of the last
808 * stop endpoint command, and the endpoint's command is still pending, we assume
809 * the host is dying.
811 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
813 struct xhci_hcd *xhci;
814 struct xhci_virt_ep *ep;
815 struct xhci_virt_ep *temp_ep;
816 struct xhci_ring *ring;
817 struct xhci_td *cur_td;
818 int ret, i, j;
819 unsigned long flags;
821 ep = (struct xhci_virt_ep *) arg;
822 xhci = ep->xhci;
824 spin_lock_irqsave(&xhci->lock, flags);
826 ep->stop_cmds_pending--;
827 if (xhci->xhc_state & XHCI_STATE_DYING) {
828 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
829 "xHCI as DYING, exiting.\n");
830 spin_unlock_irqrestore(&xhci->lock, flags);
831 return;
833 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
834 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
835 "exiting.\n");
836 spin_unlock_irqrestore(&xhci->lock, flags);
837 return;
840 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
841 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
842 /* Oops, HC is dead or dying or at least not responding to the stop
843 * endpoint command.
845 xhci->xhc_state |= XHCI_STATE_DYING;
846 /* Disable interrupts from the host controller and start halting it */
847 xhci_quiesce(xhci);
848 spin_unlock_irqrestore(&xhci->lock, flags);
850 ret = xhci_halt(xhci);
852 spin_lock_irqsave(&xhci->lock, flags);
853 if (ret < 0) {
854 /* This is bad; the host is not responding to commands and it's
855 * not allowing itself to be halted. At least interrupts are
856 * disabled. If we call usb_hc_died(), it will attempt to
857 * disconnect all device drivers under this host. Those
858 * disconnect() methods will wait for all URBs to be unlinked,
859 * so we must complete them.
861 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
862 xhci_warn(xhci, "Completing active URBs anyway.\n");
863 /* We could turn all TDs on the rings to no-ops. This won't
864 * help if the host has cached part of the ring, and is slow if
865 * we want to preserve the cycle bit. Skip it and hope the host
866 * doesn't touch the memory.
869 for (i = 0; i < MAX_HC_SLOTS; i++) {
870 if (!xhci->devs[i])
871 continue;
872 for (j = 0; j < 31; j++) {
873 temp_ep = &xhci->devs[i]->eps[j];
874 ring = temp_ep->ring;
875 if (!ring)
876 continue;
877 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
878 "ep index %u\n", i, j);
879 while (!list_empty(&ring->td_list)) {
880 cur_td = list_first_entry(&ring->td_list,
881 struct xhci_td,
882 td_list);
883 list_del_init(&cur_td->td_list);
884 if (!list_empty(&cur_td->cancelled_td_list))
885 list_del_init(&cur_td->cancelled_td_list);
886 xhci_giveback_urb_in_irq(xhci, cur_td,
887 -ESHUTDOWN, "killed");
889 while (!list_empty(&temp_ep->cancelled_td_list)) {
890 cur_td = list_first_entry(
891 &temp_ep->cancelled_td_list,
892 struct xhci_td,
893 cancelled_td_list);
894 list_del_init(&cur_td->cancelled_td_list);
895 xhci_giveback_urb_in_irq(xhci, cur_td,
896 -ESHUTDOWN, "killed");
900 spin_unlock_irqrestore(&xhci->lock, flags);
901 xhci_dbg(xhci, "Calling usb_hc_died()\n");
902 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
903 xhci_dbg(xhci, "xHCI host controller is dead.\n");
907 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
908 * we need to clear the set deq pending flag in the endpoint ring state, so that
909 * the TD queueing code can ring the doorbell again. We also need to ring the
910 * endpoint doorbell to restart the ring, but only if there aren't more
911 * cancellations pending.
913 static void handle_set_deq_completion(struct xhci_hcd *xhci,
914 struct xhci_event_cmd *event,
915 union xhci_trb *trb)
917 unsigned int slot_id;
918 unsigned int ep_index;
919 unsigned int stream_id;
920 struct xhci_ring *ep_ring;
921 struct xhci_virt_device *dev;
922 struct xhci_ep_ctx *ep_ctx;
923 struct xhci_slot_ctx *slot_ctx;
925 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
926 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
927 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
928 dev = xhci->devs[slot_id];
930 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
931 if (!ep_ring) {
932 xhci_warn(xhci, "WARN Set TR deq ptr command for "
933 "freed stream ID %u\n",
934 stream_id);
935 /* XXX: Harmless??? */
936 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
937 return;
940 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
941 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
943 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
944 unsigned int ep_state;
945 unsigned int slot_state;
947 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
948 case COMP_TRB_ERR:
949 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
950 "of stream ID configuration\n");
951 break;
952 case COMP_CTX_STATE:
953 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
954 "to incorrect slot or ep state.\n");
955 ep_state = le32_to_cpu(ep_ctx->ep_info);
956 ep_state &= EP_STATE_MASK;
957 slot_state = le32_to_cpu(slot_ctx->dev_state);
958 slot_state = GET_SLOT_STATE(slot_state);
959 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
960 slot_state, ep_state);
961 break;
962 case COMP_EBADSLT:
963 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
964 "slot %u was not enabled.\n", slot_id);
965 break;
966 default:
967 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
968 "completion code of %u.\n",
969 GET_COMP_CODE(le32_to_cpu(event->status)));
970 break;
972 /* OK what do we do now? The endpoint state is hosed, and we
973 * should never get to this point if the synchronization between
974 * queueing, and endpoint state are correct. This might happen
975 * if the device gets disconnected after we've finished
976 * cancelling URBs, which might not be an error...
978 } else {
979 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
980 le64_to_cpu(ep_ctx->deq));
981 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
982 dev->eps[ep_index].queued_deq_ptr) ==
983 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
984 /* Update the ring's dequeue segment and dequeue pointer
985 * to reflect the new position.
987 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
988 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
989 } else {
990 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
991 "Ptr command & xHCI internal state.\n");
992 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
993 dev->eps[ep_index].queued_deq_seg,
994 dev->eps[ep_index].queued_deq_ptr);
998 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
999 dev->eps[ep_index].queued_deq_seg = NULL;
1000 dev->eps[ep_index].queued_deq_ptr = NULL;
1001 /* Restart any rings with pending URBs */
1002 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1005 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1006 struct xhci_event_cmd *event,
1007 union xhci_trb *trb)
1009 int slot_id;
1010 unsigned int ep_index;
1012 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1013 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1014 /* This command will only fail if the endpoint wasn't halted,
1015 * but we don't care.
1017 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1018 GET_COMP_CODE(le32_to_cpu(event->status)));
1020 /* HW with the reset endpoint quirk needs to have a configure endpoint
1021 * command complete before the endpoint can be used. Queue that here
1022 * because the HW can't handle two commands being queued in a row.
1024 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1025 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1026 xhci_queue_configure_endpoint(xhci,
1027 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1028 false);
1029 xhci_ring_cmd_db(xhci);
1030 } else {
1031 /* Clear our internal halted state and restart the ring(s) */
1032 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1033 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1037 /* Check to see if a command in the device's command queue matches this one.
1038 * Signal the completion or free the command, and return 1. Return 0 if the
1039 * completed command isn't at the head of the command list.
1041 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1042 struct xhci_virt_device *virt_dev,
1043 struct xhci_event_cmd *event)
1045 struct xhci_command *command;
1047 if (list_empty(&virt_dev->cmd_list))
1048 return 0;
1050 command = list_entry(virt_dev->cmd_list.next,
1051 struct xhci_command, cmd_list);
1052 if (xhci->cmd_ring->dequeue != command->command_trb)
1053 return 0;
1055 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1056 list_del(&command->cmd_list);
1057 if (command->completion)
1058 complete(command->completion);
1059 else
1060 xhci_free_command(xhci, command);
1061 return 1;
1064 static void handle_cmd_completion(struct xhci_hcd *xhci,
1065 struct xhci_event_cmd *event)
1067 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1068 u64 cmd_dma;
1069 dma_addr_t cmd_dequeue_dma;
1070 struct xhci_input_control_ctx *ctrl_ctx;
1071 struct xhci_virt_device *virt_dev;
1072 unsigned int ep_index;
1073 struct xhci_ring *ep_ring;
1074 unsigned int ep_state;
1076 cmd_dma = le64_to_cpu(event->cmd_trb);
1077 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1078 xhci->cmd_ring->dequeue);
1079 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1080 if (cmd_dequeue_dma == 0) {
1081 xhci->error_bitmask |= 1 << 4;
1082 return;
1084 /* Does the DMA address match our internal dequeue pointer address? */
1085 if (cmd_dma != (u64) cmd_dequeue_dma) {
1086 xhci->error_bitmask |= 1 << 5;
1087 return;
1089 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1090 & TRB_TYPE_BITMASK) {
1091 case TRB_TYPE(TRB_ENABLE_SLOT):
1092 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1093 xhci->slot_id = slot_id;
1094 else
1095 xhci->slot_id = 0;
1096 complete(&xhci->addr_dev);
1097 break;
1098 case TRB_TYPE(TRB_DISABLE_SLOT):
1099 if (xhci->devs[slot_id]) {
1100 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1101 /* Delete default control endpoint resources */
1102 xhci_free_device_endpoint_resources(xhci,
1103 xhci->devs[slot_id], true);
1104 xhci_free_virt_device(xhci, slot_id);
1106 break;
1107 case TRB_TYPE(TRB_CONFIG_EP):
1108 virt_dev = xhci->devs[slot_id];
1109 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1110 break;
1112 * Configure endpoint commands can come from the USB core
1113 * configuration or alt setting changes, or because the HW
1114 * needed an extra configure endpoint command after a reset
1115 * endpoint command or streams were being configured.
1116 * If the command was for a halted endpoint, the xHCI driver
1117 * is not waiting on the configure endpoint command.
1119 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1120 virt_dev->in_ctx);
1121 /* Input ctx add_flags are the endpoint index plus one */
1122 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1123 /* A usb_set_interface() call directly after clearing a halted
1124 * condition may race on this quirky hardware. Not worth
1125 * worrying about, since this is prototype hardware. Not sure
1126 * if this will work for streams, but streams support was
1127 * untested on this prototype.
