x86/amd-iommu: Make iommu_unmap_page and fetch_pte aware of page sizes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / amd_iommu.c
blob503d312f9d6fcde3b68cd30ab3de1f5579b5ec4f
1 /*
2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/pci.h>
21 #include <linux/gfp.h>
22 #include <linux/bitmap.h>
23 #include <linux/debugfs.h>
24 #include <linux/scatterlist.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/iommu-helper.h>
27 #include <linux/iommu.h>
28 #include <asm/proto.h>
29 #include <asm/iommu.h>
30 #include <asm/gart.h>
31 #include <asm/amd_iommu_proto.h>
32 #include <asm/amd_iommu_types.h>
33 #include <asm/amd_iommu.h>
35 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
37 #define EXIT_LOOP_COUNT 10000000
39 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
41 /* A list of preallocated protection domains */
42 static LIST_HEAD(iommu_pd_list);
43 static DEFINE_SPINLOCK(iommu_pd_list_lock);
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
49 static struct protection_domain *pt_domain;
51 static struct iommu_ops amd_iommu_ops;
54 * general struct to manage commands send to an IOMMU
56 struct iommu_cmd {
57 u32 data[4];
60 static void reset_iommu_command_buffer(struct amd_iommu *iommu);
61 static void update_domain(struct protection_domain *domain);
63 /****************************************************************************
65 * Helper functions
67 ****************************************************************************/
69 static inline u16 get_device_id(struct device *dev)
71 struct pci_dev *pdev = to_pci_dev(dev);
73 return calc_devid(pdev->bus->number, pdev->devfn);
76 static struct iommu_dev_data *get_dev_data(struct device *dev)
78 return dev->archdata.iommu;
82 * In this function the list of preallocated protection domains is traversed to
83 * find the domain for a specific device
85 static struct dma_ops_domain *find_protection_domain(u16 devid)
87 struct dma_ops_domain *entry, *ret = NULL;
88 unsigned long flags;
89 u16 alias = amd_iommu_alias_table[devid];
91 if (list_empty(&iommu_pd_list))
92 return NULL;
94 spin_lock_irqsave(&iommu_pd_list_lock, flags);
96 list_for_each_entry(entry, &iommu_pd_list, list) {
97 if (entry->target_dev == devid ||
98 entry->target_dev == alias) {
99 ret = entry;
100 break;
104 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
106 return ret;
110 * This function checks if the driver got a valid device from the caller to
111 * avoid dereferencing invalid pointers.
113 static bool check_device(struct device *dev)
115 u16 devid;
117 if (!dev || !dev->dma_mask)
118 return false;
120 /* No device or no PCI device */
121 if (!dev || dev->bus != &pci_bus_type)
122 return false;
124 devid = get_device_id(dev);
126 /* Out of our scope? */
127 if (devid > amd_iommu_last_bdf)
128 return false;
130 if (amd_iommu_rlookup_table[devid] == NULL)
131 return false;
133 return true;
136 static int iommu_init_device(struct device *dev)
138 struct iommu_dev_data *dev_data;
139 struct pci_dev *pdev;
140 u16 devid, alias;
142 if (dev->archdata.iommu)
143 return 0;
145 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
146 if (!dev_data)
147 return -ENOMEM;
149 dev_data->dev = dev;
151 devid = get_device_id(dev);
152 alias = amd_iommu_alias_table[devid];
153 pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
154 if (pdev)
155 dev_data->alias = &pdev->dev;
157 atomic_set(&dev_data->bind, 0);
159 dev->archdata.iommu = dev_data;
162 return 0;
165 static void iommu_uninit_device(struct device *dev)
167 kfree(dev->archdata.iommu);
170 void __init amd_iommu_uninit_devices(void)
172 struct pci_dev *pdev = NULL;
174 for_each_pci_dev(pdev) {
176 if (!check_device(&pdev->dev))
177 continue;
179 iommu_uninit_device(&pdev->dev);
183 int __init amd_iommu_init_devices(void)
185 struct pci_dev *pdev = NULL;
186 int ret = 0;
188 for_each_pci_dev(pdev) {
190 if (!check_device(&pdev->dev))
191 continue;
193 ret = iommu_init_device(&pdev->dev);
194 if (ret)
195 goto out_free;
198 return 0;
200 out_free:
202 amd_iommu_uninit_devices();
204 return ret;
206 #ifdef CONFIG_AMD_IOMMU_STATS
209 * Initialization code for statistics collection
212 DECLARE_STATS_COUNTER(compl_wait);
213 DECLARE_STATS_COUNTER(cnt_map_single);
214 DECLARE_STATS_COUNTER(cnt_unmap_single);
215 DECLARE_STATS_COUNTER(cnt_map_sg);
216 DECLARE_STATS_COUNTER(cnt_unmap_sg);
217 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
218 DECLARE_STATS_COUNTER(cnt_free_coherent);
219 DECLARE_STATS_COUNTER(cross_page);
220 DECLARE_STATS_COUNTER(domain_flush_single);
221 DECLARE_STATS_COUNTER(domain_flush_all);
222 DECLARE_STATS_COUNTER(alloced_io_mem);
223 DECLARE_STATS_COUNTER(total_map_requests);
225 static struct dentry *stats_dir;
226 static struct dentry *de_fflush;
228 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
230 if (stats_dir == NULL)
231 return;
233 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
234 &cnt->value);
237 static void amd_iommu_stats_init(void)
239 stats_dir = debugfs_create_dir("amd-iommu", NULL);
240 if (stats_dir == NULL)
241 return;
243 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
244 (u32 *)&amd_iommu_unmap_flush);
246 amd_iommu_stats_add(&compl_wait);
247 amd_iommu_stats_add(&cnt_map_single);
248 amd_iommu_stats_add(&cnt_unmap_single);
249 amd_iommu_stats_add(&cnt_map_sg);
250 amd_iommu_stats_add(&cnt_unmap_sg);
251 amd_iommu_stats_add(&cnt_alloc_coherent);
252 amd_iommu_stats_add(&cnt_free_coherent);
253 amd_iommu_stats_add(&cross_page);
254 amd_iommu_stats_add(&domain_flush_single);
255 amd_iommu_stats_add(&domain_flush_all);
256 amd_iommu_stats_add(&alloced_io_mem);
257 amd_iommu_stats_add(&total_map_requests);
260 #endif
262 /****************************************************************************
264 * Interrupt handling functions
266 ****************************************************************************/
268 static void dump_dte_entry(u16 devid)
270 int i;
272 for (i = 0; i < 8; ++i)
273 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
274 amd_iommu_dev_table[devid].data[i]);
277 static void dump_command(unsigned long phys_addr)
279 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
280 int i;
282 for (i = 0; i < 4; ++i)
283 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
286 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
288 u32 *event = __evt;
289 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
290 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
291 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
292 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
293 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
295 printk(KERN_ERR "AMD-Vi: Event logged [");
297 switch (type) {
298 case EVENT_TYPE_ILL_DEV:
299 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
300 "address=0x%016llx flags=0x%04x]\n",
301 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
302 address, flags);
303 dump_dte_entry(devid);
304 break;
305 case EVENT_TYPE_IO_FAULT:
306 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
307 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
308 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
309 domid, address, flags);
310 break;
311 case EVENT_TYPE_DEV_TAB_ERR:
312 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
313 "address=0x%016llx flags=0x%04x]\n",
314 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
315 address, flags);
316 break;
317 case EVENT_TYPE_PAGE_TAB_ERR:
318 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
319 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
320 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
321 domid, address, flags);
322 break;
323 case EVENT_TYPE_ILL_CMD:
324 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
325 iommu->reset_in_progress = true;
326 reset_iommu_command_buffer(iommu);
327 dump_command(address);
328 break;
329 case EVENT_TYPE_CMD_HARD_ERR:
330 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
331 "flags=0x%04x]\n", address, flags);
332 break;
333 case EVENT_TYPE_IOTLB_INV_TO:
334 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
335 "address=0x%016llx]\n",
336 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
337 address);
338 break;
339 case EVENT_TYPE_INV_DEV_REQ:
340 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
341 "address=0x%016llx flags=0x%04x]\n",
342 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
343 address, flags);
344 break;
345 default:
346 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
350 static void iommu_poll_events(struct amd_iommu *iommu)
352 u32 head, tail;
353 unsigned long flags;
355 spin_lock_irqsave(&iommu->lock, flags);
357 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
358 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
360 while (head != tail) {
361 iommu_print_event(iommu, iommu->evt_buf + head);
362 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
365 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
367 spin_unlock_irqrestore(&iommu->lock, flags);
370 irqreturn_t amd_iommu_int_handler(int irq, void *data)
372 struct amd_iommu *iommu;
374 for_each_iommu(iommu)
375 iommu_poll_events(iommu);
377 return IRQ_HANDLED;
380 /****************************************************************************
382 * IOMMU command queuing functions
384 ****************************************************************************/
387 * Writes the command to the IOMMUs command buffer and informs the
388 * hardware about the new command. Must be called with iommu->lock held.
