Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / macintosh / therm_pm72.c
blob82336a5a547444027fd25d44d7a021d26fae1f71
1 /*
2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
9 *
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
32 * safe enough ...
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
42 * implementation...
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
56 * History:
58 * Nov. 13, 2003 : 0.5
59 * - First release
61 * Nov. 14, 2003 : 0.6
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
64 * do much.
65 * - Move a bunch of definitions to .h file
67 * Nov. 18, 2003 : 0.7
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
72 * Dec. 18, 2003 : 0.8
73 * - Fix typo when reading back fan speed on 2 CPU machines
75 * Mar. 11, 2004 : 0.9
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
81 * pressure on i2c
83 * Oct. 20, 2004 : 1.1
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
85 * pumps when present
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
92 * Mar. 10, 2005 : 1.2
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
100 #include <linux/config.h>
101 #include <linux/types.h>
102 #include <linux/module.h>
103 #include <linux/errno.h>
104 #include <linux/kernel.h>
105 #include <linux/delay.h>
106 #include <linux/sched.h>
107 #include <linux/i2c.h>
108 #include <linux/slab.h>
109 #include <linux/init.h>
110 #include <linux/spinlock.h>
111 #include <linux/smp_lock.h>
112 #include <linux/wait.h>
113 #include <linux/reboot.h>
114 #include <linux/kmod.h>
115 #include <linux/i2c.h>
116 #include <linux/i2c-dev.h>
117 #include <asm/prom.h>
118 #include <asm/machdep.h>
119 #include <asm/io.h>
120 #include <asm/system.h>
121 #include <asm/sections.h>
122 #include <asm/of_device.h>
124 #include "therm_pm72.h"
126 #define VERSION "1.2b2"
128 #undef DEBUG
130 #ifdef DEBUG
131 #define DBG(args...) printk(args)
132 #else
133 #define DBG(args...) do { } while(0)
134 #endif
138 * Driver statics
141 static struct of_device * of_dev;
142 static struct i2c_adapter * u3_0;
143 static struct i2c_adapter * u3_1;
144 static struct i2c_adapter * k2;
145 static struct i2c_client * fcu;
146 static struct cpu_pid_state cpu_state[2];
147 static struct basckside_pid_params backside_params;
148 static struct backside_pid_state backside_state;
149 static struct drives_pid_state drives_state;
150 static struct dimm_pid_state dimms_state;
151 static int state;
152 static int cpu_count;
153 static int cpu_pid_type;
154 static pid_t ctrl_task;
155 static struct completion ctrl_complete;
156 static int critical_state;
157 static int rackmac;
158 static s32 dimm_output_clamp;
160 static DECLARE_MUTEX(driver_lock);
163 * We have 3 types of CPU PID control. One is "split" old style control
164 * for intake & exhaust fans, the other is "combined" control for both
165 * CPUs that also deals with the pumps when present. To be "compatible"
166 * with OS X at this point, we only use "COMBINED" on the machines that
167 * are identified as having the pumps (though that identification is at
168 * least dodgy). Ultimately, we could probably switch completely to this
169 * algorithm provided we hack it to deal with the UP case
171 #define CPU_PID_TYPE_SPLIT 0
172 #define CPU_PID_TYPE_COMBINED 1
173 #define CPU_PID_TYPE_RACKMAC 2
176 * This table describes all fans in the FCU. The "id" and "type" values
177 * are defaults valid for all earlier machines. Newer machines will
178 * eventually override the table content based on the device-tree
180 struct fcu_fan_table
182 char* loc; /* location code */
