Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / reiserfs / stree.c
blob73ec5212178b71b38c4636ab8faace2b86662d85
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 /*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
12 * This file contains functions dealing with S+tree
14 * B_IS_IN_TREE
15 * copy_item_head
16 * comp_short_keys
17 * comp_keys
18 * comp_short_le_keys
19 * le_key2cpu_key
20 * comp_le_keys
21 * bin_search
22 * get_lkey
23 * get_rkey
24 * key_in_buffer
25 * decrement_bcount
26 * decrement_counters_in_path
27 * reiserfs_check_path
28 * pathrelse_and_restore
29 * pathrelse
30 * search_by_key_reada
31 * search_by_key
32 * search_for_position_by_key
33 * comp_items
34 * prepare_for_direct_item
35 * prepare_for_direntry_item
36 * prepare_for_delete_or_cut
37 * calc_deleted_bytes_number
38 * init_tb_struct
39 * padd_item
40 * reiserfs_delete_item
41 * reiserfs_delete_solid_item
42 * reiserfs_delete_object
43 * maybe_indirect_to_direct
44 * indirect_to_direct_roll_back
45 * reiserfs_cut_from_item
46 * truncate_directory
47 * reiserfs_do_truncate
48 * reiserfs_paste_into_item
49 * reiserfs_insert_item
52 #include <linux/config.h>
53 #include <linux/time.h>
54 #include <linux/string.h>
55 #include <linux/pagemap.h>
56 #include <linux/reiserfs_fs.h>
57 #include <linux/smp_lock.h>
58 #include <linux/buffer_head.h>
59 #include <linux/quotaops.h>
61 /* Does the buffer contain a disk block which is in the tree. */
62 inline int B_IS_IN_TREE (const struct buffer_head * p_s_bh)
65 RFALSE( B_LEVEL (p_s_bh) > MAX_HEIGHT,
66 "PAP-1010: block (%b) has too big level (%z)", p_s_bh, p_s_bh);
68 return ( B_LEVEL (p_s_bh) != FREE_LEVEL );
72 // to gets item head in le form
74 inline void copy_item_head(struct item_head * p_v_to,
75 const struct item_head * p_v_from)
77 memcpy (p_v_to, p_v_from, IH_SIZE);
81 /* k1 is pointer to on-disk structure which is stored in little-endian
82 form. k2 is pointer to cpu variable. For key of items of the same
83 object this returns 0.
84 Returns: -1 if key1 < key2
85 0 if key1 == key2
86 1 if key1 > key2 */
87 inline int comp_short_keys (const struct reiserfs_key * le_key,
88 const struct cpu_key * cpu_key)
90 __u32 * p_s_le_u32, * p_s_cpu_u32;
91 int n_key_length = REISERFS_SHORT_KEY_LEN;
93 p_s_le_u32 = (__u32 *)le_key;
94 p_s_cpu_u32 = (__u32 *)&cpu_key->on_disk_key;
95 for( ; n_key_length--; ++p_s_le_u32, ++p_s_cpu_u32 ) {
96 if ( le32_to_cpu (*p_s_le_u32) < *p_s_cpu_u32 )
97 return -1;
98 if ( le32_to_cpu (*p_s_le_u32) > *p_s_cpu_u32 )
99 return 1;
102 return 0;
106 /* k1 is pointer to on-disk structure which is stored in little-endian
107 form. k2 is pointer to cpu variable.
108 Compare keys using all 4 key fields.
109 Returns: -1 if key1 < key2 0
110 if key1 = key2 1 if key1 > key2 */
111 static inline int comp_keys (const struct reiserfs_key * le_key, const struct cpu_key * cpu_key)
113 int retval;
115 retval = comp_short_keys (le_key, cpu_key);
116 if (retval)
117 return retval;
118 if (le_key_k_offset (le_key_version(le_key), le_key) < cpu_key_k_offset (cpu_key))
119 return -1;
120 if (le_key_k_offset (le_key_version(le_key), le_key) > cpu_key_k_offset (cpu_key))
121 return 1;
123 if (cpu_key->key_length == 3)
124 return 0;
126 /* this part is needed only when tail conversion is in progress */
127 if (le_key_k_type (le_key_version(le_key), le_key) < cpu_key_k_type (cpu_key))
128 return -1;
130 if (le_key_k_type (le_key_version(le_key), le_key) > cpu_key_k_type (cpu_key))
131 return 1;
133 return 0;
137 inline int comp_short_le_keys (const struct reiserfs_key * key1, const struct reiserfs_key * key2)
139 __u32 * p_s_1_u32, * p_s_2_u32;
140 int n_key_length = REISERFS_SHORT_KEY_LEN;
142 p_s_1_u32 = (__u32 *)key1;
143 p_s_2_u32 = (__u32 *)key2;
144 for( ; n_key_length--; ++p_s_1_u32, ++p_s_2_u32 ) {
145 if ( le32_to_cpu (*p_s_1_u32) < le32_to_cpu (*p_s_2_u32) )
146 return -1;
147 if ( le32_to_cpu (*p_s_1_u32) > le32_to_cpu (*p_s_2_u32) )
148 return 1;
150 return 0;
153 inline void le_key2cpu_key (struct cpu_key * to, const struct reiserfs_key * from)
155 to->on_disk_key.k_dir_id = le32_to_cpu (from->k_dir_id);
156 to->on_disk_key.k_objectid = le32_to_cpu (from->k_objectid);
158 // find out version of the key
159 to->version = le_key_version (from);
160 if (to->version == KEY_FORMAT_3_5) {
161 to->on_disk_key.u.k_offset_v1.k_offset = le32_to_cpu (from->u.k_offset_v1.k_offset);
162 to->on_disk_key.u.k_offset_v1.k_uniqueness = le32_to_cpu (from->u.k_offset_v1.k_uniqueness);
163 } else {
164 to->on_disk_key.u.k_offset_v2.k_offset = offset_v2_k_offset(&from->u.k_offset_v2);
165 to->on_disk_key.u.k_offset_v2.k_type = offset_v2_k_type(&from->u.k_offset_v2);
171 // this does not say which one is bigger, it only returns 1 if keys
172 // are not equal, 0 otherwise
173 inline int comp_le_keys (const struct reiserfs_key * k1, const struct reiserfs_key * k2)
175 return memcmp (k1, k2, sizeof (struct reiserfs_key));
178 /**************************************************************************
179 * Binary search toolkit function *
180 * Search for an item in the array by the item key *
181 * Returns: 1 if found, 0 if not found; *
182 * *p_n_pos = number of the searched element if found, else the *
183 * number of the first element that is larger than p_v_key. *
184 **************************************************************************/
185 /* For those not familiar with binary search: n_lbound is the leftmost item that it
186 could be, n_rbound the rightmost item that it could be. We examine the item
187 halfway between n_lbound and n_rbound, and that tells us either that we can increase
188 n_lbound, or decrease n_rbound, or that we have found it, or if n_lbound <= n_rbound that
189 there are no possible items, and we have not found it. With each examination we
190 cut the number of possible items it could be by one more than half rounded down,
191 or we find it. */
192 static inline int bin_search (
193 const void * p_v_key, /* Key to search for. */
194 const void * p_v_base,/* First item in the array. */
195 int p_n_num, /* Number of items in the array. */
196 int p_n_width, /* Item size in the array.
