isci: atomic device lookup and reference counting
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / rcutree.c
blob89419ff92e996c1e52fade38475ba14604a8f7bd
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
54 #include "rcutree.h"
56 /* Data structures. */
58 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
60 #define RCU_STATE_INITIALIZER(structname) { \
61 .level = { &structname.node[0] }, \
62 .levelcnt = { \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_1, \
65 NUM_RCU_LVL_2, \
66 NUM_RCU_LVL_3, \
67 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_GP_IDLE, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
79 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85 static struct rcu_state *rcu_state;
87 int rcu_scheduler_active __read_mostly;
88 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
91 * Control variables for per-CPU and per-rcu_node kthreads. These
92 * handle all flavors of RCU.
94 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
95 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
96 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
97 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
98 DEFINE_PER_CPU(char, rcu_cpu_has_work);
99 static char rcu_kthreads_spawnable;
101 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
102 static void invoke_rcu_cpu_kthread(void);
104 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
107 * Track the rcutorture test sequence number and the update version
108 * number within a given test. The rcutorture_testseq is incremented
109 * on every rcutorture module load and unload, so has an odd value
110 * when a test is running. The rcutorture_vernum is set to zero
111 * when rcutorture starts and is incremented on each rcutorture update.
112 * These variables enable correlating rcutorture output with the
113 * RCU tracing information.
115 unsigned long rcutorture_testseq;
116 unsigned long rcutorture_vernum;
119 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
120 * permit this function to be invoked without holding the root rcu_node
121 * structure's ->lock, but of course results can be subject to change.
123 static int rcu_gp_in_progress(struct rcu_state *rsp)
125 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
129 * Note a quiescent state. Because we do not need to know
130 * how many quiescent states passed, just if there was at least
131 * one since the start of the grace period, this just sets a flag.
133 void rcu_sched_qs(int cpu)
135 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
137 rdp->passed_quiesc_completed = rdp->gpnum - 1;
138 barrier();
139 rdp->passed_quiesc = 1;
142 void rcu_bh_qs(int cpu)
144 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
146 rdp->passed_quiesc_completed = rdp->gpnum - 1;
147 barrier();
148 rdp->passed_quiesc = 1;
152 * Note a context switch. This is a quiescent state for RCU-sched,
153 * and requires special handling for preemptible RCU.
155 void rcu_note_context_switch(int cpu)
157 rcu_sched_qs(cpu);
158 rcu_preempt_note_context_switch(cpu);
160 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
162 #ifdef CONFIG_NO_HZ
163 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
164 .dynticks_nesting = 1,
165 .dynticks = ATOMIC_INIT(1),
167 #endif /* #ifdef CONFIG_NO_HZ */
169 static int blimit = 10; /* Maximum callbacks per softirq. */
170 static int qhimark = 10000; /* If this many pending, ignore blimit. */
171 static int qlowmark = 100; /* Once only this many pending, use blimit. */
173 module_param(blimit, int, 0);
174 module_param(qhimark, int, 0);
175 module_param(qlowmark, int, 0);
177 int rcu_cpu_stall_suppress __read_mostly;
178 module_param(rcu_cpu_stall_suppress, int, 0644);
180 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
181 static int rcu_pending(int cpu);
184 * Return the number of RCU-sched batches processed thus far for debug & stats.
186 long rcu_batches_completed_sched(void)
188 return rcu_sched_state.completed;
190 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
193 * Return the number of RCU BH batches processed thus far for debug & stats.
195 long rcu_batches_completed_bh(void)
197 return rcu_bh_state.completed;
199 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
202 * Force a quiescent state for RCU BH.
204 void rcu_bh_force_quiescent_state(void)
206 force_quiescent_state(&rcu_bh_state, 0);
208 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
211 * Record the number of times rcutorture tests have been initiated and
212 * terminated. This information allows the debugfs tracing stats to be
213 * correlated to the rcutorture messages, even when the rcutorture module
214 * is being repeatedly loaded and unloaded. In other words, we cannot
215 * store this state in rcutorture itself.
217 void rcutorture_record_test_transition(void)
219 rcutorture_testseq++;
220 rcutorture_vernum = 0;
222 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
225 * Record the number of writer passes through the current rcutorture test.
226 * This is also used to correlate debugfs tracing stats with the rcutorture
227 * messages.
229 void rcutorture_record_progress(unsigned long vernum)
231 rcutorture_vernum++;
233 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
236 * Force a quiescent state for RCU-sched.
238 void rcu_sched_force_quiescent_state(void)
240 force_quiescent_state(&rcu_sched_state, 0);
242 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
245 * Does the CPU have callbacks ready to be invoked?
247 static int
248 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
250 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
254 * Does the current CPU require a yet-as-unscheduled grace period?
256 static int
257 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
259 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
263 * Return the root node of the specified rcu_state structure.
265 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
267 return &rsp->node[0];
270 #ifdef CONFIG_SMP
273 * If the specified CPU is offline, tell the caller that it is in
274 * a quiescent state. Otherwise, whack it with a reschedule IPI.
275 * Grace periods can end up waiting on an offline CPU when that
276 * CPU is in the process of coming online -- it will be added to the
277 * rcu_node bitmasks before it actually makes it online. The same thing
278 * can happen while a CPU is in the process of coming online. Because this
279 * race is quite rare, we check for it after detecting that the grace
280 * period has been delayed rather than checking each and every CPU
281 * each and every time we start a new grace period.
283 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
286 * If the CPU is offline, it is in a quiescent state. We can
287 * trust its state not to change because interrupts are disabled.
289 if (cpu_is_offline(rdp->cpu)) {
290 rdp->offline_fqs++;
291 return 1;
294 /* If preemptible RCU, no point in sending reschedule IPI. */
295 if (rdp->preemptible)
296 return 0;
298 /* The CPU is online, so send it a reschedule IPI. */
299 if (rdp->cpu != smp_processor_id())
300 smp_send_reschedule(rdp->cpu);
301 else
302 set_need_resched();
303 rdp->resched_ipi++;
304 return 0;
307 #endif /* #ifdef CONFIG_SMP */
309 #ifdef CONFIG_NO_HZ
312 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
314 * Enter nohz mode, in other words, -leave- the mode in which RCU
315 * read-side critical sections can occur. (Though RCU read-side
316 * critical sections can occur in irq handlers in nohz mode, a possibility
317 * handled by rcu_irq_enter() and rcu_irq_exit()).
319 void rcu_enter_nohz(void)
321 unsigned long flags;
322 struct rcu_dynticks *rdtp;
324 local_irq_save(flags);
325 rdtp = &__get_cpu_var(rcu_dynticks);
326 if (--rdtp->dynticks_nesting) {
327 local_irq_restore(flags);
328 return;
330 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
331 smp_mb__before_atomic_inc(); /* See above. */
332 atomic_inc(&rdtp->dynticks);
333 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
334 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
335 local_irq_restore(flags);
337 /* If the interrupt queued a callback, get out of dyntick mode. */
338 if (in_irq() &&
339 (__get_cpu_var(rcu_sched_data).nxtlist ||
340 __get_cpu_var(rcu_bh_data).nxtlist ||
341 rcu_preempt_needs_cpu(smp_processor_id())))
342 set_need_resched();
346 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
348 * Exit nohz mode, in other words, -enter- the mode in which RCU
349 * read-side critical sections normally occur.
351 void rcu_exit_nohz(void)
353 unsigned long flags;
354 struct rcu_dynticks *rdtp;
356 local_irq_save(flags);
357 rdtp = &__get_cpu_var(rcu_dynticks);
358 if (rdtp->dynticks_nesting++) {
359 local_irq_restore(flags);
360 return;
362 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
363 atomic_inc(&rdtp->dynticks);
364 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
365 smp_mb__after_atomic_inc(); /* See above. */
366 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
367 local_irq_restore(flags);
371 * rcu_nmi_enter - inform RCU of entry to NMI context
373 * If the CPU was idle with dynamic ticks active, and there is no
374 * irq handler running, this updates rdtp->dynticks_nmi to let the
375 * RCU grace-period handling know that the CPU is active.
