Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / list.h
blobdd7cd54fa831381b49310dc548d844d90762e016
1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
4 #ifdef __KERNEL__
6 #include <linux/stddef.h>
7 #include <linux/prefetch.h>
8 #include <asm/system.h>
11 * These are non-NULL pointers that will result in page faults
12 * under normal circumstances, used to verify that nobody uses
13 * non-initialized list entries.
15 #define LIST_POISON1 ((void *) 0x00100100)
16 #define LIST_POISON2 ((void *) 0x00200200)
19 * Simple doubly linked list implementation.
21 * Some of the internal functions ("__xxx") are useful when
22 * manipulating whole lists rather than single entries, as
23 * sometimes we already know the next/prev entries and we can
24 * generate better code by using them directly rather than
25 * using the generic single-entry routines.
28 struct list_head {
29 struct list_head *next, *prev;
32 #define LIST_HEAD_INIT(name) { &(name), &(name) }
34 #define LIST_HEAD(name) \
35 struct list_head name = LIST_HEAD_INIT(name)
37 #define INIT_LIST_HEAD(ptr) do { \
38 (ptr)->next = (ptr); (ptr)->prev = (ptr); \
39 } while (0)
42 * Insert a new entry between two known consecutive entries.
44 * This is only for internal list manipulation where we know
45 * the prev/next entries already!
47 static inline void __list_add(struct list_head *new,
48 struct list_head *prev,
49 struct list_head *next)
51 next->prev = new;
52 new->next = next;
53 new->prev = prev;
54 prev->next = new;
57 /**
58 * list_add - add a new entry
59 * @new: new entry to be added
60 * @head: list head to add it after
62 * Insert a new entry after the specified head.
63 * This is good for implementing stacks.
65 static inline void list_add(struct list_head *new, struct list_head *head)
67 __list_add(new, head, head->next);
70 /**
71 * list_add_tail - add a new entry
72 * @new: new entry to be added
73 * @head: list head to add it before
75 * Insert a new entry before the specified head.
76 * This is useful for implementing queues.
78 static inline void list_add_tail(struct list_head *new, struct list_head *head)
80 __list_add(new, head->prev, head);
84 * Insert a new entry between two known consecutive entries.
86 * This is only for internal list manipulation where we know
87 * the prev/next entries already!
89 static inline void __list_add_rcu(struct list_head * new,
90 struct list_head * prev, struct list_head * next)
92 new->next = next;
93 new->prev = prev;
94 smp_wmb();
95 next->prev = new;
96 prev->next = new;
99 /**
100 * list_add_rcu - add a new entry to rcu-protected list
101 * @new: new entry to be added
102 * @head: list head to add it after
104 * Insert a new entry after the specified head.
105 * This is good for implementing stacks.
107 * The caller must take whatever precautions are necessary
108 * (such as holding appropriate locks) to avoid racing
109 * with another list-mutation primitive, such as list_add_rcu()
110 * or list_del_rcu(), running on this same list.
111 * However, it is perfectly legal to run concurrently with
112 * the _rcu list-traversal primitives, such as
113 * list_for_each_entry_rcu().
115 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
117 __list_add_rcu(new, head, head->next);
121 * list_add_tail_rcu - add a new entry to rcu-protected list
122 * @new: new entry to be added
123 * @head: list head to add it before
125 * Insert a new entry before the specified head.
126 * This is useful for implementing queues.
128 * The caller must take whatever precautions are necessary
129 * (such as holding appropriate locks) to avoid racing
130 * with another list-mutation primitive, such as list_add_tail_rcu()
131 * or list_del_rcu(), running on this same list.
132 * However, it is perfectly legal to run concurrently with
133 * the _rcu list-traversal primitives, such as
134 * list_for_each_entry_rcu().
136 static inline void list_add_tail_rcu(struct list_head *new,
137 struct list_head *head)
139 __list_add_rcu(new, head->prev, head);
143 * Delete a list entry by making the prev/next entries
144 * point to each other.
146 * This is only for internal list manipulation where we know
147 * the prev/next entries already!
149 static inline void __list_del(struct list_head * prev, struct list_head * next)
151 next->prev = prev;
152 prev->next = next;
156 * list_del - deletes entry from list.
157 * @entry: the element to delete from the list.
158 * Note: list_empty on entry does not return true after this, the entry is
159 * in an undefined state.