197 searched. Lest the reader be
198 confused, note that this is crafted
199 as a general function, and when it
200 is applied specifically to the array
201 of item headers in a node, p_n_width
202 is actually the item header size not
203 the item size. */
204 int * p_n_pos /* Number of the searched for element. */
206 int n_rbound, n_lbound, n_j;
208 for ( n_j = ((n_rbound = p_n_num - 1) + (n_lbound = 0))/2; n_lbound <= n_rbound; n_j = (n_rbound + n_lbound)/2 )
209 switch( comp_keys((struct reiserfs_key *)((char * )p_v_base + n_j * p_n_width), (struct cpu_key *)p_v_key) ) {
210 case -1: n_lbound = n_j + 1; continue;
211 case 1: n_rbound = n_j - 1; continue;
212 case 0: *p_n_pos = n_j; return ITEM_FOUND; /* Key found in the array. */
215 /* bin_search did not find given key, it returns position of key,
216 that is minimal and greater than the given one. */
217 *p_n_pos = n_lbound;
218 return ITEM_NOT_FOUND;
221 #ifdef CONFIG_REISERFS_CHECK
222 extern struct tree_balance * cur_tb;
223 #endif
227 /* Minimal possible key. It is never in the tree. */
228 const struct reiserfs_key MIN_KEY = {0, 0, {{0, 0},}};
230 /* Maximal possible key. It is never in the tree. */
231 const struct reiserfs_key MAX_KEY = {0xffffffff, 0xffffffff, {{0xffffffff, 0xffffffff},}};
234 /* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom
235 of the path, and going upwards. We must check the path's validity at each step. If the key is not in
236 the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this
237 case we return a special key, either MIN_KEY or MAX_KEY. */
238 static inline const struct reiserfs_key * get_lkey (
239 const struct path * p_s_chk_path,
240 const struct super_block * p_s_sb
242 int n_position, n_path_offset = p_s_chk_path->path_length;
243 struct buffer_head * p_s_parent;
245 RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
246 "PAP-5010: invalid offset in the path");
248 /* While not higher in path than first element. */
249 while ( n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET ) {
251 RFALSE( ! buffer_uptodate(PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
252 "PAP-5020: parent is not uptodate");
254 /* Parent at the path is not in the tree now. */
255 if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)) )
256 return &MAX_KEY;
257 /* Check whether position in the parent is correct. */
258 if ( (n_position = PATH_OFFSET_POSITION(p_s_chk_path, n_path_offset)) > B_NR_ITEMS(p_s_parent) )
259 return &MAX_KEY;
260 /* Check whether parent at the path really points to the child. */
261 if ( B_N_CHILD_NUM(p_s_parent, n_position) !=
262 PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset + 1)->b_blocknr )
263 return &MAX_KEY;
264 /* Return delimiting key if position in the parent is not equal to zero. */
265 if ( n_position )
266 return B_N_PDELIM_KEY(p_s_parent, n_position - 1);
268 /* Return MIN_KEY if we are in the root of the buffer tree. */
269 if ( PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
270 SB_ROOT_BLOCK (p_s_sb) )
271 return &MIN_KEY;
272 return &MAX_KEY;
276 /* Get delimiting key of the buffer at the path and its right neighbor. */
277 inline const struct reiserfs_key * get_rkey (
278 const struct path * p_s_chk_path,
279 const struct super_block * p_s_sb
281 int n_position,
282 n_path_offset = p_s_chk_path->path_length;
283 struct buffer_head * p_s_parent;
285 RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET,
286 "PAP-5030: invalid offset in the path");
288 while ( n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET ) {
290 RFALSE( ! buffer_uptodate(PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)),
291 "PAP-5040: parent is not uptodate");
293 /* Parent at the path is not in the tree now. */
294 if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)) )
295 return &MIN_KEY;
296 /* Check whether position in the parent is correct. */
297 if ( (n_position = PATH_OFFSET_POSITION(p_s_chk_path, n_path_offset)) > B_NR_ITEMS(p_s_parent) )
298 return &MIN_KEY;
299 /* Check whether parent at the path really points to the child. */
300 if ( B_N_CHILD_NUM(p_s_parent, n_position) !=
301 PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset + 1)->b_blocknr )
302 return &MIN_KEY;
303 /* Return delimiting key if position in the parent is not the last one. */
304 if ( n_position != B_NR_ITEMS(p_s_parent) )
305 return B_N_PDELIM_KEY(p_s_parent, n_position);
307 /* Return MAX_KEY if we are in the root of the buffer tree. */
308 if ( PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
309 SB_ROOT_BLOCK (p_s_sb) )
310 return &MAX_KEY;
311 return &MIN_KEY;
315 /* Check whether a key is contained in the tree rooted from a buffer at a path. */
316 /* This works by looking at the left and right delimiting keys for the buffer in the last path_element in
317 the path. These delimiting keys are stored at least one level above that buffer in the tree. If the
318 buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in
319 this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */
320 static inline int key_in_buffer (
321 struct path * p_s_chk_path, /* Path which should be checked. */
322 const struct cpu_key * p_s_key, /* Key which should be checked. */
323 struct super_block * p_s_sb /* Super block pointer. */
326 RFALSE( ! p_s_key || p_s_chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET ||
327 p_s_chk_path->path_length > MAX_HEIGHT,
328 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
329 p_s_key, p_s_chk_path->path_length);
330 RFALSE( !PATH_PLAST_BUFFER(p_s_chk_path)->b_bdev,
331 "PAP-5060: device must not be NODEV");
333 if ( comp_keys(get_lkey(p_s_chk_path, p_s_sb), p_s_key) == 1 )
334 /* left delimiting key is bigger, that the key we look for */
335 return 0;
336 // if ( comp_keys(p_s_key, get_rkey(p_s_chk_path, p_s_sb)) != -1 )
337 if ( comp_keys(get_rkey(p_s_chk_path, p_s_sb), p_s_key) != 1 )
338 /* p_s_key must be less than right delimitiing key */
339 return 0;
340 return 1;
344 inline void decrement_bcount(
345 struct buffer_head * p_s_bh
346 ) {
347 if ( p_s_bh ) {
348 if ( atomic_read (&(p_s_bh->b_count)) ) {
349 put_bh(p_s_bh) ;
350 return;
352 reiserfs_panic(NULL, "PAP-5070: decrement_bcount: trying to free free buffer %b", p_s_bh);
357 /* Decrement b_count field of the all buffers in the path. */
358 void decrement_counters_in_path (
359 struct path * p_s_search_path
361 int n_path_offset = p_s_search_path->path_length;
363 RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET ||
364 n_path_offset > EXTENDED_MAX_HEIGHT - 1,
365 "PAP-5080: invalid path offset of %d", n_path_offset);
367 while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET ) {
368 struct buffer_head * bh;
370 bh = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--);
371 decrement_bcount (bh);
373 p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
377 int reiserfs_check_path(struct path *p) {
378 RFALSE( p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
379 "path not properly relsed") ;
380 return 0 ;
384 /* Release all buffers in the path. Restore dirty bits clean
385 ** when preparing the buffer for the log
387 ** only called from fix_nodes()
389 void pathrelse_and_restore (
390 struct super_block *s,
391 struct path * p_s_search_path
393 int n_path_offset = p_s_search_path->path_length;
395 RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
396 "clm-4000: invalid path offset");
398 while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET ) {
399 reiserfs_restore_prepared_buffer(s, PATH_OFFSET_PBUFFER(p_s_search_path,
400 n_path_offset));
401 brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));
403 p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
406 /* Release all buffers in the path. */
407 void pathrelse (
408 struct path * p_s_search_path
410 int n_path_offset = p_s_search_path->path_length;
412 RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
413 "PAP-5090: invalid path offset");
415 while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET )
416 brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--));
418 p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
423 static int is_leaf (char * buf, int blocksize, struct buffer_head * bh)
425 struct block_head * blkh;
426 struct item_head * ih;
427 int used_space;
428 int prev_location;
429 int i;
430 int nr;
432 blkh = (struct block_head *)buf;
433 if ( blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
434 reiserfs_warning (NULL, "is_leaf: this should be caught earlier");
435 return 0;
438 nr = blkh_nr_item(blkh);
439 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
440 /* item number is too big or too small */
441 reiserfs_warning (NULL, "is_leaf: nr_item seems wrong: %z", bh);
442 return 0;
444 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
445 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location (ih));
446 if (used_space != blocksize - blkh_free_space(blkh)) {
447 /* free space does not match to calculated amount of use space */
448 reiserfs_warning (NULL, "is_leaf: free space seems wrong: %z", bh);
449 return 0;
452 // FIXME: it is_leaf will hit performance too much - we may have
453 // return 1 here
455 /* check tables of item heads */
456 ih = (struct item_head *)(buf + BLKH_SIZE);
457 prev_location = blocksize;
458 for (i = 0; i < nr; i ++, ih ++) {
459 if ( le_ih_k_type(ih) == TYPE_ANY) {
460 reiserfs_warning (NULL, "is_leaf: wrong item type for item %h",ih);
461 return 0;
463 if (ih_location (ih) >= blocksize || ih_location (ih) < IH_SIZE * nr) {
464 reiserfs_warning (NULL, "is_leaf: item location seems wrong: %h", ih);
465 return 0;
467 if (ih_item_len (ih) < 1 || ih_item_len (ih) > MAX_ITEM_LEN (blocksize)) {
468 reiserfs_warning (NULL, "is_leaf: item length seems wrong: %h", ih);
469 return 0;
471 if (prev_location - ih_location (ih) != ih_item_len (ih)) {
472 reiserfs_warning (NULL, "is_leaf: item location seems wrong (second one): %h", ih);
473 return 0;
475 prev_location = ih_location (ih);
478 // one may imagine much more checks
