drm/radeon/kms: free ib pool on module unloading
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / journal.c
blobe5cb2ce7bf089274aa53f6528639b4de7440267a
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements UBIFS journal.
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
61 #include "ubifs.h"
63 /**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
73 /**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
80 dent->padding1 = 0;
81 memset(dent->padding2, 0, 4);
84 /**
85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
86 * @data: the data node to zero out
88 static inline void zero_data_node_unused(struct ubifs_data_node *data)
90 memset(data->padding, 0, 2);
93 /**
94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
95 * node.
96 * @trun: the truncation node to zero out
98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
100 memset(trun->padding, 0, 12);
104 * reserve_space - reserve space in the journal.
105 * @c: UBIFS file-system description object
106 * @jhead: journal head number
107 * @len: node length
109 * This function reserves space in journal head @head. If the reservation
110 * succeeded, the journal head stays locked and later has to be unlocked using
111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113 * other negative error codes in case of other failures.
115 static int reserve_space(struct ubifs_info *c, int jhead, int len)
117 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
121 * Typically, the base head has smaller nodes written to it, so it is
122 * better to try to allocate space at the ends of eraseblocks. This is
123 * what the squeeze parameter does.
125 ubifs_assert(!c->ro_media && !c->ro_mount);
126 squeeze = (jhead == BASEHD);
127 again:
128 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
130 if (c->ro_error) {
131 err = -EROFS;
132 goto out_unlock;
135 avail = c->leb_size - wbuf->offs - wbuf->used;
136 if (wbuf->lnum != -1 && avail >= len)
137 return 0;
140 * Write buffer wasn't seek'ed or there is no enough space - look for an
141 * LEB with some empty space.
143 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
144 if (lnum >= 0) {
145 /* Found an LEB, add it to the journal head */
146 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
147 if (err)
148 goto out_return;
149 /* A new bud was successfully allocated and added to the log */
150 goto out;
153 err = lnum;
154 if (err != -ENOSPC)
155 goto out_unlock;
158 * No free space, we have to run garbage collector to make
159 * some. But the write-buffer mutex has to be unlocked because
160 * GC also takes it.
162 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
163 mutex_unlock(&wbuf->io_mutex);
165 lnum = ubifs_garbage_collect(c, 0);
166 if (lnum < 0) {
167 err = lnum;
168 if (err != -ENOSPC)
169 return err;
172 * GC could not make a free LEB. But someone else may
173 * have allocated new bud for this journal head,
174 * because we dropped @wbuf->io_mutex, so try once
175 * again.
177 dbg_jnl("GC couldn't make a free LEB for jhead %s",
178 dbg_jhead(jhead));
179 if (retries++ < 2) {
180 dbg_jnl("retry (%d)", retries);
181 goto again;
184 dbg_jnl("return -ENOSPC");
185 return err;
188 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
189 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
190 avail = c->leb_size - wbuf->offs - wbuf->used;
192 if (wbuf->lnum != -1 && avail >= len) {
194 * Someone else has switched the journal head and we have
195 * enough space now. This happens when more than one process is
196 * trying to write to the same journal head at the same time.
198 dbg_jnl("return LEB %d back, already have LEB %d:%d",
199 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
200 err = ubifs_return_leb(c, lnum);
201 if (err)
202 goto out_unlock;
203 return 0;
206 err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
207 if (err)
208 goto out_return;
209 offs = 0;
211 out:
212 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype);
213 if (err)
214 goto out_unlock;
216 return 0;
218 out_unlock:
219 mutex_unlock(&wbuf->io_mutex);
220 return err;
222 out_return:
223 /* An error occurred and the LEB has to be returned to lprops */
224 ubifs_assert(err < 0);
225 err1 = ubifs_return_leb(c, lnum);
226 if (err1 && err == -EAGAIN)
228 * Return original error code only if it is not %-EAGAIN,
229 * which is not really an error. Otherwise, return the error
230 * code of 'ubifs_return_leb()'.
232 err = err1;
233 mutex_unlock(&wbuf->io_mutex);
234 return err;
238 * write_node - write node to a journal head.
239 * @c: UBIFS file-system description object
240 * @jhead: journal head
241 * @node: node to write
242 * @len: node length
243 * @lnum: LEB number written is returned here
244 * @offs: offset written is returned here
246 * This function writes a node to reserved space of journal head @jhead.
247 * Returns zero in case of success and a negative error code in case of
248 * failure.
250 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
251 int *lnum, int *offs)
253 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
255 ubifs_assert(jhead != GCHD);
257 *lnum = c->jheads[jhead].wbuf.lnum;
258 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
260 dbg_jnl("jhead %s, LEB %d:%d, len %d",
261 dbg_jhead(jhead), *lnum, *offs, len);
262 ubifs_prepare_node(c, node, len, 0);
264 return ubifs_wbuf_write_nolock(wbuf, node, len);
268 * write_head - write data to a journal head.
