tree-wide: fix comment/printk typos
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / eventpoll.c
blobf539204679c751542995086718ddac0d996495e4
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
43 * LOCKING:
44 * There are three level of locking required by epoll :
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (spinlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a spinlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
96 /* Maximum msec timeout value storeable in a long int */
97 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
99 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
101 #define EP_UNACTIVE_PTR ((void *) -1L)
103 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
105 struct epoll_filefd {
106 struct file *file;
107 int fd;
111 * Structure used to track possible nested calls, for too deep recursions
112 * and loop cycles.
114 struct nested_call_node {
115 struct list_head llink;
116 void *cookie;
117 void *ctx;
121 * This structure is used as collector for nested calls, to check for
122 * maximum recursion dept and loop cycles.
124 struct nested_calls {
125 struct list_head tasks_call_list;
126 spinlock_t lock;
130 * Each file descriptor added to the eventpoll interface will
131 * have an entry of this type linked to the "rbr" RB tree.
133 struct epitem {
134 /* RB tree node used to link this structure to the eventpoll RB tree */
135 struct rb_node rbn;
137 /* List header used to link this structure to the eventpoll ready list */
138 struct list_head rdllink;
141 * Works together "struct eventpoll"->ovflist in keeping the
142 * single linked chain of items.
144 struct epitem *next;
146 /* The file descriptor information this item refers to */
147 struct epoll_filefd ffd;
149 /* Number of active wait queue attached to poll operations */
150 int nwait;
152 /* List containing poll wait queues */
153 struct list_head pwqlist;
155 /* The "container" of this item */
156 struct eventpoll *ep;
158 /* List header used to link this item to the "struct file" items list */
159 struct list_head fllink;
161 /* The structure that describe the interested events and the source fd */
162 struct epoll_event event;
166 * This structure is stored inside the "private_data" member of the file
167 * structure and rapresent the main data sructure for the eventpoll
168 * interface.
170 struct eventpoll {
171 /* Protect the this structure access */
172 spinlock_t lock;
175 * This mutex is used to ensure that files are not removed
176 * while epoll is using them. This is held during the event
177 * collection loop, the file cleanup path, the epoll file exit
178 * code and the ctl operations.
180 struct mutex mtx;
182 /* Wait queue used by sys_epoll_wait() */
183 wait_queue_head_t wq;
185 /* Wait queue used by file->poll() */
186 wait_queue_head_t poll_wait;
188 /* List of ready file descriptors */
189 struct list_head rdllist;
191 /* RB tree root used to store monitored fd structs */
192 struct rb_root rbr;
195 * This is a single linked list that chains all the "struct epitem" that
196 * happened while transfering ready events to userspace w/out
197 * holding ->lock.
199 struct epitem *ovflist;
201 /* The user that created the eventpoll descriptor */
202 struct user_struct *user;
205 /* Wait structure used by the poll hooks */
206 struct eppoll_entry {
207 /* List header used to link this structure to the "struct epitem" */
208 struct list_head llink;
210 /* The "base" pointer is set to the container "struct epitem" */
211 struct epitem *base;
214 * Wait queue item that will be linked to the target file wait
215 * queue head.
217 wait_queue_t wait;
219 /* The wait queue head that linked the "wait" wait queue item */
220 wait_queue_head_t *whead;
223 /* Wrapper struct used by poll queueing */
224 struct ep_pqueue {
225 poll_table pt;
226 struct epitem *epi;
229 /* Used by the ep_send_events() function as callback private data */
230 struct ep_send_events_data {
231 int maxevents;
232 struct epoll_event __user *events;
236 * Configuration options available inside /proc/sys/fs/epoll/
238 /* Maximum number of epoll watched descriptors, per user */
239 static int max_user_watches __read_mostly;
242 * This mutex is used to serialize ep_free() and eventpoll_release_file().
244 static DEFINE_MUTEX(epmutex);
246 /* Used to check for epoll file descriptor inclusion loops */
247 static struct nested_calls poll_loop_ncalls;
249 /* Used for safe wake up implementation */
250 static struct nested_calls poll_safewake_ncalls;
252 /* Used to call file's f_op->poll() under the nested calls boundaries */
253 static struct nested_calls poll_readywalk_ncalls;
255 /* Slab cache used to allocate "struct epitem" */
256 static struct kmem_cache *epi_cache __read_mostly;
258 /* Slab cache used to allocate "struct eppoll_entry" */
259 static struct kmem_cache *pwq_cache __read_mostly;
261 #ifdef CONFIG_SYSCTL
263 #include <linux/sysctl.h>
265 static int zero;
267 ctl_table epoll_table[] = {
269 .procname = "max_user_watches",
270 .data = &max_user_watches,
271 .maxlen = sizeof(int),
272 .mode = 0644,
273 .proc_handler = &proc_dointvec_minmax,
274 .extra1 = &zero,
276 { .ctl_name = 0 }
278 #endif /* CONFIG_SYSCTL */
281 /* Setup the structure that is used as key for the RB tree */
282 static inline void ep_set_ffd(struct epoll_filefd *ffd,
283 struct file *file, int fd)
285 ffd->file = file;
286 ffd->fd = fd;
289 /* Compare RB tree keys */
290 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
291 struct epoll_filefd *p2)
293 return (p1->file > p2->file ? +1:
294 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
297 /* Tells us if the item is currently linked */
298 static inline int ep_is_linked(struct list_head *p)
300 return !list_empty(p);
303 /* Get the "struct epitem" from a wait queue pointer */
304 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
306 return container_of(p, struct eppoll_entry, wait)->base;
309 /* Get the "struct epitem" from an epoll queue wrapper */
310 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
312 return container_of(p, struct ep_pqueue, pt)->epi;
315 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
316 static inline int ep_op_has_event(int op)
318 return op != EPOLL_CTL_DEL;
321 /* Initialize the poll safe wake up structure */
322 static void ep_nested_calls_init(struct nested_calls *ncalls)
324 INIT_LIST_HEAD(&ncalls->tasks_call_list);
325 spin_lock_init(&ncalls->lock);
329 * ep_call_nested - Perform a bound (possibly) nested call, by checking
330 * that the recursion limit is not exceeded, and that
331 * the same nested call (by the meaning of same cookie) is
332 * no re-entered.