479 return 1;
483 /* returns 1 if buf looks like an internal node, 0 otherwise */
484 static int is_internal (char * buf, int blocksize, struct buffer_head * bh)
486 struct block_head * blkh;
487 int nr;
488 int used_space;
490 blkh = (struct block_head *)buf;
491 nr = blkh_level(blkh);
492 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
493 /* this level is not possible for internal nodes */
494 reiserfs_warning (NULL, "is_internal: this should be caught earlier");
495 return 0;
498 nr = blkh_nr_item(blkh);
499 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
500 /* for internal which is not root we might check min number of keys */
501 reiserfs_warning (NULL, "is_internal: number of key seems wrong: %z", bh);
502 return 0;
505 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
506 if (used_space != blocksize - blkh_free_space(blkh)) {
507 reiserfs_warning (NULL, "is_internal: free space seems wrong: %z", bh);
508 return 0;
511 // one may imagine much more checks
512 return 1;
516 // make sure that bh contains formatted node of reiserfs tree of
517 // 'level'-th level
518 static int is_tree_node (struct buffer_head * bh, int level)
520 if (B_LEVEL (bh) != level) {
521 reiserfs_warning (NULL, "is_tree_node: node level %d does not match to the expected one %d",
522 B_LEVEL (bh), level);
523 return 0;
525 if (level == DISK_LEAF_NODE_LEVEL)
526 return is_leaf (bh->b_data, bh->b_size, bh);
528 return is_internal (bh->b_data, bh->b_size, bh);
533 #define SEARCH_BY_KEY_READA 16
535 /* The function is NOT SCHEDULE-SAFE! */
536 static void search_by_key_reada (struct super_block * s,
537 struct buffer_head **bh,
538 unsigned long *b, int num)
540 int i,j;
542 for (i = 0 ; i < num ; i++) {
543 bh[i] = sb_getblk (s, b[i]);
545 for (j = 0 ; j < i ; j++) {
547 * note, this needs attention if we are getting rid of the BKL
548 * you have to make sure the prepared bit isn't set on this buffer
550 if (!buffer_uptodate(bh[j]))
551 ll_rw_block(READA, 1, bh + j);
552 brelse(bh[j]);
556 /**************************************************************************
557 * Algorithm SearchByKey *
558 * look for item in the Disk S+Tree by its key *
559 * Input: p_s_sb - super block *
560 * p_s_key - pointer to the key to search *
561 * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR *
562 * p_s_search_path - path from the root to the needed leaf *
563 **************************************************************************/
565 /* This function fills up the path from the root to the leaf as it
566 descends the tree looking for the key. It uses reiserfs_bread to
567 try to find buffers in the cache given their block number. If it
568 does not find them in the cache it reads them from disk. For each
569 node search_by_key finds using reiserfs_bread it then uses
570 bin_search to look through that node. bin_search will find the
571 position of the block_number of the next node if it is looking
572 through an internal node. If it is looking through a leaf node
573 bin_search will find the position of the item which has key either
574 equal to given key, or which is the maximal key less than the given
575 key. search_by_key returns a path that must be checked for the
576 correctness of the top of the path but need not be checked for the
577 correctness of the bottom of the path */
578 /* The function is NOT SCHEDULE-SAFE! */
579 int search_by_key (struct super_block * p_s_sb,
580 const struct cpu_key * p_s_key, /* Key to search. */
581 struct path * p_s_search_path, /* This structure was
582 allocated and initialized
583 by the calling
584 function. It is filled up
585 by this function. */
586 int n_stop_level /* How far down the tree to search. To
587 stop at leaf level - set to
588 DISK_LEAF_NODE_LEVEL */
590 int n_block_number;
591 int expected_level;
592 struct buffer_head * p_s_bh;
593 struct path_element * p_s_last_element;
594 int n_node_level, n_retval;
595 int right_neighbor_of_leaf_node;
596 int fs_gen;
597 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
598 unsigned long reada_blocks[SEARCH_BY_KEY_READA];
599 int reada_count = 0;
601 #ifdef CONFIG_REISERFS_CHECK
602 int n_repeat_counter = 0;
603 #endif
605 PROC_INFO_INC( p_s_sb, search_by_key );
607 /* As we add each node to a path we increase its count. This means that
608 we must be careful to release all nodes in a path before we either
609 discard the path struct or re-use the path struct, as we do here. */
611 decrement_counters_in_path(p_s_search_path);
613 right_neighbor_of_leaf_node = 0;
615 /* With each iteration of this loop we search through the items in the
616 current node, and calculate the next current node(next path element)
617 for the next iteration of this loop.. */
618 n_block_number = SB_ROOT_BLOCK (p_s_sb);
619 expected_level = -1;
620 while ( 1 ) {
622 #ifdef CONFIG_REISERFS_CHECK
623 if ( !(++n_repeat_counter % 50000) )
624 reiserfs_warning (p_s_sb, "PAP-5100: search_by_key: %s:"
625 "there were %d iterations of while loop "
626 "looking for key %K",
627 current->comm, n_repeat_counter, p_s_key);
628 #endif
630 /* prep path to have another element added to it. */
631 p_s_last_element = PATH_OFFSET_PELEMENT(p_s_search_path, ++p_s_search_path->path_length);
632 fs_gen = get_generation (p_s_sb);
634 /* Read the next tree node, and set the last element in the path to
635 have a pointer to it. */
636 if ((p_s_bh = p_s_last_element->pe_buffer =
637 sb_getblk(p_s_sb, n_block_number)) ) {
638 if (!buffer_uptodate(p_s_bh) && reada_count > 1) {
639 search_by_key_reada (p_s_sb, reada_bh,
640 reada_blocks, reada_count);
642 ll_rw_block(READ, 1, &p_s_bh);
643 wait_on_buffer(p_s_bh);
644 if (!buffer_uptodate(p_s_bh))
645 goto io_error;
646 } else {
647 io_error:
648 p_s_search_path->path_length --;
649 pathrelse(p_s_search_path);
650 return IO_ERROR;
652 reada_count = 0;
653 if (expected_level == -1)
654 expected_level = SB_TREE_HEIGHT (p_s_sb);
655 expected_level --;
657 /* It is possible that schedule occurred. We must check whether the key
658 to search is still in the tree rooted from the current buffer. If
659 not then repeat search from the root. */
660 if ( fs_changed (fs_gen, p_s_sb) &&
661 (!B_IS_IN_TREE (p_s_bh) ||
662 B_LEVEL(p_s_bh) != expected_level ||
663 !key_in_buffer(p_s_search_path, p_s_key, p_s_sb))) {
664 PROC_INFO_INC( p_s_sb, search_by_key_fs_changed );
665 PROC_INFO_INC( p_s_sb, search_by_key_restarted );
666 PROC_INFO_INC( p_s_sb, sbk_restarted[ expected_level - 1 ] );
667 decrement_counters_in_path(p_s_search_path);
669 /* Get the root block number so that we can repeat the search
670 starting from the root. */
671 n_block_number = SB_ROOT_BLOCK (p_s_sb);
672 expected_level = -1;
673 right_neighbor_of_leaf_node = 0;
675 /* repeat search from the root */
676 continue;
679 /* only check that the key is in the buffer if p_s_key is not
680 equal to the MAX_KEY. Latter case is only possible in
681 "finish_unfinished()" processing during mount. */
682 RFALSE( comp_keys( &MAX_KEY, p_s_key ) &&
683 ! key_in_buffer(p_s_search_path, p_s_key, p_s_sb),
684 "PAP-5130: key is not in the buffer");
685 #ifdef CONFIG_REISERFS_CHECK
686 if ( cur_tb ) {
687 print_cur_tb ("5140");
688 reiserfs_panic(p_s_sb, "PAP-5140: search_by_key: schedule occurred in do_balance!");
690 #endif
692 // make sure, that the node contents look like a node of
693 // certain level
694 if (!is_tree_node (p_s_bh, expected_level)) {
695 reiserfs_warning (p_s_sb, "vs-5150: search_by_key: "
696 "invalid format found in block %ld. Fsck?",
697 p_s_bh->b_blocknr);
698 pathrelse (p_s_search_path);
699 return IO_ERROR;
702 /* ok, we have acquired next formatted node in the tree */
703 n_node_level = B_LEVEL (p_s_bh);
705 PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level - 1 );
707 RFALSE( n_node_level < n_stop_level,
708 "vs-5152: tree level (%d) is less than stop level (%d)",
709 n_node_level, n_stop_level);
711 n_retval = bin_search( p_s_key, B_N_PITEM_HEAD(p_s_bh, 0),
712 B_NR_ITEMS(p_s_bh),
713 ( n_node_level == DISK_LEAF_NODE_LEVEL ) ? IH_SIZE : KEY_SIZE,
714 &(p_s_last_element->pe_position));
715 if (n_node_level == n_stop_level) {
716 return n_retval;
719 /* we are not in the stop level */
720 if (n_retval == ITEM_FOUND)
721 /* item has been found, so we choose the pointer which is to the right of the found one */
722 p_s_last_element->pe_position++;
724 /* if item was not found we choose the position which is to
725 the left of the found item. This requires no code,
726 bin_search did it already.*/
728 /* So we have chosen a position in the current node which is
729 an internal node. Now we calculate child block number by
730 position in the node. */
731 n_block_number = B_N_CHILD_NUM(p_s_bh, p_s_last_element->pe_position);
733 /* if we are going to read leaf nodes, try for read ahead as well */
734 if ((p_s_search_path->reada & PATH_READA) &&
735 n_node_level == DISK_LEAF_NODE_LEVEL + 1)
737 int pos = p_s_last_element->pe_position;
738 int limit = B_NR_ITEMS(p_s_bh);
739 struct reiserfs_key *le_key;
741 if (p_s_search_path->reada & PATH_READA_BACK)
742 limit = 0;
743 while(reada_count < SEARCH_BY_KEY_READA) {
744 if (pos == limit)
745 break;
746 reada_blocks[reada_count++] = B_N_CHILD_NUM(p_s_bh, pos);
747 if (p_s_search_path->reada & PATH_READA_BACK)
748 pos--;
749 else
750 pos++;
753 * check to make sure we're in the same object
755 le_key = B_N_PDELIM_KEY(p_s_bh, pos);
756 if (le32_to_cpu(le_key->k_objectid) !=
757 p_s_key->on_disk_key.k_objectid)
759 break;
767 /* Form the path to an item and position in this item which contains
768 file byte defined by p_s_key. If there is no such item
769 corresponding to the key, we point the path to the item with
770 maximal key less than p_s_key, and *p_n_pos_in_item is set to one
771 past the last entry/byte in the item. If searching for entry in a
772 directory item, and it is not found, *p_n_pos_in_item is set to one
773 entry more than the entry with maximal key which is less than the
774 sought key.
