Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / asm-arm / cacheflush.h
blob09ffeed507c2098a980b1f7eb65e5369d0598907
1 /*
2 * linux/include/asm-arm/cacheflush.h
4 * Copyright (C) 1999-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
13 #include <linux/config.h>
14 #include <linux/sched.h>
15 #include <linux/mm.h>
17 #include <asm/mman.h>
18 #include <asm/glue.h>
21 * Cache Model
22 * ===========
24 #undef _CACHE
25 #undef MULTI_CACHE
27 #if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710)
28 # ifdef _CACHE
29 # define MULTI_CACHE 1
30 # else
31 # define _CACHE v3
32 # endif
33 #endif
35 #if defined(CONFIG_CPU_ARM720T)
36 # ifdef _CACHE
37 # define MULTI_CACHE 1
38 # else
39 # define _CACHE v4
40 # endif
41 #endif
43 #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
44 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
45 # define MULTI_CACHE 1
46 #endif
48 #if defined(CONFIG_CPU_ARM926T)
49 # ifdef _CACHE
50 # define MULTI_CACHE 1
51 # else
52 # define _CACHE arm926
53 # endif
54 #endif
56 #if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100)
57 # ifdef _CACHE
58 # define MULTI_CACHE 1
59 # else
60 # define _CACHE v4wb
61 # endif
62 #endif
64 #if defined(CONFIG_CPU_XSCALE)
65 # ifdef _CACHE
66 # define MULTI_CACHE 1
67 # else
68 # define _CACHE xscale
69 # endif
70 #endif
72 #if defined(CONFIG_CPU_V6)
73 //# ifdef _CACHE
74 # define MULTI_CACHE 1
75 //# else
76 //# define _CACHE v6
77 //# endif
78 #endif
80 #if !defined(_CACHE) && !defined(MULTI_CACHE)
81 #error Unknown cache maintainence model
82 #endif
85 * This flag is used to indicate that the page pointed to by a pte
86 * is dirty and requires cleaning before returning it to the user.
88 #define PG_dcache_dirty PG_arch_1
91 * MM Cache Management
92 * ===================
94 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
95 * implement these methods.
97 * Start addresses are inclusive and end addresses are exclusive;
98 * start addresses should be rounded down, end addresses up.
100 * See Documentation/cachetlb.txt for more information.
101 * Please note that the implementation of these, and the required
102 * effects are cache-type (VIVT/VIPT/PIPT) specific.
104 * flush_cache_kern_all()
106 * Unconditionally clean and invalidate the entire cache.
108 * flush_cache_user_mm(mm)
110 * Clean and invalidate all user space cache entries
111 * before a change of page tables.
113 * flush_cache_user_range(start, end, flags)
115 * Clean and invalidate a range of cache entries in the
116 * specified address space before a change of page tables.
117 * - start - user start address (inclusive, page aligned)
118 * - end - user end address (exclusive, page aligned)
119 * - flags - vma->vm_flags field
121 * coherent_kern_range(start, end)
123 * Ensure coherency between the Icache and the Dcache in the
124 * region described by start, end. If you have non-snooping
125 * Harvard caches, you need to implement this function.
126 * - start - virtual start address
127 * - end - virtual end address
129 * DMA Cache Coherency
130 * ===================
132 * dma_inv_range(start, end)
134 * Invalidate (discard) the specified virtual address range.
135 * May not write back any entries. If 'start' or 'end'
136 * are not cache line aligned, those lines must be written
137 * back.
138 * - start - virtual start address
139 * - end - virtual end address
141 * dma_clean_range(start, end)
143 * Clean (write back) the specified virtual address range.
144 * - start - virtual start address
145 * - end - virtual end address
147 * dma_flush_range(start, end)
149 * Clean and invalidate the specified virtual address range.
150 * - start - virtual start address
151 * - end - virtual end address
154 struct cpu_cache_fns {
155 void (*flush_kern_all)(void);
156 void (*flush_user_all)(void);
157 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
159 void (*coherent_kern_range)(unsigned long, unsigned long);
160 void (*coherent_user_range)(unsigned long, unsigned long);
161 void (*flush_kern_dcache_page)(void *);
163 void (*dma_inv_range)(unsigned long, unsigned long);
164 void (*dma_clean_range)(unsigned long, unsigned long);
165 void (*dma_flush_range)(unsigned long, unsigned long);
169 * Select the calling method
171 #ifdef MULTI_CACHE
173 extern struct cpu_cache_fns cpu_cache;
175 #define __cpuc_flush_kern_all cpu_cache.flush_kern_all
176 #define __cpuc_flush_user_all cpu_cache.flush_user_all
177 #define __cpuc_flush_user_range cpu_cache.flush_user_range
178 #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
179 #define __cpuc_coherent_user_range cpu_cache.coherent_user_range
180 #define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
183 * These are private to the dma-mapping API. Do not use directly.
184 * Their sole purpose is to ensure that data held in the cache
185 * is visible to DMA, or data written by DMA to system memory is
186 * visible to the CPU.