161 static inline void list_del(struct list_head *entry)
163 __list_del(entry->prev, entry->next);
164 entry->next = LIST_POISON1;
165 entry->prev = LIST_POISON2;
169 * list_del_rcu - deletes entry from list without re-initialization
170 * @entry: the element to delete from the list.
172 * Note: list_empty on entry does not return true after this,
173 * the entry is in an undefined state. It is useful for RCU based
174 * lockfree traversal.
176 * In particular, it means that we can not poison the forward
177 * pointers that may still be used for walking the list.
179 * The caller must take whatever precautions are necessary
180 * (such as holding appropriate locks) to avoid racing
181 * with another list-mutation primitive, such as list_del_rcu()
182 * or list_add_rcu(), running on this same list.
183 * However, it is perfectly legal to run concurrently with
184 * the _rcu list-traversal primitives, such as
185 * list_for_each_entry_rcu().
187 * Note that the caller is not permitted to immediately free
188 * the newly deleted entry. Instead, either synchronize_kernel()
189 * or call_rcu() must be used to defer freeing until an RCU
190 * grace period has elapsed.
192 static inline void list_del_rcu(struct list_head *entry)
194 __list_del(entry->prev, entry->next);
195 entry->prev = LIST_POISON2;
199 * list_replace_rcu - replace old entry by new one
200 * @old : the element to be replaced
201 * @new : the new element to insert
203 * The old entry will be replaced with the new entry atomically.
205 static inline void list_replace_rcu(struct list_head *old, struct list_head *new){
206 new->next = old->next;
207 new->prev = old->prev;
208 smp_wmb();
209 new->next->prev = new;
210 new->prev->next = new;
214 * list_del_init - deletes entry from list and reinitialize it.
215 * @entry: the element to delete from the list.
217 static inline void list_del_init(struct list_head *entry)
219 __list_del(entry->prev, entry->next);
220 INIT_LIST_HEAD(entry);
224 * list_move - delete from one list and add as another's head
225 * @list: the entry to move
226 * @head: the head that will precede our entry
228 static inline void list_move(struct list_head *list, struct list_head *head)
230 __list_del(list->prev, list->next);
231 list_add(list, head);
235 * list_move_tail - delete from one list and add as another's tail
236 * @list: the entry to move
237 * @head: the head that will follow our entry
239 static inline void list_move_tail(struct list_head *list,
240 struct list_head *head)
242 __list_del(list->prev, list->next);
243 list_add_tail(list, head);
247 * list_empty - tests whether a list is empty
248 * @head: the list to test.
250 static inline int list_empty(const struct list_head *head)
252 return head->next == head;
256 * list_empty_careful - tests whether a list is
257 * empty _and_ checks that no other CPU might be
258 * in the process of still modifying either member
260 * NOTE: using list_empty_careful() without synchronization
261 * can only be safe if the only activity that can happen
262 * to the list entry is list_del_init(). Eg. it cannot be used
263 * if another CPU could re-list_add() it.
265 * @head: the list to test.
267 static inline int list_empty_careful(const struct list_head *head)
269 struct list_head *next = head->next;
270 return (next == head) && (next == head->prev);
273 static inline void __list_splice(struct list_head *list,
274 struct list_head *head)
276 struct list_head *first = list->next;
277 struct list_head *last = list->prev;
278 struct list_head *at = head->next;
280 first->prev = head;
281 head->next = first;
283 last->next = at;
284 at->prev = last;
288 * list_splice - join two lists
289 * @list: the new list to add.
290 * @head: the place to add it in the first list.
292 static inline void list_splice(struct list_head *list, struct list_head *head)
294 if (!list_empty(list))
295 __list_splice(list, head);
299 * list_splice_init - join two lists and reinitialise the emptied list.
300 * @list: the new list to add.
301 * @head: the place to add it in the first list.
303 * The list at @list is reinitialised
305 static inline void list_splice_init(struct list_head *list,
306 struct list_head *head)
308 if (!list_empty(list)) {
309 __list_splice(list, head);
310 INIT_LIST_HEAD(list);
315 * list_entry - get the struct for this entry
316 * @ptr: the &struct list_head pointer.
317 * @type: the type of the struct this is embedded in.
318 * @member: the name of the list_struct within the struct.