776 Note that if there is no entry in this same node which is one more,
777 then we point to an imaginary entry. for direct items, the
778 position is in units of bytes, for indirect items the position is
779 in units of blocknr entries, for directory items the position is in
780 units of directory entries. */
782 /* The function is NOT SCHEDULE-SAFE! */
783 int search_for_position_by_key (struct super_block * p_s_sb, /* Pointer to the super block. */
784 const struct cpu_key * p_cpu_key, /* Key to search (cpu variable) */
785 struct path * p_s_search_path /* Filled up by this function. */
787 struct item_head * p_le_ih; /* pointer to on-disk structure */
788 int n_blk_size;
789 loff_t item_offset, offset;
790 struct reiserfs_dir_entry de;
791 int retval;
793 /* If searching for directory entry. */
794 if ( is_direntry_cpu_key (p_cpu_key) )
795 return search_by_entry_key (p_s_sb, p_cpu_key, p_s_search_path, &de);
797 /* If not searching for directory entry. */
799 /* If item is found. */
800 retval = search_item (p_s_sb, p_cpu_key, p_s_search_path);
801 if (retval == IO_ERROR)
802 return retval;
803 if ( retval == ITEM_FOUND ) {
805 RFALSE( ! ih_item_len(
806 B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path),
807 PATH_LAST_POSITION(p_s_search_path))),
808 "PAP-5165: item length equals zero");
810 pos_in_item(p_s_search_path) = 0;
811 return POSITION_FOUND;
814 RFALSE( ! PATH_LAST_POSITION(p_s_search_path),
815 "PAP-5170: position equals zero");
817 /* Item is not found. Set path to the previous item. */
818 p_le_ih = B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path), --PATH_LAST_POSITION(p_s_search_path));
819 n_blk_size = p_s_sb->s_blocksize;
821 if (comp_short_keys (&(p_le_ih->ih_key), p_cpu_key)) {
822 return FILE_NOT_FOUND;
825 // FIXME: quite ugly this far
827 item_offset = le_ih_k_offset (p_le_ih);
828 offset = cpu_key_k_offset (p_cpu_key);
830 /* Needed byte is contained in the item pointed to by the path.*/
831 if (item_offset <= offset &&
832 item_offset + op_bytes_number (p_le_ih, n_blk_size) > offset) {
833 pos_in_item (p_s_search_path) = offset - item_offset;
834 if ( is_indirect_le_ih(p_le_ih) ) {
835 pos_in_item (p_s_search_path) /= n_blk_size;
837 return POSITION_FOUND;
840 /* Needed byte is not contained in the item pointed to by the
841 path. Set pos_in_item out of the item. */
842 if ( is_indirect_le_ih (p_le_ih) )
843 pos_in_item (p_s_search_path) = ih_item_len(p_le_ih) / UNFM_P_SIZE;
844 else
845 pos_in_item (p_s_search_path) = ih_item_len( p_le_ih );
847 return POSITION_NOT_FOUND;
851 /* Compare given item and item pointed to by the path. */
852 int comp_items (const struct item_head * stored_ih, const struct path * p_s_path)
854 struct buffer_head * p_s_bh;
855 struct item_head * ih;
857 /* Last buffer at the path is not in the tree. */
858 if ( ! B_IS_IN_TREE(p_s_bh = PATH_PLAST_BUFFER(p_s_path)) )
859 return 1;
861 /* Last path position is invalid. */
862 if ( PATH_LAST_POSITION(p_s_path) >= B_NR_ITEMS(p_s_bh) )
863 return 1;
865 /* we need only to know, whether it is the same item */
866 ih = get_ih (p_s_path);
867 return memcmp (stored_ih, ih, IH_SIZE);
871 /* unformatted nodes are not logged anymore, ever. This is safe
872 ** now
874 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
876 // block can not be forgotten as it is in I/O or held by someone
877 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
881 // prepare for delete or cut of direct item
882 static inline int prepare_for_direct_item (struct path * path,
883 struct item_head * le_ih,
884 struct inode * inode,
885 loff_t new_file_length,
886 int * cut_size)
888 loff_t round_len;
891 if ( new_file_length == max_reiserfs_offset (inode) ) {
892 /* item has to be deleted */
893 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
894 return M_DELETE;
897 // new file gets truncated
898 if (get_inode_item_key_version (inode) == KEY_FORMAT_3_6) {
900 round_len = ROUND_UP (new_file_length);
901 /* this was n_new_file_length < le_ih ... */
902 if ( round_len < le_ih_k_offset (le_ih) ) {
903 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
904 return M_DELETE; /* Delete this item. */
906 /* Calculate first position and size for cutting from item. */
907 pos_in_item (path) = round_len - (le_ih_k_offset (le_ih) - 1);
908 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
910 return M_CUT; /* Cut from this item. */
914 // old file: items may have any length
916 if ( new_file_length < le_ih_k_offset (le_ih) ) {
917 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
918 return M_DELETE; /* Delete this item. */
920 /* Calculate first position and size for cutting from item. */
921 *cut_size = -(ih_item_len(le_ih) -
922 (pos_in_item (path) = new_file_length + 1 - le_ih_k_offset (le_ih)));
923 return M_CUT; /* Cut from this item. */
927 static inline int prepare_for_direntry_item (struct path * path,
928 struct item_head * le_ih,
929 struct inode * inode,
930 loff_t new_file_length,
931 int * cut_size)
933 if (le_ih_k_offset (le_ih) == DOT_OFFSET &&
934 new_file_length == max_reiserfs_offset (inode)) {
935 RFALSE( ih_entry_count (le_ih) != 2,
936 "PAP-5220: incorrect empty directory item (%h)", le_ih);
937 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
938 return M_DELETE; /* Delete the directory item containing "." and ".." entry. */
941 if ( ih_entry_count (le_ih) == 1 ) {
942 /* Delete the directory item such as there is one record only
943 in this item*/
944 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
945 return M_DELETE;
948 /* Cut one record from the directory item. */
949 *cut_size = -(DEH_SIZE + entry_length (get_last_bh (path), le_ih, pos_in_item (path)));
950 return M_CUT;
954 /* If the path points to a directory or direct item, calculate mode and the size cut, for balance.
955 If the path points to an indirect item, remove some number of its unformatted nodes.
956 In case of file truncate calculate whether this item must be deleted/truncated or last
957 unformatted node of this item will be converted to a direct item.
958 This function returns a determination of what balance mode the calling function should employ. */
959 static char prepare_for_delete_or_cut(
960 struct reiserfs_transaction_handle *th,
961 struct inode * inode,
962 struct path * p_s_path,
963 const struct cpu_key * p_s_item_key,
964 int * p_n_removed, /* Number of unformatted nodes which were removed
965 from end of the file. */
966 int * p_n_cut_size,
967 unsigned long long n_new_file_length /* MAX_KEY_OFFSET in case of delete. */
969 struct super_block * p_s_sb = inode->i_sb;
970 struct item_head * p_le_ih = PATH_PITEM_HEAD(p_s_path);
971 struct buffer_head * p_s_bh = PATH_PLAST_BUFFER(p_s_path);
973 BUG_ON (!th->t_trans_id);
975 /* Stat_data item. */
976 if ( is_statdata_le_ih (p_le_ih) ) {
978 RFALSE( n_new_file_length != max_reiserfs_offset (inode),
979 "PAP-5210: mode must be M_DELETE");
981 *p_n_cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
982 return M_DELETE;
986 /* Directory item. */
987 if ( is_direntry_le_ih (p_le_ih) )
988 return prepare_for_direntry_item (p_s_path, p_le_ih, inode, n_new_file_length, p_n_cut_size);
990 /* Direct item. */
991 if ( is_direct_le_ih (p_le_ih) )
992 return prepare_for_direct_item (p_s_path, p_le_ih, inode, n_new_file_length, p_n_cut_size);
995 /* Case of an indirect item. */
997 int n_unfm_number, /* Number of the item unformatted nodes. */
998 n_counter,
999 n_blk_size;
1000 __u32 * p_n_unfm_pointer; /* Pointer to the unformatted node number. */
1001 __u32 tmp;
1002 struct item_head s_ih; /* Item header. */
1003 char c_mode; /* Returned mode of the balance. */
1004 int need_research;
1007 n_blk_size = p_s_sb->s_blocksize;
1009 /* Search for the needed object indirect item until there are no unformatted nodes to be removed. */
1010 do {
1011 need_research = 0;
1012 p_s_bh = PATH_PLAST_BUFFER(p_s_path);
1013 /* Copy indirect item header to a temp variable. */
1014 copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
1015 /* Calculate number of unformatted nodes in this item. */
1016 n_unfm_number = I_UNFM_NUM(&s_ih);
1018 RFALSE( ! is_indirect_le_ih(&s_ih) || ! n_unfm_number ||
1019 pos_in_item (p_s_path) + 1 != n_unfm_number,
1020 "PAP-5240: invalid item %h "
1021 "n_unfm_number = %d *p_n_pos_in_item = %d",
1022 &s_ih, n_unfm_number, pos_in_item (p_s_path));
1024 /* Calculate balance mode and position in the item to remove unformatted nodes. */
1025 if ( n_new_file_length == max_reiserfs_offset (inode) ) {/* Case of delete. */
1026 pos_in_item (p_s_path) = 0;
1027 *p_n_cut_size = -(IH_SIZE + ih_item_len(&s_ih));
1028 c_mode = M_DELETE;
1030 else { /* Case of truncate. */
1031 if ( n_new_file_length < le_ih_k_offset (&s_ih) ) {
1032 pos_in_item (p_s_path) = 0;
1033 *p_n_cut_size = -(IH_SIZE + ih_item_len(&s_ih));
1034 c_mode = M_DELETE; /* Delete this item. */
1036 else {
1037 /* indirect item must be truncated starting from *p_n_pos_in_item-th position */
1038 pos_in_item (p_s_path) = (n_new_file_length + n_blk_size - le_ih_k_offset (&s_ih) ) >> p_s_sb->s_blocksize_bits;
1040 RFALSE( pos_in_item (p_s_path) > n_unfm_number,
1041 "PAP-5250: invalid position in the item");
1043 /* Either convert last unformatted node of indirect item to direct item or increase
1044 its free space. */
1045 if ( pos_in_item (p_s_path) == n_unfm_number ) {
1046 *p_n_cut_size = 0; /* Nothing to cut. */
1047 return M_CONVERT; /* Maybe convert last unformatted node to the direct item. */
1049 /* Calculate size to cut. */
1050 *p_n_cut_size = -(ih_item_len(&s_ih) - pos_in_item(p_s_path) * UNFM_P_SIZE);
1052 c_mode = M_CUT; /* Cut from this indirect item. */
1056 RFALSE( n_unfm_number <= pos_in_item (p_s_path),
1057 "PAP-5260: invalid position in the indirect item");
1059 /* pointers to be cut */
1060 n_unfm_number -= pos_in_item (p_s_path);
1061 /* Set pointer to the last unformatted node pointer that is to be cut. */
1062 p_n_unfm_pointer = (__u32 *)B_I_PITEM(p_s_bh, &s_ih) + I_UNFM_NUM(&s_ih) - 1 - *p_n_removed;
1065 /* We go through the unformatted nodes pointers of the indirect
1066 item and look for the unformatted nodes in the cache. If we
1067 found some of them we free it, zero corresponding indirect item
1068 entry and log buffer containing that indirect item. For this we
1069 need to prepare last path element for logging. If some
1070 unformatted node has b_count > 1 we must not free this
1071 unformatted node since it is in use. */
1072 reiserfs_prepare_for_journal(p_s_sb, p_s_bh, 1);
1073 // note: path could be changed, first line in for loop takes care
1074 // of it
1076 for (n_counter = *p_n_removed;
1077 n_counter < n_unfm_number; n_counter++, p_n_unfm_pointer-- ) {
1079 cond_resched();
1080 if (item_moved (&s_ih, p_s_path)) {
1081 need_research = 1 ;
1082 break;
1084 RFALSE( p_n_unfm_pointer < (__u32 *)B_I_PITEM(p_s_bh, &s_ih) ||
1085 p_n_unfm_pointer > (__u32 *)B_I_PITEM(p_s_bh, &s_ih) + I_UNFM_NUM(&s_ih) - 1,
1086 "vs-5265: pointer out of range");
1088 /* Hole, nothing to remove. */
1089 if ( ! get_block_num(p_n_unfm_pointer,0) ) {
1090 (*p_n_removed)++;
1091 continue;
1094 (*p_n_removed)++;
1096 tmp = get_block_num(p_n_unfm_pointer,0);
1097 put_block_num(p_n_unfm_pointer, 0, 0);
1098 journal_mark_dirty (th, p_s_sb, p_s_bh);
1099 reiserfs_free_block(th, inode, tmp, 1);
1100 if ( item_moved (&s_ih, p_s_path) ) {
1101 need_research = 1;
1102 break ;
1106 /* a trick. If the buffer has been logged, this
1107 ** will do nothing. If we've broken the loop without
1108 ** logging it, it will restore the buffer
1111 reiserfs_restore_prepared_buffer(p_s_sb, p_s_bh);
1113 /* This loop can be optimized. */
1114 } while ( (*p_n_removed < n_unfm_number || need_research) &&
1115 search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_FOUND );
1117 RFALSE( *p_n_removed < n_unfm_number,
1118 "PAP-5310: indirect item is not found");
1119 RFALSE( item_moved (&s_ih, p_s_path),
1120 "after while, comp failed, retry") ;
1122 if (c_mode == M_CUT)
1123 pos_in_item (p_s_path) *= UNFM_P_SIZE;
1124 return c_mode;
1128 /* Calculate number of bytes which will be deleted or cut during balance */
1129 static int calc_deleted_bytes_number(
1130 struct tree_balance * p_s_tb,
1131 char c_mode
1133 int n_del_size;
1134 struct item_head * p_le_ih = PATH_PITEM_HEAD(p_s_tb->tb_path);
1136 if ( is_statdata_le_ih (p_le_ih) )
1137 return 0;
1139 n_del_size = ( c_mode == M_DELETE ) ? ih_item_len(p_le_ih) : -p_s_tb->insert_size[0];
1140 if ( is_direntry_le_ih (p_le_ih) ) {
1141 // return EMPTY_DIR_SIZE; /* We delete emty directoris only. */
1142 // we can't use EMPTY_DIR_SIZE, as old format dirs have a different
1143 // empty size. ick. FIXME, is this right?