269 * @c: UBIFS file-system description object
270 * @jhead: journal head
271 * @buf: buffer to write
272 * @len: length to write
273 * @lnum: LEB number written is returned here
274 * @offs: offset written is returned here
275 * @sync: non-zero if the write-buffer has to by synchronized
277 * This function is the same as 'write_node()' but it does not assume the
278 * buffer it is writing is a node, so it does not prepare it (which means
279 * initializing common header and calculating CRC).
281 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
282 int *lnum, int *offs, int sync)
284 int err;
285 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
287 ubifs_assert(jhead != GCHD);
289 *lnum = c->jheads[jhead].wbuf.lnum;
290 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
291 dbg_jnl("jhead %s, LEB %d:%d, len %d",
292 dbg_jhead(jhead), *lnum, *offs, len);
294 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
295 if (err)
296 return err;
297 if (sync)
298 err = ubifs_wbuf_sync_nolock(wbuf);
299 return err;
303 * make_reservation - reserve journal space.
304 * @c: UBIFS file-system description object
305 * @jhead: journal head
306 * @len: how many bytes to reserve
308 * This function makes space reservation in journal head @jhead. The function
309 * takes the commit lock and locks the journal head, and the caller has to
310 * unlock the head and finish the reservation with 'finish_reservation()'.
311 * Returns zero in case of success and a negative error code in case of
312 * failure.
314 * Note, the journal head may be unlocked as soon as the data is written, while
315 * the commit lock has to be released after the data has been added to the
316 * TNC.
318 static int make_reservation(struct ubifs_info *c, int jhead, int len)
320 int err, cmt_retries = 0, nospc_retries = 0;
322 again:
323 down_read(&c->commit_sem);
324 err = reserve_space(c, jhead, len);
325 if (!err)
326 return 0;
327 up_read(&c->commit_sem);
329 if (err == -ENOSPC) {
331 * GC could not make any progress. We should try to commit
332 * once because it could make some dirty space and GC would
333 * make progress, so make the error -EAGAIN so that the below
334 * will commit and re-try.
336 if (nospc_retries++ < 2) {
337 dbg_jnl("no space, retry");
338 err = -EAGAIN;
342 * This means that the budgeting is incorrect. We always have
343 * to be able to write to the media, because all operations are
344 * budgeted. Deletions are not budgeted, though, but we reserve
345 * an extra LEB for them.
349 if (err != -EAGAIN)
350 goto out;
353 * -EAGAIN means that the journal is full or too large, or the above
354 * code wants to do one commit. Do this and re-try.
356 if (cmt_retries > 128) {
358 * This should not happen unless the journal size limitations
359 * are too tough.
361 ubifs_err("stuck in space allocation");
362 err = -ENOSPC;
363 goto out;
364 } else if (cmt_retries > 32)
365 ubifs_warn("too many space allocation re-tries (%d)",
366 cmt_retries);
368 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
369 cmt_retries);
370 cmt_retries += 1;
372 err = ubifs_run_commit(c);
373 if (err)
374 return err;
375 goto again;
377 out:
378 ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
379 len, jhead, err);
380 if (err == -ENOSPC) {
381 /* This are some budgeting problems, print useful information */
382 down_write(&c->commit_sem);
383 spin_lock(&c->space_lock);
384 dbg_dump_stack();
385 dbg_dump_budg(c);
386 spin_unlock(&c->space_lock);
387 dbg_dump_lprops(c);
388 cmt_retries = dbg_check_lprops(c);
389 up_write(&c->commit_sem);
391 return err;
395 * release_head - release a journal head.
396 * @c: UBIFS file-system description object
397 * @jhead: journal head
399 * This function releases journal head @jhead which was locked by
400 * the 'make_reservation()' function. It has to be called after each successful
401 * 'make_reservation()' invocation.
403 static inline void release_head(struct ubifs_info *c, int jhead)
405 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
409 * finish_reservation - finish a reservation.
410 * @c: UBIFS file-system description object
412 * This function finishes journal space reservation. It must be called after
413 * 'make_reservation()'.
415 static void finish_reservation(struct ubifs_info *c)
417 up_read(&c->commit_sem);
421 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
422 * @mode: inode mode
424 static int get_dent_type(int mode)
426 switch (mode & S_IFMT) {
427 case S_IFREG:
428 return UBIFS_ITYPE_REG;
429 case S_IFDIR:
430 return UBIFS_ITYPE_DIR;
431 case S_IFLNK:
432 return UBIFS_ITYPE_LNK;
433 case S_IFBLK:
434 return UBIFS_ITYPE_BLK;
435 case S_IFCHR:
436 return UBIFS_ITYPE_CHR;
437 case S_IFIFO:
438 return UBIFS_ITYPE_FIFO;
439 case S_IFSOCK:
440 return UBIFS_ITYPE_SOCK;
441 default:
442 BUG();
444 return 0;
448 * pack_inode - pack an inode node.