377 void rcu_nmi_enter(void)
379 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
381 if (rdtp->dynticks_nmi_nesting == 0 &&
382 (atomic_read(&rdtp->dynticks) & 0x1))
383 return;
384 rdtp->dynticks_nmi_nesting++;
385 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
386 atomic_inc(&rdtp->dynticks);
387 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
388 smp_mb__after_atomic_inc(); /* See above. */
389 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
393 * rcu_nmi_exit - inform RCU of exit from NMI context
395 * If the CPU was idle with dynamic ticks active, and there is no
396 * irq handler running, this updates rdtp->dynticks_nmi to let the
397 * RCU grace-period handling know that the CPU is no longer active.
399 void rcu_nmi_exit(void)
401 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
403 if (rdtp->dynticks_nmi_nesting == 0 ||
404 --rdtp->dynticks_nmi_nesting != 0)
405 return;
406 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
407 smp_mb__before_atomic_inc(); /* See above. */
408 atomic_inc(&rdtp->dynticks);
409 smp_mb__after_atomic_inc(); /* Force delay to next write. */
410 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
414 * rcu_irq_enter - inform RCU of entry to hard irq context
416 * If the CPU was idle with dynamic ticks active, this updates the
417 * rdtp->dynticks to let the RCU handling know that the CPU is active.
419 void rcu_irq_enter(void)
421 rcu_exit_nohz();
425 * rcu_irq_exit - inform RCU of exit from hard irq context
427 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
428 * to put let the RCU handling be aware that the CPU is going back to idle
429 * with no ticks.
431 void rcu_irq_exit(void)
433 rcu_enter_nohz();
436 #ifdef CONFIG_SMP
439 * Snapshot the specified CPU's dynticks counter so that we can later
440 * credit them with an implicit quiescent state. Return 1 if this CPU
441 * is in dynticks idle mode, which is an extended quiescent state.
443 static int dyntick_save_progress_counter(struct rcu_data *rdp)
445 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
446 return 0;
450 * Return true if the specified CPU has passed through a quiescent
451 * state by virtue of being in or having passed through an dynticks
452 * idle state since the last call to dyntick_save_progress_counter()
453 * for this same CPU.
455 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
457 unsigned long curr;
458 unsigned long snap;
460 curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
461 snap = (unsigned long)rdp->dynticks_snap;
464 * If the CPU passed through or entered a dynticks idle phase with
465 * no active irq/NMI handlers, then we can safely pretend that the CPU
466 * already acknowledged the request to pass through a quiescent
467 * state. Either way, that CPU cannot possibly be in an RCU
468 * read-side critical section that started before the beginning
469 * of the current RCU grace period.
471 if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
472 rdp->dynticks_fqs++;
473 return 1;
476 /* Go check for the CPU being offline. */
477 return rcu_implicit_offline_qs(rdp);
480 #endif /* #ifdef CONFIG_SMP */
482 #else /* #ifdef CONFIG_NO_HZ */
484 #ifdef CONFIG_SMP
486 static int dyntick_save_progress_counter(struct rcu_data *rdp)
488 return 0;
491 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
493 return rcu_implicit_offline_qs(rdp);
496 #endif /* #ifdef CONFIG_SMP */
498 #endif /* #else #ifdef CONFIG_NO_HZ */
500 int rcu_cpu_stall_suppress __read_mostly;
502 static void record_gp_stall_check_time(struct rcu_state *rsp)
504 rsp->gp_start = jiffies;
505 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
508 static void print_other_cpu_stall(struct rcu_state *rsp)
510 int cpu;
511 long delta;
512 unsigned long flags;
513 struct rcu_node *rnp = rcu_get_root(rsp);
515 /* Only let one CPU complain about others per time interval. */
517 raw_spin_lock_irqsave(&rnp->lock, flags);
518 delta = jiffies - rsp->jiffies_stall;
519 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
520 raw_spin_unlock_irqrestore(&rnp->lock, flags);
521 return;
523 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
526 * Now rat on any tasks that got kicked up to the root rcu_node
527 * due to CPU offlining.
529 rcu_print_task_stall(rnp);
530 raw_spin_unlock_irqrestore(&rnp->lock, flags);
533 * OK, time to rat on our buddy...
534 * See Documentation/RCU/stallwarn.txt for info on how to debug
535 * RCU CPU stall warnings.
537 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
538 rsp->name);
539 rcu_for_each_leaf_node(rsp, rnp) {
540 raw_spin_lock_irqsave(&rnp->lock, flags);
541 rcu_print_task_stall(rnp);
542 raw_spin_unlock_irqrestore(&rnp->lock, flags);
543 if (rnp->qsmask == 0)
544 continue;
545 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
546 if (rnp->qsmask & (1UL << cpu))
547 printk(" %d", rnp->grplo + cpu);
549 printk("} (detected by %d, t=%ld jiffies)\n",
550 smp_processor_id(), (long)(jiffies - rsp->gp_start));
551 trigger_all_cpu_backtrace();
553 /* If so configured, complain about tasks blocking the grace period. */
555 rcu_print_detail_task_stall(rsp);
557 force_quiescent_state(rsp, 0); /* Kick them all. */
560 static void print_cpu_stall(struct rcu_state *rsp)
562 unsigned long flags;
563 struct rcu_node *rnp = rcu_get_root(rsp);
566 * OK, time to rat on ourselves...
567 * See Documentation/RCU/stallwarn.txt for info on how to debug
568 * RCU CPU stall warnings.
570 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
571 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
572 trigger_all_cpu_backtrace();
574 raw_spin_lock_irqsave(&rnp->lock, flags);
575 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
576 rsp->jiffies_stall =
577 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
578 raw_spin_unlock_irqrestore(&rnp->lock, flags);
580 set_need_resched(); /* kick ourselves to get things going. */
583 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
585 unsigned long j;
586 unsigned long js;
587 struct rcu_node *rnp;
589 if (rcu_cpu_stall_suppress)
590 return;
591 j = ACCESS_ONCE(jiffies);
592 js = ACCESS_ONCE(rsp->jiffies_stall);
593 rnp = rdp->mynode;
594 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
596 /* We haven't checked in, so go dump stack. */
597 print_cpu_stall(rsp);
599 } else if (rcu_gp_in_progress(rsp) &&
600 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
602 /* They had a few time units to dump stack, so complain. */
603 print_other_cpu_stall(rsp);
607 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
609 rcu_cpu_stall_suppress = 1;
610 return NOTIFY_DONE;
614 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
616 * Set the stall-warning timeout way off into the future, thus preventing
617 * any RCU CPU stall-warning messages from appearing in the current set of
618 * RCU grace periods.
620 * The caller must disable hard irqs.
622 void rcu_cpu_stall_reset(void)
624 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
625 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
626 rcu_preempt_stall_reset();
629 static struct notifier_block rcu_panic_block = {
630 .notifier_call = rcu_panic,
633 static void __init check_cpu_stall_init(void)
635 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
639 * Update CPU-local rcu_data state to record the newly noticed grace period.
640 * This is used both when we started the grace period and when we notice
641 * that someone else started the grace period. The caller must hold the
642 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
643 * and must have irqs disabled.
645 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
647 if (rdp->gpnum != rnp->gpnum) {
649 * If the current grace period is waiting for this CPU,
650 * set up to detect a quiescent state, otherwise don't
651 * go looking for one.
653 rdp->gpnum = rnp->gpnum;
654 if (rnp->qsmask & rdp->grpmask) {
655 rdp->qs_pending = 1;
656 rdp->passed_quiesc = 0;
657 } else
658 rdp->qs_pending = 0;
662 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
664 unsigned long flags;
665 struct rcu_node *rnp;
667 local_irq_save(flags);
668 rnp = rdp->mynode;
669 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
670 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
671 local_irq_restore(flags);
672 return;
674 __note_new_gpnum(rsp, rnp, rdp);
675 raw_spin_unlock_irqrestore(&rnp->lock, flags);
679 * Did someone else start a new RCU grace period start since we last
680 * checked? Update local state appropriately if so. Must be called
681 * on the CPU corresponding to rdp.
683 static int
684 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
686 unsigned long flags;
687 int ret = 0;
689 local_irq_save(flags);
690 if (rdp->gpnum != rsp->gpnum) {
691 note_new_gpnum(rsp, rdp);
692 ret = 1;
694 local_irq_restore(flags);
695 return ret;
699 * Advance this CPU's callbacks, but only if the current grace period
700 * has ended. This may be called only from the CPU to whom the rdp
701 * belongs. In addition, the corresponding leaf rcu_node structure's
702 * ->lock must be held by the caller, with irqs disabled.