320 #define list_entry(ptr, type, member) \
321 container_of(ptr, type, member)
324 * list_for_each - iterate over a list
325 * @pos: the &struct list_head to use as a loop counter.
326 * @head: the head for your list.
328 #define list_for_each(pos, head) \
329 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
330 pos = pos->next)
333 * __list_for_each - iterate over a list
334 * @pos: the &struct list_head to use as a loop counter.
335 * @head: the head for your list.
337 * This variant differs from list_for_each() in that it's the
338 * simplest possible list iteration code, no prefetching is done.
339 * Use this for code that knows the list to be very short (empty
340 * or 1 entry) most of the time.
342 #define __list_for_each(pos, head) \
343 for (pos = (head)->next; pos != (head); pos = pos->next)
346 * list_for_each_prev - iterate over a list backwards
347 * @pos: the &struct list_head to use as a loop counter.
348 * @head: the head for your list.
350 #define list_for_each_prev(pos, head) \
351 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
352 pos = pos->prev)
355 * list_for_each_safe - iterate over a list safe against removal of list entry
356 * @pos: the &struct list_head to use as a loop counter.
357 * @n: another &struct list_head to use as temporary storage
358 * @head: the head for your list.
360 #define list_for_each_safe(pos, n, head) \
361 for (pos = (head)->next, n = pos->next; pos != (head); \
362 pos = n, n = pos->next)
365 * list_for_each_entry - iterate over list of given type
366 * @pos: the type * to use as a loop counter.
367 * @head: the head for your list.
368 * @member: the name of the list_struct within the struct.
370 #define list_for_each_entry(pos, head, member) \
371 for (pos = list_entry((head)->next, typeof(*pos), member); \
372 prefetch(pos->member.next), &pos->member != (head); \
373 pos = list_entry(pos->member.next, typeof(*pos), member))
376 * list_for_each_entry_reverse - iterate backwards over list of given type.
377 * @pos: the type * to use as a loop counter.
378 * @head: the head for your list.
379 * @member: the name of the list_struct within the struct.
381 #define list_for_each_entry_reverse(pos, head, member) \
382 for (pos = list_entry((head)->prev, typeof(*pos), member); \
383 prefetch(pos->member.prev), &pos->member != (head); \
384 pos = list_entry(pos->member.prev, typeof(*pos), member))
387 * list_prepare_entry - prepare a pos entry for use as a start point in
388 * list_for_each_entry_continue
389 * @pos: the type * to use as a start point
390 * @head: the head of the list
391 * @member: the name of the list_struct within the struct.
393 #define list_prepare_entry(pos, head, member) \
394 ((pos) ? : list_entry(head, typeof(*pos), member))
397 * list_for_each_entry_continue - iterate over list of given type
398 * continuing after existing point
399 * @pos: the type * to use as a loop counter.
400 * @head: the head for your list.
401 * @member: the name of the list_struct within the struct.
403 #define list_for_each_entry_continue(pos, head, member) \
404 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
405 prefetch(pos->member.next), &pos->member != (head); \
406 pos = list_entry(pos->member.next, typeof(*pos), member))
409 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
410 * @pos: the type * to use as a loop counter.
411 * @n: another type * to use as temporary storage
412 * @head: the head for your list.
413 * @member: the name of the list_struct within the struct.
415 #define list_for_each_entry_safe(pos, n, head, member) \
416 for (pos = list_entry((head)->next, typeof(*pos), member), \
417 n = list_entry(pos->member.next, typeof(*pos), member); \
418 &pos->member != (head); \
419 pos = n, n = list_entry(n->member.next, typeof(*n), member))
422 * list_for_each_rcu - iterate over an rcu-protected list
423 * @pos: the &struct list_head to use as a loop counter.
424 * @head: the head for your list.
426 * This list-traversal primitive may safely run concurrently with
427 * the _rcu list-mutation primitives such as list_add_rcu()
428 * as long as the traversal is guarded by rcu_read_lock().
430 #define list_for_each_rcu(pos, head) \
431 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
432 pos = rcu_dereference(pos->next))
434 #define __list_for_each_rcu(pos, head) \
435 for (pos = (head)->next; pos != (head); \
436 pos = rcu_dereference(pos->next))
439 * list_for_each_safe_rcu - iterate over an rcu-protected list safe
440 * against removal of list entry
441 * @pos: the &struct list_head to use as a loop counter.