1145 return n_del_size ;
1148 if ( is_indirect_le_ih (p_le_ih) )
1149 n_del_size = (n_del_size/UNFM_P_SIZE)*
1150 (PATH_PLAST_BUFFER(p_s_tb->tb_path)->b_size);// - get_ih_free_space (p_le_ih);
1151 return n_del_size;
1154 static void init_tb_struct(
1155 struct reiserfs_transaction_handle *th,
1156 struct tree_balance * p_s_tb,
1157 struct super_block * p_s_sb,
1158 struct path * p_s_path,
1159 int n_size
1162 BUG_ON (!th->t_trans_id);
1164 memset (p_s_tb,'\0',sizeof(struct tree_balance));
1165 p_s_tb->transaction_handle = th ;
1166 p_s_tb->tb_sb = p_s_sb;
1167 p_s_tb->tb_path = p_s_path;
1168 PATH_OFFSET_PBUFFER(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1169 PATH_OFFSET_POSITION(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1170 p_s_tb->insert_size[0] = n_size;
1175 void padd_item (char * item, int total_length, int length)
1177 int i;
1179 for (i = total_length; i > length; )
1180 item [--i] = 0;
1183 #ifdef REISERQUOTA_DEBUG
1184 char key2type(struct reiserfs_key *ih)
1186 if (is_direntry_le_key(2, ih))
1187 return 'd';
1188 if (is_direct_le_key(2, ih))
1189 return 'D';
1190 if (is_indirect_le_key(2, ih))
1191 return 'i';
1192 if (is_statdata_le_key(2, ih))
1193 return 's';
1194 return 'u';
1197 char head2type(struct item_head *ih)
1199 if (is_direntry_le_ih(ih))
1200 return 'd';
1201 if (is_direct_le_ih(ih))
1202 return 'D';
1203 if (is_indirect_le_ih(ih))
1204 return 'i';
1205 if (is_statdata_le_ih(ih))
1206 return 's';
1207 return 'u';
1209 #endif
1211 /* Delete object item. */
1212 int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
1213 struct path * p_s_path, /* Path to the deleted item. */
1214 const struct cpu_key * p_s_item_key, /* Key to search for the deleted item. */
1215 struct inode * p_s_inode,/* inode is here just to update i_blocks and quotas */
1216 struct buffer_head * p_s_un_bh) /* NULL or unformatted node pointer. */
1218 struct super_block * p_s_sb = p_s_inode->i_sb;
1219 struct tree_balance s_del_balance;
1220 struct item_head s_ih;
1221 struct item_head *q_ih;
1222 int quota_cut_bytes;
1223 int n_ret_value,
1224 n_del_size,
1225 n_removed;
1227 #ifdef CONFIG_REISERFS_CHECK
1228 char c_mode;
1229 int n_iter = 0;
1230 #endif
1232 BUG_ON (!th->t_trans_id);
1234 init_tb_struct(th, &s_del_balance, p_s_sb, p_s_path, 0/*size is unknown*/);
1236 while ( 1 ) {
1237 n_removed = 0;
1239 #ifdef CONFIG_REISERFS_CHECK
1240 n_iter++;
1241 c_mode =
1242 #endif
1243 prepare_for_delete_or_cut(th, p_s_inode, p_s_path, p_s_item_key, &n_removed, &n_del_size, max_reiserfs_offset (p_s_inode));
1245 RFALSE( c_mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1247 copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path));
1248 s_del_balance.insert_size[0] = n_del_size;
1250 n_ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1251 if ( n_ret_value != REPEAT_SEARCH )
1252 break;
1254 PROC_INFO_INC( p_s_sb, delete_item_restarted );
1256 // file system changed, repeat search
1257 n_ret_value = search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path);
1258 if (n_ret_value == IO_ERROR)
1259 break;
1260 if (n_ret_value == FILE_NOT_FOUND) {
1261 reiserfs_warning (p_s_sb, "vs-5340: reiserfs_delete_item: "
1262 "no items of the file %K found", p_s_item_key);
1263 break;
1265 } /* while (1) */
1267 if ( n_ret_value != CARRY_ON ) {
1268 unfix_nodes(&s_del_balance);
1269 return 0;
1272 // reiserfs_delete_item returns item length when success
1273 n_ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1274 q_ih = get_ih(p_s_path) ;
1275 quota_cut_bytes = ih_item_len(q_ih) ;
1277 /* hack so the quota code doesn't have to guess if the file
1278 ** has a tail. On tail insert, we allocate quota for 1 unformatted node.
1279 ** We test the offset because the tail might have been
1280 ** split into multiple items, and we only want to decrement for
1281 ** the unfm node once
1283 if (!S_ISLNK (p_s_inode->i_mode) && is_direct_le_ih(q_ih)) {
1284 if ((le_ih_k_offset(q_ih) & (p_s_sb->s_blocksize - 1)) == 1) {
1285 quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE;
1286 } else {
1287 quota_cut_bytes = 0 ;
1291 if ( p_s_un_bh ) {
1292 int off;
1293 char *data ;
1295 /* We are in direct2indirect conversion, so move tail contents
1296 to the unformatted node */
1297 /* note, we do the copy before preparing the buffer because we
1298 ** don't care about the contents of the unformatted node yet.
1299 ** the only thing we really care about is the direct item's data
1300 ** is in the unformatted node.
1302 ** Otherwise, we would have to call reiserfs_prepare_for_journal on
1303 ** the unformatted node, which might schedule, meaning we'd have to
1304 ** loop all the way back up to the start of the while loop.
1306 ** The unformatted node must be dirtied later on. We can't be
1307 ** sure here if the entire tail has been deleted yet.
1309 ** p_s_un_bh is from the page cache (all unformatted nodes are
1310 ** from the page cache) and might be a highmem page. So, we
1311 ** can't use p_s_un_bh->b_data.
1312 ** -clm
1315 data = kmap_atomic(p_s_un_bh->b_page, KM_USER0);
1316 off = ((le_ih_k_offset (&s_ih) - 1) & (PAGE_CACHE_SIZE - 1));
1317 memcpy(data + off,
1318 B_I_PITEM(PATH_PLAST_BUFFER(p_s_path), &s_ih), n_ret_value);
1319 kunmap_atomic(data, KM_USER0);
1321 /* Perform balancing after all resources have been collected at once. */
1322 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1324 #ifdef REISERQUOTA_DEBUG
1325 reiserfs_debug (p_s_sb, REISERFS_DEBUG_CODE, "reiserquota delete_item(): freeing %u, id=%u type=%c", quota_cut_bytes, p_s_inode->i_uid, head2type(&s_ih));
1326 #endif
1327 DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes);
1329 /* Return deleted body length */
1330 return n_ret_value;
1334 /* Summary Of Mechanisms For Handling Collisions Between Processes:
1336 deletion of the body of the object is performed by iput(), with the
1337 result that if multiple processes are operating on a file, the
1338 deletion of the body of the file is deferred until the last process
1339 that has an open inode performs its iput().
1341 writes and truncates are protected from collisions by use of
1342 semaphores.
1344 creates, linking, and mknod are protected from collisions with other
1345 processes by making the reiserfs_add_entry() the last step in the
1346 creation, and then rolling back all changes if there was a collision.