704 static void
705 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
707 /* Did another grace period end? */
708 if (rdp->completed != rnp->completed) {
710 /* Advance callbacks. No harm if list empty. */
711 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
712 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
713 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
715 /* Remember that we saw this grace-period completion. */
716 rdp->completed = rnp->completed;
719 * If we were in an extended quiescent state, we may have
720 * missed some grace periods that others CPUs handled on
721 * our behalf. Catch up with this state to avoid noting
722 * spurious new grace periods. If another grace period
723 * has started, then rnp->gpnum will have advanced, so
724 * we will detect this later on.
726 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
727 rdp->gpnum = rdp->completed;
730 * If RCU does not need a quiescent state from this CPU,
731 * then make sure that this CPU doesn't go looking for one.
733 if ((rnp->qsmask & rdp->grpmask) == 0)
734 rdp->qs_pending = 0;
739 * Advance this CPU's callbacks, but only if the current grace period
740 * has ended. This may be called only from the CPU to whom the rdp
741 * belongs.
743 static void
744 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
746 unsigned long flags;
747 struct rcu_node *rnp;
749 local_irq_save(flags);
750 rnp = rdp->mynode;
751 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
752 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
753 local_irq_restore(flags);
754 return;
756 __rcu_process_gp_end(rsp, rnp, rdp);
757 raw_spin_unlock_irqrestore(&rnp->lock, flags);
761 * Do per-CPU grace-period initialization for running CPU. The caller
762 * must hold the lock of the leaf rcu_node structure corresponding to
763 * this CPU.
765 static void
766 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
768 /* Prior grace period ended, so advance callbacks for current CPU. */
769 __rcu_process_gp_end(rsp, rnp, rdp);
772 * Because this CPU just now started the new grace period, we know
773 * that all of its callbacks will be covered by this upcoming grace
774 * period, even the ones that were registered arbitrarily recently.
775 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
777 * Other CPUs cannot be sure exactly when the grace period started.
778 * Therefore, their recently registered callbacks must pass through
779 * an additional RCU_NEXT_READY stage, so that they will be handled
780 * by the next RCU grace period.
782 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
783 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
785 /* Set state so that this CPU will detect the next quiescent state. */
786 __note_new_gpnum(rsp, rnp, rdp);
790 * Start a new RCU grace period if warranted, re-initializing the hierarchy
791 * in preparation for detecting the next grace period. The caller must hold
792 * the root node's ->lock, which is released before return. Hard irqs must
793 * be disabled.
795 static void
796 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
797 __releases(rcu_get_root(rsp)->lock)
799 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
800 struct rcu_node *rnp = rcu_get_root(rsp);
802 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
803 if (cpu_needs_another_gp(rsp, rdp))
804 rsp->fqs_need_gp = 1;
805 if (rnp->completed == rsp->completed) {
806 raw_spin_unlock_irqrestore(&rnp->lock, flags);
807 return;
809 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
812 * Propagate new ->completed value to rcu_node structures
813 * so that other CPUs don't have to wait until the start
814 * of the next grace period to process their callbacks.
816 rcu_for_each_node_breadth_first(rsp, rnp) {
817 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
818 rnp->completed = rsp->completed;
819 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
821 local_irq_restore(flags);
822 return;
825 /* Advance to a new grace period and initialize state. */
826 rsp->gpnum++;
827 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
828 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
829 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
830 record_gp_stall_check_time(rsp);
832 /* Special-case the common single-level case. */
833 if (NUM_RCU_NODES == 1) {
834 rcu_preempt_check_blocked_tasks(rnp);
835 rnp->qsmask = rnp->qsmaskinit;
836 rnp->gpnum = rsp->gpnum;
837 rnp->completed = rsp->completed;
838 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
839 rcu_start_gp_per_cpu(rsp, rnp, rdp);
840 rcu_preempt_boost_start_gp(rnp);
841 raw_spin_unlock_irqrestore(&rnp->lock, flags);
842 return;
845 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
848 /* Exclude any concurrent CPU-hotplug operations. */
849 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
852 * Set the quiescent-state-needed bits in all the rcu_node
853 * structures for all currently online CPUs in breadth-first
854 * order, starting from the root rcu_node structure. This
855 * operation relies on the layout of the hierarchy within the
856 * rsp->node[] array. Note that other CPUs will access only
857 * the leaves of the hierarchy, which still indicate that no
858 * grace period is in progress, at least until the corresponding
859 * leaf node has been initialized. In addition, we have excluded
860 * CPU-hotplug operations.
862 * Note that the grace period cannot complete until we finish
863 * the initialization process, as there will be at least one
864 * qsmask bit set in the root node until that time, namely the
865 * one corresponding to this CPU, due to the fact that we have
866 * irqs disabled.
868 rcu_for_each_node_breadth_first(rsp, rnp) {
869 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
870 rcu_preempt_check_blocked_tasks(rnp);
871 rnp->qsmask = rnp->qsmaskinit;
872 rnp->gpnum = rsp->gpnum;
873 rnp->completed = rsp->completed;
874 if (rnp == rdp->mynode)
875 rcu_start_gp_per_cpu(rsp, rnp, rdp);
876 rcu_preempt_boost_start_gp(rnp);
877 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
880 rnp = rcu_get_root(rsp);
881 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
882 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
883 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
884 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
888 * Report a full set of quiescent states to the specified rcu_state
889 * data structure. This involves cleaning up after the prior grace
890 * period and letting rcu_start_gp() start up the next grace period
891 * if one is needed. Note that the caller must hold rnp->lock, as
892 * required by rcu_start_gp(), which will release it.
894 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
895 __releases(rcu_get_root(rsp)->lock)
897 unsigned long gp_duration;
899 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
902 * Ensure that all grace-period and pre-grace-period activity
903 * is seen before the assignment to rsp->completed.
905 smp_mb(); /* See above block comment. */
906 gp_duration = jiffies - rsp->gp_start;
907 if (gp_duration > rsp->gp_max)
908 rsp->gp_max = gp_duration;
909 rsp->completed = rsp->gpnum;
910 rsp->signaled = RCU_GP_IDLE;
911 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
915 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
916 * Allows quiescent states for a group of CPUs to be reported at one go
917 * to the specified rcu_node structure, though all the CPUs in the group
918 * must be represented by the same rcu_node structure (which need not be
919 * a leaf rcu_node structure, though it often will be). That structure's
920 * lock must be held upon entry, and it is released before return.
922 static void
923 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
924 struct rcu_node *rnp, unsigned long flags)
925 __releases(rnp->lock)
927 struct rcu_node *rnp_c;
929 /* Walk up the rcu_node hierarchy. */
930 for (;;) {
931 if (!(rnp->qsmask & mask)) {
933 /* Our bit has already been cleared, so done. */
934 raw_spin_unlock_irqrestore(&rnp->lock, flags);
935 return;
937 rnp->qsmask &= ~mask;
938 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
940 /* Other bits still set at this level, so done. */
941 raw_spin_unlock_irqrestore(&rnp->lock, flags);
942 return;
944 mask = rnp->grpmask;
945 if (rnp->parent == NULL) {
947 /* No more levels. Exit loop holding root lock. */
949 break;
951 raw_spin_unlock_irqrestore(&rnp->lock, flags);
952 rnp_c = rnp;
953 rnp = rnp->parent;
954 raw_spin_lock_irqsave(&rnp->lock, flags);
955 WARN_ON_ONCE(rnp_c->qsmask);
959 * Get here if we are the last CPU to pass through a quiescent
960 * state for this grace period. Invoke rcu_report_qs_rsp()
961 * to clean up and start the next grace period if one is needed.
963 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
967 * Record a quiescent state for the specified CPU to that CPU's rcu_data
968 * structure. This must be either called from the specified CPU, or
969 * called when the specified CPU is known to be offline (and when it is
970 * also known that no other CPU is concurrently trying to help the offline
971 * CPU). The lastcomp argument is used to make sure we are still in the
972 * grace period of interest. We don't want to end the current grace period
973 * based on quiescent states detected in an earlier grace period!