449 * @c: UBIFS file-system description object
450 * @ino: buffer in which to pack inode node
451 * @inode: inode to pack
452 * @last: indicates the last node of the group
454 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
455 const struct inode *inode, int last)
457 int data_len = 0, last_reference = !inode->i_nlink;
458 struct ubifs_inode *ui = ubifs_inode(inode);
460 ino->ch.node_type = UBIFS_INO_NODE;
461 ino_key_init_flash(c, &ino->key, inode->i_ino);
462 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
463 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
464 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
465 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
466 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
467 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
468 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
469 ino->uid = cpu_to_le32(inode->i_uid);
470 ino->gid = cpu_to_le32(inode->i_gid);
471 ino->mode = cpu_to_le32(inode->i_mode);
472 ino->flags = cpu_to_le32(ui->flags);
473 ino->size = cpu_to_le64(ui->ui_size);
474 ino->nlink = cpu_to_le32(inode->i_nlink);
475 ino->compr_type = cpu_to_le16(ui->compr_type);
476 ino->data_len = cpu_to_le32(ui->data_len);
477 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
478 ino->xattr_size = cpu_to_le32(ui->xattr_size);
479 ino->xattr_names = cpu_to_le32(ui->xattr_names);
480 zero_ino_node_unused(ino);
483 * Drop the attached data if this is a deletion inode, the data is not
484 * needed anymore.
486 if (!last_reference) {
487 memcpy(ino->data, ui->data, ui->data_len);
488 data_len = ui->data_len;
491 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
495 * mark_inode_clean - mark UBIFS inode as clean.
496 * @c: UBIFS file-system description object
497 * @ui: UBIFS inode to mark as clean
499 * This helper function marks UBIFS inode @ui as clean by cleaning the
500 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
501 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
502 * just do nothing.
504 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
506 if (ui->dirty)
507 ubifs_release_dirty_inode_budget(c, ui);
508 ui->dirty = 0;
512 * ubifs_jnl_update - update inode.
513 * @c: UBIFS file-system description object
514 * @dir: parent inode or host inode in case of extended attributes
515 * @nm: directory entry name
516 * @inode: inode to update
517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
518 * @xent: non-zero if the directory entry is an extended attribute entry
520 * This function updates an inode by writing a directory entry (or extended
521 * attribute entry), the inode itself, and the parent directory inode (or the
522 * host inode) to the journal.
524 * The function writes the host inode @dir last, which is important in case of
525 * extended attributes. Indeed, then we guarantee that if the host inode gets
526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
527 * the extended attribute inode gets flushed too. And this is exactly what the
528 * user expects - synchronizing the host inode synchronizes its extended
529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
530 * directory entry corresponding to @nm gets synchronized too.
532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
533 * function synchronizes the write-buffer.
535 * This function marks the @dir and @inode inodes as clean and returns zero on
536 * success. In case of failure, a negative error code is returned.
538 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
539 const struct qstr *nm, const struct inode *inode,
540 int deletion, int xent)
542 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
543 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
544 int last_reference = !!(deletion && inode->i_nlink == 0);
545 struct ubifs_inode *ui = ubifs_inode(inode);
546 struct ubifs_inode *dir_ui = ubifs_inode(dir);
547 struct ubifs_dent_node *dent;
548 struct ubifs_ino_node *ino;
549 union ubifs_key dent_key, ino_key;
551 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
552 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
553 ubifs_assert(dir_ui->data_len == 0);
554 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
556 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
557 ilen = UBIFS_INO_NODE_SZ;
560 * If the last reference to the inode is being deleted, then there is
561 * no need to attach and write inode data, it is being deleted anyway.
562 * And if the inode is being deleted, no need to synchronize
563 * write-buffer even if the inode is synchronous.
565 if (!last_reference) {
566 ilen += ui->data_len;
567 sync |= IS_SYNC(inode);
570 aligned_dlen = ALIGN(dlen, 8);
571 aligned_ilen = ALIGN(ilen, 8);
572 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
573 dent = kmalloc(len, GFP_NOFS);
574 if (!dent)
575 return -ENOMEM;
577 /* Make reservation before allocating sequence numbers */
578 err = make_reservation(c, BASEHD, len);
579 if (err)
580 goto out_free;
582 if (!xent) {
583 dent->ch.node_type = UBIFS_DENT_NODE;
584 dent_key_init(c, &dent_key, dir->i_ino, nm);
585 } else {
586 dent->ch.node_type = UBIFS_XENT_NODE;
587 xent_key_init(c, &dent_key, dir->i_ino, nm);
590 key_write(c, &dent_key, dent->key);
591 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
592 dent->type = get_dent_type(inode->i_mode);
593 dent->nlen = cpu_to_le16(nm->len);
594 memcpy(dent->name, nm->name, nm->len);
595 dent->name[nm->len] = '\0';
596 zero_dent_node_unused(dent);
597 ubifs_prep_grp_node(c, dent, dlen, 0);
599 ino = (void *)dent + aligned_dlen;
600 pack_inode(c, ino, inode, 0);
601 ino = (void *)ino + aligned_ilen;
602 pack_inode(c, ino, dir, 1);
604 if (last_reference) {
605 err = ubifs_add_orphan(c, inode->i_ino);
606 if (err) {
607 release_head(c, BASEHD);
608 goto out_finish;
610 ui->del_cmtno = c->cmt_no;
613 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
614 if (err)
615 goto out_release;
616 if (!sync) {
617 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
619 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
620 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
622 release_head(c, BASEHD);
623 kfree(dent);
625 if (deletion) {
626 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
627 if (err)
628 goto out_ro;
629 err = ubifs_add_dirt(c, lnum, dlen);
630 } else
631 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
632 if (err)
633 goto out_ro;
636 * Note, we do not remove the inode from TNC even if the last reference
637 * to it has just been deleted, because the inode may still be opened.