334 * @ncalls: Pointer to the nested_calls structure to be used for this call.
335 * @max_nests: Maximum number of allowed nesting calls.
336 * @nproc: Nested call core function pointer.
337 * @priv: Opaque data to be passed to the @nproc callback.
338 * @cookie: Cookie to be used to identify this nested call.
339 * @ctx: This instance context.
341 * Returns: Returns the code returned by the @nproc callback, or -1 if
342 * the maximum recursion limit has been exceeded.
344 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
345 int (*nproc)(void *, void *, int), void *priv,
346 void *cookie, void *ctx)
348 int error, call_nests = 0;
349 unsigned long flags;
350 struct list_head *lsthead = &ncalls->tasks_call_list;
351 struct nested_call_node *tncur;
352 struct nested_call_node tnode;
354 spin_lock_irqsave(&ncalls->lock, flags);
357 * Try to see if the current task is already inside this wakeup call.
358 * We use a list here, since the population inside this set is always
359 * very much limited.
361 list_for_each_entry(tncur, lsthead, llink) {
362 if (tncur->ctx == ctx &&
363 (tncur->cookie == cookie || ++call_nests > max_nests)) {
365 * Ops ... loop detected or maximum nest level reached.
366 * We abort this wake by breaking the cycle itself.
368 error = -1;
369 goto out_unlock;
373 /* Add the current task and cookie to the list */
374 tnode.ctx = ctx;
375 tnode.cookie = cookie;
376 list_add(&tnode.llink, lsthead);
378 spin_unlock_irqrestore(&ncalls->lock, flags);
380 /* Call the nested function */
381 error = (*nproc)(priv, cookie, call_nests);
383 /* Remove the current task from the list */
384 spin_lock_irqsave(&ncalls->lock, flags);
385 list_del(&tnode.llink);
386 out_unlock:
387 spin_unlock_irqrestore(&ncalls->lock, flags);
389 return error;
392 #ifdef CONFIG_DEBUG_LOCK_ALLOC
393 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
394 unsigned long events, int subclass)
396 unsigned long flags;
398 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
399 wake_up_locked_poll(wqueue, events);
400 spin_unlock_irqrestore(&wqueue->lock, flags);
402 #else
403 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
404 unsigned long events, int subclass)
406 wake_up_poll(wqueue, events);
408 #endif
410 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
412 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
413 1 + call_nests);
414 return 0;
418 * Perform a safe wake up of the poll wait list. The problem is that
419 * with the new callback'd wake up system, it is possible that the
420 * poll callback is reentered from inside the call to wake_up() done
421 * on the poll wait queue head. The rule is that we cannot reenter the
422 * wake up code from the same task more than EP_MAX_NESTS times,
423 * and we cannot reenter the same wait queue head at all. This will
424 * enable to have a hierarchy of epoll file descriptor of no more than
425 * EP_MAX_NESTS deep.
427 static void ep_poll_safewake(wait_queue_head_t *wq)
429 int this_cpu = get_cpu();
431 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
432 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
434 put_cpu();
438 * This function unregisters poll callbacks from the associated file
439 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
440 * ep_free).
442 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
444 struct list_head *lsthead = &epi->pwqlist;
445 struct eppoll_entry *pwq;
447 while (!list_empty(lsthead)) {
448 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
450 list_del(&pwq->llink);
451 remove_wait_queue(pwq->whead, &pwq->wait);
452 kmem_cache_free(pwq_cache, pwq);
457 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
458 * the scan code, to call f_op->poll(). Also allows for
459 * O(NumReady) performance.
461 * @ep: Pointer to the epoll private data structure.
462 * @sproc: Pointer to the scan callback.
463 * @priv: Private opaque data passed to the @sproc callback.
464 * @depth: The current depth of recursive f_op->poll calls.
466 * Returns: The same integer error code returned by the @sproc callback.