975 static void
976 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
978 unsigned long flags;
979 unsigned long mask;
980 struct rcu_node *rnp;
982 rnp = rdp->mynode;
983 raw_spin_lock_irqsave(&rnp->lock, flags);
984 if (lastcomp != rnp->completed) {
987 * Someone beat us to it for this grace period, so leave.
988 * The race with GP start is resolved by the fact that we
989 * hold the leaf rcu_node lock, so that the per-CPU bits
990 * cannot yet be initialized -- so we would simply find our
991 * CPU's bit already cleared in rcu_report_qs_rnp() if this
992 * race occurred.
994 rdp->passed_quiesc = 0; /* try again later! */
995 raw_spin_unlock_irqrestore(&rnp->lock, flags);
996 return;
998 mask = rdp->grpmask;
999 if ((rnp->qsmask & mask) == 0) {
1000 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1001 } else {
1002 rdp->qs_pending = 0;
1005 * This GP can't end until cpu checks in, so all of our
1006 * callbacks can be processed during the next GP.
1008 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1010 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1015 * Check to see if there is a new grace period of which this CPU
1016 * is not yet aware, and if so, set up local rcu_data state for it.
1017 * Otherwise, see if this CPU has just passed through its first
1018 * quiescent state for this grace period, and record that fact if so.
1020 static void
1021 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1023 /* If there is now a new grace period, record and return. */
1024 if (check_for_new_grace_period(rsp, rdp))
1025 return;
1028 * Does this CPU still need to do its part for current grace period?
1029 * If no, return and let the other CPUs do their part as well.
1031 if (!rdp->qs_pending)
1032 return;
1035 * Was there a quiescent state since the beginning of the grace
1036 * period? If no, then exit and wait for the next call.
1038 if (!rdp->passed_quiesc)
1039 return;
1042 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1043 * judge of that).
1045 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1048 #ifdef CONFIG_HOTPLUG_CPU
1051 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1052 * Synchronization is not required because this function executes
1053 * in stop_machine() context.
1055 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1057 int i;
1058 /* current DYING CPU is cleared in the cpu_online_mask */
1059 int receive_cpu = cpumask_any(cpu_online_mask);
1060 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1061 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1063 if (rdp->nxtlist == NULL)
1064 return; /* irqs disabled, so comparison is stable. */
1066 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1067 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1068 receive_rdp->qlen += rdp->qlen;
1069 receive_rdp->n_cbs_adopted += rdp->qlen;
1070 rdp->n_cbs_orphaned += rdp->qlen;
1072 rdp->nxtlist = NULL;
1073 for (i = 0; i < RCU_NEXT_SIZE; i++)
1074 rdp->nxttail[i] = &rdp->nxtlist;
1075 rdp->qlen = 0;
1079 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1080 * and move all callbacks from the outgoing CPU to the current one.
1081 * There can only be one CPU hotplug operation at a time, so no other
1082 * CPU can be attempting to update rcu_cpu_kthread_task.
1084 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1086 unsigned long flags;
1087 unsigned long mask;
1088 int need_report = 0;
1089 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1090 struct rcu_node *rnp;
1091 struct task_struct *t;
1093 /* Stop the CPU's kthread. */
1094 t = per_cpu(rcu_cpu_kthread_task, cpu);
1095 if (t != NULL) {
1096 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1097 kthread_stop(t);
1100 /* Exclude any attempts to start a new grace period. */
1101 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1103 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1104 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1105 mask = rdp->grpmask; /* rnp->grplo is constant. */
1106 do {
1107 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1108 rnp->qsmaskinit &= ~mask;
1109 if (rnp->qsmaskinit != 0) {
1110 if (rnp != rdp->mynode)
1111 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1112 break;
1114 if (rnp == rdp->mynode)
1115 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1116 else
1117 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1118 mask = rnp->grpmask;
1119 rnp = rnp->parent;
1120 } while (rnp != NULL);
1123 * We still hold the leaf rcu_node structure lock here, and
1124 * irqs are still disabled. The reason for this subterfuge is
1125 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1126 * held leads to deadlock.
1128 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1129 rnp = rdp->mynode;
1130 if (need_report & RCU_OFL_TASKS_NORM_GP)
1131 rcu_report_unblock_qs_rnp(rnp, flags);
1132 else
1133 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1134 if (need_report & RCU_OFL_TASKS_EXP_GP)
1135 rcu_report_exp_rnp(rsp, rnp);
1136 rcu_node_kthread_setaffinity(rnp, -1);
1140 * Remove the specified CPU from the RCU hierarchy and move any pending
1141 * callbacks that it might have to the current CPU. This code assumes
1142 * that at least one CPU in the system will remain running at all times.
1143 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1145 static void rcu_offline_cpu(int cpu)
1147 __rcu_offline_cpu(cpu, &rcu_sched_state);
1148 __rcu_offline_cpu(cpu, &rcu_bh_state);
1149 rcu_preempt_offline_cpu(cpu);
1152 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1154 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1158 static void rcu_offline_cpu(int cpu)
1162 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1165 * Invoke any RCU callbacks that have made it to the end of their grace
1166 * period. Thottle as specified by rdp->blimit.
1168 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1170 unsigned long flags;
1171 struct rcu_head *next, *list, **tail;
1172 int count;
1174 /* If no callbacks are ready, just return.*/
1175 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1176 return;
1179 * Extract the list of ready callbacks, disabling to prevent
1180 * races with call_rcu() from interrupt handlers.
1182 local_irq_save(flags);
1183 list = rdp->nxtlist;
1184 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1185 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1186 tail = rdp->nxttail[RCU_DONE_TAIL];
1187 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1188 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1189 rdp->nxttail[count] = &rdp->nxtlist;
1190 local_irq_restore(flags);
1192 /* Invoke callbacks. */
1193 count = 0;
1194 while (list) {
1195 next = list->next;
1196 prefetch(next);
1197 debug_rcu_head_unqueue(list);
1198 __rcu_reclaim(list);
1199 list = next;
1200 if (++count >= rdp->blimit)
1201 break;
1204 local_irq_save(flags);
1206 /* Update count, and requeue any remaining callbacks. */
1207 rdp->qlen -= count;
1208 rdp->n_cbs_invoked += count;
1209 if (list != NULL) {
1210 *tail = rdp->nxtlist;
1211 rdp->nxtlist = list;
1212 for (count = 0; count < RCU_NEXT_SIZE; count++)
1213 if (&rdp->nxtlist == rdp->nxttail[count])
1214 rdp->nxttail[count] = tail;
1215 else
1216 break;
1219 /* Reinstate batch limit if we have worked down the excess. */
1220 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1221 rdp->blimit = blimit;
1223 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1224 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1225 rdp->qlen_last_fqs_check = 0;
1226 rdp->n_force_qs_snap = rsp->n_force_qs;
1227 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1228 rdp->qlen_last_fqs_check = rdp->qlen;
1230 local_irq_restore(flags);
1232 /* Re-raise the RCU softirq if there are callbacks remaining. */
1233 if (cpu_has_callbacks_ready_to_invoke(rdp))
1234 invoke_rcu_cpu_kthread();
1238 * Check to see if this CPU is in a non-context-switch quiescent state
1239 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1240 * Also schedule the RCU softirq handler.
1242 * This function must be called with hardirqs disabled. It is normally
1243 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1244 * false, there is no point in invoking rcu_check_callbacks().
1246 void rcu_check_callbacks(int cpu, int user)
1248 if (user ||
1249 (idle_cpu(cpu) && rcu_scheduler_active &&
1250 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1253 * Get here if this CPU took its interrupt from user
1254 * mode or from the idle loop, and if this is not a
1255 * nested interrupt. In this case, the CPU is in
1256 * a quiescent state, so note it.
1258 * No memory barrier is required here because both
1259 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1260 * variables that other CPUs neither access nor modify,
1261 * at least not while the corresponding CPU is online.
1264 rcu_sched_qs(cpu);
1265 rcu_bh_qs(cpu);
1267 } else if (!in_softirq()) {
1270 * Get here if this CPU did not take its interrupt from
1271 * softirq, in other words, if it is not interrupting
1272 * a rcu_bh read-side critical section. This is an _bh
1273 * critical section, so note it.