183 int type; /* 0 = rpm, 1 = pwm, 2 = pump */
184 int id; /* id or -1 */
187 #define FCU_FAN_RPM 0
188 #define FCU_FAN_PWM 1
190 #define FCU_FAN_ABSENT_ID -1
192 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
194 struct fcu_fan_table fcu_fans[] = {
195 [BACKSIDE_FAN_PWM_INDEX] = {
196 .loc = "BACKSIDE,SYS CTRLR FAN",
197 .type = FCU_FAN_PWM,
198 .id = BACKSIDE_FAN_PWM_DEFAULT_ID,
200 [DRIVES_FAN_RPM_INDEX] = {
201 .loc = "DRIVE BAY",
202 .type = FCU_FAN_RPM,
203 .id = DRIVES_FAN_RPM_DEFAULT_ID,
205 [SLOTS_FAN_PWM_INDEX] = {
206 .loc = "SLOT,PCI FAN",
207 .type = FCU_FAN_PWM,
208 .id = SLOTS_FAN_PWM_DEFAULT_ID,
210 [CPUA_INTAKE_FAN_RPM_INDEX] = {
211 .loc = "CPU A INTAKE",
212 .type = FCU_FAN_RPM,
213 .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
215 [CPUA_EXHAUST_FAN_RPM_INDEX] = {
216 .loc = "CPU A EXHAUST",
217 .type = FCU_FAN_RPM,
218 .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
220 [CPUB_INTAKE_FAN_RPM_INDEX] = {
221 .loc = "CPU B INTAKE",
222 .type = FCU_FAN_RPM,
223 .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
225 [CPUB_EXHAUST_FAN_RPM_INDEX] = {
226 .loc = "CPU B EXHAUST",
227 .type = FCU_FAN_RPM,
228 .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
230 /* pumps aren't present by default, have to be looked up in the
231 * device-tree
233 [CPUA_PUMP_RPM_INDEX] = {
234 .loc = "CPU A PUMP",
235 .type = FCU_FAN_RPM,
236 .id = FCU_FAN_ABSENT_ID,
238 [CPUB_PUMP_RPM_INDEX] = {
239 .loc = "CPU B PUMP",
240 .type = FCU_FAN_RPM,
241 .id = FCU_FAN_ABSENT_ID,
243 /* Xserve fans */
244 [CPU_A1_FAN_RPM_INDEX] = {
245 .loc = "CPU A 1",
246 .type = FCU_FAN_RPM,
247 .id = FCU_FAN_ABSENT_ID,
249 [CPU_A2_FAN_RPM_INDEX] = {
250 .loc = "CPU A 2",
251 .type = FCU_FAN_RPM,
252 .id = FCU_FAN_ABSENT_ID,
254 [CPU_A3_FAN_RPM_INDEX] = {
255 .loc = "CPU A 3",
256 .type = FCU_FAN_RPM,
257 .id = FCU_FAN_ABSENT_ID,
259 [CPU_B1_FAN_RPM_INDEX] = {
260 .loc = "CPU B 1",
261 .type = FCU_FAN_RPM,
262 .id = FCU_FAN_ABSENT_ID,
264 [CPU_B2_FAN_RPM_INDEX] = {
265 .loc = "CPU B 2",
266 .type = FCU_FAN_RPM,
267 .id = FCU_FAN_ABSENT_ID,
269 [CPU_B3_FAN_RPM_INDEX] = {
270 .loc = "CPU B 3",
271 .type = FCU_FAN_RPM,
272 .id = FCU_FAN_ABSENT_ID,
277 * i2c_driver structure to attach to the host i2c controller
280 static int therm_pm72_attach(struct i2c_adapter *adapter);
281 static int therm_pm72_detach(struct i2c_adapter *adapter);
283 static struct i2c_driver therm_pm72_driver =
285 .owner = THIS_MODULE,
286 .name = "therm_pm72",
287 .flags = I2C_DF_NOTIFY,
288 .attach_adapter = therm_pm72_attach,
289 .detach_adapter = therm_pm72_detach,
293 * Utility function to create an i2c_client structure and
294 * attach it to one of u3 adapters
296 static struct i2c_client *attach_i2c_chip(int id, const char *name)
298 struct i2c_client *clt;
299 struct i2c_adapter *adap;
301 if (id & 0x200)
302 adap = k2;
303 else if (id & 0x100)
304 adap = u3_1;
305 else
306 adap = u3_0;
307 if (adap == NULL)
308 return NULL;
310 clt = kmalloc(sizeof(struct i2c_client), GFP_KERNEL);
311 if (clt == NULL)
312 return NULL;
313 memset(clt, 0, sizeof(struct i2c_client));
315 clt->addr = (id >> 1) & 0x7f;
316 clt->adapter = adap;
317 clt->driver = &therm_pm72_driver;
318 strncpy(clt->name, name, I2C_NAME_SIZE-1);
320 if (i2c_attach_client(clt)) {
321 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
322 kfree(clt);
323 return NULL;
325 return clt;
329 * Utility function to get rid of the i2c_client structure
330 * (will also detach from the adapter hopepfully)
332 static void detach_i2c_chip(struct i2c_client *clt)