638 * Instead, the inode has been added to orphan lists and the orphan
639 * subsystem will take further care about it.
641 ino_key_init(c, &ino_key, inode->i_ino);
642 ino_offs = dent_offs + aligned_dlen;
643 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
644 if (err)
645 goto out_ro;
647 ino_key_init(c, &ino_key, dir->i_ino);
648 ino_offs += aligned_ilen;
649 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
650 if (err)
651 goto out_ro;
653 finish_reservation(c);
654 spin_lock(&ui->ui_lock);
655 ui->synced_i_size = ui->ui_size;
656 spin_unlock(&ui->ui_lock);
657 mark_inode_clean(c, ui);
658 mark_inode_clean(c, dir_ui);
659 return 0;
661 out_finish:
662 finish_reservation(c);
663 out_free:
664 kfree(dent);
665 return err;
667 out_release:
668 release_head(c, BASEHD);
669 kfree(dent);
670 out_ro:
671 ubifs_ro_mode(c, err);
672 if (last_reference)
673 ubifs_delete_orphan(c, inode->i_ino);
674 finish_reservation(c);
675 return err;
679 * ubifs_jnl_write_data - write a data node to the journal.
680 * @c: UBIFS file-system description object
681 * @inode: inode the data node belongs to
682 * @key: node key
683 * @buf: buffer to write
684 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
686 * This function writes a data node to the journal. Returns %0 if the data node
687 * was successfully written, and a negative error code in case of failure.
689 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
690 const union ubifs_key *key, const void *buf, int len)
692 struct ubifs_data_node *data;
693 int err, lnum, offs, compr_type, out_len;
694 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
695 struct ubifs_inode *ui = ubifs_inode(inode);
697 dbg_jnl("ino %lu, blk %u, len %d, key %s",
698 (unsigned long)key_inum(c, key), key_block(c, key), len,
699 DBGKEY(key));
700 ubifs_assert(len <= UBIFS_BLOCK_SIZE);
702 data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
703 if (!data) {
705 * Fall-back to the write reserve buffer. Note, we might be
706 * currently on the memory reclaim path, when the kernel is
707 * trying to free some memory by writing out dirty pages. The
708 * write reserve buffer helps us to guarantee that we are
709 * always able to write the data.
711 allocated = 0;
712 mutex_lock(&c->write_reserve_mutex);
713 data = c->write_reserve_buf;
716 data->ch.node_type = UBIFS_DATA_NODE;
717 key_write(c, key, &data->key);
718 data->size = cpu_to_le32(len);
719 zero_data_node_unused(data);
721 if (!(ui->flags & UBIFS_COMPR_FL))
722 /* Compression is disabled for this inode */
723 compr_type = UBIFS_COMPR_NONE;
724 else
725 compr_type = ui->compr_type;
727 out_len = dlen - UBIFS_DATA_NODE_SZ;
728 ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
729 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
731 dlen = UBIFS_DATA_NODE_SZ + out_len;
732 data->compr_type = cpu_to_le16(compr_type);
734 /* Make reservation before allocating sequence numbers */
735 err = make_reservation(c, DATAHD, dlen);
736 if (err)
737 goto out_free;
739 err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
740 if (err)
741 goto out_release;
742 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
743 release_head(c, DATAHD);
745 err = ubifs_tnc_add(c, key, lnum, offs, dlen);
746 if (err)
747 goto out_ro;
749 finish_reservation(c);
750 if (!allocated)
751 mutex_unlock(&c->write_reserve_mutex);
752 else
753 kfree(data);
754 return 0;
756 out_release:
757 release_head(c, DATAHD);
758 out_ro:
759 ubifs_ro_mode(c, err);
760 finish_reservation(c);
761 out_free:
762 if (!allocated)
763 mutex_unlock(&c->write_reserve_mutex);
764 else
765 kfree(data);
766 return err;
770 * ubifs_jnl_write_inode - flush inode to the journal.
771 * @c: UBIFS file-system description object
772 * @inode: inode to flush
774 * This function writes inode @inode to the journal. If the inode is
775 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
776 * success and a negative error code in case of failure.
778 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
780 int err, lnum, offs;
781 struct ubifs_ino_node *ino;
782 struct ubifs_inode *ui = ubifs_inode(inode);
783 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
785 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
788 * If the inode is being deleted, do not write the attached data. No
789 * need to synchronize the write-buffer either.