1347 - Hans
1351 /* this deletes item which never gets split */
1352 void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
1353 struct inode *inode,
1354 struct reiserfs_key * key)
1356 struct tree_balance tb;
1357 INITIALIZE_PATH (path);
1358 int item_len = 0;
1359 int tb_init = 0 ;
1360 struct cpu_key cpu_key;
1361 int retval;
1362 int quota_cut_bytes = 0;
1364 BUG_ON (!th->t_trans_id);
1366 le_key2cpu_key (&cpu_key, key);
1368 while (1) {
1369 retval = search_item (th->t_super, &cpu_key, &path);
1370 if (retval == IO_ERROR) {
1371 reiserfs_warning (th->t_super,
1372 "vs-5350: reiserfs_delete_solid_item: "
1373 "i/o failure occurred trying to delete %K",
1374 &cpu_key);
1375 break;
1377 if (retval != ITEM_FOUND) {
1378 pathrelse (&path);
1379 // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir
1380 if ( !( (unsigned long long) GET_HASH_VALUE (le_key_k_offset (le_key_version (key), key)) == 0 && \
1381 (unsigned long long) GET_GENERATION_NUMBER (le_key_k_offset (le_key_version (key), key)) == 1 ) )
1382 reiserfs_warning (th->t_super, "vs-5355: reiserfs_delete_solid_item: %k not found", key);
1383 break;
1385 if (!tb_init) {
1386 tb_init = 1 ;
1387 item_len = ih_item_len( PATH_PITEM_HEAD(&path) );
1388 init_tb_struct (th, &tb, th->t_super, &path, - (IH_SIZE + item_len));
1390 quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path)) ;
1392 retval = fix_nodes (M_DELETE, &tb, NULL, NULL);
1393 if (retval == REPEAT_SEARCH) {
1394 PROC_INFO_INC( th -> t_super, delete_solid_item_restarted );
1395 continue;
1398 if (retval == CARRY_ON) {
1399 do_balance (&tb, NULL, NULL, M_DELETE);
1400 if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */
1401 #ifdef REISERQUOTA_DEBUG
1402 reiserfs_debug (th->t_super, REISERFS_DEBUG_CODE, "reiserquota delete_solid_item(): freeing %u id=%u type=%c", quota_cut_bytes, inode->i_uid, key2type(key));
1403 #endif
1404 DQUOT_FREE_SPACE_NODIRTY(inode, quota_cut_bytes);
1406 break;
1409 // IO_ERROR, NO_DISK_SPACE, etc
1410 reiserfs_warning (th->t_super, "vs-5360: reiserfs_delete_solid_item: "
1411 "could not delete %K due to fix_nodes failure", &cpu_key);
1412 unfix_nodes (&tb);
1413 break;
1416 reiserfs_check_path(&path) ;
1420 int reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * inode)
1422 int err;
1423 inode->i_size = 0;
1424 BUG_ON (!th->t_trans_id);
1426 /* for directory this deletes item containing "." and ".." */
1427 err = reiserfs_do_truncate (th, inode, NULL, 0/*no timestamp updates*/);
1428 if (err)
1429 return err;
1431 #if defined( USE_INODE_GENERATION_COUNTER )
1432 if( !old_format_only ( th -> t_super ) )
1434 __u32 *inode_generation;
1436 inode_generation =
1437 &REISERFS_SB(th -> t_super) -> s_rs -> s_inode_generation;
1438 *inode_generation = cpu_to_le32( le32_to_cpu( *inode_generation ) + 1 );
1440 /* USE_INODE_GENERATION_COUNTER */
1441 #endif
1442 reiserfs_delete_solid_item (th, inode, INODE_PKEY (inode));
1444 return err;
1447 static void
1448 unmap_buffers(struct page *page, loff_t pos) {
1449 struct buffer_head *bh ;
1450 struct buffer_head *head ;
1451 struct buffer_head *next ;
1452 unsigned long tail_index ;
1453 unsigned long cur_index ;
1455 if (page) {
1456 if (page_has_buffers(page)) {
1457 tail_index = pos & (PAGE_CACHE_SIZE - 1) ;
1458 cur_index = 0 ;
1459 head = page_buffers(page) ;
1460 bh = head ;
1461 do {
1462 next = bh->b_this_page ;
1464 /* we want to unmap the buffers that contain the tail, and
1465 ** all the buffers after it (since the tail must be at the
1466 ** end of the file). We don't want to unmap file data
1467 ** before the tail, since it might be dirty and waiting to
1468 ** reach disk
1470 cur_index += bh->b_size ;
1471 if (cur_index > tail_index) {
1472 reiserfs_unmap_buffer(bh) ;
1474 bh = next ;
1475 } while (bh != head) ;
1476 if ( PAGE_SIZE == bh->b_size ) {
1477 clear_page_dirty(page);
1483 static int maybe_indirect_to_direct (struct reiserfs_transaction_handle *th,
1484 struct inode * p_s_inode,
1485 struct page *page,
1486 struct path * p_s_path,
1487 const struct cpu_key * p_s_item_key,
1488 loff_t n_new_file_size,
1489 char * p_c_mode
1491 struct super_block * p_s_sb = p_s_inode->i_sb;
1492 int n_block_size = p_s_sb->s_blocksize;
1493 int cut_bytes;
1494 BUG_ON (!th->t_trans_id);
1496 if (n_new_file_size != p_s_inode->i_size)
1497 BUG ();
1499 /* the page being sent in could be NULL if there was an i/o error
1500 ** reading in the last block. The user will hit problems trying to
1501 ** read the file, but for now we just skip the indirect2direct
1503 if (atomic_read(&p_s_inode->i_count) > 1 ||
1504 !tail_has_to_be_packed (p_s_inode) ||
1505 !page || (REISERFS_I(p_s_inode)->i_flags & i_nopack_mask)) {
1506 // leave tail in an unformatted node
1507 *p_c_mode = M_SKIP_BALANCING;
1508 cut_bytes = n_block_size - (n_new_file_size & (n_block_size - 1));
1509 pathrelse(p_s_path);
1510 return cut_bytes;
1512 /* Permorm the conversion to a direct_item. */
1513 /*return indirect_to_direct (p_s_inode, p_s_path, p_s_item_key, n_new_file_size, p_c_mode);*/
1514 return indirect2direct (th, p_s_inode, page, p_s_path, p_s_item_key, n_new_file_size, p_c_mode);
1518 /* we did indirect_to_direct conversion. And we have inserted direct
1519 item successesfully, but there were no disk space to cut unfm
1520 pointer being converted. Therefore we have to delete inserted
1521 direct item(s) */
1522 static void indirect_to_direct_roll_back (struct reiserfs_transaction_handle *th, struct inode * inode, struct path * path)
1524 struct cpu_key tail_key;
1525 int tail_len;
1526 int removed;
1527 BUG_ON (!th->t_trans_id);
1529 make_cpu_key (&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);// !!!!
1530 tail_key.key_length = 4;
1532 tail_len = (cpu_key_k_offset (&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1533 while (tail_len) {
1534 /* look for the last byte of the tail */
1535 if (search_for_position_by_key (inode->i_sb, &tail_key, path) == POSITION_NOT_FOUND)
1536 reiserfs_panic (inode->i_sb, "vs-5615: indirect_to_direct_roll_back: found invalid item");
1537 RFALSE( path->pos_in_item != ih_item_len(PATH_PITEM_HEAD (path)) - 1,
1538 "vs-5616: appended bytes found");
1539 PATH_LAST_POSITION (path) --;
1541 removed = reiserfs_delete_item (th, path, &tail_key, inode, NULL/*unbh not needed*/);
1542 RFALSE( removed <= 0 || removed > tail_len,
1543 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1544 tail_len, removed);
1545 tail_len -= removed;
1546 set_cpu_key_k_offset (&tail_key, cpu_key_k_offset (&tail_key) - removed);
1548 reiserfs_warning (inode->i_sb, "indirect_to_direct_roll_back: indirect_to_direct conversion has been rolled back due to lack of disk space");
1549 //mark_file_without_tail (inode);
1550 mark_inode_dirty (inode);
1554 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1555 int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
1556 struct path * p_s_path,
1557 struct cpu_key * p_s_item_key,
1558 struct inode * p_s_inode,
1559 struct page *page,
1560 loff_t n_new_file_size)
1562 struct super_block * p_s_sb = p_s_inode->i_sb;
1563 /* Every function which is going to call do_balance must first
1564 create a tree_balance structure. Then it must fill up this
1565 structure by using the init_tb_struct and fix_nodes functions.