1276 rcu_bh_qs(cpu);
1278 rcu_preempt_check_callbacks(cpu);
1279 if (rcu_pending(cpu))
1280 invoke_rcu_cpu_kthread();
1283 #ifdef CONFIG_SMP
1286 * Scan the leaf rcu_node structures, processing dyntick state for any that
1287 * have not yet encountered a quiescent state, using the function specified.
1288 * Also initiate boosting for any threads blocked on the root rcu_node.
1290 * The caller must have suppressed start of new grace periods.
1292 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1294 unsigned long bit;
1295 int cpu;
1296 unsigned long flags;
1297 unsigned long mask;
1298 struct rcu_node *rnp;
1300 rcu_for_each_leaf_node(rsp, rnp) {
1301 mask = 0;
1302 raw_spin_lock_irqsave(&rnp->lock, flags);
1303 if (!rcu_gp_in_progress(rsp)) {
1304 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1305 return;
1307 if (rnp->qsmask == 0) {
1308 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1309 continue;
1311 cpu = rnp->grplo;
1312 bit = 1;
1313 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1314 if ((rnp->qsmask & bit) != 0 &&
1315 f(per_cpu_ptr(rsp->rda, cpu)))
1316 mask |= bit;
1318 if (mask != 0) {
1320 /* rcu_report_qs_rnp() releases rnp->lock. */
1321 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1322 continue;
1324 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1326 rnp = rcu_get_root(rsp);
1327 if (rnp->qsmask == 0) {
1328 raw_spin_lock_irqsave(&rnp->lock, flags);
1329 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1334 * Force quiescent states on reluctant CPUs, and also detect which
1335 * CPUs are in dyntick-idle mode.
1337 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1339 unsigned long flags;
1340 struct rcu_node *rnp = rcu_get_root(rsp);
1342 if (!rcu_gp_in_progress(rsp))
1343 return; /* No grace period in progress, nothing to force. */
1344 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1345 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1346 return; /* Someone else is already on the job. */
1348 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1349 goto unlock_fqs_ret; /* no emergency and done recently. */
1350 rsp->n_force_qs++;
1351 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1352 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1353 if(!rcu_gp_in_progress(rsp)) {
1354 rsp->n_force_qs_ngp++;
1355 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1356 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1358 rsp->fqs_active = 1;
1359 switch (rsp->signaled) {
1360 case RCU_GP_IDLE:
1361 case RCU_GP_INIT:
1363 break; /* grace period idle or initializing, ignore. */
1365 case RCU_SAVE_DYNTICK:
1366 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1367 break; /* So gcc recognizes the dead code. */
1369 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1371 /* Record dyntick-idle state. */
1372 force_qs_rnp(rsp, dyntick_save_progress_counter);
1373 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1374 if (rcu_gp_in_progress(rsp))
1375 rsp->signaled = RCU_FORCE_QS;
1376 break;
1378 case RCU_FORCE_QS:
1380 /* Check dyntick-idle state, send IPI to laggarts. */
1381 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1382 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1384 /* Leave state in case more forcing is required. */
1386 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1387 break;
1389 rsp->fqs_active = 0;
1390 if (rsp->fqs_need_gp) {
1391 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1392 rsp->fqs_need_gp = 0;
1393 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1394 return;
1396 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1397 unlock_fqs_ret:
1398 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1401 #else /* #ifdef CONFIG_SMP */
1403 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1405 set_need_resched();
1408 #endif /* #else #ifdef CONFIG_SMP */
1411 * This does the RCU processing work from softirq context for the
1412 * specified rcu_state and rcu_data structures. This may be called
1413 * only from the CPU to whom the rdp belongs.
1415 static void
1416 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1418 unsigned long flags;
1420 WARN_ON_ONCE(rdp->beenonline == 0);
1423 * If an RCU GP has gone long enough, go check for dyntick
1424 * idle CPUs and, if needed, send resched IPIs.
1426 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1427 force_quiescent_state(rsp, 1);
1430 * Advance callbacks in response to end of earlier grace
1431 * period that some other CPU ended.
1433 rcu_process_gp_end(rsp, rdp);
1435 /* Update RCU state based on any recent quiescent states. */
1436 rcu_check_quiescent_state(rsp, rdp);
1438 /* Does this CPU require a not-yet-started grace period? */
1439 if (cpu_needs_another_gp(rsp, rdp)) {
1440 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1441 rcu_start_gp(rsp, flags); /* releases above lock */
1444 /* If there are callbacks ready, invoke them. */
1445 rcu_do_batch(rsp, rdp);
1449 * Do softirq processing for the current CPU.
1451 static void rcu_process_callbacks(void)
1453 __rcu_process_callbacks(&rcu_sched_state,
1454 &__get_cpu_var(rcu_sched_data));
1455 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1456 rcu_preempt_process_callbacks();
1458 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1459 rcu_needs_cpu_flush();
1463 * Wake up the current CPU's kthread. This replaces raise_softirq()
1464 * in earlier versions of RCU. Note that because we are running on
1465 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1466 * cannot disappear out from under us.
1468 static void invoke_rcu_cpu_kthread(void)
1470 unsigned long flags;
1472 local_irq_save(flags);
1473 __this_cpu_write(rcu_cpu_has_work, 1);
1474 if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
1475 local_irq_restore(flags);
1476 return;
1478 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1479 local_irq_restore(flags);
1483 * Wake up the specified per-rcu_node-structure kthread.
1484 * Because the per-rcu_node kthreads are immortal, we don't need
1485 * to do anything to keep them alive.
1487 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1489 struct task_struct *t;
1491 t = rnp->node_kthread_task;
1492 if (t != NULL)
1493 wake_up_process(t);
1497 * Set the specified CPU's kthread to run RT or not, as specified by
1498 * the to_rt argument. The CPU-hotplug locks are held, so the task
1499 * is not going away.
1501 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1503 int policy;
1504 struct sched_param sp;
1505 struct task_struct *t;
1507 t = per_cpu(rcu_cpu_kthread_task, cpu);
1508 if (t == NULL)
1509 return;
1510 if (to_rt) {
1511 policy = SCHED_FIFO;
1512 sp.sched_priority = RCU_KTHREAD_PRIO;
1513 } else {
1514 policy = SCHED_NORMAL;
1515 sp.sched_priority = 0;
1517 sched_setscheduler_nocheck(t, policy, &sp);
1521 * Timer handler to initiate the waking up of per-CPU kthreads that
1522 * have yielded the CPU due to excess numbers of RCU callbacks.
1523 * We wake up the per-rcu_node kthread, which in turn will wake up
1524 * the booster kthread.
1526 static void rcu_cpu_kthread_timer(unsigned long arg)
1528 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1529 struct rcu_node *rnp = rdp->mynode;
1531 atomic_or(rdp->grpmask, &rnp->wakemask);
1532 invoke_rcu_node_kthread(rnp);
1536 * Drop to non-real-time priority and yield, but only after posting a
1537 * timer that will cause us to regain our real-time priority if we
1538 * remain preempted. Either way, we restore our real-time priority
1539 * before returning.
1541 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1543 struct sched_param sp;
1544 struct timer_list yield_timer;
1546 setup_timer_on_stack(&yield_timer, f, arg);
1547 mod_timer(&yield_timer, jiffies + 2);
1548 sp.sched_priority = 0;
1549 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1550 set_user_nice(current, 19);
1551 schedule();
1552 sp.sched_priority = RCU_KTHREAD_PRIO;
1553 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1554 del_timer(&yield_timer);
1558 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1559 * This can happen while the corresponding CPU is either coming online
1560 * or going offline. We cannot wait until the CPU is fully online
1561 * before starting the kthread, because the various notifier functions
1562 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1563 * the corresponding CPU is online.
1565 * Return 1 if the kthread needs to stop, 0 otherwise.
1567 * Caller must disable bh. This function can momentarily enable it.
1569 static int rcu_cpu_kthread_should_stop(int cpu)
1571 while (cpu_is_offline(cpu) ||
1572 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1573 smp_processor_id() != cpu) {
1574 if (kthread_should_stop())
1575 return 1;
1576 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1577 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1578 local_bh_enable();
1579 schedule_timeout_uninterruptible(1);
1580 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1581 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1582 local_bh_disable();
1584 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1585 return 0;
1589 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1590 * earlier RCU softirq.