442 * @n: another &struct list_head to use as temporary storage
443 * @head: the head for your list.
445 * This list-traversal primitive may safely run concurrently with
446 * the _rcu list-mutation primitives such as list_add_rcu()
447 * as long as the traversal is guarded by rcu_read_lock().
449 #define list_for_each_safe_rcu(pos, n, head) \
450 for (pos = (head)->next, n = pos->next; pos != (head); \
451 pos = rcu_dereference(n), n = pos->next)
454 * list_for_each_entry_rcu - iterate over rcu list of given type
455 * @pos: the type * to use as a loop counter.
456 * @head: the head for your list.
457 * @member: the name of the list_struct within the struct.
459 * This list-traversal primitive may safely run concurrently with
460 * the _rcu list-mutation primitives such as list_add_rcu()
461 * as long as the traversal is guarded by rcu_read_lock().
463 #define list_for_each_entry_rcu(pos, head, member) \
464 for (pos = list_entry((head)->next, typeof(*pos), member); \
465 prefetch(pos->member.next), &pos->member != (head); \
466 pos = rcu_dereference(list_entry(pos->member.next, \
467 typeof(*pos), member)))
471 * list_for_each_continue_rcu - iterate over an rcu-protected list
472 * continuing after existing point.
473 * @pos: the &struct list_head to use as a loop counter.
474 * @head: the head for your list.
476 * This list-traversal primitive may safely run concurrently with
477 * the _rcu list-mutation primitives such as list_add_rcu()
478 * as long as the traversal is guarded by rcu_read_lock().
480 #define list_for_each_continue_rcu(pos, head) \
481 for ((pos) = (pos)->next; prefetch((pos)->next), (pos) != (head); \
482 (pos) = rcu_dereference((pos)->next))
485 * Double linked lists with a single pointer list head.
486 * Mostly useful for hash tables where the two pointer list head is
487 * too wasteful.
488 * You lose the ability to access the tail in O(1).
491 struct hlist_head {
492 struct hlist_node *first;
495 struct hlist_node {
496 struct hlist_node *next, **pprev;
499 #define HLIST_HEAD_INIT { .first = NULL }
500 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
501 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
502 #define INIT_HLIST_NODE(ptr) ((ptr)->next = NULL, (ptr)->pprev = NULL)
504 static inline int hlist_unhashed(const struct hlist_node *h)
506 return !h->pprev;
509 static inline int hlist_empty(const struct hlist_head *h)
511 return !h->first;
514 static inline void __hlist_del(struct hlist_node *n)
516 struct hlist_node *next = n->next;
517 struct hlist_node **pprev = n->pprev;
518 *pprev = next;
519 if (next)
520 next->pprev = pprev;
523 static inline void hlist_del(struct hlist_node *n)
525 __hlist_del(n);
526 n->next = LIST_POISON1;
527 n->pprev = LIST_POISON2;
531 * hlist_del_rcu - deletes entry from hash list without re-initialization
532 * @n: the element to delete from the hash list.
534 * Note: list_unhashed() on entry does not return true after this,
535 * the entry is in an undefined state. It is useful for RCU based
536 * lockfree traversal.
538 * In particular, it means that we can not poison the forward
539 * pointers that may still be used for walking the hash list.
541 * The caller must take whatever precautions are necessary
542 * (such as holding appropriate locks) to avoid racing
543 * with another list-mutation primitive, such as hlist_add_head_rcu()
544 * or hlist_del_rcu(), running on this same list.
545 * However, it is perfectly legal to run concurrently with
546 * the _rcu list-traversal primitives, such as
547 * hlist_for_each_entry().
549 static inline void hlist_del_rcu(struct hlist_node *n)
551 __hlist_del(n);
552 n->pprev = LIST_POISON2;
555 static inline void hlist_del_init(struct hlist_node *n)
557 if (n->pprev) {
558 __hlist_del(n);
559 INIT_HLIST_NODE(n);
563 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
565 struct hlist_node *first = h->first;
566 n->next = first;
567 if (first)
568 first->pprev = &n->next;
569 h->first = n;
570 n->pprev = &h->first;
575 * hlist_add_head_rcu - adds the specified element to the specified hlist,
576 * while permitting racing traversals.
577 * @n: the element to add to the hash list.
578 * @h: the list to add to.