334 i2c_detach_client(clt);
335 kfree(clt);
339 * Here are the i2c chip access wrappers
342 static void initialize_adc(struct cpu_pid_state *state)
344 int rc;
345 u8 buf[2];
347 /* Read ADC the configuration register and cache it. We
348 * also make sure Config2 contains proper values, I've seen
349 * cases where we got stale grabage in there, thus preventing
350 * proper reading of conv. values
353 /* Clear Config2 */
354 buf[0] = 5;
355 buf[1] = 0;
356 i2c_master_send(state->monitor, buf, 2);
358 /* Read & cache Config1 */
359 buf[0] = 1;
360 rc = i2c_master_send(state->monitor, buf, 1);
361 if (rc > 0) {
362 rc = i2c_master_recv(state->monitor, buf, 1);
363 if (rc > 0) {
364 state->adc_config = buf[0];
365 DBG("ADC config reg: %02x\n", state->adc_config);
366 /* Disable shutdown mode */
367 state->adc_config &= 0xfe;
368 buf[0] = 1;
369 buf[1] = state->adc_config;
370 rc = i2c_master_send(state->monitor, buf, 2);
373 if (rc <= 0)
374 printk(KERN_ERR "therm_pm72: Error reading ADC config"
375 " register !\n");
378 static int read_smon_adc(struct cpu_pid_state *state, int chan)
380 int rc, data, tries = 0;
381 u8 buf[2];
383 for (;;) {
384 /* Set channel */
385 buf[0] = 1;
386 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
387 rc = i2c_master_send(state->monitor, buf, 2);
388 if (rc <= 0)
389 goto error;
390 /* Wait for convertion */
391 msleep(1);
392 /* Switch to data register */
393 buf[0] = 4;
394 rc = i2c_master_send(state->monitor, buf, 1);
395 if (rc <= 0)
396 goto error;
397 /* Read result */
398 rc = i2c_master_recv(state->monitor, buf, 2);
399 if (rc < 0)
400 goto error;
401 data = ((u16)buf[0]) << 8 | (u16)buf[1];
402 return data >> 6;
403 error:
404 DBG("Error reading ADC, retrying...\n");
405 if (++tries > 10) {
406 printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
407 return -1;
409 msleep(10);
413 static int read_lm87_reg(struct i2c_client * chip, int reg)
415 int rc, tries = 0;
416 u8 buf;
418 for (;;) {
419 /* Set address */
420 buf = (u8)reg;
421 rc = i2c_master_send(chip, &buf, 1);
422 if (rc <= 0)
423 goto error;
424 rc = i2c_master_recv(chip, &buf, 1);
425 if (rc <= 0)
426 goto error;
427 return (int)buf;
428 error:
429 DBG("Error reading LM87, retrying...\n");
430 if (++tries > 10) {
431 printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
432 return -1;
434 msleep(10);
438 static int fan_read_reg(int reg, unsigned char *buf, int nb)
440 int tries, nr, nw;
442 buf[0] = reg;
443 tries = 0;
444 for (;;) {
445 nw = i2c_master_send(fcu, buf, 1);
446 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
447 break;
448 msleep(10);
449 ++tries;
451 if (nw <= 0) {
452 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
453 return -EIO;
455 tries = 0;
456 for (;;) {
457 nr = i2c_master_recv(fcu, buf, nb);
458 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
459 break;
460 msleep(10);
461 ++tries;
463 if (nr <= 0)
464 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
465 return nr;
468 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
470 int tries, nw;
471 unsigned char buf[16];
473 buf[0] = reg;
474 memcpy(buf+1, ptr, nb);
475 ++nb;
476 tries = 0;
477 for (;;) {
478 nw = i2c_master_send(fcu, buf, nb);
479 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
480 break;
481 msleep(10);
482 ++tries;
484 if (nw < 0)
485 printk(KERN_ERR "Failure writing to FCU: %d", nw);
486 return nw;
489 static int start_fcu(void)
491 unsigned char buf = 0xff;
492 int rc;
494 rc = fan_write_reg(0xe, &buf, 1);
495 if (rc < 0)
496 return -EIO;
497 rc = fan_write_reg(0x2e, &buf, 1);