390 static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
392 u32 tail, head;
393 u8 *target;
395 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
396 target = iommu->cmd_buf + tail;
397 memcpy_toio(target, cmd, sizeof(*cmd));
398 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
399 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
400 if (tail == head)
401 return -ENOMEM;
402 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
404 return 0;
408 * General queuing function for commands. Takes iommu->lock and calls
409 * __iommu_queue_command().
411 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
413 unsigned long flags;
414 int ret;
416 spin_lock_irqsave(&iommu->lock, flags);
417 ret = __iommu_queue_command(iommu, cmd);
418 if (!ret)
419 iommu->need_sync = true;
420 spin_unlock_irqrestore(&iommu->lock, flags);
422 return ret;
426 * This function waits until an IOMMU has completed a completion
427 * wait command
429 static void __iommu_wait_for_completion(struct amd_iommu *iommu)
431 int ready = 0;
432 unsigned status = 0;
433 unsigned long i = 0;
435 INC_STATS_COUNTER(compl_wait);
437 while (!ready && (i < EXIT_LOOP_COUNT)) {
438 ++i;
439 /* wait for the bit to become one */
440 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
441 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
444 /* set bit back to zero */
445 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
446 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
448 if (unlikely(i == EXIT_LOOP_COUNT))
449 iommu->reset_in_progress = true;
453 * This function queues a completion wait command into the command
454 * buffer of an IOMMU
456 static int __iommu_completion_wait(struct amd_iommu *iommu)
458 struct iommu_cmd cmd;
460 memset(&cmd, 0, sizeof(cmd));
461 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
462 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
464 return __iommu_queue_command(iommu, &cmd);
468 * This function is called whenever we need to ensure that the IOMMU has
469 * completed execution of all commands we sent. It sends a
470 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
471 * us about that by writing a value to a physical address we pass with
472 * the command.
474 static int iommu_completion_wait(struct amd_iommu *iommu)
476 int ret = 0;
477 unsigned long flags;
479 spin_lock_irqsave(&iommu->lock, flags);
481 if (!iommu->need_sync)
482 goto out;
484 ret = __iommu_completion_wait(iommu);
486 iommu->need_sync = false;
488 if (ret)
489 goto out;
491 __iommu_wait_for_completion(iommu);
493 out:
494 spin_unlock_irqrestore(&iommu->lock, flags);
496 if (iommu->reset_in_progress)
497 reset_iommu_command_buffer(iommu);
499 return 0;
502 static void iommu_flush_complete(struct protection_domain *domain)
504 int i;
506 for (i = 0; i < amd_iommus_present; ++i) {
507 if (!domain->dev_iommu[i])
508 continue;
511 * Devices of this domain are behind this IOMMU
512 * We need to wait for completion of all commands.
514 iommu_completion_wait(amd_iommus[i]);
519 * Command send function for invalidating a device table entry
521 static int iommu_flush_device(struct device *dev)
523 struct amd_iommu *iommu;
524 struct iommu_cmd cmd;
525 u16 devid;
527 devid = get_device_id(dev);
528 iommu = amd_iommu_rlookup_table[devid];
530 /* Build command */
531 memset(&cmd, 0, sizeof(cmd));
532 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
533 cmd.data[0] = devid;
535 return iommu_queue_command(iommu, &cmd);
538 static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
539 u16 domid, int pde, int s)
541 memset(cmd, 0, sizeof(*cmd));
542 address &= PAGE_MASK;
543 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
544 cmd->data[1] |= domid;
545 cmd->data[2] = lower_32_bits(address);
546 cmd->data[3] = upper_32_bits(address);
547 if (s) /* size bit - we flush more than one 4kb page */
548 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
549 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
550 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
554 * Generic command send function for invalidaing TLB entries
556 static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
557 u64 address, u16 domid, int pde, int s)
559 struct iommu_cmd cmd;
560 int ret;
562 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
564 ret = iommu_queue_command(iommu, &cmd);
566 return ret;
570 * TLB invalidation function which is called from the mapping functions.
571 * It invalidates a single PTE if the range to flush is within a single
572 * page. Otherwise it flushes the whole TLB of the IOMMU.
574 static void __iommu_flush_pages(struct protection_domain *domain,
575 u64 address, size_t size, int pde)
577 int s = 0, i;
578 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
580 address &= PAGE_MASK;
582 if (pages > 1) {
584 * If we have to flush more than one page, flush all
585 * TLB entries for this domain
587 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
588 s = 1;
592 for (i = 0; i < amd_iommus_present; ++i) {
593 if (!domain->dev_iommu[i])
594 continue;
597 * Devices of this domain are behind this IOMMU
598 * We need a TLB flush
600 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
601 domain->id, pde, s);
604 return;
607 static void iommu_flush_pages(struct protection_domain *domain,
608 u64 address, size_t size)
610 __iommu_flush_pages(domain, address, size, 0);
613 /* Flush the whole IO/TLB for a given protection domain */
614 static void iommu_flush_tlb(struct protection_domain *domain)
616 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
619 /* Flush the whole IO/TLB for a given protection domain - including PDE */
620 static void iommu_flush_tlb_pde(struct protection_domain *domain)
622 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
627 * This function flushes the DTEs for all devices in domain
629 static void iommu_flush_domain_devices(struct protection_domain *domain)
631 struct iommu_dev_data *dev_data;
632 unsigned long flags;
634 spin_lock_irqsave(&domain->lock, flags);
636 list_for_each_entry(dev_data, &domain->dev_list, list)
637 iommu_flush_device(dev_data->dev);
639 spin_unlock_irqrestore(&domain->lock, flags);
642 static void iommu_flush_all_domain_devices(void)
644 struct protection_domain *domain;
645 unsigned long flags;
647 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
649 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
650 iommu_flush_domain_devices(domain);
651 iommu_flush_complete(domain);
654 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
657 void amd_iommu_flush_all_devices(void)
659 iommu_flush_all_domain_devices();
663 * This function uses heavy locking and may disable irqs for some time. But
664 * this is no issue because it is only called during resume.
666 void amd_iommu_flush_all_domains(void)
668 struct protection_domain *domain;
669 unsigned long flags;
671 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
673 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
674 spin_lock(&domain->lock);
675 iommu_flush_tlb_pde(domain);
676 iommu_flush_complete(domain);
677 spin_unlock(&domain->lock);
680 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
683 static void reset_iommu_command_buffer(struct amd_iommu *iommu)
685 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
687 if (iommu->reset_in_progress)
688 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
690 amd_iommu_reset_cmd_buffer(iommu);
691 amd_iommu_flush_all_devices();
692 amd_iommu_flush_all_domains();
694 iommu->reset_in_progress = false;
697 /****************************************************************************
699 * The functions below are used the create the page table mappings for
700 * unity mapped regions.
702 ****************************************************************************/
705 * This function is used to add another level to an IO page table. Adding
706 * another level increases the size of the address space by 9 bits to a size up
707 * to 64 bits.