1129 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1130 ep_index != (unsigned int) -1 &&
1131 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1132 le32_to_cpu(ctrl_ctx->drop_flags)) {
1133 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1134 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1135 if (!(ep_state & EP_HALTED))
1136 goto bandwidth_change;
1137 xhci_dbg(xhci, "Completed config ep cmd - "
1138 "last ep index = %d, state = %d\n",
1139 ep_index, ep_state);
1140 /* Clear internal halted state and restart ring(s) */
1141 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1142 ~EP_HALTED;
1143 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1144 break;
1146 bandwidth_change:
1147 xhci_dbg(xhci, "Completed config ep cmd\n");
1148 xhci->devs[slot_id]->cmd_status =
1149 GET_COMP_CODE(le32_to_cpu(event->status));
1150 complete(&xhci->devs[slot_id]->cmd_completion);
1151 break;
1152 case TRB_TYPE(TRB_EVAL_CONTEXT):
1153 virt_dev = xhci->devs[slot_id];
1154 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1155 break;
1156 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1157 complete(&xhci->devs[slot_id]->cmd_completion);
1158 break;
1159 case TRB_TYPE(TRB_ADDR_DEV):
1160 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1161 complete(&xhci->addr_dev);
1162 break;
1163 case TRB_TYPE(TRB_STOP_RING):
1164 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1165 break;
1166 case TRB_TYPE(TRB_SET_DEQ):
1167 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1168 break;
1169 case TRB_TYPE(TRB_CMD_NOOP):
1170 break;
1171 case TRB_TYPE(TRB_RESET_EP):
1172 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1173 break;
1174 case TRB_TYPE(TRB_RESET_DEV):
1175 xhci_dbg(xhci, "Completed reset device command.\n");
1176 slot_id = TRB_TO_SLOT_ID(
1177 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1178 virt_dev = xhci->devs[slot_id];
1179 if (virt_dev)
1180 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1181 else
1182 xhci_warn(xhci, "Reset device command completion "
1183 "for disabled slot %u\n", slot_id);
1184 break;
1185 case TRB_TYPE(TRB_NEC_GET_FW):
1186 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1187 xhci->error_bitmask |= 1 << 6;
1188 break;
1190 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1191 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1192 NEC_FW_MINOR(le32_to_cpu(event->status)));
1193 break;
1194 default:
1195 /* Skip over unknown commands on the event ring */
1196 xhci->error_bitmask |= 1 << 6;
1197 break;
1199 inc_deq(xhci, xhci->cmd_ring, false);
1202 static void handle_vendor_event(struct xhci_hcd *xhci,
1203 union xhci_trb *event)
1205 u32 trb_type;
1207 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1208 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1209 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1210 handle_cmd_completion(xhci, &event->event_cmd);
1213 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1214 * port registers -- USB 3.0 and USB 2.0).
1216 * Returns a zero-based port number, which is suitable for indexing into each of
1217 * the split roothubs' port arrays and bus state arrays.
1218 * Add one to it in order to call xhci_find_slot_id_by_port.
1220 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1221 struct xhci_hcd *xhci, u32 port_id)
1223 unsigned int i;
1224 unsigned int num_similar_speed_ports = 0;
1226 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1227 * and usb2_ports are 0-based indexes. Count the number of similar
1228 * speed ports, up to 1 port before this port.
1230 for (i = 0; i < (port_id - 1); i++) {
1231 u8 port_speed = xhci->port_array[i];
1234 * Skip ports that don't have known speeds, or have duplicate
1235 * Extended Capabilities port speed entries.
1237 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1238 continue;
1241 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1242 * 1.1 ports are under the USB 2.0 hub. If the port speed
1243 * matches the device speed, it's a similar speed port.
1245 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1246 num_similar_speed_ports++;
1248 return num_similar_speed_ports;
1251 static void handle_port_status(struct xhci_hcd *xhci,
1252 union xhci_trb *event)
1254 struct usb_hcd *hcd;
1255 u32 port_id;
1256 u32 temp, temp1;
1257 int max_ports;
1258 int slot_id;
1259 unsigned int faked_port_index;
1260 u8 major_revision;
1261 struct xhci_bus_state *bus_state;
1262 __le32 __iomem **port_array;
1263 bool bogus_port_status = false;
1265 /* Port status change events always have a successful completion code */
1266 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1267 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1268 xhci->error_bitmask |= 1 << 8;
1270 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1271 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1273 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1274 if ((port_id <= 0) || (port_id > max_ports)) {
1275 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1276 bogus_port_status = true;
1277 goto cleanup;
1280 /* Figure out which usb_hcd this port is attached to:
1281 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1283 major_revision = xhci->port_array[port_id - 1];
1284 if (major_revision == 0) {
1285 xhci_warn(xhci, "Event for port %u not in "
1286 "Extended Capabilities, ignoring.\n",
1287 port_id);
1288 bogus_port_status = true;
1289 goto cleanup;
1291 if (major_revision == DUPLICATE_ENTRY) {
1292 xhci_warn(xhci, "Event for port %u duplicated in"
1293 "Extended Capabilities, ignoring.\n",
1294 port_id);
1295 bogus_port_status = true;
1296 goto cleanup;
1300 * Hardware port IDs reported by a Port Status Change Event include USB
1301 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1302 * resume event, but we first need to translate the hardware port ID
1303 * into the index into the ports on the correct split roothub, and the
1304 * correct bus_state structure.
1306 /* Find the right roothub. */
1307 hcd = xhci_to_hcd(xhci);
1308 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1309 hcd = xhci->shared_hcd;
1310 bus_state = &xhci->bus_state[hcd_index(hcd)];
1311 if (hcd->speed == HCD_USB3)
1312 port_array = xhci->usb3_ports;
1313 else
1314 port_array = xhci->usb2_ports;
1315 /* Find the faked port hub number */
1316 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1317 port_id);
1319 temp = xhci_readl(xhci, port_array[faked_port_index]);
1320 if (hcd->state == HC_STATE_SUSPENDED) {
1321 xhci_dbg(xhci, "resume root hub\n");
1322 usb_hcd_resume_root_hub(hcd);
1325 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1326 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1328 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1329 if (!(temp1 & CMD_RUN)) {
1330 xhci_warn(xhci, "xHC is not running.\n");
1331 goto cleanup;
1334 if (DEV_SUPERSPEED(temp)) {
1335 xhci_dbg(xhci, "resume SS port %d\n", port_id);
1336 xhci_set_link_state(xhci, port_array, faked_port_index,
1337 XDEV_U0);
1338 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1339 faked_port_index + 1);
1340 if (!slot_id) {
1341 xhci_dbg(xhci, "slot_id is zero\n");
1342 goto cleanup;
1344 xhci_ring_device(xhci, slot_id);
1345 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1346 /* Clear PORT_PLC */
1347 xhci_test_and_clear_bit(xhci, port_array,
1348 faked_port_index, PORT_PLC);
1349 } else {
1350 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1351 bus_state->resume_done[faked_port_index] = jiffies +
1352 msecs_to_jiffies(20);
1353 mod_timer(&hcd->rh_timer,
1354 bus_state->resume_done[faked_port_index]);
1355 /* Do the rest in GetPortStatus */
1359 if (hcd->speed != HCD_USB3)
1360 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1361 PORT_PLC);
1363 cleanup:
1364 /* Update event ring dequeue pointer before dropping the lock */
1365 inc_deq(xhci, xhci->event_ring, true);
1367 /* Don't make the USB core poll the roothub if we got a bad port status
1368 * change event. Besides, at that point we can't tell which roothub
1369 * (USB 2.0 or USB 3.0) to kick.
1371 if (bogus_port_status)
1372 return;
1374 spin_unlock(&xhci->lock);
1375 /* Pass this up to the core */
1376 usb_hcd_poll_rh_status(hcd);
1377 spin_lock(&xhci->lock);
1381 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1382 * at end_trb, which may be in another segment. If the suspect DMA address is a
1383 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1384 * returns 0.
1386 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1387 union xhci_trb *start_trb,
1388 union xhci_trb *end_trb,
1389 dma_addr_t suspect_dma)
1391 dma_addr_t start_dma;
1392 dma_addr_t end_seg_dma;
1393 dma_addr_t end_trb_dma;
1394 struct xhci_segment *cur_seg;
1396 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1397 cur_seg = start_seg;
1399 do {
1400 if (start_dma == 0)
1401 return NULL;
1402 /* We may get an event for a Link TRB in the middle of a TD */
1403 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1404 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1405 /* If the end TRB isn't in this segment, this is set to 0 */
1406 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1408 if (end_trb_dma > 0) {
1409 /* The end TRB is in this segment, so suspect should be here */
1410 if (start_dma <= end_trb_dma) {
1411 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1412 return cur_seg;
1413 } else {
1414 /* Case for one segment with
1415 * a TD wrapped around to the top
1417 if ((suspect_dma >= start_dma &&
1418 suspect_dma <= end_seg_dma) ||
1419 (suspect_dma >= cur_seg->dma &&
1420 suspect_dma <= end_trb_dma))
1421 return cur_seg;
1423 return NULL;
1424 } else {
1425 /* Might still be somewhere in this segment */
1426 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1427 return cur_seg;
1429 cur_seg = cur_seg->next;
1430 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1431 } while (cur_seg != start_seg);
1433 return NULL;
1436 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1437 unsigned int slot_id, unsigned int ep_index,
1438 unsigned int stream_id,
1439 struct xhci_td *td, union xhci_trb *event_trb)
1441 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1442 ep->ep_state |= EP_HALTED;
1443 ep->stopped_td = td;
1444 ep->stopped_trb = event_trb;
1445 ep->stopped_stream = stream_id;
1447 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1448 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1450 ep->stopped_td = NULL;
1451 ep->stopped_trb = NULL;
1452 ep->stopped_stream = 0;
1454 xhci_ring_cmd_db(xhci);
1457 /* Check if an error has halted the endpoint ring. The class driver will
1458 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1459 * However, a babble and other errors also halt the endpoint ring, and the class
1460 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1461 * Ring Dequeue Pointer command manually.
1463 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1464 struct xhci_ep_ctx *ep_ctx,
1465 unsigned int trb_comp_code)
1467 /* TRB completion codes that may require a manual halt cleanup */
1468 if (trb_comp_code == COMP_TX_ERR ||
1469 trb_comp_code == COMP_BABBLE ||
1470 trb_comp_code == COMP_SPLIT_ERR)
1471 /* The 0.96 spec says a babbling control endpoint
1472 * is not halted. The 0.96 spec says it is. Some HW
1473 * claims to be 0.95 compliant, but it halts the control
1474 * endpoint anyway. Check if a babble halted the
1475 * endpoint.
1477 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1478 cpu_to_le32(EP_STATE_HALTED))
1479 return 1;
1481 return 0;
1484 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1486 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1487 /* Vendor defined "informational" completion code,
1488 * treat as not-an-error.
1490 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1491 trb_comp_code);
1492 xhci_dbg(xhci, "Treating code as success.\n");
1493 return 1;
1495 return 0;
1499 * Finish the td processing, remove the td from td list;
1500 * Return 1 if the urb can be given back.