791 if (!last_reference) {
792 len += ui->data_len;
793 sync = IS_SYNC(inode);
795 ino = kmalloc(len, GFP_NOFS);
796 if (!ino)
797 return -ENOMEM;
799 /* Make reservation before allocating sequence numbers */
800 err = make_reservation(c, BASEHD, len);
801 if (err)
802 goto out_free;
804 pack_inode(c, ino, inode, 1);
805 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
806 if (err)
807 goto out_release;
808 if (!sync)
809 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
810 inode->i_ino);
811 release_head(c, BASEHD);
813 if (last_reference) {
814 err = ubifs_tnc_remove_ino(c, inode->i_ino);
815 if (err)
816 goto out_ro;
817 ubifs_delete_orphan(c, inode->i_ino);
818 err = ubifs_add_dirt(c, lnum, len);
819 } else {
820 union ubifs_key key;
822 ino_key_init(c, &key, inode->i_ino);
823 err = ubifs_tnc_add(c, &key, lnum, offs, len);
825 if (err)
826 goto out_ro;
828 finish_reservation(c);
829 spin_lock(&ui->ui_lock);
830 ui->synced_i_size = ui->ui_size;
831 spin_unlock(&ui->ui_lock);
832 kfree(ino);
833 return 0;
835 out_release:
836 release_head(c, BASEHD);
837 out_ro:
838 ubifs_ro_mode(c, err);
839 finish_reservation(c);
840 out_free:
841 kfree(ino);
842 return err;
846 * ubifs_jnl_delete_inode - delete an inode.
847 * @c: UBIFS file-system description object
848 * @inode: inode to delete
850 * This function deletes inode @inode which includes removing it from orphans,
851 * deleting it from TNC and, in some cases, writing a deletion inode to the
852 * journal.
854 * When regular file inodes are unlinked or a directory inode is removed, the
855 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
856 * direntry to the media, and adds the inode to orphans. After this, when the
857 * last reference to this inode has been dropped, this function is called. In
858 * general, it has to write one more deletion inode to the media, because if
859 * a commit happened between 'ubifs_jnl_update()' and
860 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
861 * anymore, and in fact it might not be on the flash anymore, because it might
862 * have been garbage-collected already. And for optimization reasons UBIFS does
863 * not read the orphan area if it has been unmounted cleanly, so it would have
864 * no indication in the journal that there is a deleted inode which has to be
865 * removed from TNC.
867 * However, if there was no commit between 'ubifs_jnl_update()' and
868 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
869 * inode to the media for the second time. And this is quite a typical case.
871 * This function returns zero in case of success and a negative error code in
872 * case of failure.
874 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
876 int err;
877 struct ubifs_inode *ui = ubifs_inode(inode);
879 ubifs_assert(inode->i_nlink == 0);
881 if (ui->del_cmtno != c->cmt_no)
882 /* A commit happened for sure */
883 return ubifs_jnl_write_inode(c, inode);
885 down_read(&c->commit_sem);
887 * Check commit number again, because the first test has been done
888 * without @c->commit_sem, so a commit might have happened.
890 if (ui->del_cmtno != c->cmt_no) {
891 up_read(&c->commit_sem);
892 return ubifs_jnl_write_inode(c, inode);
895 err = ubifs_tnc_remove_ino(c, inode->i_ino);
896 if (err)
897 ubifs_ro_mode(c, err);
898 else
899 ubifs_delete_orphan(c, inode->i_ino);
900 up_read(&c->commit_sem);
901 return err;
905 * ubifs_jnl_rename - rename a directory entry.
906 * @c: UBIFS file-system description object
907 * @old_dir: parent inode of directory entry to rename
908 * @old_dentry: directory entry to rename
909 * @new_dir: parent inode of directory entry to rename
910 * @new_dentry: new directory entry (or directory entry to replace)
911 * @sync: non-zero if the write-buffer has to be synchronized
913 * This function implements the re-name operation which may involve writing up
914 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
915 * and returns zero on success. In case of failure, a negative error code is
916 * returned.