709 static bool increase_address_space(struct protection_domain *domain,
710 gfp_t gfp)
712 u64 *pte;
714 if (domain->mode == PAGE_MODE_6_LEVEL)
715 /* address space already 64 bit large */
716 return false;
718 pte = (void *)get_zeroed_page(gfp);
719 if (!pte)
720 return false;
722 *pte = PM_LEVEL_PDE(domain->mode,
723 virt_to_phys(domain->pt_root));
724 domain->pt_root = pte;
725 domain->mode += 1;
726 domain->updated = true;
728 return true;
731 static u64 *alloc_pte(struct protection_domain *domain,
732 unsigned long address,
733 unsigned long page_size,
734 u64 **pte_page,
735 gfp_t gfp)
737 int level, end_lvl;
738 u64 *pte, *page;
740 BUG_ON(!is_power_of_2(page_size));
742 while (address > PM_LEVEL_SIZE(domain->mode))
743 increase_address_space(domain, gfp);
745 level = domain->mode - 1;
746 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
747 address = PAGE_SIZE_ALIGN(address, page_size);
748 end_lvl = PAGE_SIZE_LEVEL(page_size);
750 while (level > end_lvl) {
751 if (!IOMMU_PTE_PRESENT(*pte)) {
752 page = (u64 *)get_zeroed_page(gfp);
753 if (!page)
754 return NULL;
755 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
758 /* No level skipping support yet */
759 if (PM_PTE_LEVEL(*pte) != level)
760 return NULL;
762 level -= 1;
764 pte = IOMMU_PTE_PAGE(*pte);
766 if (pte_page && level == end_lvl)
767 *pte_page = pte;
769 pte = &pte[PM_LEVEL_INDEX(level, address)];
772 return pte;
776 * This function checks if there is a PTE for a given dma address. If
777 * there is one, it returns the pointer to it.
779 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
781 int level;
782 u64 *pte;
784 if (address > PM_LEVEL_SIZE(domain->mode))
785 return NULL;
787 level = domain->mode - 1;
788 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
790 while (level > 0) {
792 /* Not Present */
793 if (!IOMMU_PTE_PRESENT(*pte))
794 return NULL;
796 /* Large PTE */
797 if (PM_PTE_LEVEL(*pte) == 0x07) {
798 unsigned long pte_mask, __pte;
801 * If we have a series of large PTEs, make
802 * sure to return a pointer to the first one.
804 pte_mask = PTE_PAGE_SIZE(*pte);
805 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
806 __pte = ((unsigned long)pte) & pte_mask;
808 return (u64 *)__pte;
811 /* No level skipping support yet */
812 if (PM_PTE_LEVEL(*pte) != level)
813 return NULL;
815 level -= 1;
817 /* Walk to the next level */
818 pte = IOMMU_PTE_PAGE(*pte);
819 pte = &pte[PM_LEVEL_INDEX(level, address)];
822 return pte;
826 * Generic mapping functions. It maps a physical address into a DMA
827 * address space. It allocates the page table pages if necessary.
828 * In the future it can be extended to a generic mapping function
829 * supporting all features of AMD IOMMU page tables like level skipping
830 * and full 64 bit address spaces.
832 static int iommu_map_page(struct protection_domain *dom,
833 unsigned long bus_addr,
834 unsigned long phys_addr,
835 int prot,
836 unsigned long page_size)
838 u64 __pte, *pte;
839 int i, count;
841 if (!(prot & IOMMU_PROT_MASK))
842 return -EINVAL;
844 bus_addr = PAGE_ALIGN(bus_addr);
845 phys_addr = PAGE_ALIGN(phys_addr);
846 count = PAGE_SIZE_PTE_COUNT(page_size);
847 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
849 for (i = 0; i < count; ++i)
850 if (IOMMU_PTE_PRESENT(pte[i]))
851 return -EBUSY;
853 if (page_size > PAGE_SIZE) {
854 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
855 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
856 } else
857 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
859 if (prot & IOMMU_PROT_IR)
860 __pte |= IOMMU_PTE_IR;
861 if (prot & IOMMU_PROT_IW)
862 __pte |= IOMMU_PTE_IW;
864 for (i = 0; i < count; ++i)
865 pte[i] = __pte;
867 update_domain(dom);
869 return 0;
872 static unsigned long iommu_unmap_page(struct protection_domain *dom,
873 unsigned long bus_addr,
874 unsigned long page_size)
876 unsigned long long unmap_size, unmapped;
877 u64 *pte;
879 BUG_ON(!is_power_of_2(page_size));
881 unmapped = 0;
883 while (unmapped < page_size) {
885 pte = fetch_pte(dom, bus_addr);
887 if (!pte) {
889 * No PTE for this address
890 * move forward in 4kb steps
892 unmap_size = PAGE_SIZE;
893 } else if (PM_PTE_LEVEL(*pte) == 0) {
894 /* 4kb PTE found for this address */
895 unmap_size = PAGE_SIZE;
896 *pte = 0ULL;
897 } else {
898 int count, i;
900 /* Large PTE found which maps this address */
901 unmap_size = PTE_PAGE_SIZE(*pte);
902 count = PAGE_SIZE_PTE_COUNT(unmap_size);
903 for (i = 0; i < count; i++)
904 pte[i] = 0ULL;
907 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
908 unmapped += unmap_size;
911 BUG_ON(!is_power_of_2(unmapped));
913 return unmapped;
917 * This function checks if a specific unity mapping entry is needed for
918 * this specific IOMMU.
920 static int iommu_for_unity_map(struct amd_iommu *iommu,
921 struct unity_map_entry *entry)
923 u16 bdf, i;
925 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
926 bdf = amd_iommu_alias_table[i];
927 if (amd_iommu_rlookup_table[bdf] == iommu)
928 return 1;
931 return 0;
935 * This function actually applies the mapping to the page table of the
936 * dma_ops domain.
938 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
939 struct unity_map_entry *e)
941 u64 addr;
942 int ret;
944 for (addr = e->address_start; addr < e->address_end;
945 addr += PAGE_SIZE) {
946 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
947 PAGE_SIZE);
948 if (ret)
949 return ret;
951 * if unity mapping is in aperture range mark the page
952 * as allocated in the aperture
954 if (addr < dma_dom->aperture_size)
955 __set_bit(addr >> PAGE_SHIFT,
956 dma_dom->aperture[0]->bitmap);
959 return 0;
963 * Init the unity mappings for a specific IOMMU in the system
965 * Basically iterates over all unity mapping entries and applies them to
966 * the default domain DMA of that IOMMU if necessary.
968 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
970 struct unity_map_entry *entry;
971 int ret;
973 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
974 if (!iommu_for_unity_map(iommu, entry))
975 continue;
976 ret = dma_ops_unity_map(iommu->default_dom, entry);
977 if (ret)
978 return ret;
981 return 0;
985 * Inits the unity mappings required for a specific device
987 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
988 u16 devid)
990 struct unity_map_entry *e;
991 int ret;
993 list_for_each_entry(e, &amd_iommu_unity_map, list) {
994 if (!(devid >= e->devid_start && devid <= e->devid_end))
995 continue;
996 ret = dma_ops_unity_map(dma_dom, e);
997 if (ret)
998 return ret;
1001 return 0;
1004 /****************************************************************************
1006 * The next functions belong to the address allocator for the dma_ops
1007 * interface functions. They work like the allocators in the other IOMMU
1008 * drivers. Its basically a bitmap which marks the allocated pages in
1009 * the aperture. Maybe it could be enhanced in the future to a more
1010 * efficient allocator.
1012 ****************************************************************************/
1015 * The address allocator core functions.
1017 * called with domain->lock held
1021 * Used to reserve address ranges in the aperture (e.g. for exclusion
1022 * ranges.
1024 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1025 unsigned long start_page,
1026 unsigned int pages)
1028 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1030 if (start_page + pages > last_page)
1031 pages = last_page - start_page;
1033 for (i = start_page; i < start_page + pages; ++i) {
1034 int index = i / APERTURE_RANGE_PAGES;
1035 int page = i % APERTURE_RANGE_PAGES;
1036 __set_bit(page, dom->aperture[index]->bitmap);
1041 * This function is used to add a new aperture range to an existing
1042 * aperture in case of dma_ops domain allocation or address allocation
1043 * failure.