1502 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1503 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1504 struct xhci_virt_ep *ep, int *status, bool skip)
1506 struct xhci_virt_device *xdev;
1507 struct xhci_ring *ep_ring;
1508 unsigned int slot_id;
1509 int ep_index;
1510 struct urb *urb = NULL;
1511 struct xhci_ep_ctx *ep_ctx;
1512 int ret = 0;
1513 struct urb_priv *urb_priv;
1514 u32 trb_comp_code;
1516 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1517 xdev = xhci->devs[slot_id];
1518 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1519 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1520 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1521 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1523 if (skip)
1524 goto td_cleanup;
1526 if (trb_comp_code == COMP_STOP_INVAL ||
1527 trb_comp_code == COMP_STOP) {
1528 /* The Endpoint Stop Command completion will take care of any
1529 * stopped TDs. A stopped TD may be restarted, so don't update
1530 * the ring dequeue pointer or take this TD off any lists yet.
1532 ep->stopped_td = td;
1533 ep->stopped_trb = event_trb;
1534 return 0;
1535 } else {
1536 if (trb_comp_code == COMP_STALL) {
1537 /* The transfer is completed from the driver's
1538 * perspective, but we need to issue a set dequeue
1539 * command for this stalled endpoint to move the dequeue
1540 * pointer past the TD. We can't do that here because
1541 * the halt condition must be cleared first. Let the
1542 * USB class driver clear the stall later.
1544 ep->stopped_td = td;
1545 ep->stopped_trb = event_trb;
1546 ep->stopped_stream = ep_ring->stream_id;
1547 } else if (xhci_requires_manual_halt_cleanup(xhci,
1548 ep_ctx, trb_comp_code)) {
1549 /* Other types of errors halt the endpoint, but the
1550 * class driver doesn't call usb_reset_endpoint() unless
1551 * the error is -EPIPE. Clear the halted status in the
1552 * xHCI hardware manually.
1554 xhci_cleanup_halted_endpoint(xhci,
1555 slot_id, ep_index, ep_ring->stream_id,
1556 td, event_trb);
1557 } else {
1558 /* Update ring dequeue pointer */
1559 while (ep_ring->dequeue != td->last_trb)
1560 inc_deq(xhci, ep_ring, false);
1561 inc_deq(xhci, ep_ring, false);
1564 td_cleanup:
1565 /* Clean up the endpoint's TD list */
1566 urb = td->urb;
1567 urb_priv = urb->hcpriv;
1569 /* Do one last check of the actual transfer length.
1570 * If the host controller said we transferred more data than
1571 * the buffer length, urb->actual_length will be a very big
1572 * number (since it's unsigned). Play it safe and say we didn't
1573 * transfer anything.
1575 if (urb->actual_length > urb->transfer_buffer_length) {
1576 xhci_warn(xhci, "URB transfer length is wrong, "
1577 "xHC issue? req. len = %u, "
1578 "act. len = %u\n",
1579 urb->transfer_buffer_length,
1580 urb->actual_length);
1581 urb->actual_length = 0;
1582 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1583 *status = -EREMOTEIO;
1584 else
1585 *status = 0;
1587 list_del_init(&td->td_list);
1588 /* Was this TD slated to be cancelled but completed anyway? */
1589 if (!list_empty(&td->cancelled_td_list))
1590 list_del_init(&td->cancelled_td_list);
1592 urb_priv->td_cnt++;
1593 /* Giveback the urb when all the tds are completed */
1594 if (urb_priv->td_cnt == urb_priv->length) {
1595 ret = 1;
1596 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1597 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1598 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1599 == 0) {
1600 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1601 usb_amd_quirk_pll_enable();
1607 return ret;
1611 * Process control tds, update urb status and actual_length.
1613 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1614 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1615 struct xhci_virt_ep *ep, int *status)
1617 struct xhci_virt_device *xdev;
1618 struct xhci_ring *ep_ring;
1619 unsigned int slot_id;
1620 int ep_index;
1621 struct xhci_ep_ctx *ep_ctx;
1622 u32 trb_comp_code;
1624 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1625 xdev = xhci->devs[slot_id];
1626 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1627 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1628 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1629 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1631 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1632 switch (trb_comp_code) {
1633 case COMP_SUCCESS:
1634 if (event_trb == ep_ring->dequeue) {
1635 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1636 "without IOC set??\n");
1637 *status = -ESHUTDOWN;
1638 } else if (event_trb != td->last_trb) {
1639 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1640 "without IOC set??\n");
1641 *status = -ESHUTDOWN;
1642 } else {
1643 *status = 0;
1645 break;
1646 case COMP_SHORT_TX:
1647 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1648 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1649 *status = -EREMOTEIO;
1650 else
1651 *status = 0;
1652 break;
1653 case COMP_STOP_INVAL:
1654 case COMP_STOP:
1655 return finish_td(xhci, td, event_trb, event, ep, status, false);
1656 default:
1657 if (!xhci_requires_manual_halt_cleanup(xhci,
1658 ep_ctx, trb_comp_code))
1659 break;
1660 xhci_dbg(xhci, "TRB error code %u, "
1661 "halted endpoint index = %u\n",
1662 trb_comp_code, ep_index);
1663 /* else fall through */
1664 case COMP_STALL:
1665 /* Did we transfer part of the data (middle) phase? */
1666 if (event_trb != ep_ring->dequeue &&
1667 event_trb != td->last_trb)
1668 td->urb->actual_length =
1669 td->urb->transfer_buffer_length
1670 - TRB_LEN(le32_to_cpu(event->transfer_len));
1671 else
1672 td->urb->actual_length = 0;
1674 xhci_cleanup_halted_endpoint(xhci,
1675 slot_id, ep_index, 0, td, event_trb);
1676 return finish_td(xhci, td, event_trb, event, ep, status, true);
1679 * Did we transfer any data, despite the errors that might have
1680 * happened? I.e. did we get past the setup stage?
1682 if (event_trb != ep_ring->dequeue) {
1683 /* The event was for the status stage */
1684 if (event_trb == td->last_trb) {
1685 if (td->urb->actual_length != 0) {
1686 /* Don't overwrite a previously set error code
1688 if ((*status == -EINPROGRESS || *status == 0) &&
1689 (td->urb->transfer_flags
1690 & URB_SHORT_NOT_OK))
1691 /* Did we already see a short data
1692 * stage? */
1693 *status = -EREMOTEIO;
1694 } else {
1695 td->urb->actual_length =
1696 td->urb->transfer_buffer_length;
1698 } else {
1699 /* Maybe the event was for the data stage? */
1700 td->urb->actual_length =
1701 td->urb->transfer_buffer_length -
1702 TRB_LEN(le32_to_cpu(event->transfer_len));
1703 xhci_dbg(xhci, "Waiting for status "
1704 "stage event\n");
1705 return 0;
1709 return finish_td(xhci, td, event_trb, event, ep, status, false);
1713 * Process isochronous tds, update urb packet status and actual_length.
1715 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1716 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1717 struct xhci_virt_ep *ep, int *status)
1719 struct xhci_ring *ep_ring;
1720 struct urb_priv *urb_priv;
1721 int idx;
1722 int len = 0;
1723 union xhci_trb *cur_trb;
1724 struct xhci_segment *cur_seg;
1725 struct usb_iso_packet_descriptor *frame;
1726 u32 trb_comp_code;
1727 bool skip_td = false;
1729 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1730 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1731 urb_priv = td->urb->hcpriv;
1732 idx = urb_priv->td_cnt;
1733 frame = &td->urb->iso_frame_desc[idx];
1735 /* handle completion code */
1736 switch (trb_comp_code) {
1737 case COMP_SUCCESS:
1738 frame->status = 0;
1739 break;
1740 case COMP_SHORT_TX:
1741 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1742 -EREMOTEIO : 0;
1743 break;
1744 case COMP_BW_OVER:
1745 frame->status = -ECOMM;
1746 skip_td = true;
1747 break;
1748 case COMP_BUFF_OVER:
1749 case COMP_BABBLE:
1750 frame->status = -EOVERFLOW;
1751 skip_td = true;
1752 break;
1753 case COMP_DEV_ERR:
1754 case COMP_STALL:
1755 frame->status = -EPROTO;
1756 skip_td = true;
1757 break;
1758 case COMP_STOP:
1759 case COMP_STOP_INVAL:
1760 break;
1761 default:
1762 frame->status = -1;
1763 break;
1766 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1767 frame->actual_length = frame->length;
1768 td->urb->actual_length += frame->length;
1769 } else {
1770 for (cur_trb = ep_ring->dequeue,
1771 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1772 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1773 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1774 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1775 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1777 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1778 TRB_LEN(le32_to_cpu(event->transfer_len));
1780 if (trb_comp_code != COMP_STOP_INVAL) {
1781 frame->actual_length = len;
1782 td->urb->actual_length += len;
1786 return finish_td(xhci, td, event_trb, event, ep, status, false);
1789 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1790 struct xhci_transfer_event *event,
1791 struct xhci_virt_ep *ep, int *status)
1793 struct xhci_ring *ep_ring;
1794 struct urb_priv *urb_priv;
1795 struct usb_iso_packet_descriptor *frame;
1796 int idx;
1798 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1799 urb_priv = td->urb->hcpriv;
1800 idx = urb_priv->td_cnt;
1801 frame = &td->urb->iso_frame_desc[idx];
1803 /* The transfer is partly done. */
1804 frame->status = -EXDEV;
1806 /* calc actual length */
1807 frame->actual_length = 0;
1809 /* Update ring dequeue pointer */
1810 while (ep_ring->dequeue != td->last_trb)
1811 inc_deq(xhci, ep_ring, false);
1812 inc_deq(xhci, ep_ring, false);
1814 return finish_td(xhci, td, NULL, event, ep, status, true);
1818 * Process bulk and interrupt tds, update urb status and actual_length.