188 #define dmac_inv_range cpu_cache.dma_inv_range
189 #define dmac_clean_range cpu_cache.dma_clean_range
190 #define dmac_flush_range cpu_cache.dma_flush_range
192 #else
194 #define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
195 #define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
196 #define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
197 #define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
198 #define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
199 #define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
201 extern void __cpuc_flush_kern_all(void);
202 extern void __cpuc_flush_user_all(void);
203 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
204 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
205 extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
206 extern void __cpuc_flush_dcache_page(void *);
209 * These are private to the dma-mapping API. Do not use directly.
210 * Their sole purpose is to ensure that data held in the cache
211 * is visible to DMA, or data written by DMA to system memory is
212 * visible to the CPU.
214 #define dmac_inv_range __glue(_CACHE,_dma_inv_range)
215 #define dmac_clean_range __glue(_CACHE,_dma_clean_range)
216 #define dmac_flush_range __glue(_CACHE,_dma_flush_range)
218 extern void dmac_inv_range(unsigned long, unsigned long);
219 extern void dmac_clean_range(unsigned long, unsigned long);
220 extern void dmac_flush_range(unsigned long, unsigned long);
222 #endif
225 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
226 * vmalloc, ioremap etc) in kernel space for pages. Since the
227 * direct-mappings of these pages may contain cached data, we need
228 * to do a full cache flush to ensure that writebacks don't corrupt
229 * data placed into these pages via the new mappings.
231 #define flush_cache_vmap(start, end) flush_cache_all()
232 #define flush_cache_vunmap(start, end) flush_cache_all()
235 * Copy user data from/to a page which is mapped into a different
236 * processes address space. Really, we want to allow our "user
237 * space" model to handle this.
239 #define copy_to_user_page(vma, page, vaddr, dst, src, len) \
240 do { \
241 flush_cache_page(vma, vaddr, page_to_pfn(page));\
242 memcpy(dst, src, len); \
243 flush_dcache_page(page); \
244 } while (0)
246 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
247 do { \
248 flush_cache_page(vma, vaddr, page_to_pfn(page));\
249 memcpy(dst, src, len); \
250 } while (0)
253 * Convert calls to our calling convention.
255 #define flush_cache_all() __cpuc_flush_kern_all()
257 static inline void flush_cache_mm(struct mm_struct *mm)
259 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
260 __cpuc_flush_user_all();
263 static inline void
264 flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
266 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
267 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
268 vma->vm_flags);
271 static inline void
272 flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
274 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
275 unsigned long addr = user_addr & PAGE_MASK;
276 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
281 * flush_cache_user_range is used when we want to ensure that the
282 * Harvard caches are synchronised for the user space address range.
283 * This is used for the ARM private sys_cacheflush system call.
285 #define flush_cache_user_range(vma,start,end) \
286 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
289 * Perform necessary cache operations to ensure that data previously
290 * stored within this range of addresses can be executed by the CPU.
292 #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
295 * Perform necessary cache operations to ensure that the TLB will
296 * see data written in the specified area.
298 #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
301 * flush_dcache_page is used when the kernel has written to the page
302 * cache page at virtual address page->virtual.
304 * If this page isn't mapped (ie, page_mapping == NULL), or it might
305 * have userspace mappings, then we _must_ always clean + invalidate
306 * the dcache entries associated with the kernel mapping.
308 * Otherwise we can defer the operation, and clean the cache when we are
309 * about to change to user space. This is the same method as used on SPARC64.
310 * See update_mmu_cache for the user space part.
312 extern void flush_dcache_page(struct page *);
314 #define flush_dcache_mmap_lock(mapping) \
315 write_lock_irq(&(mapping)->tree_lock)
316 #define flush_dcache_mmap_unlock(mapping) \
317 write_unlock_irq(&(mapping)->tree_lock)
319 #define flush_icache_user_range(vma,page,addr,len) \
320 flush_dcache_page(page)
323 * We don't appear to need to do anything here. In fact, if we did, we'd
324 * duplicate cache flushing elsewhere performed by flush_dcache_page().
326 #define flush_icache_page(vma,page) do { } while (0)
328 #define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
329 #define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25))
330 #define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25))
331 #define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
332 #define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
334 #if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
336 #define cache_is_vivt() 1
337 #define cache_is_vipt() 0
338 #define cache_is_vipt_nonaliasing() 0
339 #define cache_is_vipt_aliasing() 0
341 #elif defined(CONFIG_CPU_CACHE_VIPT)
343 #define cache_is_vivt() 0
344 #define cache_is_vipt() 1
345 #define cache_is_vipt_nonaliasing() \
346 ({ \
347 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
348 __cacheid_vipt_nonaliasing(__val); \
351 #define cache_is_vipt_aliasing() \
352 ({ \
353 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
354 __cacheid_vipt_aliasing(__val); \
357 #else
359 #define cache_is_vivt() \
360 ({ \
361 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
362 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \
365 #define cache_is_vipt() \
366 ({ \
367 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
368 __cacheid_present(__val) && __cacheid_vipt(__val); \
371 #define cache_is_vipt_nonaliasing() \
372 ({ \
373 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
374 __cacheid_present(__val) && \
375 __cacheid_vipt_nonaliasing(__val); \
378 #define cache_is_vipt_aliasing() \
379 ({ \
380 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
381 __cacheid_present(__val) && \
382 __cacheid_vipt_aliasing(__val); \
385 #endif
387 #endif