1045 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1046 bool populate, gfp_t gfp)
1048 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1049 struct amd_iommu *iommu;
1050 unsigned long i;
1052 #ifdef CONFIG_IOMMU_STRESS
1053 populate = false;
1054 #endif
1056 if (index >= APERTURE_MAX_RANGES)
1057 return -ENOMEM;
1059 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1060 if (!dma_dom->aperture[index])
1061 return -ENOMEM;
1063 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1064 if (!dma_dom->aperture[index]->bitmap)
1065 goto out_free;
1067 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1069 if (populate) {
1070 unsigned long address = dma_dom->aperture_size;
1071 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1072 u64 *pte, *pte_page;
1074 for (i = 0; i < num_ptes; ++i) {
1075 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1076 &pte_page, gfp);
1077 if (!pte)
1078 goto out_free;
1080 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1082 address += APERTURE_RANGE_SIZE / 64;
1086 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1088 /* Intialize the exclusion range if necessary */
1089 for_each_iommu(iommu) {
1090 if (iommu->exclusion_start &&
1091 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1092 && iommu->exclusion_start < dma_dom->aperture_size) {
1093 unsigned long startpage;
1094 int pages = iommu_num_pages(iommu->exclusion_start,
1095 iommu->exclusion_length,
1096 PAGE_SIZE);
1097 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1098 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1103 * Check for areas already mapped as present in the new aperture
1104 * range and mark those pages as reserved in the allocator. Such
1105 * mappings may already exist as a result of requested unity
1106 * mappings for devices.
1108 for (i = dma_dom->aperture[index]->offset;
1109 i < dma_dom->aperture_size;
1110 i += PAGE_SIZE) {
1111 u64 *pte = fetch_pte(&dma_dom->domain, i);
1112 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1113 continue;
1115 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1118 update_domain(&dma_dom->domain);
1120 return 0;
1122 out_free:
1123 update_domain(&dma_dom->domain);
1125 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1127 kfree(dma_dom->aperture[index]);
1128 dma_dom->aperture[index] = NULL;
1130 return -ENOMEM;
1133 static unsigned long dma_ops_area_alloc(struct device *dev,
1134 struct dma_ops_domain *dom,
1135 unsigned int pages,
1136 unsigned long align_mask,
1137 u64 dma_mask,
1138 unsigned long start)
1140 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1141 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1142 int i = start >> APERTURE_RANGE_SHIFT;
1143 unsigned long boundary_size;
1144 unsigned long address = -1;
1145 unsigned long limit;
1147 next_bit >>= PAGE_SHIFT;
1149 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1150 PAGE_SIZE) >> PAGE_SHIFT;
1152 for (;i < max_index; ++i) {
1153 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1155 if (dom->aperture[i]->offset >= dma_mask)
1156 break;
1158 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1159 dma_mask >> PAGE_SHIFT);
1161 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1162 limit, next_bit, pages, 0,
1163 boundary_size, align_mask);
1164 if (address != -1) {
1165 address = dom->aperture[i]->offset +
1166 (address << PAGE_SHIFT);
1167 dom->next_address = address + (pages << PAGE_SHIFT);
1168 break;
1171 next_bit = 0;
1174 return address;
1177 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1178 struct dma_ops_domain *dom,
1179 unsigned int pages,
1180 unsigned long align_mask,
1181 u64 dma_mask)
1183 unsigned long address;
1185 #ifdef CONFIG_IOMMU_STRESS
1186 dom->next_address = 0;
1187 dom->need_flush = true;
1188 #endif
1190 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1191 dma_mask, dom->next_address);
1193 if (address == -1) {
1194 dom->next_address = 0;
1195 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1196 dma_mask, 0);
1197 dom->need_flush = true;
1200 if (unlikely(address == -1))
1201 address = DMA_ERROR_CODE;
1203 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1205 return address;
1209 * The address free function.
1211 * called with domain->lock held
1213 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1214 unsigned long address,
1215 unsigned int pages)
1217 unsigned i = address >> APERTURE_RANGE_SHIFT;
1218 struct aperture_range *range = dom->aperture[i];
1220 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1222 #ifdef CONFIG_IOMMU_STRESS
1223 if (i < 4)
1224 return;
1225 #endif
1227 if (address >= dom->next_address)
1228 dom->need_flush = true;
1230 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1232 bitmap_clear(range->bitmap, address, pages);
1236 /****************************************************************************
1238 * The next functions belong to the domain allocation. A domain is
1239 * allocated for every IOMMU as the default domain. If device isolation
1240 * is enabled, every device get its own domain. The most important thing
1241 * about domains is the page table mapping the DMA address space they
1242 * contain.
1244 ****************************************************************************/
1247 * This function adds a protection domain to the global protection domain list
1249 static void add_domain_to_list(struct protection_domain *domain)
1251 unsigned long flags;
1253 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1254 list_add(&domain->list, &amd_iommu_pd_list);
1255 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1259 * This function removes a protection domain to the global
1260 * protection domain list
1262 static void del_domain_from_list(struct protection_domain *domain)
1264 unsigned long flags;
1266 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1267 list_del(&domain->list);
1268 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1271 static u16 domain_id_alloc(void)
1273 unsigned long flags;
1274 int id;
1276 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1277 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1278 BUG_ON(id == 0);
1279 if (id > 0 && id < MAX_DOMAIN_ID)
1280 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1281 else
1282 id = 0;
1283 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1285 return id;
1288 static void domain_id_free(int id)
1290 unsigned long flags;
1292 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1293 if (id > 0 && id < MAX_DOMAIN_ID)
1294 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1295 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1298 static void free_pagetable(struct protection_domain *domain)
1300 int i, j;
1301 u64 *p1, *p2, *p3;
1303 p1 = domain->pt_root;
1305 if (!p1)
1306 return;
1308 for (i = 0; i < 512; ++i) {
1309 if (!IOMMU_PTE_PRESENT(p1[i]))
1310 continue;
1312 p2 = IOMMU_PTE_PAGE(p1[i]);
1313 for (j = 0; j < 512; ++j) {
1314 if (!IOMMU_PTE_PRESENT(p2[j]))
1315 continue;
1316 p3 = IOMMU_PTE_PAGE(p2[j]);
1317 free_page((unsigned long)p3);
1320 free_page((unsigned long)p2);
1323 free_page((unsigned long)p1);
1325 domain->pt_root = NULL;
1329 * Free a domain, only used if something went wrong in the
1330 * allocation path and we need to free an already allocated page table
1332 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1334 int i;
1336 if (!dom)
1337 return;
1339 del_domain_from_list(&dom->domain);
1341 free_pagetable(&dom->domain);
1343 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1344 if (!dom->aperture[i])
1345 continue;
1346 free_page((unsigned long)dom->aperture[i]->bitmap);
1347 kfree(dom->aperture[i]);
1350 kfree(dom);
1354 * Allocates a new protection domain usable for the dma_ops functions.