1820 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1821 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1822 struct xhci_virt_ep *ep, int *status)
1824 struct xhci_ring *ep_ring;
1825 union xhci_trb *cur_trb;
1826 struct xhci_segment *cur_seg;
1827 u32 trb_comp_code;
1829 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1830 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1832 switch (trb_comp_code) {
1833 case COMP_SUCCESS:
1834 /* Double check that the HW transferred everything. */
1835 if (event_trb != td->last_trb) {
1836 xhci_warn(xhci, "WARN Successful completion "
1837 "on short TX\n");
1838 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1839 *status = -EREMOTEIO;
1840 else
1841 *status = 0;
1842 } else {
1843 *status = 0;
1845 break;
1846 case COMP_SHORT_TX:
1847 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1848 *status = -EREMOTEIO;
1849 else
1850 *status = 0;
1851 break;
1852 default:
1853 /* Others already handled above */
1854 break;
1856 if (trb_comp_code == COMP_SHORT_TX)
1857 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1858 "%d bytes untransferred\n",
1859 td->urb->ep->desc.bEndpointAddress,
1860 td->urb->transfer_buffer_length,
1861 TRB_LEN(le32_to_cpu(event->transfer_len)));
1862 /* Fast path - was this the last TRB in the TD for this URB? */
1863 if (event_trb == td->last_trb) {
1864 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1865 td->urb->actual_length =
1866 td->urb->transfer_buffer_length -
1867 TRB_LEN(le32_to_cpu(event->transfer_len));
1868 if (td->urb->transfer_buffer_length <
1869 td->urb->actual_length) {
1870 xhci_warn(xhci, "HC gave bad length "
1871 "of %d bytes left\n",
1872 TRB_LEN(le32_to_cpu(event->transfer_len)));
1873 td->urb->actual_length = 0;
1874 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1875 *status = -EREMOTEIO;
1876 else
1877 *status = 0;
1879 /* Don't overwrite a previously set error code */
1880 if (*status == -EINPROGRESS) {
1881 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1882 *status = -EREMOTEIO;
1883 else
1884 *status = 0;
1886 } else {
1887 td->urb->actual_length =
1888 td->urb->transfer_buffer_length;
1889 /* Ignore a short packet completion if the
1890 * untransferred length was zero.
1892 if (*status == -EREMOTEIO)
1893 *status = 0;
1895 } else {
1896 /* Slow path - walk the list, starting from the dequeue
1897 * pointer, to get the actual length transferred.
1899 td->urb->actual_length = 0;
1900 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1901 cur_trb != event_trb;
1902 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1903 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1904 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1905 td->urb->actual_length +=
1906 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1908 /* If the ring didn't stop on a Link or No-op TRB, add
1909 * in the actual bytes transferred from the Normal TRB
1911 if (trb_comp_code != COMP_STOP_INVAL)
1912 td->urb->actual_length +=
1913 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1914 TRB_LEN(le32_to_cpu(event->transfer_len));
1917 return finish_td(xhci, td, event_trb, event, ep, status, false);
1921 * If this function returns an error condition, it means it got a Transfer
1922 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1923 * At this point, the host controller is probably hosed and should be reset.
1925 static int handle_tx_event(struct xhci_hcd *xhci,
1926 struct xhci_transfer_event *event)
1928 struct xhci_virt_device *xdev;
1929 struct xhci_virt_ep *ep;
1930 struct xhci_ring *ep_ring;
1931 unsigned int slot_id;
1932 int ep_index;
1933 struct xhci_td *td = NULL;
1934 dma_addr_t event_dma;
1935 struct xhci_segment *event_seg;
1936 union xhci_trb *event_trb;
1937 struct urb *urb = NULL;
1938 int status = -EINPROGRESS;
1939 struct urb_priv *urb_priv;
1940 struct xhci_ep_ctx *ep_ctx;
1941 struct list_head *tmp;
1942 u32 trb_comp_code;
1943 int ret = 0;
1944 int td_num = 0;
1946 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1947 xdev = xhci->devs[slot_id];
1948 if (!xdev) {
1949 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1950 return -ENODEV;
1953 /* Endpoint ID is 1 based, our index is zero based */
1954 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1955 ep = &xdev->eps[ep_index];
1956 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1957 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1958 if (!ep_ring ||
1959 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1960 EP_STATE_DISABLED) {
1961 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1962 "or incorrect stream ring\n");
1963 return -ENODEV;
1966 /* Count current td numbers if ep->skip is set */
1967 if (ep->skip) {
1968 list_for_each(tmp, &ep_ring->td_list)
1969 td_num++;
1972 event_dma = le64_to_cpu(event->buffer);
1973 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1974 /* Look for common error cases */
1975 switch (trb_comp_code) {
1976 /* Skip codes that require special handling depending on
1977 * transfer type
1979 case COMP_SUCCESS:
1980 case COMP_SHORT_TX:
1981 break;
1982 case COMP_STOP:
1983 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1984 break;
1985 case COMP_STOP_INVAL:
1986 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1987 break;
1988 case COMP_STALL:
1989 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1990 ep->ep_state |= EP_HALTED;
1991 status = -EPIPE;
1992 break;
1993 case COMP_TRB_ERR:
1994 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1995 status = -EILSEQ;
1996 break;
1997 case COMP_SPLIT_ERR:
1998 case COMP_TX_ERR:
1999 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
2000 status = -EPROTO;
2001 break;
2002 case COMP_BABBLE:
2003 xhci_warn(xhci, "WARN: babble error on endpoint\n");
2004 status = -EOVERFLOW;
2005 break;
2006 case COMP_DB_ERR:
2007 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2008 status = -ENOSR;
2009 break;
2010 case COMP_BW_OVER:
2011 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2012 break;
2013 case COMP_BUFF_OVER:
2014 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2015 break;
2016 case COMP_UNDERRUN:
2018 * When the Isoch ring is empty, the xHC will generate
2019 * a Ring Overrun Event for IN Isoch endpoint or Ring
2020 * Underrun Event for OUT Isoch endpoint.
2022 xhci_dbg(xhci, "underrun event on endpoint\n");
2023 if (!list_empty(&ep_ring->td_list))
2024 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2025 "still with TDs queued?\n",
2026 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2027 ep_index);
2028 goto cleanup;
2029 case COMP_OVERRUN:
2030 xhci_dbg(xhci, "overrun event on endpoint\n");
2031 if (!list_empty(&ep_ring->td_list))
2032 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2033 "still with TDs queued?\n",
2034 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2035 ep_index);
2036 goto cleanup;
2037 case COMP_DEV_ERR:
2038 xhci_warn(xhci, "WARN: detect an incompatible device");
2039 status = -EPROTO;
2040 break;
2041 case COMP_MISSED_INT:
2043 * When encounter missed service error, one or more isoc tds
2044 * may be missed by xHC.
2045 * Set skip flag of the ep_ring; Complete the missed tds as
2046 * short transfer when process the ep_ring next time.
2048 ep->skip = true;
2049 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2050 goto cleanup;
2051 default:
2052 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2053 status = 0;
2054 break;
2056 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2057 "busted\n");
2058 goto cleanup;
2061 do {
2062 /* This TRB should be in the TD at the head of this ring's
2063 * TD list.
2065 if (list_empty(&ep_ring->td_list)) {
2066 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2067 "with no TDs queued?\n",
2068 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2069 ep_index);
2070 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2071 (le32_to_cpu(event->flags) &
2072 TRB_TYPE_BITMASK)>>10);
2073 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2074 if (ep->skip) {
2075 ep->skip = false;
2076 xhci_dbg(xhci, "td_list is empty while skip "
2077 "flag set. Clear skip flag.\n");
2079 ret = 0;
2080 goto cleanup;
2083 /* We've skipped all the TDs on the ep ring when ep->skip set */
2084 if (ep->skip && td_num == 0) {
2085 ep->skip = false;
2086 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2087 "Clear skip flag.\n");
2088 ret = 0;
2089 goto cleanup;
2092 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2093 if (ep->skip)
2094 td_num--;
2096 /* Is this a TRB in the currently executing TD? */
2097 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2098 td->last_trb, event_dma);
2101 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2102 * is not in the current TD pointed by ep_ring->dequeue because
2103 * that the hardware dequeue pointer still at the previous TRB
2104 * of the current TD. The previous TRB maybe a Link TD or the
2105 * last TRB of the previous TD. The command completion handle
2106 * will take care the rest.
2108 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2109 ret = 0;
2110 goto cleanup;
2113 if (!event_seg) {
2114 if (!ep->skip ||
2115 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2116 /* Some host controllers give a spurious
2117 * successful event after a short transfer.
2118 * Ignore it.
2120 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2121 ep_ring->last_td_was_short) {
2122 ep_ring->last_td_was_short = false;
2123 ret = 0;
2124 goto cleanup;
2126 /* HC is busted, give up! */
2127 xhci_err(xhci,
2128 "ERROR Transfer event TRB DMA ptr not "
2129 "part of current TD\n");
2130 return -ESHUTDOWN;
2133 ret = skip_isoc_td(xhci, td, event, ep, &status);
2134 goto cleanup;
2136 if (trb_comp_code == COMP_SHORT_TX)
2137 ep_ring->last_td_was_short = true;
2138 else
2139 ep_ring->last_td_was_short = false;
2141 if (ep->skip) {
2142 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2143 ep->skip = false;
2146 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2147 sizeof(*event_trb)];
2149 * No-op TRB should not trigger interrupts.
2150 * If event_trb is a no-op TRB, it means the
2151 * corresponding TD has been cancelled. Just ignore
2152 * the TD.
2154 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2155 xhci_dbg(xhci,
2156 "event_trb is a no-op TRB. Skip it\n");
2157 goto cleanup;
2160 /* Now update the urb's actual_length and give back to
2161 * the core
2163 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2164 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2165 &status);
2166 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2167 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2168 &status);
2169 else
2170 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2171 ep, &status);
2173 cleanup:
2175 * Do not update event ring dequeue pointer if ep->skip is set.
2176 * Will roll back to continue process missed tds.
2178 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2179 inc_deq(xhci, xhci->event_ring, true);
2182 if (ret) {
2183 urb = td->urb;
2184 urb_priv = urb->hcpriv;
2185 /* Leave the TD around for the reset endpoint function
2186 * to use(but only if it's not a control endpoint,
2187 * since we already queued the Set TR dequeue pointer
2188 * command for stalled control endpoints).
2190 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2191 (trb_comp_code != COMP_STALL &&
2192 trb_comp_code != COMP_BABBLE))
2193 xhci_urb_free_priv(xhci, urb_priv);
2195 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2196 if ((urb->actual_length != urb->transfer_buffer_length &&
2197 (urb->transfer_flags &
2198 URB_SHORT_NOT_OK)) ||
2199 (status != 0 &&
2200 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2201 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2202 "expected = %x, status = %d\n",
2203 urb, urb->actual_length,
2204 urb->transfer_buffer_length,
2205 status);
2206 spin_unlock(&xhci->lock);
2207 /* EHCI, UHCI, and OHCI always unconditionally set the
2208 * urb->status of an isochronous endpoint to 0.
2210 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2211 status = 0;
2212 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2213 spin_lock(&xhci->lock);
2217 * If ep->skip is set, it means there are missed tds on the
2218 * endpoint ring need to take care of.