468 static int ep_scan_ready_list(struct eventpoll *ep,
469 int (*sproc)(struct eventpoll *,
470 struct list_head *, void *),
471 void *priv,
472 int depth)
474 int error, pwake = 0;
475 unsigned long flags;
476 struct epitem *epi, *nepi;
477 LIST_HEAD(txlist);
480 * We need to lock this because we could be hit by
481 * eventpoll_release_file() and epoll_ctl().
483 mutex_lock_nested(&ep->mtx, depth);
486 * Steal the ready list, and re-init the original one to the
487 * empty list. Also, set ep->ovflist to NULL so that events
488 * happening while looping w/out locks, are not lost. We cannot
489 * have the poll callback to queue directly on ep->rdllist,
490 * because we want the "sproc" callback to be able to do it
491 * in a lockless way.
493 spin_lock_irqsave(&ep->lock, flags);
494 list_splice_init(&ep->rdllist, &txlist);
495 ep->ovflist = NULL;
496 spin_unlock_irqrestore(&ep->lock, flags);
499 * Now call the callback function.
501 error = (*sproc)(ep, &txlist, priv);
503 spin_lock_irqsave(&ep->lock, flags);
505 * During the time we spent inside the "sproc" callback, some
506 * other events might have been queued by the poll callback.
507 * We re-insert them inside the main ready-list here.
509 for (nepi = ep->ovflist; (epi = nepi) != NULL;
510 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
512 * We need to check if the item is already in the list.
513 * During the "sproc" callback execution time, items are
514 * queued into ->ovflist but the "txlist" might already
515 * contain them, and the list_splice() below takes care of them.
517 if (!ep_is_linked(&epi->rdllink))
518 list_add_tail(&epi->rdllink, &ep->rdllist);
521 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
522 * releasing the lock, events will be queued in the normal way inside
523 * ep->rdllist.
525 ep->ovflist = EP_UNACTIVE_PTR;
528 * Quickly re-inject items left on "txlist".
530 list_splice(&txlist, &ep->rdllist);
532 if (!list_empty(&ep->rdllist)) {
534 * Wake up (if active) both the eventpoll wait list and
535 * the ->poll() wait list (delayed after we release the lock).
537 if (waitqueue_active(&ep->wq))
538 wake_up_locked(&ep->wq);
539 if (waitqueue_active(&ep->poll_wait))
540 pwake++;
542 spin_unlock_irqrestore(&ep->lock, flags);
544 mutex_unlock(&ep->mtx);
546 /* We have to call this outside the lock */
547 if (pwake)
548 ep_poll_safewake(&ep->poll_wait);
550 return error;
554 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
555 * all the associated resources. Must be called with "mtx" held.
557 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
559 unsigned long flags;
560 struct file *file = epi->ffd.file;
563 * Removes poll wait queue hooks. We _have_ to do this without holding
564 * the "ep->lock" otherwise a deadlock might occur. This because of the
565 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
566 * queue head lock when unregistering the wait queue. The wakeup callback
567 * will run by holding the wait queue head lock and will call our callback
568 * that will try to get "ep->lock".
570 ep_unregister_pollwait(ep, epi);
572 /* Remove the current item from the list of epoll hooks */
573 spin_lock(&file->f_lock);
574 if (ep_is_linked(&epi->fllink))
575 list_del_init(&epi->fllink);
576 spin_unlock(&file->f_lock);
578 rb_erase(&epi->rbn, &ep->rbr);
580 spin_lock_irqsave(&ep->lock, flags);
581 if (ep_is_linked(&epi->rdllink))
582 list_del_init(&epi->rdllink);
583 spin_unlock_irqrestore(&ep->lock, flags);
585 /* At this point it is safe to free the eventpoll item */
586 kmem_cache_free(epi_cache, epi);
588 atomic_dec(&ep->user->epoll_watches);
590 return 0;
593 static void ep_free(struct eventpoll *ep)
595 struct rb_node *rbp;
596 struct epitem *epi;
598 /* We need to release all tasks waiting for these file */
599 if (waitqueue_active(&ep->poll_wait))
600 ep_poll_safewake(&ep->poll_wait);
603 * We need to lock this because we could be hit by
604 * eventpoll_release_file() while we're freeing the "struct eventpoll".
605 * We do not need to hold "ep->mtx" here because the epoll file
606 * is on the way to be removed and no one has references to it
607 * anymore. The only hit might come from eventpoll_release_file() but
608 * holding "epmutex" is sufficent here.
610 mutex_lock(&epmutex);
613 * Walks through the whole tree by unregistering poll callbacks.
615 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
616 epi = rb_entry(rbp, struct epitem, rbn);
618 ep_unregister_pollwait(ep, epi);
622 * Walks through the whole tree by freeing each "struct epitem". At this
623 * point we are sure no poll callbacks will be lingering around, and also by
624 * holding "epmutex" we can be sure that no file cleanup code will hit
625 * us during this operation. So we can avoid the lock on "ep->lock".