1355 * It also intializes the page table and the address allocator data
1356 * structures required for the dma_ops interface
1358 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1360 struct dma_ops_domain *dma_dom;
1362 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1363 if (!dma_dom)
1364 return NULL;
1366 spin_lock_init(&dma_dom->domain.lock);
1368 dma_dom->domain.id = domain_id_alloc();
1369 if (dma_dom->domain.id == 0)
1370 goto free_dma_dom;
1371 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1372 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1373 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1374 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1375 dma_dom->domain.priv = dma_dom;
1376 if (!dma_dom->domain.pt_root)
1377 goto free_dma_dom;
1379 dma_dom->need_flush = false;
1380 dma_dom->target_dev = 0xffff;
1382 add_domain_to_list(&dma_dom->domain);
1384 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1385 goto free_dma_dom;
1388 * mark the first page as allocated so we never return 0 as
1389 * a valid dma-address. So we can use 0 as error value
1391 dma_dom->aperture[0]->bitmap[0] = 1;
1392 dma_dom->next_address = 0;
1395 return dma_dom;
1397 free_dma_dom:
1398 dma_ops_domain_free(dma_dom);
1400 return NULL;
1404 * little helper function to check whether a given protection domain is a
1405 * dma_ops domain
1407 static bool dma_ops_domain(struct protection_domain *domain)
1409 return domain->flags & PD_DMA_OPS_MASK;
1412 static void set_dte_entry(u16 devid, struct protection_domain *domain)
1414 u64 pte_root = virt_to_phys(domain->pt_root);
1416 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1417 << DEV_ENTRY_MODE_SHIFT;
1418 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1420 amd_iommu_dev_table[devid].data[2] = domain->id;
1421 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1422 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1425 static void clear_dte_entry(u16 devid)
1427 /* remove entry from the device table seen by the hardware */
1428 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1429 amd_iommu_dev_table[devid].data[1] = 0;
1430 amd_iommu_dev_table[devid].data[2] = 0;
1432 amd_iommu_apply_erratum_63(devid);
1435 static void do_attach(struct device *dev, struct protection_domain *domain)
1437 struct iommu_dev_data *dev_data;
1438 struct amd_iommu *iommu;
1439 u16 devid;
1441 devid = get_device_id(dev);
1442 iommu = amd_iommu_rlookup_table[devid];
1443 dev_data = get_dev_data(dev);
1445 /* Update data structures */
1446 dev_data->domain = domain;
1447 list_add(&dev_data->list, &domain->dev_list);
1448 set_dte_entry(devid, domain);
1450 /* Do reference counting */
1451 domain->dev_iommu[iommu->index] += 1;
1452 domain->dev_cnt += 1;
1454 /* Flush the DTE entry */
1455 iommu_flush_device(dev);
1458 static void do_detach(struct device *dev)
1460 struct iommu_dev_data *dev_data;
1461 struct amd_iommu *iommu;
1462 u16 devid;
1464 devid = get_device_id(dev);
1465 iommu = amd_iommu_rlookup_table[devid];
1466 dev_data = get_dev_data(dev);
1468 /* decrease reference counters */
1469 dev_data->domain->dev_iommu[iommu->index] -= 1;
1470 dev_data->domain->dev_cnt -= 1;
1472 /* Update data structures */
1473 dev_data->domain = NULL;
1474 list_del(&dev_data->list);
1475 clear_dte_entry(devid);
1477 /* Flush the DTE entry */
1478 iommu_flush_device(dev);
1482 * If a device is not yet associated with a domain, this function does
1483 * assigns it visible for the hardware
1485 static int __attach_device(struct device *dev,
1486 struct protection_domain *domain)
1488 struct iommu_dev_data *dev_data, *alias_data;
1490 dev_data = get_dev_data(dev);
1491 alias_data = get_dev_data(dev_data->alias);
1493 if (!alias_data)
1494 return -EINVAL;
1496 /* lock domain */
1497 spin_lock(&domain->lock);
1499 /* Some sanity checks */
1500 if (alias_data->domain != NULL &&
1501 alias_data->domain != domain)
1502 return -EBUSY;
1504 if (dev_data->domain != NULL &&
1505 dev_data->domain != domain)
1506 return -EBUSY;
1508 /* Do real assignment */
1509 if (dev_data->alias != dev) {
1510 alias_data = get_dev_data(dev_data->alias);
1511 if (alias_data->domain == NULL)
1512 do_attach(dev_data->alias, domain);
1514 atomic_inc(&alias_data->bind);
1517 if (dev_data->domain == NULL)
1518 do_attach(dev, domain);
1520 atomic_inc(&dev_data->bind);
1522 /* ready */
1523 spin_unlock(&domain->lock);
1525 return 0;
1529 * If a device is not yet associated with a domain, this function does
1530 * assigns it visible for the hardware
1532 static int attach_device(struct device *dev,
1533 struct protection_domain *domain)
1535 unsigned long flags;
1536 int ret;
1538 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1539 ret = __attach_device(dev, domain);
1540 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1543 * We might boot into a crash-kernel here. The crashed kernel
1544 * left the caches in the IOMMU dirty. So we have to flush
1545 * here to evict all dirty stuff.
1547 iommu_flush_tlb_pde(domain);
1549 return ret;
1553 * Removes a device from a protection domain (unlocked)
1555 static void __detach_device(struct device *dev)
1557 struct iommu_dev_data *dev_data = get_dev_data(dev);
1558 struct iommu_dev_data *alias_data;
1559 struct protection_domain *domain;
1560 unsigned long flags;
1562 BUG_ON(!dev_data->domain);
1564 domain = dev_data->domain;
1566 spin_lock_irqsave(&domain->lock, flags);
1568 if (dev_data->alias != dev) {
1569 alias_data = get_dev_data(dev_data->alias);
1570 if (atomic_dec_and_test(&alias_data->bind))
1571 do_detach(dev_data->alias);
1574 if (atomic_dec_and_test(&dev_data->bind))
1575 do_detach(dev);
1577 spin_unlock_irqrestore(&domain->lock, flags);
1580 * If we run in passthrough mode the device must be assigned to the
1581 * passthrough domain if it is detached from any other domain.
1582 * Make sure we can deassign from the pt_domain itself.
1584 if (iommu_pass_through &&
1585 (dev_data->domain == NULL && domain != pt_domain))
1586 __attach_device(dev, pt_domain);
1590 * Removes a device from a protection domain (with devtable_lock held)
1592 static void detach_device(struct device *dev)
1594 unsigned long flags;
1596 /* lock device table */
1597 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1598 __detach_device(dev);
1599 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1603 * Find out the protection domain structure for a given PCI device. This
1604 * will give us the pointer to the page table root for example.
1606 static struct protection_domain *domain_for_device(struct device *dev)
1608 struct protection_domain *dom;
1609 struct iommu_dev_data *dev_data, *alias_data;
1610 unsigned long flags;
1611 u16 devid, alias;
1613 devid = get_device_id(dev);
1614 alias = amd_iommu_alias_table[devid];
1615 dev_data = get_dev_data(dev);
1616 alias_data = get_dev_data(dev_data->alias);
1617 if (!alias_data)
1618 return NULL;
1620 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1621 dom = dev_data->domain;
1622 if (dom == NULL &&
1623 alias_data->domain != NULL) {
1624 __attach_device(dev, alias_data->domain);
1625 dom = alias_data->domain;
1628 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1630 return dom;
1633 static int device_change_notifier(struct notifier_block *nb,
1634 unsigned long action, void *data)
1636 struct device *dev = data;
1637 u16 devid;
1638 struct protection_domain *domain;
1639 struct dma_ops_domain *dma_domain;
1640 struct amd_iommu *iommu;
1641 unsigned long flags;
1643 if (!check_device(dev))
1644 return 0;
1646 devid = get_device_id(dev);
1647 iommu = amd_iommu_rlookup_table[devid];
1649 switch (action) {
1650 case BUS_NOTIFY_UNBOUND_DRIVER:
1652 domain = domain_for_device(dev);
1654 if (!domain)
1655 goto out;
1656 if (iommu_pass_through)
1657 break;
1658 detach_device(dev);
1659 break;
1660 case BUS_NOTIFY_ADD_DEVICE:
1662 iommu_init_device(dev);
1664 domain = domain_for_device(dev);
1666 /* allocate a protection domain if a device is added */
1667 dma_domain = find_protection_domain(devid);
1668 if (dma_domain)
1669 goto out;
1670 dma_domain = dma_ops_domain_alloc();
1671 if (!dma_domain)
1672 goto out;
1673 dma_domain->target_dev = devid;
1675 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1676 list_add_tail(&dma_domain->list, &iommu_pd_list);
1677 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1679 break;
1680 case BUS_NOTIFY_DEL_DEVICE:
1682 iommu_uninit_device(dev);
1684 default:
1685 goto out;
1688 iommu_flush_device(dev);
1689 iommu_completion_wait(iommu);
1691 out:
1692 return 0;
1695 static struct notifier_block device_nb = {
1696 .notifier_call = device_change_notifier,
1699 void amd_iommu_init_notifier(void)
1701 bus_register_notifier(&pci_bus_type, &device_nb);
1704 /*****************************************************************************
1706 * The next functions belong to the dma_ops mapping/unmapping code.