2219 * Process them as short transfer until reach the td pointed by
2220 * the event.
2222 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2224 return 0;
2228 * This function handles all OS-owned events on the event ring. It may drop
2229 * xhci->lock between event processing (e.g. to pass up port status changes).
2230 * Returns >0 for "possibly more events to process" (caller should call again),
2231 * otherwise 0 if done. In future, <0 returns should indicate error code.
2233 static int xhci_handle_event(struct xhci_hcd *xhci)
2235 union xhci_trb *event;
2236 int update_ptrs = 1;
2237 int ret;
2239 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2240 xhci->error_bitmask |= 1 << 1;
2241 return 0;
2244 event = xhci->event_ring->dequeue;
2245 /* Does the HC or OS own the TRB? */
2246 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2247 xhci->event_ring->cycle_state) {
2248 xhci->error_bitmask |= 1 << 2;
2249 return 0;
2253 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2254 * speculative reads of the event's flags/data below.
2256 rmb();
2257 /* FIXME: Handle more event types. */
2258 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2259 case TRB_TYPE(TRB_COMPLETION):
2260 handle_cmd_completion(xhci, &event->event_cmd);
2261 break;
2262 case TRB_TYPE(TRB_PORT_STATUS):
2263 handle_port_status(xhci, event);
2264 update_ptrs = 0;
2265 break;
2266 case TRB_TYPE(TRB_TRANSFER):
2267 ret = handle_tx_event(xhci, &event->trans_event);
2268 if (ret < 0)
2269 xhci->error_bitmask |= 1 << 9;
2270 else
2271 update_ptrs = 0;
2272 break;
2273 default:
2274 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2275 TRB_TYPE(48))
2276 handle_vendor_event(xhci, event);
2277 else
2278 xhci->error_bitmask |= 1 << 3;
2280 /* Any of the above functions may drop and re-acquire the lock, so check
2281 * to make sure a watchdog timer didn't mark the host as non-responsive.
2283 if (xhci->xhc_state & XHCI_STATE_DYING) {
2284 xhci_dbg(xhci, "xHCI host dying, returning from "
2285 "event handler.\n");
2286 return 0;
2289 if (update_ptrs)
2290 /* Update SW event ring dequeue pointer */
2291 inc_deq(xhci, xhci->event_ring, true);
2293 /* Are there more items on the event ring? Caller will call us again to
2294 * check.
2296 return 1;
2300 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2301 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2302 * indicators of an event TRB error, but we check the status *first* to be safe.
2304 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2306 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2307 u32 status;
2308 union xhci_trb *trb;
2309 u64 temp_64;
2310 union xhci_trb *event_ring_deq;
2311 dma_addr_t deq;
2313 spin_lock(&xhci->lock);
2314 trb = xhci->event_ring->dequeue;
2315 /* Check if the xHC generated the interrupt, or the irq is shared */
2316 status = xhci_readl(xhci, &xhci->op_regs->status);
2317 if (status == 0xffffffff)
2318 goto hw_died;
2320 if (!(status & STS_EINT)) {
2321 spin_unlock(&xhci->lock);
2322 return IRQ_NONE;
2324 if (status & STS_FATAL) {
2325 xhci_warn(xhci, "WARNING: Host System Error\n");
2326 xhci_halt(xhci);
2327 hw_died:
2328 spin_unlock(&xhci->lock);
2329 return -ESHUTDOWN;
2333 * Clear the op reg interrupt status first,
2334 * so we can receive interrupts from other MSI-X interrupters.
2335 * Write 1 to clear the interrupt status.
2337 status |= STS_EINT;
2338 xhci_writel(xhci, status, &xhci->op_regs->status);
2339 /* FIXME when MSI-X is supported and there are multiple vectors */
2340 /* Clear the MSI-X event interrupt status */
2342 if (hcd->irq != -1) {
2343 u32 irq_pending;
2344 /* Acknowledge the PCI interrupt */
2345 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2346 irq_pending |= 0x3;
2347 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2350 if (xhci->xhc_state & XHCI_STATE_DYING) {
2351 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2352 "Shouldn't IRQs be disabled?\n");
2353 /* Clear the event handler busy flag (RW1C);
2354 * the event ring should be empty.
2356 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2357 xhci_write_64(xhci, temp_64 | ERST_EHB,
2358 &xhci->ir_set->erst_dequeue);
2359 spin_unlock(&xhci->lock);
2361 return IRQ_HANDLED;
2364 event_ring_deq = xhci->event_ring->dequeue;
2365 /* FIXME this should be a delayed service routine
2366 * that clears the EHB.
2368 while (xhci_handle_event(xhci) > 0) {}
2370 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2371 /* If necessary, update the HW's version of the event ring deq ptr. */
2372 if (event_ring_deq != xhci->event_ring->dequeue) {
2373 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2374 xhci->event_ring->dequeue);
2375 if (deq == 0)
2376 xhci_warn(xhci, "WARN something wrong with SW event "
2377 "ring dequeue ptr.\n");
2378 /* Update HC event ring dequeue pointer */
2379 temp_64 &= ERST_PTR_MASK;
2380 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2383 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2384 temp_64 |= ERST_EHB;
2385 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2387 spin_unlock(&xhci->lock);
2389 return IRQ_HANDLED;
2392 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2394 irqreturn_t ret;
2395 struct xhci_hcd *xhci;
2397 xhci = hcd_to_xhci(hcd);
2398 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2399 if (xhci->shared_hcd)
2400 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2402 ret = xhci_irq(hcd);
2404 return ret;
2407 /**** Endpoint Ring Operations ****/
2410 * Generic function for queueing a TRB on a ring.
2411 * The caller must have checked to make sure there's room on the ring.
2413 * @more_trbs_coming: Will you enqueue more TRBs before calling
2414 * prepare_transfer()?
2416 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2417 bool consumer, bool more_trbs_coming, bool isoc,
2418 u32 field1, u32 field2, u32 field3, u32 field4)
2420 struct xhci_generic_trb *trb;
2422 trb = &ring->enqueue->generic;
2423 trb->field[0] = cpu_to_le32(field1);
2424 trb->field[1] = cpu_to_le32(field2);
2425 trb->field[2] = cpu_to_le32(field3);
2426 trb->field[3] = cpu_to_le32(field4);
2427 inc_enq(xhci, ring, consumer, more_trbs_coming, isoc);
2431 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2432 * FIXME allocate segments if the ring is full.
2434 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2435 u32 ep_state, unsigned int num_trbs, bool isoc, gfp_t mem_flags)
2437 /* Make sure the endpoint has been added to xHC schedule */
2438 switch (ep_state) {
2439 case EP_STATE_DISABLED:
2441 * USB core changed config/interfaces without notifying us,
2442 * or hardware is reporting the wrong state.
2444 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2445 return -ENOENT;
2446 case EP_STATE_ERROR:
2447 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2448 /* FIXME event handling code for error needs to clear it */
2449 /* XXX not sure if this should be -ENOENT or not */
2450 return -EINVAL;
2451 case EP_STATE_HALTED:
2452 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2453 case EP_STATE_STOPPED:
2454 case EP_STATE_RUNNING:
2455 break;
2456 default:
2457 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2459 * FIXME issue Configure Endpoint command to try to get the HC
2460 * back into a known state.
2462 return -EINVAL;
2464 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2465 /* FIXME allocate more room */
2466 xhci_err(xhci, "ERROR no room on ep ring\n");
2467 return -ENOMEM;
2470 if (enqueue_is_link_trb(ep_ring)) {
2471 struct xhci_ring *ring = ep_ring;
2472 union xhci_trb *next;
2474 next = ring->enqueue;
2476 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2477 /* If we're not dealing with 0.95 hardware or isoc rings
2478 * on AMD 0.96 host, clear the chain bit.
2480 if (!xhci_link_trb_quirk(xhci) && !(isoc &&
2481 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2482 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2483 else
2484 next->link.control |= cpu_to_le32(TRB_CHAIN);
2486 wmb();
2487 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2489 /* Toggle the cycle bit after the last ring segment. */
2490 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2491 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2492 if (!in_interrupt()) {
2493 xhci_dbg(xhci, "queue_trb: Toggle cycle "
2494 "state for ring %p = %i\n",
2495 ring, (unsigned int)ring->cycle_state);
2498 ring->enq_seg = ring->enq_seg->next;
2499 ring->enqueue = ring->enq_seg->trbs;
2500 next = ring->enqueue;
2504 return 0;
2507 static int prepare_transfer(struct xhci_hcd *xhci,
2508 struct xhci_virt_device *xdev,
2509 unsigned int ep_index,
2510 unsigned int stream_id,
2511 unsigned int num_trbs,
2512 struct urb *urb,
2513 unsigned int td_index,
2514 bool isoc,
2515 gfp_t mem_flags)
2517 int ret;
2518 struct urb_priv *urb_priv;
2519 struct xhci_td *td;
2520 struct xhci_ring *ep_ring;
2521 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2523 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2524 if (!ep_ring) {
2525 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2526 stream_id);
2527 return -EINVAL;
2530 ret = prepare_ring(xhci, ep_ring,
2531 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2532 num_trbs, isoc, mem_flags);
2533 if (ret)
2534 return ret;
2536 urb_priv = urb->hcpriv;
2537 td = urb_priv->td[td_index];
2539 INIT_LIST_HEAD(&td->td_list);
2540 INIT_LIST_HEAD(&td->cancelled_td_list);
2542 if (td_index == 0) {
2543 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2544 if (unlikely(ret))
2545 return ret;
2548 td->urb = urb;
2549 /* Add this TD to the tail of the endpoint ring's TD list */
2550 list_add_tail(&td->td_list, &ep_ring->td_list);
2551 td->start_seg = ep_ring->enq_seg;
2552 td->first_trb = ep_ring->enqueue;
2554 urb_priv->td[td_index] = td;
2556 return 0;
2559 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2561 int num_sgs, num_trbs, running_total, temp, i;
2562 struct scatterlist *sg;
2564 sg = NULL;
2565 num_sgs = urb->num_mapped_sgs;
2566 temp = urb->transfer_buffer_length;
2568 xhci_dbg(xhci, "count sg list trbs: \n");
2569 num_trbs = 0;
2570 for_each_sg(urb->sg, sg, num_sgs, i) {
2571 unsigned int previous_total_trbs = num_trbs;
2572 unsigned int len = sg_dma_len(sg);
2574 /* Scatter gather list entries may cross 64KB boundaries */
2575 running_total = TRB_MAX_BUFF_SIZE -
2576 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2577 running_total &= TRB_MAX_BUFF_SIZE - 1;
2578 if (running_total != 0)
2579 num_trbs++;
2581 /* How many more 64KB chunks to transfer, how many more TRBs? */
2582 while (running_total < sg_dma_len(sg) && running_total < temp) {
2583 num_trbs++;
2584 running_total += TRB_MAX_BUFF_SIZE;
2586 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2587 i, (unsigned long long)sg_dma_address(sg),
2588 len, len, num_trbs - previous_total_trbs);
2590 len = min_t(int, len, temp);
2591 temp -= len;
2592 if (temp == 0)
2593 break;
2595 xhci_dbg(xhci, "\n");
2596 if (!in_interrupt())
2597 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2598 "num_trbs = %d\n",
2599 urb->ep->desc.bEndpointAddress,
2600 urb->transfer_buffer_length,
2601 num_trbs);
2602 return num_trbs;
2605 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2607 if (num_trbs != 0)
2608 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2609 "TRBs, %d left\n", __func__,
2610 urb->ep->desc.bEndpointAddress, num_trbs);
2611 if (running_total != urb->transfer_buffer_length)
2612 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2613 "queued %#x (%d), asked for %#x (%d)\n",
2614 __func__,
2615 urb->ep->desc.bEndpointAddress,
2616 running_total, running_total,
2617 urb->transfer_buffer_length,
2618 urb->transfer_buffer_length);
2621 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2622 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2623 struct xhci_generic_trb *start_trb)
2626 * Pass all the TRBs to the hardware at once and make sure this write
2627 * isn't reordered.