1592 static int rcu_cpu_kthread(void *arg)
1594 int cpu = (int)(long)arg;
1595 unsigned long flags;
1596 int spincnt = 0;
1597 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1598 char work;
1599 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1601 for (;;) {
1602 *statusp = RCU_KTHREAD_WAITING;
1603 rcu_wait(*workp != 0 || kthread_should_stop());
1604 local_bh_disable();
1605 if (rcu_cpu_kthread_should_stop(cpu)) {
1606 local_bh_enable();
1607 break;
1609 *statusp = RCU_KTHREAD_RUNNING;
1610 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1611 local_irq_save(flags);
1612 work = *workp;
1613 *workp = 0;
1614 local_irq_restore(flags);
1615 if (work)
1616 rcu_process_callbacks();
1617 local_bh_enable();
1618 if (*workp != 0)
1619 spincnt++;
1620 else
1621 spincnt = 0;
1622 if (spincnt > 10) {
1623 *statusp = RCU_KTHREAD_YIELDING;
1624 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1625 spincnt = 0;
1628 *statusp = RCU_KTHREAD_STOPPED;
1629 return 0;
1633 * Spawn a per-CPU kthread, setting up affinity and priority.
1634 * Because the CPU hotplug lock is held, no other CPU will be attempting
1635 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1636 * attempting to access it during boot, but the locking in kthread_bind()
1637 * will enforce sufficient ordering.
1639 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1641 struct sched_param sp;
1642 struct task_struct *t;
1644 if (!rcu_kthreads_spawnable ||
1645 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1646 return 0;
1647 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1648 if (IS_ERR(t))
1649 return PTR_ERR(t);
1650 kthread_bind(t, cpu);
1651 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1652 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1653 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1654 sp.sched_priority = RCU_KTHREAD_PRIO;
1655 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1656 return 0;
1660 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1661 * kthreads when needed. We ignore requests to wake up kthreads
1662 * for offline CPUs, which is OK because force_quiescent_state()
1663 * takes care of this case.
1665 static int rcu_node_kthread(void *arg)
1667 int cpu;
1668 unsigned long flags;
1669 unsigned long mask;
1670 struct rcu_node *rnp = (struct rcu_node *)arg;
1671 struct sched_param sp;
1672 struct task_struct *t;
1674 for (;;) {
1675 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1676 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1677 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1678 raw_spin_lock_irqsave(&rnp->lock, flags);
1679 mask = atomic_xchg(&rnp->wakemask, 0);
1680 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1681 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1682 if ((mask & 0x1) == 0)
1683 continue;
1684 preempt_disable();
1685 t = per_cpu(rcu_cpu_kthread_task, cpu);
1686 if (!cpu_online(cpu) || t == NULL) {
1687 preempt_enable();
1688 continue;
1690 per_cpu(rcu_cpu_has_work, cpu) = 1;
1691 sp.sched_priority = RCU_KTHREAD_PRIO;
1692 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1693 preempt_enable();
1696 /* NOTREACHED */
1697 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1698 return 0;
1702 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1703 * served by the rcu_node in question. The CPU hotplug lock is still
1704 * held, so the value of rnp->qsmaskinit will be stable.
1706 * We don't include outgoingcpu in the affinity set, use -1 if there is
1707 * no outgoing CPU. If there are no CPUs left in the affinity set,
1708 * this function allows the kthread to execute on any CPU.
1710 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1712 cpumask_var_t cm;
1713 int cpu;
1714 unsigned long mask = rnp->qsmaskinit;
1716 if (rnp->node_kthread_task == NULL)
1717 return;
1718 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1719 return;
1720 cpumask_clear(cm);
1721 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1722 if ((mask & 0x1) && cpu != outgoingcpu)
1723 cpumask_set_cpu(cpu, cm);
1724 if (cpumask_weight(cm) == 0) {
1725 cpumask_setall(cm);
1726 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1727 cpumask_clear_cpu(cpu, cm);
1728 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1730 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1731 rcu_boost_kthread_setaffinity(rnp, cm);
1732 free_cpumask_var(cm);
1736 * Spawn a per-rcu_node kthread, setting priority and affinity.
1737 * Called during boot before online/offline can happen, or, if
1738 * during runtime, with the main CPU-hotplug locks held. So only
1739 * one of these can be executing at a time.
1741 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1742 struct rcu_node *rnp)
1744 unsigned long flags;
1745 int rnp_index = rnp - &rsp->node[0];
1746 struct sched_param sp;
1747 struct task_struct *t;
1749 if (!rcu_kthreads_spawnable ||
1750 rnp->qsmaskinit == 0)
1751 return 0;
1752 if (rnp->node_kthread_task == NULL) {
1753 t = kthread_create(rcu_node_kthread, (void *)rnp,
1754 "rcun%d", rnp_index);
1755 if (IS_ERR(t))
1756 return PTR_ERR(t);
1757 raw_spin_lock_irqsave(&rnp->lock, flags);
1758 rnp->node_kthread_task = t;
1759 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1760 sp.sched_priority = 99;
1761 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1763 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1766 static void rcu_wake_one_boost_kthread(struct rcu_node *rnp);
1769 * Spawn all kthreads -- called as soon as the scheduler is running.
1771 static int __init rcu_spawn_kthreads(void)
1773 int cpu;
1774 struct rcu_node *rnp;
1775 struct task_struct *t;
1777 rcu_kthreads_spawnable = 1;
1778 for_each_possible_cpu(cpu) {
1779 per_cpu(rcu_cpu_has_work, cpu) = 0;
1780 if (cpu_online(cpu)) {
1781 (void)rcu_spawn_one_cpu_kthread(cpu);
1782 t = per_cpu(rcu_cpu_kthread_task, cpu);
1783 if (t)
1784 wake_up_process(t);
1787 rnp = rcu_get_root(rcu_state);
1788 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1789 if (rnp->node_kthread_task)
1790 wake_up_process(rnp->node_kthread_task);
1791 if (NUM_RCU_NODES > 1) {
1792 rcu_for_each_leaf_node(rcu_state, rnp) {
1793 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1794 t = rnp->node_kthread_task;
1795 if (t)
1796 wake_up_process(t);
1797 rcu_wake_one_boost_kthread(rnp);
1800 return 0;
1802 early_initcall(rcu_spawn_kthreads);
1804 static void
1805 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1806 struct rcu_state *rsp)
1808 unsigned long flags;
1809 struct rcu_data *rdp;
1811 debug_rcu_head_queue(head);
1812 head->func = func;
1813 head->next = NULL;
1815 smp_mb(); /* Ensure RCU update seen before callback registry. */
1818 * Opportunistically note grace-period endings and beginnings.
1819 * Note that we might see a beginning right after we see an
1820 * end, but never vice versa, since this CPU has to pass through
1821 * a quiescent state betweentimes.
1823 local_irq_save(flags);
1824 rdp = this_cpu_ptr(rsp->rda);
1826 /* Add the callback to our list. */
1827 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1828 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1829 rdp->qlen++;
1831 /* If interrupts were disabled, don't dive into RCU core. */
1832 if (irqs_disabled_flags(flags)) {
1833 local_irq_restore(flags);
1834 return;
1838 * Force the grace period if too many callbacks or too long waiting.
1839 * Enforce hysteresis, and don't invoke force_quiescent_state()
1840 * if some other CPU has recently done so. Also, don't bother
1841 * invoking force_quiescent_state() if the newly enqueued callback
1842 * is the only one waiting for a grace period to complete.
1844 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1846 /* Are we ignoring a completed grace period? */
1847 rcu_process_gp_end(rsp, rdp);
1848 check_for_new_grace_period(rsp, rdp);
1850 /* Start a new grace period if one not already started. */
1851 if (!rcu_gp_in_progress(rsp)) {
1852 unsigned long nestflag;
1853 struct rcu_node *rnp_root = rcu_get_root(rsp);
1855 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1856 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1857 } else {
1858 /* Give the grace period a kick. */
1859 rdp->blimit = LONG_MAX;
1860 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1861 *rdp->nxttail[RCU_DONE_TAIL] != head)
1862 force_quiescent_state(rsp, 0);
1863 rdp->n_force_qs_snap = rsp->n_force_qs;
1864 rdp->qlen_last_fqs_check = rdp->qlen;
1866 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1867 force_quiescent_state(rsp, 1);
1868 local_irq_restore(flags);
1872 * Queue an RCU-sched callback for invocation after a grace period.