1708 *****************************************************************************/
1711 * In the dma_ops path we only have the struct device. This function
1712 * finds the corresponding IOMMU, the protection domain and the
1713 * requestor id for a given device.
1714 * If the device is not yet associated with a domain this is also done
1715 * in this function.
1717 static struct protection_domain *get_domain(struct device *dev)
1719 struct protection_domain *domain;
1720 struct dma_ops_domain *dma_dom;
1721 u16 devid = get_device_id(dev);
1723 if (!check_device(dev))
1724 return ERR_PTR(-EINVAL);
1726 domain = domain_for_device(dev);
1727 if (domain != NULL && !dma_ops_domain(domain))
1728 return ERR_PTR(-EBUSY);
1730 if (domain != NULL)
1731 return domain;
1733 /* Device not bount yet - bind it */
1734 dma_dom = find_protection_domain(devid);
1735 if (!dma_dom)
1736 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1737 attach_device(dev, &dma_dom->domain);
1738 DUMP_printk("Using protection domain %d for device %s\n",
1739 dma_dom->domain.id, dev_name(dev));
1741 return &dma_dom->domain;
1744 static void update_device_table(struct protection_domain *domain)
1746 struct iommu_dev_data *dev_data;
1748 list_for_each_entry(dev_data, &domain->dev_list, list) {
1749 u16 devid = get_device_id(dev_data->dev);
1750 set_dte_entry(devid, domain);
1754 static void update_domain(struct protection_domain *domain)
1756 if (!domain->updated)
1757 return;
1759 update_device_table(domain);
1760 iommu_flush_domain_devices(domain);
1761 iommu_flush_tlb_pde(domain);
1763 domain->updated = false;
1767 * This function fetches the PTE for a given address in the aperture
1769 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1770 unsigned long address)
1772 struct aperture_range *aperture;
1773 u64 *pte, *pte_page;
1775 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1776 if (!aperture)
1777 return NULL;
1779 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1780 if (!pte) {
1781 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1782 GFP_ATOMIC);
1783 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1784 } else
1785 pte += PM_LEVEL_INDEX(0, address);
1787 update_domain(&dom->domain);
1789 return pte;
1793 * This is the generic map function. It maps one 4kb page at paddr to
1794 * the given address in the DMA address space for the domain.
1796 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1797 unsigned long address,
1798 phys_addr_t paddr,
1799 int direction)
1801 u64 *pte, __pte;
1803 WARN_ON(address > dom->aperture_size);
1805 paddr &= PAGE_MASK;
1807 pte = dma_ops_get_pte(dom, address);
1808 if (!pte)
1809 return DMA_ERROR_CODE;
1811 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1813 if (direction == DMA_TO_DEVICE)
1814 __pte |= IOMMU_PTE_IR;
1815 else if (direction == DMA_FROM_DEVICE)
1816 __pte |= IOMMU_PTE_IW;
1817 else if (direction == DMA_BIDIRECTIONAL)
1818 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1820 WARN_ON(*pte);
1822 *pte = __pte;
1824 return (dma_addr_t)address;
1828 * The generic unmapping function for on page in the DMA address space.
1830 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1831 unsigned long address)
1833 struct aperture_range *aperture;
1834 u64 *pte;
1836 if (address >= dom->aperture_size)
1837 return;
1839 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1840 if (!aperture)
1841 return;
1843 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1844 if (!pte)
1845 return;
1847 pte += PM_LEVEL_INDEX(0, address);
1849 WARN_ON(!*pte);
1851 *pte = 0ULL;
1855 * This function contains common code for mapping of a physically
1856 * contiguous memory region into DMA address space. It is used by all
1857 * mapping functions provided with this IOMMU driver.
1858 * Must be called with the domain lock held.
1860 static dma_addr_t __map_single(struct device *dev,
1861 struct dma_ops_domain *dma_dom,
1862 phys_addr_t paddr,
1863 size_t size,
1864 int dir,
1865 bool align,
1866 u64 dma_mask)
1868 dma_addr_t offset = paddr & ~PAGE_MASK;
1869 dma_addr_t address, start, ret;
1870 unsigned int pages;
1871 unsigned long align_mask = 0;
1872 int i;
1874 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1875 paddr &= PAGE_MASK;
1877 INC_STATS_COUNTER(total_map_requests);
1879 if (pages > 1)
1880 INC_STATS_COUNTER(cross_page);
1882 if (align)
1883 align_mask = (1UL << get_order(size)) - 1;
1885 retry:
1886 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1887 dma_mask);
1888 if (unlikely(address == DMA_ERROR_CODE)) {
1890 * setting next_address here will let the address
1891 * allocator only scan the new allocated range in the
1892 * first run. This is a small optimization.
1894 dma_dom->next_address = dma_dom->aperture_size;
1896 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
1897 goto out;
1900 * aperture was successfully enlarged by 128 MB, try
1901 * allocation again
1903 goto retry;
1906 start = address;
1907 for (i = 0; i < pages; ++i) {
1908 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
1909 if (ret == DMA_ERROR_CODE)
1910 goto out_unmap;
1912 paddr += PAGE_SIZE;
1913 start += PAGE_SIZE;
1915 address += offset;
1917 ADD_STATS_COUNTER(alloced_io_mem, size);
1919 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1920 iommu_flush_tlb(&dma_dom->domain);
1921 dma_dom->need_flush = false;
1922 } else if (unlikely(amd_iommu_np_cache))
1923 iommu_flush_pages(&dma_dom->domain, address, size);
1925 out:
1926 return address;
1928 out_unmap:
1930 for (--i; i >= 0; --i) {
1931 start -= PAGE_SIZE;
1932 dma_ops_domain_unmap(dma_dom, start);
1935 dma_ops_free_addresses(dma_dom, address, pages);
1937 return DMA_ERROR_CODE;
1941 * Does the reverse of the __map_single function. Must be called with
1942 * the domain lock held too
1944 static void __unmap_single(struct dma_ops_domain *dma_dom,
1945 dma_addr_t dma_addr,
1946 size_t size,
1947 int dir)
1949 dma_addr_t i, start;
1950 unsigned int pages;
1952 if ((dma_addr == DMA_ERROR_CODE) ||
1953 (dma_addr + size > dma_dom->aperture_size))
1954 return;
1956 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1957 dma_addr &= PAGE_MASK;
1958 start = dma_addr;
1960 for (i = 0; i < pages; ++i) {
1961 dma_ops_domain_unmap(dma_dom, start);
1962 start += PAGE_SIZE;
1965 SUB_STATS_COUNTER(alloced_io_mem, size);
1967 dma_ops_free_addresses(dma_dom, dma_addr, pages);
1969 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1970 iommu_flush_pages(&dma_dom->domain, dma_addr, size);
1971 dma_dom->need_flush = false;
1976 * The exported map_single function for dma_ops.
1978 static dma_addr_t map_page(struct device *dev, struct page *page,
1979 unsigned long offset, size_t size,
1980 enum dma_data_direction dir,
1981 struct dma_attrs *attrs)
1983 unsigned long flags;
1984 struct protection_domain *domain;
1985 dma_addr_t addr;
1986 u64 dma_mask;
1987 phys_addr_t paddr = page_to_phys(page) + offset;
1989 INC_STATS_COUNTER(cnt_map_single);
1991 domain = get_domain(dev);
1992 if (PTR_ERR(domain) == -EINVAL)
1993 return (dma_addr_t)paddr;
1994 else if (IS_ERR(domain))
1995 return DMA_ERROR_CODE;
1997 dma_mask = *dev->dma_mask;
1999 spin_lock_irqsave(&domain->lock, flags);
2001 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2002 dma_mask);
2003 if (addr == DMA_ERROR_CODE)
2004 goto out;
2006 iommu_flush_complete(domain);
2008 out:
2009 spin_unlock_irqrestore(&domain->lock, flags);
2011 return addr;
2015 * The exported unmap_single function for dma_ops.