1566 After that we can make tree balancing. */
1567 struct tree_balance s_cut_balance;
1568 struct item_head *p_le_ih;
1569 int n_cut_size = 0, /* Amount to be cut. */
1570 n_ret_value = CARRY_ON,
1571 n_removed = 0, /* Number of the removed unformatted nodes. */
1572 n_is_inode_locked = 0;
1573 char c_mode; /* Mode of the balance. */
1574 int retval2 = -1;
1575 int quota_cut_bytes;
1576 loff_t tail_pos = 0;
1578 BUG_ON (!th->t_trans_id);
1580 init_tb_struct(th, &s_cut_balance, p_s_inode->i_sb, p_s_path, n_cut_size);
1583 /* Repeat this loop until we either cut the item without needing
1584 to balance, or we fix_nodes without schedule occurring */
1585 while ( 1 ) {
1586 /* Determine the balance mode, position of the first byte to
1587 be cut, and size to be cut. In case of the indirect item
1588 free unformatted nodes which are pointed to by the cut
1589 pointers. */
1591 c_mode = prepare_for_delete_or_cut(th, p_s_inode, p_s_path, p_s_item_key, &n_removed,
1592 &n_cut_size, n_new_file_size);
1593 if ( c_mode == M_CONVERT ) {
1594 /* convert last unformatted node to direct item or leave
1595 tail in the unformatted node */
1596 RFALSE( n_ret_value != CARRY_ON, "PAP-5570: can not convert twice");
1598 n_ret_value = maybe_indirect_to_direct (th, p_s_inode, page, p_s_path, p_s_item_key,
1599 n_new_file_size, &c_mode);
1600 if ( c_mode == M_SKIP_BALANCING )
1601 /* tail has been left in the unformatted node */
1602 return n_ret_value;
1604 n_is_inode_locked = 1;
1606 /* removing of last unformatted node will change value we
1607 have to return to truncate. Save it */
1608 retval2 = n_ret_value;
1609 /*retval2 = p_s_sb->s_blocksize - (n_new_file_size & (p_s_sb->s_blocksize - 1));*/
1611 /* So, we have performed the first part of the conversion:
1612 inserting the new direct item. Now we are removing the
1613 last unformatted node pointer. Set key to search for
1614 it. */
1615 set_cpu_key_k_type (p_s_item_key, TYPE_INDIRECT);
1616 p_s_item_key->key_length = 4;
1617 n_new_file_size -= (n_new_file_size & (p_s_sb->s_blocksize - 1));
1618 tail_pos = n_new_file_size;
1619 set_cpu_key_k_offset (p_s_item_key, n_new_file_size + 1);
1620 if ( search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_NOT_FOUND ){
1621 print_block (PATH_PLAST_BUFFER (p_s_path), 3, PATH_LAST_POSITION (p_s_path) - 1, PATH_LAST_POSITION (p_s_path) + 1);
1622 reiserfs_panic(p_s_sb, "PAP-5580: reiserfs_cut_from_item: item to convert does not exist (%K)", p_s_item_key);
1624 continue;
1626 if (n_cut_size == 0) {
1627 pathrelse (p_s_path);
1628 return 0;
1631 s_cut_balance.insert_size[0] = n_cut_size;
1633 n_ret_value = fix_nodes(c_mode, &s_cut_balance, NULL, NULL);
1634 if ( n_ret_value != REPEAT_SEARCH )
1635 break;
1637 PROC_INFO_INC( p_s_sb, cut_from_item_restarted );
1639 n_ret_value = search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path);
1640 if (n_ret_value == POSITION_FOUND)
1641 continue;
1643 reiserfs_warning (p_s_sb, "PAP-5610: reiserfs_cut_from_item: item %K not found", p_s_item_key);
1644 unfix_nodes (&s_cut_balance);
1645 return (n_ret_value == IO_ERROR) ? -EIO : -ENOENT;
1646 } /* while */
1648 // check fix_nodes results (IO_ERROR or NO_DISK_SPACE)
1649 if ( n_ret_value != CARRY_ON ) {
1650 if ( n_is_inode_locked ) {
1651 // FIXME: this seems to be not needed: we are always able
1652 // to cut item
1653 indirect_to_direct_roll_back (th, p_s_inode, p_s_path);
1655 if (n_ret_value == NO_DISK_SPACE)
1656 reiserfs_warning (p_s_sb, "NO_DISK_SPACE");
1657 unfix_nodes (&s_cut_balance);
1658 return -EIO;
1661 /* go ahead and perform balancing */
1663 RFALSE( c_mode == M_PASTE || c_mode == M_INSERT, "invalid mode");
1665 /* Calculate number of bytes that need to be cut from the item. */
1666 quota_cut_bytes = ( c_mode == M_DELETE ) ? ih_item_len(get_ih(p_s_path)) : -s_cut_balance.insert_size[0];
1667 if (retval2 == -1)
1668 n_ret_value = calc_deleted_bytes_number(&s_cut_balance, c_mode);
1669 else
1670 n_ret_value = retval2;
1673 /* For direct items, we only change the quota when deleting the last
1674 ** item.
1676 p_le_ih = PATH_PITEM_HEAD (s_cut_balance.tb_path);
1677 if (!S_ISLNK (p_s_inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1678 if (c_mode == M_DELETE &&
1679 (le_ih_k_offset (p_le_ih) & (p_s_sb->s_blocksize - 1)) == 1 ) {
1680 // FIXME: this is to keep 3.5 happy
1681 REISERFS_I(p_s_inode)->i_first_direct_byte = U32_MAX;
1682 quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE ;
1683 } else {
1684 quota_cut_bytes = 0 ;
1687 #ifdef CONFIG_REISERFS_CHECK
1688 if (n_is_inode_locked) {
1689 struct item_head * le_ih = PATH_PITEM_HEAD (s_cut_balance.tb_path);
1690 /* we are going to complete indirect2direct conversion. Make
1691 sure, that we exactly remove last unformatted node pointer
1692 of the item */
1693 if (!is_indirect_le_ih (le_ih))
1694 reiserfs_panic (p_s_sb, "vs-5652: reiserfs_cut_from_item: "
1695 "item must be indirect %h", le_ih);
1697 if (c_mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1698 reiserfs_panic (p_s_sb, "vs-5653: reiserfs_cut_from_item: "
1699 "completing indirect2direct conversion indirect item %h "
1700 "being deleted must be of 4 byte long", le_ih);
1702 if (c_mode == M_CUT && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1703 reiserfs_panic (p_s_sb, "vs-5654: reiserfs_cut_from_item: "
1704 "can not complete indirect2direct conversion of %h (CUT, insert_size==%d)",
1705 le_ih, s_cut_balance.insert_size[0]);
1707 /* it would be useful to make sure, that right neighboring
1708 item is direct item of this file */
1710 #endif
1712 do_balance(&s_cut_balance, NULL, NULL, c_mode);
1713 if ( n_is_inode_locked ) {
1714 /* we've done an indirect->direct conversion. when the data block
1715 ** was freed, it was removed from the list of blocks that must
1716 ** be flushed before the transaction commits, make sure to
1717 ** unmap and invalidate it
1719 unmap_buffers(page, tail_pos);
1720 REISERFS_I(p_s_inode)->i_flags &= ~i_pack_on_close_mask ;
1722 #ifdef REISERQUOTA_DEBUG
1723 reiserfs_debug (p_s_inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota cut_from_item(): freeing %u id=%u type=%c", quota_cut_bytes, p_s_inode->i_uid, '?');
1724 #endif
1725 DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes);
1726 return n_ret_value;
1729 static void truncate_directory (struct reiserfs_transaction_handle *th, struct inode * inode)
1731 BUG_ON (!th->t_trans_id);
1732 if (inode->i_nlink)
1733 reiserfs_warning (inode->i_sb,
1734 "vs-5655: truncate_directory: link count != 0");
1736 set_le_key_k_offset (KEY_FORMAT_3_5, INODE_PKEY (inode), DOT_OFFSET);
1737 set_le_key_k_type (KEY_FORMAT_3_5, INODE_PKEY (inode), TYPE_DIRENTRY);
1738 reiserfs_delete_solid_item (th, inode, INODE_PKEY (inode));
1739 reiserfs_update_sd(th, inode) ;
1740 set_le_key_k_offset (KEY_FORMAT_3_5, INODE_PKEY (inode), SD_OFFSET);
1741 set_le_key_k_type (KEY_FORMAT_3_5, INODE_PKEY (inode), TYPE_STAT_DATA);
1747 /* Truncate file to the new size. Note, this must be called with a transaction
1748 already started */
1749 int reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
1750 struct inode * p_s_inode, /* ->i_size contains new
1751 size */
1752 struct page *page, /* up to date for last block */
1753 int update_timestamps /* when it is called by
1754 file_release to convert
1755 the tail - no timestamps
1756 should be updated */
1758 INITIALIZE_PATH (s_search_path); /* Path to the current object item. */
1759 struct item_head * p_le_ih; /* Pointer to an item header. */
1760 struct cpu_key s_item_key; /* Key to search for a previous file item. */
1761 loff_t n_file_size, /* Old file size. */
1762 n_new_file_size;/* New file size. */
1763 int n_deleted; /* Number of deleted or truncated bytes. */
1764 int retval;
1765 int err = 0;
1767 BUG_ON (!th->t_trans_id);
1768 if ( ! (S_ISREG(p_s_inode->i_mode) || S_ISDIR(p_s_inode->i_mode) || S_ISLNK(p_s_inode->i_mode)) )
1769 return 0;
1771 if (S_ISDIR(p_s_inode->i_mode)) {
1772 // deletion of directory - no need to update timestamps
1773 truncate_directory (th, p_s_inode);
1774 return 0;
1777 /* Get new file size. */
1778 n_new_file_size = p_s_inode->i_size;
1780 // FIXME: note, that key type is unimportant here
1781 make_cpu_key (&s_item_key, p_s_inode, max_reiserfs_offset (p_s_inode), TYPE_DIRECT, 3);
1783 retval = search_for_position_by_key(p_s_inode->i_sb, &s_item_key, &s_search_path);
1784 if (retval == IO_ERROR) {
1785 reiserfs_warning (p_s_inode->i_sb, "vs-5657: reiserfs_do_truncate: "
1786 "i/o failure occurred trying to truncate %K", &s_item_key);
1787 err = -EIO;
1788 goto out;
1790 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1791 reiserfs_warning (p_s_inode->i_sb, "PAP-5660: reiserfs_do_truncate: "
1792 "wrong result %d of search for %K", retval, &s_item_key);
1794 err = -EIO;
1795 goto out;
1798 s_search_path.pos_in_item --;
1800 /* Get real file size (total length of all file items) */
1801 p_le_ih = PATH_PITEM_HEAD(&s_search_path);
1802 if ( is_statdata_le_ih (p_le_ih) )
1803 n_file_size = 0;
1804 else {
1805 loff_t offset = le_ih_k_offset (p_le_ih);
1806 int bytes = op_bytes_number (p_le_ih,p_s_inode->i_sb->s_blocksize);
1808 /* this may mismatch with real file size: if last direct item
1809 had no padding zeros and last unformatted node had no free
1810 space, this file would have this file size */