627 while ((rbp = rb_first(&ep->rbr)) != NULL) {
628 epi = rb_entry(rbp, struct epitem, rbn);
629 ep_remove(ep, epi);
632 mutex_unlock(&epmutex);
633 mutex_destroy(&ep->mtx);
634 free_uid(ep->user);
635 kfree(ep);
638 static int ep_eventpoll_release(struct inode *inode, struct file *file)
640 struct eventpoll *ep = file->private_data;
642 if (ep)
643 ep_free(ep);
645 return 0;
648 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
649 void *priv)
651 struct epitem *epi, *tmp;
653 list_for_each_entry_safe(epi, tmp, head, rdllink) {
654 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
655 epi->event.events)
656 return POLLIN | POLLRDNORM;
657 else {
659 * Item has been dropped into the ready list by the poll
660 * callback, but it's not actually ready, as far as
661 * caller requested events goes. We can remove it here.
663 list_del_init(&epi->rdllink);
667 return 0;
670 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
672 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
675 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
677 int pollflags;
678 struct eventpoll *ep = file->private_data;
680 /* Insert inside our poll wait queue */
681 poll_wait(file, &ep->poll_wait, wait);
684 * Proceed to find out if wanted events are really available inside
685 * the ready list. This need to be done under ep_call_nested()
686 * supervision, since the call to f_op->poll() done on listed files
687 * could re-enter here.
689 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
690 ep_poll_readyevents_proc, ep, ep, current);
692 return pollflags != -1 ? pollflags : 0;
695 /* File callbacks that implement the eventpoll file behaviour */
696 static const struct file_operations eventpoll_fops = {
697 .release = ep_eventpoll_release,
698 .poll = ep_eventpoll_poll
701 /* Fast test to see if the file is an evenpoll file */
702 static inline int is_file_epoll(struct file *f)
704 return f->f_op == &eventpoll_fops;
708 * This is called from eventpoll_release() to unlink files from the eventpoll
709 * interface. We need to have this facility to cleanup correctly files that are
710 * closed without being removed from the eventpoll interface.
712 void eventpoll_release_file(struct file *file)
714 struct list_head *lsthead = &file->f_ep_links;
715 struct eventpoll *ep;
716 struct epitem *epi;
719 * We don't want to get "file->f_lock" because it is not
720 * necessary. It is not necessary because we're in the "struct file"
721 * cleanup path, and this means that noone is using this file anymore.
722 * So, for example, epoll_ctl() cannot hit here since if we reach this
723 * point, the file counter already went to zero and fget() would fail.
724 * The only hit might come from ep_free() but by holding the mutex
725 * will correctly serialize the operation. We do need to acquire
726 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
727 * from anywhere but ep_free().
729 * Besides, ep_remove() acquires the lock, so we can't hold it here.
731 mutex_lock(&epmutex);
733 while (!list_empty(lsthead)) {
734 epi = list_first_entry(lsthead, struct epitem, fllink);
736 ep = epi->ep;
737 list_del_init(&epi->fllink);
738 mutex_lock_nested(&ep->mtx, 0);
739 ep_remove(ep, epi);
740 mutex_unlock(&ep->mtx);
743 mutex_unlock(&epmutex);
746 static int ep_alloc(struct eventpoll **pep)
748 int error;
749 struct user_struct *user;
750 struct eventpoll *ep;
752 user = get_current_user();
753 error = -ENOMEM;
754 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
755 if (unlikely(!ep))
756 goto free_uid;
758 spin_lock_init(&ep->lock);
759 mutex_init(&ep->mtx);
760 init_waitqueue_head(&ep->wq);
761 init_waitqueue_head(&ep->poll_wait);
762 INIT_LIST_HEAD(&ep->rdllist);
763 ep->rbr = RB_ROOT;
764 ep->ovflist = EP_UNACTIVE_PTR;
765 ep->user = user;
767 *pep = ep;
769 return 0;
771 free_uid:
772 free_uid(user);
773 return error;
777 * Search the file inside the eventpoll tree. The RB tree operations
778 * are protected by the "mtx" mutex, and ep_find() must be called with
779 * "mtx" held.
781 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
783 int kcmp;
784 struct rb_node *rbp;
785 struct epitem *epi, *epir = NULL;
786 struct epoll_filefd ffd;
788 ep_set_ffd(&ffd, file, fd);
789 for (rbp = ep->rbr.rb_node; rbp; ) {
790 epi = rb_entry(rbp, struct epitem, rbn);
791 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
792 if (kcmp > 0)
793 rbp = rbp->rb_right;
794 else if (kcmp < 0)
795 rbp = rbp->rb_left;
796 else {
797 epir = epi;
798 break;
802 return epir;
806 * This is the callback that is passed to the wait queue wakeup
807 * machanism. It is called by the stored file descriptors when they
808 * have events to report.
810 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
812 int pwake = 0;
813 unsigned long flags;
814 struct epitem *epi = ep_item_from_wait(wait);
815 struct eventpoll *ep = epi->ep;
817 spin_lock_irqsave(&ep->lock, flags);
820 * If the event mask does not contain any poll(2) event, we consider the
821 * descriptor to be disabled. This condition is likely the effect of the
822 * EPOLLONESHOT bit that disables the descriptor when an event is received,
823 * until the next EPOLL_CTL_MOD will be issued.