2017 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2018 enum dma_data_direction dir, struct dma_attrs *attrs)
2020 unsigned long flags;
2021 struct protection_domain *domain;
2023 INC_STATS_COUNTER(cnt_unmap_single);
2025 domain = get_domain(dev);
2026 if (IS_ERR(domain))
2027 return;
2029 spin_lock_irqsave(&domain->lock, flags);
2031 __unmap_single(domain->priv, dma_addr, size, dir);
2033 iommu_flush_complete(domain);
2035 spin_unlock_irqrestore(&domain->lock, flags);
2039 * This is a special map_sg function which is used if we should map a
2040 * device which is not handled by an AMD IOMMU in the system.
2042 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2043 int nelems, int dir)
2045 struct scatterlist *s;
2046 int i;
2048 for_each_sg(sglist, s, nelems, i) {
2049 s->dma_address = (dma_addr_t)sg_phys(s);
2050 s->dma_length = s->length;
2053 return nelems;
2057 * The exported map_sg function for dma_ops (handles scatter-gather
2058 * lists).
2060 static int map_sg(struct device *dev, struct scatterlist *sglist,
2061 int nelems, enum dma_data_direction dir,
2062 struct dma_attrs *attrs)
2064 unsigned long flags;
2065 struct protection_domain *domain;
2066 int i;
2067 struct scatterlist *s;
2068 phys_addr_t paddr;
2069 int mapped_elems = 0;
2070 u64 dma_mask;
2072 INC_STATS_COUNTER(cnt_map_sg);
2074 domain = get_domain(dev);
2075 if (PTR_ERR(domain) == -EINVAL)
2076 return map_sg_no_iommu(dev, sglist, nelems, dir);
2077 else if (IS_ERR(domain))
2078 return 0;
2080 dma_mask = *dev->dma_mask;
2082 spin_lock_irqsave(&domain->lock, flags);
2084 for_each_sg(sglist, s, nelems, i) {
2085 paddr = sg_phys(s);
2087 s->dma_address = __map_single(dev, domain->priv,
2088 paddr, s->length, dir, false,
2089 dma_mask);
2091 if (s->dma_address) {
2092 s->dma_length = s->length;
2093 mapped_elems++;
2094 } else
2095 goto unmap;
2098 iommu_flush_complete(domain);
2100 out:
2101 spin_unlock_irqrestore(&domain->lock, flags);
2103 return mapped_elems;
2104 unmap:
2105 for_each_sg(sglist, s, mapped_elems, i) {
2106 if (s->dma_address)
2107 __unmap_single(domain->priv, s->dma_address,
2108 s->dma_length, dir);
2109 s->dma_address = s->dma_length = 0;
2112 mapped_elems = 0;
2114 goto out;
2118 * The exported map_sg function for dma_ops (handles scatter-gather
2119 * lists).
2121 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2122 int nelems, enum dma_data_direction dir,
2123 struct dma_attrs *attrs)
2125 unsigned long flags;
2126 struct protection_domain *domain;
2127 struct scatterlist *s;
2128 int i;
2130 INC_STATS_COUNTER(cnt_unmap_sg);
2132 domain = get_domain(dev);
2133 if (IS_ERR(domain))
2134 return;
2136 spin_lock_irqsave(&domain->lock, flags);
2138 for_each_sg(sglist, s, nelems, i) {
2139 __unmap_single(domain->priv, s->dma_address,
2140 s->dma_length, dir);
2141 s->dma_address = s->dma_length = 0;
2144 iommu_flush_complete(domain);
2146 spin_unlock_irqrestore(&domain->lock, flags);
2150 * The exported alloc_coherent function for dma_ops.
2152 static void *alloc_coherent(struct device *dev, size_t size,
2153 dma_addr_t *dma_addr, gfp_t flag)
2155 unsigned long flags;
2156 void *virt_addr;
2157 struct protection_domain *domain;
2158 phys_addr_t paddr;
2159 u64 dma_mask = dev->coherent_dma_mask;
2161 INC_STATS_COUNTER(cnt_alloc_coherent);
2163 domain = get_domain(dev);
2164 if (PTR_ERR(domain) == -EINVAL) {
2165 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2166 *dma_addr = __pa(virt_addr);
2167 return virt_addr;
2168 } else if (IS_ERR(domain))
2169 return NULL;
2171 dma_mask = dev->coherent_dma_mask;
2172 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2173 flag |= __GFP_ZERO;
2175 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2176 if (!virt_addr)
2177 return NULL;
2179 paddr = virt_to_phys(virt_addr);
2181 if (!dma_mask)
2182 dma_mask = *dev->dma_mask;
2184 spin_lock_irqsave(&domain->lock, flags);
2186 *dma_addr = __map_single(dev, domain->priv, paddr,
2187 size, DMA_BIDIRECTIONAL, true, dma_mask);
2189 if (*dma_addr == DMA_ERROR_CODE) {
2190 spin_unlock_irqrestore(&domain->lock, flags);
2191 goto out_free;
2194 iommu_flush_complete(domain);
2196 spin_unlock_irqrestore(&domain->lock, flags);
2198 return virt_addr;
2200 out_free:
2202 free_pages((unsigned long)virt_addr, get_order(size));
2204 return NULL;
2208 * The exported free_coherent function for dma_ops.
2210 static void free_coherent(struct device *dev, size_t size,
2211 void *virt_addr, dma_addr_t dma_addr)
2213 unsigned long flags;
2214 struct protection_domain *domain;
2216 INC_STATS_COUNTER(cnt_free_coherent);
2218 domain = get_domain(dev);
2219 if (IS_ERR(domain))
2220 goto free_mem;
2222 spin_lock_irqsave(&domain->lock, flags);
2224 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2226 iommu_flush_complete(domain);
2228 spin_unlock_irqrestore(&domain->lock, flags);
2230 free_mem:
2231 free_pages((unsigned long)virt_addr, get_order(size));
2235 * This function is called by the DMA layer to find out if we can handle a
2236 * particular device. It is part of the dma_ops.
2238 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2240 return check_device(dev);
2244 * The function for pre-allocating protection domains.
2246 * If the driver core informs the DMA layer if a driver grabs a device
2247 * we don't need to preallocate the protection domains anymore.
2248 * For now we have to.
2250 static void prealloc_protection_domains(void)
2252 struct pci_dev *dev = NULL;
2253 struct dma_ops_domain *dma_dom;
2254 u16 devid;
2256 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2258 /* Do we handle this device? */
2259 if (!check_device(&dev->dev))
2260 continue;
2262 /* Is there already any domain for it? */
2263 if (domain_for_device(&dev->dev))
2264 continue;
2266 devid = get_device_id(&dev->dev);
2268 dma_dom = dma_ops_domain_alloc();
2269 if (!dma_dom)
2270 continue;
2271 init_unity_mappings_for_device(dma_dom, devid);
2272 dma_dom->target_dev = devid;
2274 attach_device(&dev->dev, &dma_dom->domain);
2276 list_add_tail(&dma_dom->list, &iommu_pd_list);
2280 static struct dma_map_ops amd_iommu_dma_ops = {
2281 .alloc_coherent = alloc_coherent,
2282 .free_coherent = free_coherent,
2283 .map_page = map_page,
2284 .unmap_page = unmap_page,
2285 .map_sg = map_sg,
2286 .unmap_sg = unmap_sg,
2287 .dma_supported = amd_iommu_dma_supported,
2291 * The function which clues the AMD IOMMU driver into dma_ops.
2294 void __init amd_iommu_init_api(void)
2296 register_iommu(&amd_iommu_ops);
2299 int __init amd_iommu_init_dma_ops(void)
2301 struct amd_iommu *iommu;
2302 int ret;
2305 * first allocate a default protection domain for every IOMMU we
2306 * found in the system. Devices not assigned to any other
2307 * protection domain will be assigned to the default one.