580 * The caller must take whatever precautions are necessary
581 * (such as holding appropriate locks) to avoid racing
582 * with another list-mutation primitive, such as hlist_add_head_rcu()
583 * or hlist_del_rcu(), running on this same list.
584 * However, it is perfectly legal to run concurrently with
585 * the _rcu list-traversal primitives, such as
586 * hlist_for_each_rcu(), used to prevent memory-consistency
587 * problems on Alpha CPUs. Regardless of the type of CPU, the
588 * list-traversal primitive must be guarded by rcu_read_lock().
590 static inline void hlist_add_head_rcu(struct hlist_node *n,
591 struct hlist_head *h)
593 struct hlist_node *first = h->first;
594 n->next = first;
595 n->pprev = &h->first;
596 smp_wmb();
597 if (first)
598 first->pprev = &n->next;
599 h->first = n;
602 /* next must be != NULL */
603 static inline void hlist_add_before(struct hlist_node *n,
604 struct hlist_node *next)
606 n->pprev = next->pprev;
607 n->next = next;
608 next->pprev = &n->next;
609 *(n->pprev) = n;
612 static inline void hlist_add_after(struct hlist_node *n,
613 struct hlist_node *next)
615 next->next = n->next;
616 n->next = next;
617 next->pprev = &n->next;
619 if(next->next)
620 next->next->pprev = &next->next;
623 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
625 #define hlist_for_each(pos, head) \
626 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
627 pos = pos->next)
629 #define hlist_for_each_safe(pos, n, head) \
630 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
631 pos = n)
633 #define hlist_for_each_rcu(pos, head) \
634 for ((pos) = (head)->first; pos && ({ prefetch((pos)->next); 1; }); \
635 (pos) = rcu_dereference((pos)->next))
638 * hlist_for_each_entry - iterate over list of given type
639 * @tpos: the type * to use as a loop counter.
640 * @pos: the &struct hlist_node to use as a loop counter.
641 * @head: the head for your list.
642 * @member: the name of the hlist_node within the struct.
644 #define hlist_for_each_entry(tpos, pos, head, member) \
645 for (pos = (head)->first; \
646 pos && ({ prefetch(pos->next); 1;}) && \
647 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
648 pos = pos->next)
651 * hlist_for_each_entry_continue - iterate over a hlist continuing after existing point
652 * @tpos: the type * to use as a loop counter.
653 * @pos: the &struct hlist_node to use as a loop counter.
654 * @member: the name of the hlist_node within the struct.
656 #define hlist_for_each_entry_continue(tpos, pos, member) \
657 for (pos = (pos)->next; \
658 pos && ({ prefetch(pos->next); 1;}) && \
659 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
660 pos = pos->next)
663 * hlist_for_each_entry_from - iterate over a hlist continuing from existing point
664 * @tpos: the type * to use as a loop counter.
665 * @pos: the &struct hlist_node to use as a loop counter.
666 * @member: the name of the hlist_node within the struct.
668 #define hlist_for_each_entry_from(tpos, pos, member) \
669 for (; pos && ({ prefetch(pos->next); 1;}) && \
670 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
671 pos = pos->next)
674 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
675 * @tpos: the type * to use as a loop counter.
676 * @pos: the &struct hlist_node to use as a loop counter.
677 * @n: another &struct hlist_node to use as temporary storage
678 * @head: the head for your list.
679 * @member: the name of the hlist_node within the struct.
681 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
682 for (pos = (head)->first; \
683 pos && ({ n = pos->next; 1; }) && \
684 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
685 pos = n)
688 * hlist_for_each_entry_rcu - iterate over rcu list of given type
689 * @pos: the type * to use as a loop counter.
690 * @pos: the &struct hlist_node to use as a loop counter.
691 * @head: the head for your list.
692 * @member: the name of the hlist_node within the struct.
694 * This list-traversal primitive may safely run concurrently with
695 * the _rcu list-mutation primitives such as hlist_add_rcu()
696 * as long as the traversal is guarded by rcu_read_lock().
698 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \
699 for (pos = (head)->first; \
700 pos && ({ prefetch(pos->next); 1;}) && \
701 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
702 pos = rcu_dereference(pos->next))
704 #else
705 #warning "don't include kernel headers in userspace"
706 #endif /* __KERNEL__ */
707 #endif