825 if (!(epi->event.events & ~EP_PRIVATE_BITS))
826 goto out_unlock;
829 * Check the events coming with the callback. At this stage, not
830 * every device reports the events in the "key" parameter of the
831 * callback. We need to be able to handle both cases here, hence the
832 * test for "key" != NULL before the event match test.
834 if (key && !((unsigned long) key & epi->event.events))
835 goto out_unlock;
838 * If we are trasfering events to userspace, we can hold no locks
839 * (because we're accessing user memory, and because of linux f_op->poll()
840 * semantics). All the events that happens during that period of time are
841 * chained in ep->ovflist and requeued later on.
843 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
844 if (epi->next == EP_UNACTIVE_PTR) {
845 epi->next = ep->ovflist;
846 ep->ovflist = epi;
848 goto out_unlock;
851 /* If this file is already in the ready list we exit soon */
852 if (!ep_is_linked(&epi->rdllink))
853 list_add_tail(&epi->rdllink, &ep->rdllist);
856 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
857 * wait list.
859 if (waitqueue_active(&ep->wq))
860 wake_up_locked(&ep->wq);
861 if (waitqueue_active(&ep->poll_wait))
862 pwake++;
864 out_unlock:
865 spin_unlock_irqrestore(&ep->lock, flags);
867 /* We have to call this outside the lock */
868 if (pwake)
869 ep_poll_safewake(&ep->poll_wait);
871 return 1;
875 * This is the callback that is used to add our wait queue to the
876 * target file wakeup lists.
878 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
879 poll_table *pt)
881 struct epitem *epi = ep_item_from_epqueue(pt);
882 struct eppoll_entry *pwq;
884 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
885 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
886 pwq->whead = whead;
887 pwq->base = epi;
888 add_wait_queue(whead, &pwq->wait);
889 list_add_tail(&pwq->llink, &epi->pwqlist);
890 epi->nwait++;
891 } else {
892 /* We have to signal that an error occurred */
893 epi->nwait = -1;
897 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
899 int kcmp;
900 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
901 struct epitem *epic;
903 while (*p) {
904 parent = *p;
905 epic = rb_entry(parent, struct epitem, rbn);
906 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
907 if (kcmp > 0)
908 p = &parent->rb_right;
909 else
910 p = &parent->rb_left;
912 rb_link_node(&epi->rbn, parent, p);
913 rb_insert_color(&epi->rbn, &ep->rbr);
917 * Must be called with "mtx" held.
919 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
920 struct file *tfile, int fd)
922 int error, revents, pwake = 0;
923 unsigned long flags;
924 struct epitem *epi;
925 struct ep_pqueue epq;
927 if (unlikely(atomic_read(&ep->user->epoll_watches) >=
928 max_user_watches))
929 return -ENOSPC;
930 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
931 return -ENOMEM;
933 /* Item initialization follow here ... */
934 INIT_LIST_HEAD(&epi->rdllink);
935 INIT_LIST_HEAD(&epi->fllink);
936 INIT_LIST_HEAD(&epi->pwqlist);
937 epi->ep = ep;
938 ep_set_ffd(&epi->ffd, tfile, fd);
939 epi->event = *event;
940 epi->nwait = 0;
941 epi->next = EP_UNACTIVE_PTR;
943 /* Initialize the poll table using the queue callback */
944 epq.epi = epi;
945 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
948 * Attach the item to the poll hooks and get current event bits.
949 * We can safely use the file* here because its usage count has
950 * been increased by the caller of this function. Note that after
951 * this operation completes, the poll callback can start hitting
952 * the new item.
954 revents = tfile->f_op->poll(tfile, &epq.pt);
957 * We have to check if something went wrong during the poll wait queue
958 * install process. Namely an allocation for a wait queue failed due
959 * high memory pressure.
961 error = -ENOMEM;
962 if (epi->nwait < 0)
963 goto error_unregister;
965 /* Add the current item to the list of active epoll hook for this file */
966 spin_lock(&tfile->f_lock);
967 list_add_tail(&epi->fllink, &tfile->f_ep_links);
968 spin_unlock(&tfile->f_lock);
971 * Add the current item to the RB tree. All RB tree operations are
972 * protected by "mtx", and ep_insert() is called with "mtx" held.
974 ep_rbtree_insert(ep, epi);
976 /* We have to drop the new item inside our item list to keep track of it */
977 spin_lock_irqsave(&ep->lock, flags);
979 /* If the file is already "ready" we drop it inside the ready list */
980 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
981 list_add_tail(&epi->rdllink, &ep->rdllist);
983 /* Notify waiting tasks that events are available */
984 if (waitqueue_active(&ep->wq))
985 wake_up_locked(&ep->wq);
986 if (waitqueue_active(&ep->poll_wait))
987 pwake++;
990 spin_unlock_irqrestore(&ep->lock, flags);
992 atomic_inc(&ep->user->epoll_watches);
994 /* We have to call this outside the lock */
995 if (pwake)
996 ep_poll_safewake(&ep->poll_wait);
998 return 0;
1000 error_unregister:
1001 ep_unregister_pollwait(ep, epi);
1004 * We need to do this because an event could have been arrived on some
1005 * allocated wait queue. Note that we don't care about the ep->ovflist
1006 * list, since that is used/cleaned only inside a section bound by "mtx".