2309 for_each_iommu(iommu) {
2310 iommu->default_dom = dma_ops_domain_alloc();
2311 if (iommu->default_dom == NULL)
2312 return -ENOMEM;
2313 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2314 ret = iommu_init_unity_mappings(iommu);
2315 if (ret)
2316 goto free_domains;
2320 * Pre-allocate the protection domains for each device.
2322 prealloc_protection_domains();
2324 iommu_detected = 1;
2325 swiotlb = 0;
2326 #ifdef CONFIG_GART_IOMMU
2327 gart_iommu_aperture_disabled = 1;
2328 gart_iommu_aperture = 0;
2329 #endif
2331 /* Make the driver finally visible to the drivers */
2332 dma_ops = &amd_iommu_dma_ops;
2334 amd_iommu_stats_init();
2336 return 0;
2338 free_domains:
2340 for_each_iommu(iommu) {
2341 if (iommu->default_dom)
2342 dma_ops_domain_free(iommu->default_dom);
2345 return ret;
2348 /*****************************************************************************
2350 * The following functions belong to the exported interface of AMD IOMMU
2352 * This interface allows access to lower level functions of the IOMMU
2353 * like protection domain handling and assignement of devices to domains
2354 * which is not possible with the dma_ops interface.
2356 *****************************************************************************/
2358 static void cleanup_domain(struct protection_domain *domain)
2360 struct iommu_dev_data *dev_data, *next;
2361 unsigned long flags;
2363 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2365 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2366 struct device *dev = dev_data->dev;
2368 do_detach(dev);
2369 atomic_set(&dev_data->bind, 0);
2372 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2375 static void protection_domain_free(struct protection_domain *domain)
2377 if (!domain)
2378 return;
2380 del_domain_from_list(domain);
2382 if (domain->id)
2383 domain_id_free(domain->id);
2385 kfree(domain);
2388 static struct protection_domain *protection_domain_alloc(void)
2390 struct protection_domain *domain;
2392 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2393 if (!domain)
2394 return NULL;
2396 spin_lock_init(&domain->lock);
2397 domain->id = domain_id_alloc();
2398 if (!domain->id)
2399 goto out_err;
2400 INIT_LIST_HEAD(&domain->dev_list);
2402 add_domain_to_list(domain);
2404 return domain;
2406 out_err:
2407 kfree(domain);
2409 return NULL;
2412 static int amd_iommu_domain_init(struct iommu_domain *dom)
2414 struct protection_domain *domain;
2416 domain = protection_domain_alloc();
2417 if (!domain)
2418 goto out_free;
2420 domain->mode = PAGE_MODE_3_LEVEL;
2421 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2422 if (!domain->pt_root)
2423 goto out_free;
2425 dom->priv = domain;
2427 return 0;
2429 out_free:
2430 protection_domain_free(domain);
2432 return -ENOMEM;
2435 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2437 struct protection_domain *domain = dom->priv;
2439 if (!domain)
2440 return;
2442 if (domain->dev_cnt > 0)
2443 cleanup_domain(domain);
2445 BUG_ON(domain->dev_cnt != 0);
2447 free_pagetable(domain);
2449 domain_id_free(domain->id);
2451 kfree(domain);
2453 dom->priv = NULL;
2456 static void amd_iommu_detach_device(struct iommu_domain *dom,
2457 struct device *dev)
2459 struct iommu_dev_data *dev_data = dev->archdata.iommu;
2460 struct amd_iommu *iommu;
2461 u16 devid;
2463 if (!check_device(dev))
2464 return;
2466 devid = get_device_id(dev);
2468 if (dev_data->domain != NULL)
2469 detach_device(dev);
2471 iommu = amd_iommu_rlookup_table[devid];
2472 if (!iommu)
2473 return;
2475 iommu_flush_device(dev);
2476 iommu_completion_wait(iommu);
2479 static int amd_iommu_attach_device(struct iommu_domain *dom,
2480 struct device *dev)
2482 struct protection_domain *domain = dom->priv;
2483 struct iommu_dev_data *dev_data;
2484 struct amd_iommu *iommu;
2485 int ret;
2486 u16 devid;
2488 if (!check_device(dev))
2489 return -EINVAL;
2491 dev_data = dev->archdata.iommu;
2493 devid = get_device_id(dev);
2495 iommu = amd_iommu_rlookup_table[devid];
2496 if (!iommu)
2497 return -EINVAL;
2499 if (dev_data->domain)
2500 detach_device(dev);
2502 ret = attach_device(dev, domain);
2504 iommu_completion_wait(iommu);
2506 return ret;
2509 static int amd_iommu_map_range(struct iommu_domain *dom,
2510 unsigned long iova, phys_addr_t paddr,
2511 size_t size, int iommu_prot)
2513 struct protection_domain *domain = dom->priv;
2514 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2515 int prot = 0;
2516 int ret;
2518 if (iommu_prot & IOMMU_READ)
2519 prot |= IOMMU_PROT_IR;
2520 if (iommu_prot & IOMMU_WRITE)
2521 prot |= IOMMU_PROT_IW;
2523 iova &= PAGE_MASK;
2524 paddr &= PAGE_MASK;
2526 for (i = 0; i < npages; ++i) {
2527 ret = iommu_map_page(domain, iova, paddr, prot, PAGE_SIZE);
2528 if (ret)
2529 return ret;
2531 iova += PAGE_SIZE;
2532 paddr += PAGE_SIZE;
2535 return 0;
2538 static void amd_iommu_unmap_range(struct iommu_domain *dom,
2539 unsigned long iova, size_t size)
2542 struct protection_domain *domain = dom->priv;
2543 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2545 iova &= PAGE_MASK;
2547 for (i = 0; i < npages; ++i) {
2548 iommu_unmap_page(domain, iova, PAGE_SIZE);
2549 iova += PAGE_SIZE;
2552 iommu_flush_tlb_pde(domain);
2555 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2556 unsigned long iova)
2558 struct protection_domain *domain = dom->priv;
2559 unsigned long offset = iova & ~PAGE_MASK;
2560 phys_addr_t paddr;
2561 u64 *pte;
2563 pte = fetch_pte(domain, iova);
2565 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2566 return 0;
2568 paddr = *pte & IOMMU_PAGE_MASK;
2569 paddr |= offset;
2571 return paddr;
2574 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2575 unsigned long cap)
2577 return 0;
2580 static struct iommu_ops amd_iommu_ops = {
2581 .domain_init = amd_iommu_domain_init,
2582 .domain_destroy = amd_iommu_domain_destroy,
2583 .attach_dev = amd_iommu_attach_device,
2584 .detach_dev = amd_iommu_detach_device,
2585 .map_range = amd_iommu_map_range,
2586 .unmap_range = amd_iommu_unmap_range,
2587 .iova_to_phys = amd_iommu_iova_to_phys,
2588 .domain_has_cap = amd_iommu_domain_has_cap,
2591 /*****************************************************************************
2593 * The next functions do a basic initialization of IOMMU for pass through
2594 * mode
2596 * In passthrough mode the IOMMU is initialized and enabled but not used for
2597 * DMA-API translation.
2599 *****************************************************************************/
2601 int __init amd_iommu_init_passthrough(void)
2603 struct amd_iommu *iommu;
2604 struct pci_dev *dev = NULL;
2605 u16 devid;
2607 /* allocate passthrough domain */
2608 pt_domain = protection_domain_alloc();
2609 if (!pt_domain)
2610 return -ENOMEM;
2612 pt_domain->mode |= PAGE_MODE_NONE;
2614 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2616 if (!check_device(&dev->dev))
2617 continue;
2619 devid = get_device_id(&dev->dev);
2621 iommu = amd_iommu_rlookup_table[devid];
2622 if (!iommu)
2623 continue;
2625 attach_device(&dev->dev, pt_domain);
2628 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2630 return 0;