1811 n_file_size = offset + bytes - 1;
1814 * are we doing a full truncate or delete, if so
1815 * kick in the reada code
1817 if (n_new_file_size == 0)
1818 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1820 if ( n_file_size == 0 || n_file_size < n_new_file_size ) {
1821 goto update_and_out ;
1824 /* Update key to search for the last file item. */
1825 set_cpu_key_k_offset (&s_item_key, n_file_size);
1827 do {
1828 /* Cut or delete file item. */
1829 n_deleted = reiserfs_cut_from_item(th, &s_search_path, &s_item_key, p_s_inode, page, n_new_file_size);
1830 if (n_deleted < 0) {
1831 reiserfs_warning (p_s_inode->i_sb, "vs-5665: reiserfs_do_truncate: reiserfs_cut_from_item failed");
1832 reiserfs_check_path(&s_search_path) ;
1833 return 0;
1836 RFALSE( n_deleted > n_file_size,
1837 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1838 n_deleted, n_file_size, &s_item_key);
1840 /* Change key to search the last file item. */
1841 n_file_size -= n_deleted;
1843 set_cpu_key_k_offset (&s_item_key, n_file_size);
1845 /* While there are bytes to truncate and previous file item is presented in the tree. */
1848 ** This loop could take a really long time, and could log
1849 ** many more blocks than a transaction can hold. So, we do a polite
1850 ** journal end here, and if the transaction needs ending, we make
1851 ** sure the file is consistent before ending the current trans
1852 ** and starting a new one
1854 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1855 int orig_len_alloc = th->t_blocks_allocated ;
1856 decrement_counters_in_path(&s_search_path) ;
1858 if (update_timestamps) {
1859 p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME_SEC;
1861 reiserfs_update_sd(th, p_s_inode) ;
1863 err = journal_end(th, p_s_inode->i_sb, orig_len_alloc) ;
1864 if (err)
1865 goto out;
1866 err = journal_begin (th, p_s_inode->i_sb,
1867 JOURNAL_PER_BALANCE_CNT * 6);
1868 if (err)
1869 goto out;
1870 reiserfs_update_inode_transaction(p_s_inode) ;
1872 } while ( n_file_size > ROUND_UP (n_new_file_size) &&
1873 search_for_position_by_key(p_s_inode->i_sb, &s_item_key, &s_search_path) == POSITION_FOUND ) ;
1875 RFALSE( n_file_size > ROUND_UP (n_new_file_size),
1876 "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d",
1877 n_new_file_size, n_file_size, s_item_key.on_disk_key.k_objectid);
1879 update_and_out:
1880 if (update_timestamps) {
1881 // this is truncate, not file closing
1882 p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME_SEC;
1884 reiserfs_update_sd (th, p_s_inode);
1886 out:
1887 pathrelse(&s_search_path) ;
1888 return err;
1892 #ifdef CONFIG_REISERFS_CHECK
1893 // this makes sure, that we __append__, not overwrite or add holes
1894 static void check_research_for_paste (struct path * path,
1895 const struct cpu_key * p_s_key)
1897 struct item_head * found_ih = get_ih (path);
1899 if (is_direct_le_ih (found_ih)) {
1900 if (le_ih_k_offset (found_ih) + op_bytes_number (found_ih, get_last_bh (path)->b_size) !=
1901 cpu_key_k_offset (p_s_key) ||
1902 op_bytes_number (found_ih, get_last_bh (path)->b_size) != pos_in_item (path))
1903 reiserfs_panic (NULL, "PAP-5720: check_research_for_paste: "
1904 "found direct item %h or position (%d) does not match to key %K",
1905 found_ih, pos_in_item (path), p_s_key);
1907 if (is_indirect_le_ih (found_ih)) {
1908 if (le_ih_k_offset (found_ih) + op_bytes_number (found_ih, get_last_bh (path)->b_size) != cpu_key_k_offset (p_s_key) ||
1909 I_UNFM_NUM (found_ih) != pos_in_item (path) ||
1910 get_ih_free_space (found_ih) != 0)
1911 reiserfs_panic (NULL, "PAP-5730: check_research_for_paste: "
1912 "found indirect item (%h) or position (%d) does not match to key (%K)",
1913 found_ih, pos_in_item (path), p_s_key);
1916 #endif /* config reiserfs check */
1919 /* Paste bytes to the existing item. Returns bytes number pasted into the item. */
1920 int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
1921 struct path * p_s_search_path, /* Path to the pasted item. */
1922 const struct cpu_key * p_s_key, /* Key to search for the needed item.*/
1923 struct inode * inode, /* Inode item belongs to */
1924 const char * p_c_body, /* Pointer to the bytes to paste. */
1925 int n_pasted_size) /* Size of pasted bytes. */
1927 struct tree_balance s_paste_balance;
1928 int retval;
1929 int fs_gen;
1931 BUG_ON (!th->t_trans_id);
1933 fs_gen = get_generation(inode->i_sb) ;
1935 #ifdef REISERQUOTA_DEBUG
1936 reiserfs_debug (inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota paste_into_item(): allocating %u id=%u type=%c", n_pasted_size, inode->i_uid, key2type(&(p_s_key->on_disk_key)));
1937 #endif
1939 if (DQUOT_ALLOC_SPACE_NODIRTY(inode, n_pasted_size)) {
1940 pathrelse(p_s_search_path);
1941 return -EDQUOT;
1943 init_tb_struct(th, &s_paste_balance, th->t_super, p_s_search_path, n_pasted_size);
1944 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1945 s_paste_balance.key = p_s_key->on_disk_key;
1946 #endif
1948 /* DQUOT_* can schedule, must check before the fix_nodes */
1949 if (fs_changed(fs_gen, inode->i_sb)) {
1950 goto search_again;
1953 while ((retval = fix_nodes(M_PASTE, &s_paste_balance, NULL, p_c_body)) ==
1954 REPEAT_SEARCH ) {
1955 search_again:
1956 /* file system changed while we were in the fix_nodes */
1957 PROC_INFO_INC( th -> t_super, paste_into_item_restarted );
1958 retval = search_for_position_by_key (th->t_super, p_s_key, p_s_search_path);
1959 if (retval == IO_ERROR) {
1960 retval = -EIO ;
1961 goto error_out ;
1963 if (retval == POSITION_FOUND) {
1964 reiserfs_warning (inode->i_sb, "PAP-5710: reiserfs_paste_into_item: entry or pasted byte (%K) exists", p_s_key);
1965 retval = -EEXIST ;
1966 goto error_out ;
1969 #ifdef CONFIG_REISERFS_CHECK
1970 check_research_for_paste (p_s_search_path, p_s_key);
1971 #endif
1974 /* Perform balancing after all resources are collected by fix_nodes, and
1975 accessing them will not risk triggering schedule. */
1976 if ( retval == CARRY_ON ) {
1977 do_balance(&s_paste_balance, NULL/*ih*/, p_c_body, M_PASTE);
1978 return 0;
1980 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
1981 error_out:
1982 /* this also releases the path */
1983 unfix_nodes(&s_paste_balance);
1984 #ifdef REISERQUOTA_DEBUG
1985 reiserfs_debug (inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota paste_into_item(): freeing %u id=%u type=%c", n_pasted_size, inode->i_uid, key2type(&(p_s_key->on_disk_key)));
1986 #endif
1987 DQUOT_FREE_SPACE_NODIRTY(inode, n_pasted_size);
1988 return retval ;
1992 /* Insert new item into the buffer at the path. */
1993 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
1994 struct path * p_s_path, /* Path to the inserteded item. */
1995 const struct cpu_key * key,
1996 struct item_head * p_s_ih, /* Pointer to the item header to insert.*/
1997 struct inode * inode,
1998 const char * p_c_body) /* Pointer to the bytes to insert. */
2000 struct tree_balance s_ins_balance;
2001 int retval;
2002 int fs_gen = 0 ;
2003 int quota_bytes = 0 ;
2005 BUG_ON (!th->t_trans_id);
2007 if (inode) { /* Do we count quotas for item? */
2008 fs_gen = get_generation(inode->i_sb);
2009 quota_bytes = ih_item_len(p_s_ih);
2011 /* hack so the quota code doesn't have to guess if the file has
2012 ** a tail, links are always tails, so there's no guessing needed
2014 if (!S_ISLNK (inode->i_mode) && is_direct_le_ih(p_s_ih)) {
2015 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE ;
2017 #ifdef REISERQUOTA_DEBUG
2018 reiserfs_debug (inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota insert_item(): allocating %u id=%u type=%c", quota_bytes, inode->i_uid, head2type(p_s_ih));
2019 #endif
2020 /* We can't dirty inode here. It would be immediately written but
2021 * appropriate stat item isn't inserted yet... */
2022 if (DQUOT_ALLOC_SPACE_NODIRTY(inode, quota_bytes)) {
2023 pathrelse(p_s_path);
2024 return -EDQUOT;
2027 init_tb_struct(th, &s_ins_balance, th->t_super, p_s_path, IH_SIZE + ih_item_len(p_s_ih));
2028 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2029 s_ins_balance.key = key->on_disk_key;
2030 #endif
2031 /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */
2032 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2033 goto search_again;
2036 while ( (retval = fix_nodes(M_INSERT, &s_ins_balance, p_s_ih, p_c_body)) == REPEAT_SEARCH) {
2037 search_again:
2038 /* file system changed while we were in the fix_nodes */
2039 PROC_INFO_INC( th -> t_super, insert_item_restarted );
2040 retval = search_item (th->t_super, key, p_s_path);
2041 if (retval == IO_ERROR) {
2042 retval = -EIO;
2043 goto error_out ;
2045 if (retval == ITEM_FOUND) {
2046 reiserfs_warning (th->t_super, "PAP-5760: reiserfs_insert_item: "
2047 "key %K already exists in the tree", key);
2048 retval = -EEXIST ;
2049 goto error_out;
2053 /* make balancing after all resources will be collected at a time */
2054 if ( retval == CARRY_ON ) {
2055 do_balance (&s_ins_balance, p_s_ih, p_c_body, M_INSERT);
2056 return 0;
2059 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2060 error_out:
2061 /* also releases the path */
2062 unfix_nodes(&s_ins_balance);
2063 #ifdef REISERQUOTA_DEBUG
2064 reiserfs_debug (th->t_super, REISERFS_DEBUG_CODE, "reiserquota insert_item(): freeing %u id=%u type=%c", quota_bytes, inode->i_uid, head2type(p_s_ih));
2065 #endif
2066 if (inode)
2067 DQUOT_FREE_SPACE_NODIRTY(inode, quota_bytes) ;
2068 return retval;