2629 wmb();
2630 if (start_cycle)
2631 start_trb->field[3] |= cpu_to_le32(start_cycle);
2632 else
2633 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2634 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2638 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2639 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2640 * (comprised of sg list entries) can take several service intervals to
2641 * transmit.
2643 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2644 struct urb *urb, int slot_id, unsigned int ep_index)
2646 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2647 xhci->devs[slot_id]->out_ctx, ep_index);
2648 int xhci_interval;
2649 int ep_interval;
2651 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2652 ep_interval = urb->interval;
2653 /* Convert to microframes */
2654 if (urb->dev->speed == USB_SPEED_LOW ||
2655 urb->dev->speed == USB_SPEED_FULL)
2656 ep_interval *= 8;
2657 /* FIXME change this to a warning and a suggestion to use the new API
2658 * to set the polling interval (once the API is added).
2660 if (xhci_interval != ep_interval) {
2661 if (printk_ratelimit())
2662 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2663 " (%d microframe%s) than xHCI "
2664 "(%d microframe%s)\n",
2665 ep_interval,
2666 ep_interval == 1 ? "" : "s",
2667 xhci_interval,
2668 xhci_interval == 1 ? "" : "s");
2669 urb->interval = xhci_interval;
2670 /* Convert back to frames for LS/FS devices */
2671 if (urb->dev->speed == USB_SPEED_LOW ||
2672 urb->dev->speed == USB_SPEED_FULL)
2673 urb->interval /= 8;
2675 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2679 * The TD size is the number of bytes remaining in the TD (including this TRB),
2680 * right shifted by 10.
2681 * It must fit in bits 21:17, so it can't be bigger than 31.
2683 static u32 xhci_td_remainder(unsigned int remainder)
2685 u32 max = (1 << (21 - 17 + 1)) - 1;
2687 if ((remainder >> 10) >= max)
2688 return max << 17;
2689 else
2690 return (remainder >> 10) << 17;
2694 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2695 * the TD (*not* including this TRB).
2697 * Total TD packet count = total_packet_count =
2698 * roundup(TD size in bytes / wMaxPacketSize)
2700 * Packets transferred up to and including this TRB = packets_transferred =
2701 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2703 * TD size = total_packet_count - packets_transferred
2705 * It must fit in bits 21:17, so it can't be bigger than 31.
2708 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2709 unsigned int total_packet_count, struct urb *urb)
2711 int packets_transferred;
2713 /* One TRB with a zero-length data packet. */
2714 if (running_total == 0 && trb_buff_len == 0)
2715 return 0;
2717 /* All the TRB queueing functions don't count the current TRB in
2718 * running_total.
2720 packets_transferred = (running_total + trb_buff_len) /
2721 usb_endpoint_maxp(&urb->ep->desc);
2723 return xhci_td_remainder(total_packet_count - packets_transferred);
2726 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2727 struct urb *urb, int slot_id, unsigned int ep_index)
2729 struct xhci_ring *ep_ring;
2730 unsigned int num_trbs;
2731 struct urb_priv *urb_priv;
2732 struct xhci_td *td;
2733 struct scatterlist *sg;
2734 int num_sgs;
2735 int trb_buff_len, this_sg_len, running_total;
2736 unsigned int total_packet_count;
2737 bool first_trb;
2738 u64 addr;
2739 bool more_trbs_coming;
2741 struct xhci_generic_trb *start_trb;
2742 int start_cycle;
2744 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2745 if (!ep_ring)
2746 return -EINVAL;
2748 num_trbs = count_sg_trbs_needed(xhci, urb);
2749 num_sgs = urb->num_mapped_sgs;
2750 total_packet_count = roundup(urb->transfer_buffer_length,
2751 usb_endpoint_maxp(&urb->ep->desc));
2753 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2754 ep_index, urb->stream_id,
2755 num_trbs, urb, 0, false, mem_flags);
2756 if (trb_buff_len < 0)
2757 return trb_buff_len;
2759 urb_priv = urb->hcpriv;
2760 td = urb_priv->td[0];
2763 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2764 * until we've finished creating all the other TRBs. The ring's cycle
2765 * state may change as we enqueue the other TRBs, so save it too.
2767 start_trb = &ep_ring->enqueue->generic;
2768 start_cycle = ep_ring->cycle_state;
2770 running_total = 0;
2772 * How much data is in the first TRB?
2774 * There are three forces at work for TRB buffer pointers and lengths:
2775 * 1. We don't want to walk off the end of this sg-list entry buffer.
2776 * 2. The transfer length that the driver requested may be smaller than
2777 * the amount of memory allocated for this scatter-gather list.
2778 * 3. TRBs buffers can't cross 64KB boundaries.
2780 sg = urb->sg;
2781 addr = (u64) sg_dma_address(sg);
2782 this_sg_len = sg_dma_len(sg);
2783 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2784 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2785 if (trb_buff_len > urb->transfer_buffer_length)
2786 trb_buff_len = urb->transfer_buffer_length;
2787 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2788 trb_buff_len);
2790 first_trb = true;
2791 /* Queue the first TRB, even if it's zero-length */
2792 do {
2793 u32 field = 0;
2794 u32 length_field = 0;
2795 u32 remainder = 0;
2797 /* Don't change the cycle bit of the first TRB until later */
2798 if (first_trb) {
2799 first_trb = false;
2800 if (start_cycle == 0)
2801 field |= 0x1;
2802 } else
2803 field |= ep_ring->cycle_state;
2805 /* Chain all the TRBs together; clear the chain bit in the last
2806 * TRB to indicate it's the last TRB in the chain.
2808 if (num_trbs > 1) {
2809 field |= TRB_CHAIN;
2810 } else {
2811 /* FIXME - add check for ZERO_PACKET flag before this */
2812 td->last_trb = ep_ring->enqueue;
2813 field |= TRB_IOC;
2816 /* Only set interrupt on short packet for IN endpoints */
2817 if (usb_urb_dir_in(urb))
2818 field |= TRB_ISP;
2820 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2821 "64KB boundary at %#x, end dma = %#x\n",
2822 (unsigned int) addr, trb_buff_len, trb_buff_len,
2823 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2824 (unsigned int) addr + trb_buff_len);
2825 if (TRB_MAX_BUFF_SIZE -
2826 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2827 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2828 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2829 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2830 (unsigned int) addr + trb_buff_len);
2833 /* Set the TRB length, TD size, and interrupter fields. */
2834 if (xhci->hci_version < 0x100) {
2835 remainder = xhci_td_remainder(
2836 urb->transfer_buffer_length -
2837 running_total);
2838 } else {
2839 remainder = xhci_v1_0_td_remainder(running_total,
2840 trb_buff_len, total_packet_count, urb);
2842 length_field = TRB_LEN(trb_buff_len) |
2843 remainder |
2844 TRB_INTR_TARGET(0);
2846 if (num_trbs > 1)
2847 more_trbs_coming = true;
2848 else
2849 more_trbs_coming = false;
2850 queue_trb(xhci, ep_ring, false, more_trbs_coming, false,
2851 lower_32_bits(addr),
2852 upper_32_bits(addr),
2853 length_field,
2854 field | TRB_TYPE(TRB_NORMAL));
2855 --num_trbs;
2856 running_total += trb_buff_len;
2858 /* Calculate length for next transfer --
2859 * Are we done queueing all the TRBs for this sg entry?
2861 this_sg_len -= trb_buff_len;
2862 if (this_sg_len == 0) {
2863 --num_sgs;
2864 if (num_sgs == 0)
2865 break;
2866 sg = sg_next(sg);
2867 addr = (u64) sg_dma_address(sg);
2868 this_sg_len = sg_dma_len(sg);
2869 } else {
2870 addr += trb_buff_len;
2873 trb_buff_len = TRB_MAX_BUFF_SIZE -
2874 (addr & (TRB_MAX_BUFF_SIZE - 1));
2875 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2876 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2877 trb_buff_len =
2878 urb->transfer_buffer_length - running_total;
2879 } while (running_total < urb->transfer_buffer_length);
2881 check_trb_math(urb, num_trbs, running_total);
2882 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2883 start_cycle, start_trb);
2884 return 0;
2887 /* This is very similar to what ehci-q.c qtd_fill() does */
2888 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2889 struct urb *urb, int slot_id, unsigned int ep_index)
2891 struct xhci_ring *ep_ring;
2892 struct urb_priv *urb_priv;
2893 struct xhci_td *td;
2894 int num_trbs;
2895 struct xhci_generic_trb *start_trb;
2896 bool first_trb;
2897 bool more_trbs_coming;
2898 int start_cycle;
2899 u32 field, length_field;
2901 int running_total, trb_buff_len, ret;
2902 unsigned int total_packet_count;
2903 u64 addr;
2905 if (urb->num_sgs)
2906 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2908 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2909 if (!ep_ring)
2910 return -EINVAL;
2912 num_trbs = 0;
2913 /* How much data is (potentially) left before the 64KB boundary? */
2914 running_total = TRB_MAX_BUFF_SIZE -
2915 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2916 running_total &= TRB_MAX_BUFF_SIZE - 1;
2918 /* If there's some data on this 64KB chunk, or we have to send a
2919 * zero-length transfer, we need at least one TRB
2921 if (running_total != 0 || urb->transfer_buffer_length == 0)
2922 num_trbs++;
2923 /* How many more 64KB chunks to transfer, how many more TRBs? */
2924 while (running_total < urb->transfer_buffer_length) {
2925 num_trbs++;
2926 running_total += TRB_MAX_BUFF_SIZE;
2928 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2930 if (!in_interrupt())
2931 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2932 "addr = %#llx, num_trbs = %d\n",
2933 urb->ep->desc.bEndpointAddress,
2934 urb->transfer_buffer_length,
2935 urb->transfer_buffer_length,
2936 (unsigned long long)urb->transfer_dma,
2937 num_trbs);
2939 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2940 ep_index, urb->stream_id,
2941 num_trbs, urb, 0, false, mem_flags);
2942 if (ret < 0)
2943 return ret;
2945 urb_priv = urb->hcpriv;
2946 td = urb_priv->td[0];
2949 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2950 * until we've finished creating all the other TRBs. The ring's cycle
2951 * state may change as we enqueue the other TRBs, so save it too.