918 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
919 const struct dentry *old_dentry,
920 const struct inode *new_dir,
921 const struct dentry *new_dentry, int sync)
923 void *p;
924 union ubifs_key key;
925 struct ubifs_dent_node *dent, *dent2;
926 int err, dlen1, dlen2, ilen, lnum, offs, len;
927 const struct inode *old_inode = old_dentry->d_inode;
928 const struct inode *new_inode = new_dentry->d_inode;
929 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
930 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
931 int move = (old_dir != new_dir);
932 struct ubifs_inode *uninitialized_var(new_ui);
934 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
935 old_dentry->d_name.len, old_dentry->d_name.name,
936 old_dir->i_ino, new_dentry->d_name.len,
937 new_dentry->d_name.name, new_dir->i_ino);
938 ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
939 ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
940 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
941 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
943 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
944 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
945 if (new_inode) {
946 new_ui = ubifs_inode(new_inode);
947 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
948 ilen = UBIFS_INO_NODE_SZ;
949 if (!last_reference)
950 ilen += new_ui->data_len;
951 } else
952 ilen = 0;
954 aligned_dlen1 = ALIGN(dlen1, 8);
955 aligned_dlen2 = ALIGN(dlen2, 8);
956 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
957 if (old_dir != new_dir)
958 len += plen;
959 dent = kmalloc(len, GFP_NOFS);
960 if (!dent)
961 return -ENOMEM;
963 /* Make reservation before allocating sequence numbers */
964 err = make_reservation(c, BASEHD, len);
965 if (err)
966 goto out_free;
968 /* Make new dent */
969 dent->ch.node_type = UBIFS_DENT_NODE;
970 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
971 dent->inum = cpu_to_le64(old_inode->i_ino);
972 dent->type = get_dent_type(old_inode->i_mode);
973 dent->nlen = cpu_to_le16(new_dentry->d_name.len);
974 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
975 dent->name[new_dentry->d_name.len] = '\0';
976 zero_dent_node_unused(dent);
977 ubifs_prep_grp_node(c, dent, dlen1, 0);
979 /* Make deletion dent */
980 dent2 = (void *)dent + aligned_dlen1;
981 dent2->ch.node_type = UBIFS_DENT_NODE;
982 dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
983 &old_dentry->d_name);
984 dent2->inum = 0;
985 dent2->type = DT_UNKNOWN;
986 dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
987 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
988 dent2->name[old_dentry->d_name.len] = '\0';
989 zero_dent_node_unused(dent2);
990 ubifs_prep_grp_node(c, dent2, dlen2, 0);
992 p = (void *)dent2 + aligned_dlen2;
993 if (new_inode) {
994 pack_inode(c, p, new_inode, 0);
995 p += ALIGN(ilen, 8);
998 if (!move)
999 pack_inode(c, p, old_dir, 1);
1000 else {
1001 pack_inode(c, p, old_dir, 0);
1002 p += ALIGN(plen, 8);
1003 pack_inode(c, p, new_dir, 1);
1006 if (last_reference) {
1007 err = ubifs_add_orphan(c, new_inode->i_ino);
1008 if (err) {
1009 release_head(c, BASEHD);
1010 goto out_finish;
1012 new_ui->del_cmtno = c->cmt_no;
1015 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1016 if (err)
1017 goto out_release;
1018 if (!sync) {
1019 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1021 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1022 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1023 if (new_inode)
1024 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1025 new_inode->i_ino);
1027 release_head(c, BASEHD);
1029 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1030 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1031 if (err)
1032 goto out_ro;
1034 err = ubifs_add_dirt(c, lnum, dlen2);
1035 if (err)
1036 goto out_ro;
1038 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1039 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1040 if (err)
1041 goto out_ro;
1043 offs += aligned_dlen1 + aligned_dlen2;
1044 if (new_inode) {
1045 ino_key_init(c, &key, new_inode->i_ino);
1046 err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1047 if (err)
1048 goto out_ro;
1049 offs += ALIGN(ilen, 8);
1052 ino_key_init(c, &key, old_dir->i_ino);
1053 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1054 if (err)
1055 goto out_ro;
1057 if (old_dir != new_dir) {
1058 offs += ALIGN(plen, 8);
1059 ino_key_init(c, &key, new_dir->i_ino);
1060 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1061 if (err)
1062 goto out_ro;
1065 finish_reservation(c);
1066 if (new_inode) {
1067 mark_inode_clean(c, new_ui);
1068 spin_lock(&new_ui->ui_lock);
1069 new_ui->synced_i_size = new_ui->ui_size;
1070 spin_unlock(&new_ui->ui_lock);
1072 mark_inode_clean(c, ubifs_inode(old_dir));
1073 if (move)
1074 mark_inode_clean(c, ubifs_inode(new_dir));
1075 kfree(dent);
1076 return 0;
1078 out_release:
1079 release_head(c, BASEHD);
1080 out_ro:
1081 ubifs_ro_mode(c, err);
1082 if (last_reference)
1083 ubifs_delete_orphan(c, new_inode->i_ino);
1084 out_finish:
1085 finish_reservation(c);
1086 out_free:
1087 kfree(dent);
1088 return err;
1092 * recomp_data_node - re-compress a truncated data node.
1093 * @dn: data node to re-compress
1094 * @new_len: new length
1096 * This function is used when an inode is truncated and the last data node of
1097 * the inode has to be re-compressed and re-written.
1099 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1101 void *buf;
1102 int err, len, compr_type, out_len;
1104 out_len = le32_to_cpu(dn->size);
1105 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1106 if (!buf)
1107 return -ENOMEM;
1109 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1110 compr_type = le16_to_cpu(dn->compr_type);
1111 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1112 if (err)
1113 goto out;
1115 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1116 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1117 dn->compr_type = cpu_to_le16(compr_type);
1118 dn->size = cpu_to_le32(*new_len);
1119 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1120 out:
1121 kfree(buf);
1122 return err;
1126 * ubifs_jnl_truncate - update the journal for a truncation.