1874 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1876 __call_rcu(head, func, &rcu_sched_state);
1878 EXPORT_SYMBOL_GPL(call_rcu_sched);
1881 * Queue an RCU for invocation after a quicker grace period.
1883 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1885 __call_rcu(head, func, &rcu_bh_state);
1887 EXPORT_SYMBOL_GPL(call_rcu_bh);
1890 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1892 * Control will return to the caller some time after a full rcu-sched
1893 * grace period has elapsed, in other words after all currently executing
1894 * rcu-sched read-side critical sections have completed. These read-side
1895 * critical sections are delimited by rcu_read_lock_sched() and
1896 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1897 * local_irq_disable(), and so on may be used in place of
1898 * rcu_read_lock_sched().
1900 * This means that all preempt_disable code sequences, including NMI and
1901 * hardware-interrupt handlers, in progress on entry will have completed
1902 * before this primitive returns. However, this does not guarantee that
1903 * softirq handlers will have completed, since in some kernels, these
1904 * handlers can run in process context, and can block.
1906 * This primitive provides the guarantees made by the (now removed)
1907 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1908 * guarantees that rcu_read_lock() sections will have completed.
1909 * In "classic RCU", these two guarantees happen to be one and
1910 * the same, but can differ in realtime RCU implementations.
1912 void synchronize_sched(void)
1914 struct rcu_synchronize rcu;
1916 if (rcu_blocking_is_gp())
1917 return;
1919 init_rcu_head_on_stack(&rcu.head);
1920 init_completion(&rcu.completion);
1921 /* Will wake me after RCU finished. */
1922 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1923 /* Wait for it. */
1924 wait_for_completion(&rcu.completion);
1925 destroy_rcu_head_on_stack(&rcu.head);
1927 EXPORT_SYMBOL_GPL(synchronize_sched);
1930 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1932 * Control will return to the caller some time after a full rcu_bh grace
1933 * period has elapsed, in other words after all currently executing rcu_bh
1934 * read-side critical sections have completed. RCU read-side critical
1935 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1936 * and may be nested.
1938 void synchronize_rcu_bh(void)
1940 struct rcu_synchronize rcu;
1942 if (rcu_blocking_is_gp())
1943 return;
1945 init_rcu_head_on_stack(&rcu.head);
1946 init_completion(&rcu.completion);
1947 /* Will wake me after RCU finished. */
1948 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1949 /* Wait for it. */
1950 wait_for_completion(&rcu.completion);
1951 destroy_rcu_head_on_stack(&rcu.head);
1953 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1956 * Check to see if there is any immediate RCU-related work to be done
1957 * by the current CPU, for the specified type of RCU, returning 1 if so.
1958 * The checks are in order of increasing expense: checks that can be
1959 * carried out against CPU-local state are performed first. However,
1960 * we must check for CPU stalls first, else we might not get a chance.
1962 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1964 struct rcu_node *rnp = rdp->mynode;
1966 rdp->n_rcu_pending++;
1968 /* Check for CPU stalls, if enabled. */
1969 check_cpu_stall(rsp, rdp);
1971 /* Is the RCU core waiting for a quiescent state from this CPU? */
1972 if (rdp->qs_pending && !rdp->passed_quiesc) {
1975 * If force_quiescent_state() coming soon and this CPU
1976 * needs a quiescent state, and this is either RCU-sched
1977 * or RCU-bh, force a local reschedule.
1979 rdp->n_rp_qs_pending++;
1980 if (!rdp->preemptible &&
1981 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1982 jiffies))
1983 set_need_resched();
1984 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1985 rdp->n_rp_report_qs++;
1986 return 1;
1989 /* Does this CPU have callbacks ready to invoke? */
1990 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1991 rdp->n_rp_cb_ready++;
1992 return 1;
1995 /* Has RCU gone idle with this CPU needing another grace period? */
1996 if (cpu_needs_another_gp(rsp, rdp)) {
1997 rdp->n_rp_cpu_needs_gp++;
1998 return 1;
2001 /* Has another RCU grace period completed? */
2002 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2003 rdp->n_rp_gp_completed++;
2004 return 1;
2007 /* Has a new RCU grace period started? */
2008 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2009 rdp->n_rp_gp_started++;
2010 return 1;
2013 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2014 if (rcu_gp_in_progress(rsp) &&
2015 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2016 rdp->n_rp_need_fqs++;
2017 return 1;
2020 /* nothing to do */
2021 rdp->n_rp_need_nothing++;
2022 return 0;
2026 * Check to see if there is any immediate RCU-related work to be done
2027 * by the current CPU, returning 1 if so. This function is part of the
2028 * RCU implementation; it is -not- an exported member of the RCU API.
2030 static int rcu_pending(int cpu)
2032 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2033 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2034 rcu_preempt_pending(cpu);
2038 * Check to see if any future RCU-related work will need to be done
2039 * by the current CPU, even if none need be done immediately, returning
2040 * 1 if so.
2042 static int rcu_needs_cpu_quick_check(int cpu)
2044 /* RCU callbacks either ready or pending? */
2045 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2046 per_cpu(rcu_bh_data, cpu).nxtlist ||
2047 rcu_preempt_needs_cpu(cpu);
2050 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2051 static atomic_t rcu_barrier_cpu_count;
2052 static DEFINE_MUTEX(rcu_barrier_mutex);
2053 static struct completion rcu_barrier_completion;
2055 static void rcu_barrier_callback(struct rcu_head *notused)
2057 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2058 complete(&rcu_barrier_completion);
2062 * Called with preemption disabled, and from cross-cpu IRQ context.
2064 static void rcu_barrier_func(void *type)
2066 int cpu = smp_processor_id();
2067 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2068 void (*call_rcu_func)(struct rcu_head *head,
2069 void (*func)(struct rcu_head *head));
2071 atomic_inc(&rcu_barrier_cpu_count);
2072 call_rcu_func = type;
2073 call_rcu_func(head, rcu_barrier_callback);
2077 * Orchestrate the specified type of RCU barrier, waiting for all
2078 * RCU callbacks of the specified type to complete.
2080 static void _rcu_barrier(struct rcu_state *rsp,
2081 void (*call_rcu_func)(struct rcu_head *head,
2082 void (*func)(struct rcu_head *head)))
2084 BUG_ON(in_interrupt());
2085 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2086 mutex_lock(&rcu_barrier_mutex);
2087 init_completion(&rcu_barrier_completion);
2089 * Initialize rcu_barrier_cpu_count to 1, then invoke
2090 * rcu_barrier_func() on each CPU, so that each CPU also has
2091 * incremented rcu_barrier_cpu_count. Only then is it safe to
2092 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2093 * might complete its grace period before all of the other CPUs
2094 * did their increment, causing this function to return too
2095 * early. Note that on_each_cpu() disables irqs, which prevents
2096 * any CPUs from coming online or going offline until each online
2097 * CPU has queued its RCU-barrier callback.
2099 atomic_set(&rcu_barrier_cpu_count, 1);
2100 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2101 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2102 complete(&rcu_barrier_completion);
2103 wait_for_completion(&rcu_barrier_completion);
2104 mutex_unlock(&rcu_barrier_mutex);
2108 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2110 void rcu_barrier_bh(void)
2112 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2114 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2117 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2119 void rcu_barrier_sched(void)
2121 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2123 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2126 * Do boot-time initialization of a CPU's per-CPU RCU data.