2953 start_trb = &ep_ring->enqueue->generic;
2954 start_cycle = ep_ring->cycle_state;
2956 running_total = 0;
2957 total_packet_count = roundup(urb->transfer_buffer_length,
2958 usb_endpoint_maxp(&urb->ep->desc));
2959 /* How much data is in the first TRB? */
2960 addr = (u64) urb->transfer_dma;
2961 trb_buff_len = TRB_MAX_BUFF_SIZE -
2962 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2963 if (trb_buff_len > urb->transfer_buffer_length)
2964 trb_buff_len = urb->transfer_buffer_length;
2966 first_trb = true;
2968 /* Queue the first TRB, even if it's zero-length */
2969 do {
2970 u32 remainder = 0;
2971 field = 0;
2973 /* Don't change the cycle bit of the first TRB until later */
2974 if (first_trb) {
2975 first_trb = false;
2976 if (start_cycle == 0)
2977 field |= 0x1;
2978 } else
2979 field |= ep_ring->cycle_state;
2981 /* Chain all the TRBs together; clear the chain bit in the last
2982 * TRB to indicate it's the last TRB in the chain.
2984 if (num_trbs > 1) {
2985 field |= TRB_CHAIN;
2986 } else {
2987 /* FIXME - add check for ZERO_PACKET flag before this */
2988 td->last_trb = ep_ring->enqueue;
2989 field |= TRB_IOC;
2992 /* Only set interrupt on short packet for IN endpoints */
2993 if (usb_urb_dir_in(urb))
2994 field |= TRB_ISP;
2996 /* Set the TRB length, TD size, and interrupter fields. */
2997 if (xhci->hci_version < 0x100) {
2998 remainder = xhci_td_remainder(
2999 urb->transfer_buffer_length -
3000 running_total);
3001 } else {
3002 remainder = xhci_v1_0_td_remainder(running_total,
3003 trb_buff_len, total_packet_count, urb);
3005 length_field = TRB_LEN(trb_buff_len) |
3006 remainder |
3007 TRB_INTR_TARGET(0);
3009 if (num_trbs > 1)
3010 more_trbs_coming = true;
3011 else
3012 more_trbs_coming = false;
3013 queue_trb(xhci, ep_ring, false, more_trbs_coming, false,
3014 lower_32_bits(addr),
3015 upper_32_bits(addr),
3016 length_field,
3017 field | TRB_TYPE(TRB_NORMAL));
3018 --num_trbs;
3019 running_total += trb_buff_len;
3021 /* Calculate length for next transfer */
3022 addr += trb_buff_len;
3023 trb_buff_len = urb->transfer_buffer_length - running_total;
3024 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3025 trb_buff_len = TRB_MAX_BUFF_SIZE;
3026 } while (running_total < urb->transfer_buffer_length);
3028 check_trb_math(urb, num_trbs, running_total);
3029 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3030 start_cycle, start_trb);
3031 return 0;
3034 /* Caller must have locked xhci->lock */
3035 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3036 struct urb *urb, int slot_id, unsigned int ep_index)
3038 struct xhci_ring *ep_ring;
3039 int num_trbs;
3040 int ret;
3041 struct usb_ctrlrequest *setup;
3042 struct xhci_generic_trb *start_trb;
3043 int start_cycle;
3044 u32 field, length_field;
3045 struct urb_priv *urb_priv;
3046 struct xhci_td *td;
3048 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3049 if (!ep_ring)
3050 return -EINVAL;
3053 * Need to copy setup packet into setup TRB, so we can't use the setup
3054 * DMA address.
3056 if (!urb->setup_packet)
3057 return -EINVAL;
3059 if (!in_interrupt())
3060 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
3061 slot_id, ep_index);
3062 /* 1 TRB for setup, 1 for status */
3063 num_trbs = 2;
3065 * Don't need to check if we need additional event data and normal TRBs,
3066 * since data in control transfers will never get bigger than 16MB
3067 * XXX: can we get a buffer that crosses 64KB boundaries?
3069 if (urb->transfer_buffer_length > 0)
3070 num_trbs++;
3071 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3072 ep_index, urb->stream_id,
3073 num_trbs, urb, 0, false, mem_flags);
3074 if (ret < 0)
3075 return ret;
3077 urb_priv = urb->hcpriv;
3078 td = urb_priv->td[0];
3081 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3082 * until we've finished creating all the other TRBs. The ring's cycle
3083 * state may change as we enqueue the other TRBs, so save it too.
3085 start_trb = &ep_ring->enqueue->generic;
3086 start_cycle = ep_ring->cycle_state;
3088 /* Queue setup TRB - see section 6.4.1.2.1 */
3089 /* FIXME better way to translate setup_packet into two u32 fields? */
3090 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3091 field = 0;
3092 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3093 if (start_cycle == 0)
3094 field |= 0x1;
3096 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3097 if (xhci->hci_version == 0x100) {
3098 if (urb->transfer_buffer_length > 0) {
3099 if (setup->bRequestType & USB_DIR_IN)
3100 field |= TRB_TX_TYPE(TRB_DATA_IN);
3101 else
3102 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3106 queue_trb(xhci, ep_ring, false, true, false,
3107 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3108 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3109 TRB_LEN(8) | TRB_INTR_TARGET(0),
3110 /* Immediate data in pointer */
3111 field);
3113 /* If there's data, queue data TRBs */
3114 /* Only set interrupt on short packet for IN endpoints */
3115 if (usb_urb_dir_in(urb))
3116 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3117 else
3118 field = TRB_TYPE(TRB_DATA);
3120 length_field = TRB_LEN(urb->transfer_buffer_length) |
3121 xhci_td_remainder(urb->transfer_buffer_length) |
3122 TRB_INTR_TARGET(0);
3123 if (urb->transfer_buffer_length > 0) {
3124 if (setup->bRequestType & USB_DIR_IN)
3125 field |= TRB_DIR_IN;
3126 queue_trb(xhci, ep_ring, false, true, false,
3127 lower_32_bits(urb->transfer_dma),
3128 upper_32_bits(urb->transfer_dma),
3129 length_field,
3130 field | ep_ring->cycle_state);
3133 /* Save the DMA address of the last TRB in the TD */
3134 td->last_trb = ep_ring->enqueue;
3136 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3137 /* If the device sent data, the status stage is an OUT transfer */
3138 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3139 field = 0;
3140 else
3141 field = TRB_DIR_IN;
3142 queue_trb(xhci, ep_ring, false, false, false,
3145 TRB_INTR_TARGET(0),
3146 /* Event on completion */
3147 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3149 giveback_first_trb(xhci, slot_id, ep_index, 0,
3150 start_cycle, start_trb);
3151 return 0;
3154 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3155 struct urb *urb, int i)
3157 int num_trbs = 0;
3158 u64 addr, td_len;
3160 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3161 td_len = urb->iso_frame_desc[i].length;
3163 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3164 TRB_MAX_BUFF_SIZE);
3165 if (num_trbs == 0)
3166 num_trbs++;
3168 return num_trbs;
3172 * The transfer burst count field of the isochronous TRB defines the number of
3173 * bursts that are required to move all packets in this TD. Only SuperSpeed
3174 * devices can burst up to bMaxBurst number of packets per service interval.
3175 * This field is zero based, meaning a value of zero in the field means one
3176 * burst. Basically, for everything but SuperSpeed devices, this field will be
3177 * zero. Only xHCI 1.0 host controllers support this field.
3179 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3180 struct usb_device *udev,
3181 struct urb *urb, unsigned int total_packet_count)
3183 unsigned int max_burst;
3185 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3186 return 0;
3188 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3189 return roundup(total_packet_count, max_burst + 1) - 1;
3193 * Returns the number of packets in the last "burst" of packets. This field is
3194 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3195 * the last burst packet count is equal to the total number of packets in the
3196 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3197 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3198 * contain 1 to (bMaxBurst + 1) packets.
3200 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3201 struct usb_device *udev,
3202 struct urb *urb, unsigned int total_packet_count)
3204 unsigned int max_burst;
3205 unsigned int residue;
3207 if (xhci->hci_version < 0x100)
3208 return 0;
3210 switch (udev->speed) {
3211 case USB_SPEED_SUPER:
3212 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3213 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3214 residue = total_packet_count % (max_burst + 1);
3215 /* If residue is zero, the last burst contains (max_burst + 1)
3216 * number of packets, but the TLBPC field is zero-based.