1007 * And ep_insert() is called with "mtx" held.
1009 spin_lock_irqsave(&ep->lock, flags);
1010 if (ep_is_linked(&epi->rdllink))
1011 list_del_init(&epi->rdllink);
1012 spin_unlock_irqrestore(&ep->lock, flags);
1014 kmem_cache_free(epi_cache, epi);
1016 return error;
1020 * Modify the interest event mask by dropping an event if the new mask
1021 * has a match in the current file status. Must be called with "mtx" held.
1023 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1025 int pwake = 0;
1026 unsigned int revents;
1029 * Set the new event interest mask before calling f_op->poll();
1030 * otherwise we might miss an event that happens between the
1031 * f_op->poll() call and the new event set registering.
1033 epi->event.events = event->events;
1034 epi->event.data = event->data; /* protected by mtx */
1037 * Get current event bits. We can safely use the file* here because
1038 * its usage count has been increased by the caller of this function.
1040 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1043 * If the item is "hot" and it is not registered inside the ready
1044 * list, push it inside.
1046 if (revents & event->events) {
1047 spin_lock_irq(&ep->lock);
1048 if (!ep_is_linked(&epi->rdllink)) {
1049 list_add_tail(&epi->rdllink, &ep->rdllist);
1051 /* Notify waiting tasks that events are available */
1052 if (waitqueue_active(&ep->wq))
1053 wake_up_locked(&ep->wq);
1054 if (waitqueue_active(&ep->poll_wait))
1055 pwake++;
1057 spin_unlock_irq(&ep->lock);
1060 /* We have to call this outside the lock */
1061 if (pwake)
1062 ep_poll_safewake(&ep->poll_wait);
1064 return 0;
1067 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1068 void *priv)
1070 struct ep_send_events_data *esed = priv;
1071 int eventcnt;
1072 unsigned int revents;
1073 struct epitem *epi;
1074 struct epoll_event __user *uevent;
1077 * We can loop without lock because we are passed a task private list.
1078 * Items cannot vanish during the loop because ep_scan_ready_list() is
1079 * holding "mtx" during this call.
1081 for (eventcnt = 0, uevent = esed->events;
1082 !list_empty(head) && eventcnt < esed->maxevents;) {
1083 epi = list_first_entry(head, struct epitem, rdllink);
1085 list_del_init(&epi->rdllink);
1087 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1088 epi->event.events;
1091 * If the event mask intersect the caller-requested one,
1092 * deliver the event to userspace. Again, ep_scan_ready_list()
1093 * is holding "mtx", so no operations coming from userspace
1094 * can change the item.
1096 if (revents) {
1097 if (__put_user(revents, &uevent->events) ||
1098 __put_user(epi->event.data, &uevent->data)) {
1099 list_add(&epi->rdllink, head);
1100 return eventcnt ? eventcnt : -EFAULT;
1102 eventcnt++;
1103 uevent++;
1104 if (epi->event.events & EPOLLONESHOT)
1105 epi->event.events &= EP_PRIVATE_BITS;
1106 else if (!(epi->event.events & EPOLLET)) {
1108 * If this file has been added with Level
1109 * Trigger mode, we need to insert back inside
1110 * the ready list, so that the next call to
1111 * epoll_wait() will check again the events
1112 * availability. At this point, noone can insert
1113 * into ep->rdllist besides us. The epoll_ctl()
1114 * callers are locked out by
1115 * ep_scan_ready_list() holding "mtx" and the
1116 * poll callback will queue them in ep->ovflist.
1118 list_add_tail(&epi->rdllink, &ep->rdllist);
1123 return eventcnt;
1126 static int ep_send_events(struct eventpoll *ep,
1127 struct epoll_event __user *events, int maxevents)
1129 struct ep_send_events_data esed;
1131 esed.maxevents = maxevents;
1132 esed.events = events;
1134 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1137 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1138 int maxevents, long timeout)
1140 int res, eavail;
1141 unsigned long flags;
1142 long jtimeout;
1143 wait_queue_t wait;
1146 * Calculate the timeout by checking for the "infinite" value (-1)
1147 * and the overflow condition. The passed timeout is in milliseconds,
1148 * that why (t * HZ) / 1000.
1150 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1151 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1153 retry:
1154 spin_lock_irqsave(&ep->lock, flags);
1156 res = 0;
1157 if (list_empty(&ep->rdllist)) {
1159 * We don't have any available event to return to the caller.
1160 * We need to sleep here, and we will be wake up by
1161 * ep_poll_callback() when events will become available.
1163 init_waitqueue_entry(&wait, current);
1164 wait.flags |= WQ_FLAG_EXCLUSIVE;
1165 __add_wait_queue(&ep->wq, &wait);
1167 for (;;) {
1169 * We don't want to sleep if the ep_poll_callback() sends us
1170 * a wakeup in between. That's why we set the task state
1171 * to TASK_INTERRUPTIBLE before doing the checks.