1127 * @c: UBIFS file-system description object
1128 * @inode: inode to truncate
1129 * @old_size: old size
1130 * @new_size: new size
1132 * When the size of a file decreases due to truncation, a truncation node is
1133 * written, the journal tree is updated, and the last data block is re-written
1134 * if it has been affected. The inode is also updated in order to synchronize
1135 * the new inode size.
1137 * This function marks the inode as clean and returns zero on success. In case
1138 * of failure, a negative error code is returned.
1140 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1141 loff_t old_size, loff_t new_size)
1143 union ubifs_key key, to_key;
1144 struct ubifs_ino_node *ino;
1145 struct ubifs_trun_node *trun;
1146 struct ubifs_data_node *uninitialized_var(dn);
1147 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1148 struct ubifs_inode *ui = ubifs_inode(inode);
1149 ino_t inum = inode->i_ino;
1150 unsigned int blk;
1152 dbg_jnl("ino %lu, size %lld -> %lld",
1153 (unsigned long)inum, old_size, new_size);
1154 ubifs_assert(!ui->data_len);
1155 ubifs_assert(S_ISREG(inode->i_mode));
1156 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1158 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1159 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1160 ino = kmalloc(sz, GFP_NOFS);
1161 if (!ino)
1162 return -ENOMEM;
1164 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1165 trun->ch.node_type = UBIFS_TRUN_NODE;
1166 trun->inum = cpu_to_le32(inum);
1167 trun->old_size = cpu_to_le64(old_size);
1168 trun->new_size = cpu_to_le64(new_size);
1169 zero_trun_node_unused(trun);
1171 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1172 if (dlen) {
1173 /* Get last data block so it can be truncated */
1174 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1175 blk = new_size >> UBIFS_BLOCK_SHIFT;
1176 data_key_init(c, &key, inum, blk);
1177 dbg_jnl("last block key %s", DBGKEY(&key));
1178 err = ubifs_tnc_lookup(c, &key, dn);
1179 if (err == -ENOENT)
1180 dlen = 0; /* Not found (so it is a hole) */
1181 else if (err)
1182 goto out_free;
1183 else {
1184 if (le32_to_cpu(dn->size) <= dlen)
1185 dlen = 0; /* Nothing to do */
1186 else {
1187 int compr_type = le16_to_cpu(dn->compr_type);
1189 if (compr_type != UBIFS_COMPR_NONE) {
1190 err = recomp_data_node(dn, &dlen);
1191 if (err)
1192 goto out_free;
1193 } else {
1194 dn->size = cpu_to_le32(dlen);
1195 dlen += UBIFS_DATA_NODE_SZ;
1197 zero_data_node_unused(dn);
1202 /* Must make reservation before allocating sequence numbers */
1203 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1204 if (dlen)
1205 len += dlen;
1206 err = make_reservation(c, BASEHD, len);
1207 if (err)
1208 goto out_free;
1210 pack_inode(c, ino, inode, 0);
1211 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1212 if (dlen)
1213 ubifs_prep_grp_node(c, dn, dlen, 1);
1215 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1216 if (err)
1217 goto out_release;
1218 if (!sync)
1219 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1220 release_head(c, BASEHD);
1222 if (dlen) {
1223 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1224 err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1225 if (err)
1226 goto out_ro;
1229 ino_key_init(c, &key, inum);
1230 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1231 if (err)
1232 goto out_ro;
1234 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1235 if (err)
1236 goto out_ro;
1238 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1239 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1240 data_key_init(c, &key, inum, blk);
1242 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1243 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1244 data_key_init(c, &to_key, inum, blk);
1246 err = ubifs_tnc_remove_range(c, &key, &to_key);
1247 if (err)
1248 goto out_ro;
1250 finish_reservation(c);
1251 spin_lock(&ui->ui_lock);
1252 ui->synced_i_size = ui->ui_size;
1253 spin_unlock(&ui->ui_lock);
1254 mark_inode_clean(c, ui);
1255 kfree(ino);
1256 return 0;
1258 out_release:
1259 release_head(c, BASEHD);
1260 out_ro:
1261 ubifs_ro_mode(c, err);
1262 finish_reservation(c);
1263 out_free:
1264 kfree(ino);
1265 return err;
1268 #ifdef CONFIG_UBIFS_FS_XATTR
1271 * ubifs_jnl_delete_xattr - delete an extended attribute.
1272 * @c: UBIFS file-system description object
1273 * @host: host inode
1274 * @inode: extended attribute inode
1275 * @nm: extended attribute entry name
1277 * This function delete an extended attribute which is very similar to
1278 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1279 * updates the target inode. Returns zero in case of success and a negative
1280 * error code in case of failure.