3218 if (residue == 0)
3219 return max_burst;
3220 return residue - 1;
3221 default:
3222 if (total_packet_count == 0)
3223 return 0;
3224 return total_packet_count - 1;
3228 /* This is for isoc transfer */
3229 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3230 struct urb *urb, int slot_id, unsigned int ep_index)
3232 struct xhci_ring *ep_ring;
3233 struct urb_priv *urb_priv;
3234 struct xhci_td *td;
3235 int num_tds, trbs_per_td;
3236 struct xhci_generic_trb *start_trb;
3237 bool first_trb;
3238 int start_cycle;
3239 u32 field, length_field;
3240 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3241 u64 start_addr, addr;
3242 int i, j;
3243 bool more_trbs_coming;
3245 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3247 num_tds = urb->number_of_packets;
3248 if (num_tds < 1) {
3249 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3250 return -EINVAL;
3253 if (!in_interrupt())
3254 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3255 " addr = %#llx, num_tds = %d\n",
3256 urb->ep->desc.bEndpointAddress,
3257 urb->transfer_buffer_length,
3258 urb->transfer_buffer_length,
3259 (unsigned long long)urb->transfer_dma,
3260 num_tds);
3262 start_addr = (u64) urb->transfer_dma;
3263 start_trb = &ep_ring->enqueue->generic;
3264 start_cycle = ep_ring->cycle_state;
3266 urb_priv = urb->hcpriv;
3267 /* Queue the first TRB, even if it's zero-length */
3268 for (i = 0; i < num_tds; i++) {
3269 unsigned int total_packet_count;
3270 unsigned int burst_count;
3271 unsigned int residue;
3273 first_trb = true;
3274 running_total = 0;
3275 addr = start_addr + urb->iso_frame_desc[i].offset;
3276 td_len = urb->iso_frame_desc[i].length;
3277 td_remain_len = td_len;
3278 total_packet_count = roundup(td_len,
3279 usb_endpoint_maxp(&urb->ep->desc));
3280 /* A zero-length transfer still involves at least one packet. */
3281 if (total_packet_count == 0)
3282 total_packet_count++;
3283 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3284 total_packet_count);
3285 residue = xhci_get_last_burst_packet_count(xhci,
3286 urb->dev, urb, total_packet_count);
3288 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3290 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3291 urb->stream_id, trbs_per_td, urb, i, true,
3292 mem_flags);
3293 if (ret < 0) {
3294 if (i == 0)
3295 return ret;
3296 goto cleanup;
3299 td = urb_priv->td[i];
3300 for (j = 0; j < trbs_per_td; j++) {
3301 u32 remainder = 0;
3302 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3304 if (first_trb) {
3305 /* Queue the isoc TRB */
3306 field |= TRB_TYPE(TRB_ISOC);
3307 /* Assume URB_ISO_ASAP is set */
3308 field |= TRB_SIA;
3309 if (i == 0) {
3310 if (start_cycle == 0)
3311 field |= 0x1;
3312 } else
3313 field |= ep_ring->cycle_state;
3314 first_trb = false;
3315 } else {
3316 /* Queue other normal TRBs */
3317 field |= TRB_TYPE(TRB_NORMAL);
3318 field |= ep_ring->cycle_state;
3321 /* Only set interrupt on short packet for IN EPs */
3322 if (usb_urb_dir_in(urb))
3323 field |= TRB_ISP;
3325 /* Chain all the TRBs together; clear the chain bit in
3326 * the last TRB to indicate it's the last TRB in the
3327 * chain.
3329 if (j < trbs_per_td - 1) {
3330 field |= TRB_CHAIN;
3331 more_trbs_coming = true;
3332 } else {
3333 td->last_trb = ep_ring->enqueue;
3334 field |= TRB_IOC;
3335 if (xhci->hci_version == 0x100) {
3336 /* Set BEI bit except for the last td */
3337 if (i < num_tds - 1)
3338 field |= TRB_BEI;
3340 more_trbs_coming = false;
3343 /* Calculate TRB length */
3344 trb_buff_len = TRB_MAX_BUFF_SIZE -
3345 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3346 if (trb_buff_len > td_remain_len)
3347 trb_buff_len = td_remain_len;
3349 /* Set the TRB length, TD size, & interrupter fields. */
3350 if (xhci->hci_version < 0x100) {
3351 remainder = xhci_td_remainder(
3352 td_len - running_total);
3353 } else {
3354 remainder = xhci_v1_0_td_remainder(
3355 running_total, trb_buff_len,
3356 total_packet_count, urb);
3358 length_field = TRB_LEN(trb_buff_len) |
3359 remainder |
3360 TRB_INTR_TARGET(0);
3362 queue_trb(xhci, ep_ring, false, more_trbs_coming, true,
3363 lower_32_bits(addr),
3364 upper_32_bits(addr),
3365 length_field,
3366 field);
3367 running_total += trb_buff_len;
3369 addr += trb_buff_len;
3370 td_remain_len -= trb_buff_len;
3373 /* Check TD length */
3374 if (running_total != td_len) {
3375 xhci_err(xhci, "ISOC TD length unmatch\n");
3376 return -EINVAL;
3380 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3381 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3382 usb_amd_quirk_pll_disable();
3384 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3386 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3387 start_cycle, start_trb);
3388 return 0;
3389 cleanup:
3390 /* Clean up a partially enqueued isoc transfer. */
3392 for (i--; i >= 0; i--)
3393 list_del_init(&urb_priv->td[i]->td_list);
3395 /* Use the first TD as a temporary variable to turn the TDs we've queued
3396 * into No-ops with a software-owned cycle bit. That way the hardware
3397 * won't accidentally start executing bogus TDs when we partially
3398 * overwrite them. td->first_trb and td->start_seg are already set.
3400 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3401 /* Every TRB except the first & last will have its cycle bit flipped. */
3402 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3404 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3405 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3406 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3407 ep_ring->cycle_state = start_cycle;
3408 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3409 return ret;
3413 * Check transfer ring to guarantee there is enough room for the urb.
3414 * Update ISO URB start_frame and interval.
3415 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3416 * update the urb->start_frame by now.
3417 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3419 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3420 struct urb *urb, int slot_id, unsigned int ep_index)
3422 struct xhci_virt_device *xdev;
3423 struct xhci_ring *ep_ring;
3424 struct xhci_ep_ctx *ep_ctx;
3425 int start_frame;
3426 int xhci_interval;
3427 int ep_interval;
3428 int num_tds, num_trbs, i;
3429 int ret;
3431 xdev = xhci->devs[slot_id];
3432 ep_ring = xdev->eps[ep_index].ring;
3433 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3435 num_trbs = 0;
3436 num_tds = urb->number_of_packets;
3437 for (i = 0; i < num_tds; i++)
3438 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3440 /* Check the ring to guarantee there is enough room for the whole urb.
3441 * Do not insert any td of the urb to the ring if the check failed.
3443 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3444 num_trbs, true, mem_flags);
3445 if (ret)
3446 return ret;
3448 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3449 start_frame &= 0x3fff;
3451 urb->start_frame = start_frame;
3452 if (urb->dev->speed == USB_SPEED_LOW ||
3453 urb->dev->speed == USB_SPEED_FULL)
3454 urb->start_frame >>= 3;
3456 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3457 ep_interval = urb->interval;
3458 /* Convert to microframes */
3459 if (urb->dev->speed == USB_SPEED_LOW ||
3460 urb->dev->speed == USB_SPEED_FULL)
3461 ep_interval *= 8;
3462 /* FIXME change this to a warning and a suggestion to use the new API
3463 * to set the polling interval (once the API is added).
3465 if (xhci_interval != ep_interval) {
3466 if (printk_ratelimit())
3467 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3468 " (%d microframe%s) than xHCI "
3469 "(%d microframe%s)\n",
3470 ep_interval,
3471 ep_interval == 1 ? "" : "s",
3472 xhci_interval,
3473 xhci_interval == 1 ? "" : "s");
3474 urb->interval = xhci_interval;
3475 /* Convert back to frames for LS/FS devices */
3476 if (urb->dev->speed == USB_SPEED_LOW ||
3477 urb->dev->speed == USB_SPEED_FULL)
3478 urb->interval /= 8;
3480 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3483 /**** Command Ring Operations ****/
3485 /* Generic function for queueing a command TRB on the command ring.
3486 * Check to make sure there's room on the command ring for one command TRB.
3487 * Also check that there's room reserved for commands that must not fail.
3488 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3489 * then only check for the number of reserved spots.
3490 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3491 * because the command event handler may want to resubmit a failed command.
3493 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3494 u32 field3, u32 field4, bool command_must_succeed)
3496 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3497 int ret;
3499 if (!command_must_succeed)
3500 reserved_trbs++;
3502 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3503 reserved_trbs, false, GFP_ATOMIC);
3504 if (ret < 0) {
3505 xhci_err(xhci, "ERR: No room for command on command ring\n");
3506 if (command_must_succeed)
3507 xhci_err(xhci, "ERR: Reserved TRB counting for "
3508 "unfailable commands failed.\n");
3509 return ret;
3511 queue_trb(xhci, xhci->cmd_ring, false, false, false, field1, field2,
3512 field3, field4 | xhci->cmd_ring->cycle_state);
3513 return 0;
3516 /* Queue a slot enable or disable request on the command ring */
3517 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3519 return queue_command(xhci, 0, 0, 0,
3520 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3523 /* Queue an address device command TRB */
3524 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3525 u32 slot_id)
3527 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3528 upper_32_bits(in_ctx_ptr), 0,
3529 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3530 false);
3533 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3534 u32 field1, u32 field2, u32 field3, u32 field4)
3536 return queue_command(xhci, field1, field2, field3, field4, false);
3539 /* Queue a reset device command TRB */
3540 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3542 return queue_command(xhci, 0, 0, 0,
3543 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3544 false);
3547 /* Queue a configure endpoint command TRB */
3548 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3549 u32 slot_id, bool command_must_succeed)
3551 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3552 upper_32_bits(in_ctx_ptr), 0,
3553 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3554 command_must_succeed);
3557 /* Queue an evaluate context command TRB */
3558 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3559 u32 slot_id)
3561 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3562 upper_32_bits(in_ctx_ptr), 0,
3563 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3564 false);
3568 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3569 * activity on an endpoint that is about to be suspended.
3571 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3572 unsigned int ep_index, int suspend)
3574 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3575 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3576 u32 type = TRB_TYPE(TRB_STOP_RING);
3577 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3579 return queue_command(xhci, 0, 0, 0,
3580 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3583 /* Set Transfer Ring Dequeue Pointer command.
3584 * This should not be used for endpoints that have streams enabled.
3586 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3587 unsigned int ep_index, unsigned int stream_id,
3588 struct xhci_segment *deq_seg,
3589 union xhci_trb *deq_ptr, u32 cycle_state)
3591 dma_addr_t addr;
3592 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3593 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3594 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3595 u32 type = TRB_TYPE(TRB_SET_DEQ);
3596 struct xhci_virt_ep *ep;
3598 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3599 if (addr == 0) {
3600 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3601 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3602 deq_seg, deq_ptr);
3603 return 0;
3605 ep = &xhci->devs[slot_id]->eps[ep_index];
3606 if ((ep->ep_state & SET_DEQ_PENDING)) {
3607 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3608 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3609 return 0;
3611 ep->queued_deq_seg = deq_seg;
3612 ep->queued_deq_ptr = deq_ptr;
3613 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3614 upper_32_bits(addr), trb_stream_id,
3615 trb_slot_id | trb_ep_index | type, false);
3618 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3619 unsigned int ep_index)
3621 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3622 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3623 u32 type = TRB_TYPE(TRB_RESET_EP);
3625 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3626 false);