2128 static void __init
2129 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2131 unsigned long flags;
2132 int i;
2133 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2134 struct rcu_node *rnp = rcu_get_root(rsp);
2136 /* Set up local state, ensuring consistent view of global state. */
2137 raw_spin_lock_irqsave(&rnp->lock, flags);
2138 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2139 rdp->nxtlist = NULL;
2140 for (i = 0; i < RCU_NEXT_SIZE; i++)
2141 rdp->nxttail[i] = &rdp->nxtlist;
2142 rdp->qlen = 0;
2143 #ifdef CONFIG_NO_HZ
2144 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2145 #endif /* #ifdef CONFIG_NO_HZ */
2146 rdp->cpu = cpu;
2147 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2151 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2152 * offline event can be happening at a given time. Note also that we
2153 * can accept some slop in the rsp->completed access due to the fact
2154 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2156 static void __cpuinit
2157 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2159 unsigned long flags;
2160 unsigned long mask;
2161 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2162 struct rcu_node *rnp = rcu_get_root(rsp);
2164 /* Set up local state, ensuring consistent view of global state. */
2165 raw_spin_lock_irqsave(&rnp->lock, flags);
2166 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
2167 rdp->qs_pending = 1; /* so set up to respond to current GP. */
2168 rdp->beenonline = 1; /* We have now been online. */
2169 rdp->preemptible = preemptible;
2170 rdp->qlen_last_fqs_check = 0;
2171 rdp->n_force_qs_snap = rsp->n_force_qs;
2172 rdp->blimit = blimit;
2173 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2176 * A new grace period might start here. If so, we won't be part
2177 * of it, but that is OK, as we are currently in a quiescent state.
2180 /* Exclude any attempts to start a new GP on large systems. */
2181 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2183 /* Add CPU to rcu_node bitmasks. */
2184 rnp = rdp->mynode;
2185 mask = rdp->grpmask;
2186 do {
2187 /* Exclude any attempts to start a new GP on small systems. */
2188 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2189 rnp->qsmaskinit |= mask;
2190 mask = rnp->grpmask;
2191 if (rnp == rdp->mynode) {
2192 rdp->gpnum = rnp->completed; /* if GP in progress... */
2193 rdp->completed = rnp->completed;
2194 rdp->passed_quiesc_completed = rnp->completed - 1;
2196 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2197 rnp = rnp->parent;
2198 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2200 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2203 static void __cpuinit rcu_prepare_cpu(int cpu)
2205 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2206 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2207 rcu_preempt_init_percpu_data(cpu);
2210 static void __cpuinit rcu_prepare_kthreads(int cpu)
2212 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2213 struct rcu_node *rnp = rdp->mynode;
2215 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2216 if (rcu_kthreads_spawnable) {
2217 (void)rcu_spawn_one_cpu_kthread(cpu);
2218 if (rnp->node_kthread_task == NULL)
2219 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2224 * kthread_create() creates threads in TASK_UNINTERRUPTIBLE state,
2225 * but the RCU threads are woken on demand, and if demand is low this
2226 * could be a while triggering the hung task watchdog.
2228 * In order to avoid this, poke all tasks once the CPU is fully
2229 * up and running.
2231 static void __cpuinit rcu_online_kthreads(int cpu)
2233 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2234 struct rcu_node *rnp = rdp->mynode;
2235 struct task_struct *t;
2237 t = per_cpu(rcu_cpu_kthread_task, cpu);
2238 if (t)
2239 wake_up_process(t);
2241 t = rnp->node_kthread_task;
2242 if (t)
2243 wake_up_process(t);
2245 rcu_wake_one_boost_kthread(rnp);
2249 * Handle CPU online/offline notification events.
2251 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2252 unsigned long action, void *hcpu)
2254 long cpu = (long)hcpu;
2255 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2256 struct rcu_node *rnp = rdp->mynode;
2258 switch (action) {
2259 case CPU_UP_PREPARE:
2260 case CPU_UP_PREPARE_FROZEN:
2261 rcu_prepare_cpu(cpu);
2262 rcu_prepare_kthreads(cpu);
2263 break;
2264 case CPU_ONLINE:
2265 rcu_online_kthreads(cpu);
2266 case CPU_DOWN_FAILED:
2267 rcu_node_kthread_setaffinity(rnp, -1);
2268 rcu_cpu_kthread_setrt(cpu, 1);
2269 break;
2270 case CPU_DOWN_PREPARE:
2271 rcu_node_kthread_setaffinity(rnp, cpu);
2272 rcu_cpu_kthread_setrt(cpu, 0);
2273 break;
2274 case CPU_DYING:
2275 case CPU_DYING_FROZEN:
2277 * The whole machine is "stopped" except this CPU, so we can
2278 * touch any data without introducing corruption. We send the
2279 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2281 rcu_send_cbs_to_online(&rcu_bh_state);
2282 rcu_send_cbs_to_online(&rcu_sched_state);
2283 rcu_preempt_send_cbs_to_online();
2284 break;
2285 case CPU_DEAD:
2286 case CPU_DEAD_FROZEN:
2287 case CPU_UP_CANCELED:
2288 case CPU_UP_CANCELED_FROZEN:
2289 rcu_offline_cpu(cpu);
2290 break;
2291 default:
2292 break;
2294 return NOTIFY_OK;
2298 * This function is invoked towards the end of the scheduler's initialization
2299 * process. Before this is called, the idle task might contain
2300 * RCU read-side critical sections (during which time, this idle
2301 * task is booting the system). After this function is called, the
2302 * idle tasks are prohibited from containing RCU read-side critical
2303 * sections. This function also enables RCU lockdep checking.
2305 void rcu_scheduler_starting(void)
2307 WARN_ON(num_online_cpus() != 1);
2308 WARN_ON(nr_context_switches() > 0);
2309 rcu_scheduler_active = 1;
2313 * Compute the per-level fanout, either using the exact fanout specified
2314 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2316 #ifdef CONFIG_RCU_FANOUT_EXACT
2317 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2319 int i;
2321 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2322 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2323 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2325 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2326 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2328 int ccur;
2329 int cprv;
2330 int i;
2332 cprv = NR_CPUS;
2333 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2334 ccur = rsp->levelcnt[i];
2335 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2336 cprv = ccur;
2339 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2342 * Helper function for rcu_init() that initializes one rcu_state structure.
2344 static void __init rcu_init_one(struct rcu_state *rsp,
2345 struct rcu_data __percpu *rda)
2347 static char *buf[] = { "rcu_node_level_0",
2348 "rcu_node_level_1",
2349 "rcu_node_level_2",
2350 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2351 int cpustride = 1;
2352 int i;
2353 int j;
2354 struct rcu_node *rnp;
2356 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2358 /* Initialize the level-tracking arrays. */
2360 for (i = 1; i < NUM_RCU_LVLS; i++)
2361 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2362 rcu_init_levelspread(rsp);
2364 /* Initialize the elements themselves, starting from the leaves. */
2366 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2367 cpustride *= rsp->levelspread[i];
2368 rnp = rsp->level[i];
2369 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2370 raw_spin_lock_init(&rnp->lock);
2371 lockdep_set_class_and_name(&rnp->lock,
2372 &rcu_node_class[i], buf[i]);
2373 rnp->gpnum = 0;
2374 rnp->qsmask = 0;
2375 rnp->qsmaskinit = 0;
2376 rnp->grplo = j * cpustride;
2377 rnp->grphi = (j + 1) * cpustride - 1;
2378 if (rnp->grphi >= NR_CPUS)
2379 rnp->grphi = NR_CPUS - 1;
2380 if (i == 0) {
2381 rnp->grpnum = 0;
2382 rnp->grpmask = 0;
2383 rnp->parent = NULL;
2384 } else {
2385 rnp->grpnum = j % rsp->levelspread[i - 1];
2386 rnp->grpmask = 1UL << rnp->grpnum;
2387 rnp->parent = rsp->level[i - 1] +
2388 j / rsp->levelspread[i - 1];
2390 rnp->level = i;
2391 INIT_LIST_HEAD(&rnp->blkd_tasks);
2395 rsp->rda = rda;
2396 rnp = rsp->level[NUM_RCU_LVLS - 1];
2397 for_each_possible_cpu(i) {
2398 while (i > rnp->grphi)
2399 rnp++;
2400 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2401 rcu_boot_init_percpu_data(i, rsp);
2405 void __init rcu_init(void)
2407 int cpu;
2409 rcu_bootup_announce();
2410 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2411 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2412 __rcu_init_preempt();
2415 * We don't need protection against CPU-hotplug here because
2416 * this is called early in boot, before either interrupts
2417 * or the scheduler are operational.
2419 cpu_notifier(rcu_cpu_notify, 0);
2420 for_each_online_cpu(cpu)
2421 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2422 check_cpu_stall_init();
2425 #include "rcutree_plugin.h"