1282 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1283 const struct inode *inode, const struct qstr *nm)
1285 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1286 struct ubifs_dent_node *xent;
1287 struct ubifs_ino_node *ino;
1288 union ubifs_key xent_key, key1, key2;
1289 int sync = IS_DIRSYNC(host);
1290 struct ubifs_inode *host_ui = ubifs_inode(host);
1292 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1293 host->i_ino, inode->i_ino, nm->name,
1294 ubifs_inode(inode)->data_len);
1295 ubifs_assert(inode->i_nlink == 0);
1296 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1299 * Since we are deleting the inode, we do not bother to attach any data
1300 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1302 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1303 aligned_xlen = ALIGN(xlen, 8);
1304 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1305 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1307 xent = kmalloc(len, GFP_NOFS);
1308 if (!xent)
1309 return -ENOMEM;
1311 /* Make reservation before allocating sequence numbers */
1312 err = make_reservation(c, BASEHD, len);
1313 if (err) {
1314 kfree(xent);
1315 return err;
1318 xent->ch.node_type = UBIFS_XENT_NODE;
1319 xent_key_init(c, &xent_key, host->i_ino, nm);
1320 key_write(c, &xent_key, xent->key);
1321 xent->inum = 0;
1322 xent->type = get_dent_type(inode->i_mode);
1323 xent->nlen = cpu_to_le16(nm->len);
1324 memcpy(xent->name, nm->name, nm->len);
1325 xent->name[nm->len] = '\0';
1326 zero_dent_node_unused(xent);
1327 ubifs_prep_grp_node(c, xent, xlen, 0);
1329 ino = (void *)xent + aligned_xlen;
1330 pack_inode(c, ino, inode, 0);
1331 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1332 pack_inode(c, ino, host, 1);
1334 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1335 if (!sync && !err)
1336 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1337 release_head(c, BASEHD);
1338 kfree(xent);
1339 if (err)
1340 goto out_ro;
1342 /* Remove the extended attribute entry from TNC */
1343 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1344 if (err)
1345 goto out_ro;
1346 err = ubifs_add_dirt(c, lnum, xlen);
1347 if (err)
1348 goto out_ro;
1351 * Remove all nodes belonging to the extended attribute inode from TNC.
1352 * Well, there actually must be only one node - the inode itself.
1354 lowest_ino_key(c, &key1, inode->i_ino);
1355 highest_ino_key(c, &key2, inode->i_ino);
1356 err = ubifs_tnc_remove_range(c, &key1, &key2);
1357 if (err)
1358 goto out_ro;
1359 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1360 if (err)
1361 goto out_ro;
1363 /* And update TNC with the new host inode position */
1364 ino_key_init(c, &key1, host->i_ino);
1365 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1366 if (err)
1367 goto out_ro;
1369 finish_reservation(c);
1370 spin_lock(&host_ui->ui_lock);
1371 host_ui->synced_i_size = host_ui->ui_size;
1372 spin_unlock(&host_ui->ui_lock);
1373 mark_inode_clean(c, host_ui);
1374 return 0;
1376 out_ro:
1377 ubifs_ro_mode(c, err);
1378 finish_reservation(c);
1379 return err;
1383 * ubifs_jnl_change_xattr - change an extended attribute.
1384 * @c: UBIFS file-system description object
1385 * @inode: extended attribute inode
1386 * @host: host inode
1388 * This function writes the updated version of an extended attribute inode and
1389 * the host inode to the journal (to the base head). The host inode is written
1390 * after the extended attribute inode in order to guarantee that the extended
1391 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1392 * consequently, the write-buffer is synchronized. This function returns zero
1393 * in case of success and a negative error code in case of failure.
1395 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1396 const struct inode *host)
1398 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1399 struct ubifs_inode *host_ui = ubifs_inode(host);
1400 struct ubifs_ino_node *ino;
1401 union ubifs_key key;
1402 int sync = IS_DIRSYNC(host);
1404 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1405 ubifs_assert(host->i_nlink > 0);
1406 ubifs_assert(inode->i_nlink > 0);
1407 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1409 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1410 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1411 aligned_len1 = ALIGN(len1, 8);
1412 aligned_len = aligned_len1 + ALIGN(len2, 8);
1414 ino = kmalloc(aligned_len, GFP_NOFS);
1415 if (!ino)
1416 return -ENOMEM;
1418 /* Make reservation before allocating sequence numbers */
1419 err = make_reservation(c, BASEHD, aligned_len);
1420 if (err)
1421 goto out_free;
1423 pack_inode(c, ino, host, 0);
1424 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1426 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1427 if (!sync && !err) {
1428 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1430 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1431 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1433 release_head(c, BASEHD);
1434 if (err)
1435 goto out_ro;
1437 ino_key_init(c, &key, host->i_ino);
1438 err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1439 if (err)
1440 goto out_ro;
1442 ino_key_init(c, &key, inode->i_ino);
1443 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1444 if (err)
1445 goto out_ro;
1447 finish_reservation(c);
1448 spin_lock(&host_ui->ui_lock);
1449 host_ui->synced_i_size = host_ui->ui_size;
1450 spin_unlock(&host_ui->ui_lock);
1451 mark_inode_clean(c, host_ui);
1452 kfree(ino);
1453 return 0;
1455 out_ro:
1456 ubifs_ro_mode(c, err);
1457 finish_reservation(c);
1458 out_free:
1459 kfree(ino);
1460 return err;
1463 #endif /* CONFIG_UBIFS_FS_XATTR */