1173 set_current_state(TASK_INTERRUPTIBLE);
1174 if (!list_empty(&ep->rdllist) || !jtimeout)
1175 break;
1176 if (signal_pending(current)) {
1177 res = -EINTR;
1178 break;
1181 spin_unlock_irqrestore(&ep->lock, flags);
1182 jtimeout = schedule_timeout(jtimeout);
1183 spin_lock_irqsave(&ep->lock, flags);
1185 __remove_wait_queue(&ep->wq, &wait);
1187 set_current_state(TASK_RUNNING);
1189 /* Is it worth to try to dig for events ? */
1190 eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1192 spin_unlock_irqrestore(&ep->lock, flags);
1195 * Try to transfer events to user space. In case we get 0 events and
1196 * there's still timeout left over, we go trying again in search of
1197 * more luck.
1199 if (!res && eavail &&
1200 !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
1201 goto retry;
1203 return res;
1207 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1208 * API, to verify that adding an epoll file inside another
1209 * epoll structure, does not violate the constraints, in
1210 * terms of closed loops, or too deep chains (which can
1211 * result in excessive stack usage).
1213 * @priv: Pointer to the epoll file to be currently checked.
1214 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1215 * data structure pointer.
1216 * @call_nests: Current dept of the @ep_call_nested() call stack.
1218 * Returns: Returns zero if adding the epoll @file inside current epoll
1219 * structure @ep does not violate the constraints, or -1 otherwise.
1221 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1223 int error = 0;
1224 struct file *file = priv;
1225 struct eventpoll *ep = file->private_data;
1226 struct rb_node *rbp;
1227 struct epitem *epi;
1229 mutex_lock_nested(&ep->mtx, call_nests + 1);
1230 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1231 epi = rb_entry(rbp, struct epitem, rbn);
1232 if (unlikely(is_file_epoll(epi->ffd.file))) {
1233 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1234 ep_loop_check_proc, epi->ffd.file,
1235 epi->ffd.file->private_data, current);
1236 if (error != 0)
1237 break;
1240 mutex_unlock(&ep->mtx);
1242 return error;
1246 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1247 * another epoll file (represented by @ep) does not create
1248 * closed loops or too deep chains.
1250 * @ep: Pointer to the epoll private data structure.
1251 * @file: Pointer to the epoll file to be checked.
1253 * Returns: Returns zero if adding the epoll @file inside current epoll
1254 * structure @ep does not violate the constraints, or -1 otherwise.
1256 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1258 return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1259 ep_loop_check_proc, file, ep, current);
1263 * Open an eventpoll file descriptor.
1265 SYSCALL_DEFINE1(epoll_create1, int, flags)
1267 int error;
1268 struct eventpoll *ep = NULL;
1270 /* Check the EPOLL_* constant for consistency. */
1271 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1273 if (flags & ~EPOLL_CLOEXEC)
1274 return -EINVAL;
1276 * Create the internal data structure ("struct eventpoll").
1278 error = ep_alloc(&ep);
1279 if (error < 0)
1280 return error;
1282 * Creates all the items needed to setup an eventpoll file. That is,
1283 * a file structure and a free file descriptor.
1285 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1286 flags & O_CLOEXEC);
1287 if (error < 0)
1288 ep_free(ep);
1290 return error;
1293 SYSCALL_DEFINE1(epoll_create, int, size)
1295 if (size <= 0)
1296 return -EINVAL;
1298 return sys_epoll_create1(0);
1302 * The following function implements the controller interface for
1303 * the eventpoll file that enables the insertion/removal/change of
1304 * file descriptors inside the interest set.
1306 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1307 struct epoll_event __user *, event)
1309 int error;
1310 int did_lock_epmutex = 0;
1311 struct file *file, *tfile;
1312 struct eventpoll *ep;
1313 struct epitem *epi;
1314 struct epoll_event epds;
1316 error = -EFAULT;
1317 if (ep_op_has_event(op) &&
1318 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1319 goto error_return;
1321 /* Get the "struct file *" for the eventpoll file */
1322 error = -EBADF;
1323 file = fget(epfd);
1324 if (!file)
1325 goto error_return;
1327 /* Get the "struct file *" for the target file */
1328 tfile = fget(fd);
1329 if (!tfile)
1330 goto error_fput;
1332 /* The target file descriptor must support poll */
1333 error = -EPERM;
1334 if (!tfile->f_op || !tfile->f_op->poll)
1335 goto error_tgt_fput;
1338 * We have to check that the file structure underneath the file descriptor
1339 * the user passed to us _is_ an eventpoll file. And also we do not permit
1340 * adding an epoll file descriptor inside itself.
1342 error = -EINVAL;
1343 if (file == tfile || !is_file_epoll(file))
1344 goto error_tgt_fput;
1347 * At this point it is safe to assume that the "private_data" contains
1348 * our own data structure.
1350 ep = file->private_data;
1353 * When we insert an epoll file descriptor, inside another epoll file
1354 * descriptor, there is the change of creating closed loops, which are
1355 * better be handled here, than in more critical paths.
1357 * We hold epmutex across the loop check and the insert in this case, in
1358 * order to prevent two separate inserts from racing and each doing the
1359 * insert "at the same time" such that ep_loop_check passes on both
1360 * before either one does the insert, thereby creating a cycle.
1362 if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) {
1363 mutex_lock(&epmutex);
1364 did_lock_epmutex = 1;
1365 error = -ELOOP;
1366 if (ep_loop_check(ep, tfile) != 0)
1367 goto error_tgt_fput;
1371 mutex_lock_nested(&ep->mtx, 0);
1374 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1375 * above, we can be sure to be able to use the item looked up by
1376 * ep_find() till we release the mutex.
1378 epi = ep_find(ep, tfile, fd);
1380 error = -EINVAL;
1381 switch (op) {
1382 case EPOLL_CTL_ADD:
1383 if (!epi) {
1384 epds.events |= POLLERR | POLLHUP;
1385 error = ep_insert(ep, &epds, tfile, fd);
1386 } else
1387 error = -EEXIST;
1388 break;
1389 case EPOLL_CTL_DEL:
1390 if (epi)
1391 error = ep_remove(ep, epi);
1392 else
1393 error = -ENOENT;
1394 break;
1395 case EPOLL_CTL_MOD:
1396 if (epi) {
1397 epds.events |= POLLERR | POLLHUP;
1398 error = ep_modify(ep, epi, &epds);
1399 } else
1400 error = -ENOENT;
1401 break;
1403 mutex_unlock(&ep->mtx);
1405 error_tgt_fput:
1406 if (unlikely(did_lock_epmutex))
1407 mutex_unlock(&epmutex);
1409 fput(tfile);
1410 error_fput:
1411 fput(file);
1412 error_return:
1414 return error;
1418 * Implement the event wait interface for the eventpoll file. It is the kernel
1419 * part of the user space epoll_wait(2).
1421 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1422 int, maxevents, int, timeout)
1424 int error;
1425 struct file *file;
1426 struct eventpoll *ep;
1428 /* The maximum number of event must be greater than zero */
1429 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1430 return -EINVAL;
1432 /* Verify that the area passed by the user is writeable */
1433 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1434 error = -EFAULT;
1435 goto error_return;
1438 /* Get the "struct file *" for the eventpoll file */
1439 error = -EBADF;
1440 file = fget(epfd);
1441 if (!file)
1442 goto error_return;
1445 * We have to check that the file structure underneath the fd
1446 * the user passed to us _is_ an eventpoll file.
1448 error = -EINVAL;
1449 if (!is_file_epoll(file))
1450 goto error_fput;
1453 * At this point it is safe to assume that the "private_data" contains
1454 * our own data structure.
1456 ep = file->private_data;
1458 /* Time to fish for events ... */
1459 error = ep_poll(ep, events, maxevents, timeout);
1461 error_fput:
1462 fput(file);
1463 error_return:
1465 return error;
1468 #ifdef HAVE_SET_RESTORE_SIGMASK
1471 * Implement the event wait interface for the eventpoll file. It is the kernel
1472 * part of the user space epoll_pwait(2).
1474 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1475 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1476 size_t, sigsetsize)
1478 int error;
1479 sigset_t ksigmask, sigsaved;
1482 * If the caller wants a certain signal mask to be set during the wait,
1483 * we apply it here.
1485 if (sigmask) {
1486 if (sigsetsize != sizeof(sigset_t))
1487 return -EINVAL;
1488 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1489 return -EFAULT;
1490 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1491 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1494 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1497 * If we changed the signal mask, we need to restore the original one.
1498 * In case we've got a signal while waiting, we do not restore the
1499 * signal mask yet, and we allow do_signal() to deliver the signal on
1500 * the way back to userspace, before the signal mask is restored.
1502 if (sigmask) {
1503 if (error == -EINTR) {
1504 memcpy(&current->saved_sigmask, &sigsaved,
1505 sizeof(sigsaved));
1506 set_restore_sigmask();
1507 } else
1508 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1511 return error;
1514 #endif /* HAVE_SET_RESTORE_SIGMASK */
1516 static int __init eventpoll_init(void)
1518 struct sysinfo si;
1520 si_meminfo(&si);
1522 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1524 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1525 EP_ITEM_COST;
1528 * Initialize the structure used to perform epoll file descriptor
1529 * inclusion loops checks.
1531 ep_nested_calls_init(&poll_loop_ncalls);
1533 /* Initialize the structure used to perform safe poll wait head wake ups */
1534 ep_nested_calls_init(&poll_safewake_ncalls);
1536 /* Initialize the structure used to perform file's f_op->poll() calls */
1537 ep_nested_calls_init(&poll_readywalk_ncalls);
1539 /* Allocates slab cache used to allocate "struct epitem" items */
1540 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1541 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1543 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1544 pwq_cache = kmem_cache_create("eventpoll_pwq",
1545 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1547 return 0;
1549 fs_initcall(eventpoll_init);