498 if (rc < 0)
499 return -EIO;
500 return 0;
503 static int set_rpm_fan(int fan_index, int rpm)
505 unsigned char buf[2];
506 int rc, id;
508 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
509 return -EINVAL;
510 id = fcu_fans[fan_index].id;
511 if (id == FCU_FAN_ABSENT_ID)
512 return -EINVAL;
514 if (rpm < 300)
515 rpm = 300;
516 else if (rpm > 8191)
517 rpm = 8191;
518 buf[0] = rpm >> 5;
519 buf[1] = rpm << 3;
520 rc = fan_write_reg(0x10 + (id * 2), buf, 2);
521 if (rc < 0)
522 return -EIO;
523 return 0;
526 static int get_rpm_fan(int fan_index, int programmed)
528 unsigned char failure;
529 unsigned char active;
530 unsigned char buf[2];
531 int rc, id, reg_base;
533 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
534 return -EINVAL;
535 id = fcu_fans[fan_index].id;
536 if (id == FCU_FAN_ABSENT_ID)
537 return -EINVAL;
539 rc = fan_read_reg(0xb, &failure, 1);
540 if (rc != 1)
541 return -EIO;
542 if ((failure & (1 << id)) != 0)
543 return -EFAULT;
544 rc = fan_read_reg(0xd, &active, 1);
545 if (rc != 1)
546 return -EIO;
547 if ((active & (1 << id)) == 0)
548 return -ENXIO;
550 /* Programmed value or real current speed */
551 reg_base = programmed ? 0x10 : 0x11;
552 rc = fan_read_reg(reg_base + (id * 2), buf, 2);
553 if (rc != 2)
554 return -EIO;
556 return (buf[0] << 5) | buf[1] >> 3;
559 static int set_pwm_fan(int fan_index, int pwm)
561 unsigned char buf[2];
562 int rc, id;
564 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
565 return -EINVAL;
566 id = fcu_fans[fan_index].id;
567 if (id == FCU_FAN_ABSENT_ID)
568 return -EINVAL;
570 if (pwm < 10)
571 pwm = 10;
572 else if (pwm > 100)
573 pwm = 100;
574 pwm = (pwm * 2559) / 1000;
575 buf[0] = pwm;
576 rc = fan_write_reg(0x30 + (id * 2), buf, 1);
577 if (rc < 0)
578 return rc;
579 return 0;
582 static int get_pwm_fan(int fan_index)
584 unsigned char failure;
585 unsigned char active;
586 unsigned char buf[2];
587 int rc, id;
589 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
590 return -EINVAL;
591 id = fcu_fans[fan_index].id;
592 if (id == FCU_FAN_ABSENT_ID)
593 return -EINVAL;
595 rc = fan_read_reg(0x2b, &failure, 1);
596 if (rc != 1)
597 return -EIO;
598 if ((failure & (1 << id)) != 0)
599 return -EFAULT;
600 rc = fan_read_reg(0x2d, &active, 1);
601 if (rc != 1)
602 return -EIO;
603 if ((active & (1 << id)) == 0)
604 return -ENXIO;
606 /* Programmed value or real current speed */
607 rc = fan_read_reg(0x30 + (id * 2), buf, 1);
608 if (rc != 1)
609 return -EIO;
611 return (buf[0] * 1000) / 2559;
615 * Utility routine to read the CPU calibration EEPROM data
616 * from the device-tree
618 static int read_eeprom(int cpu, struct mpu_data *out)
620 struct device_node *np;
621 char nodename[64];
622 u8 *data;
623 int len;
625 /* prom.c routine for finding a node by path is a bit brain dead
626 * and requires exact @xxx unit numbers. This is a bit ugly but
627 * will work for these machines
629 sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
630 np = of_find_node_by_path(nodename);
631 if (np == NULL) {
632 printk(KERN_ERR "therm_pm72: Failed to retreive cpuid node from device-tree\n");
633 return -ENODEV;
635 data = (u8 *)get_property(np, "cpuid", &len);
636 if (data == NULL) {
637 printk(KERN_ERR "therm_pm72: Failed to retreive cpuid property from device-tree\n");
638 of_node_put(np);
639 return -ENODEV;
641 memcpy(out, data, sizeof(struct mpu_data));
642 of_node_put(np);
644 return 0;
647 static void fetch_cpu_pumps_minmax(void)
649 struct cpu_pid_state *state0 = &cpu_state[0];
650 struct cpu_pid_state *state1 = &cpu_state[1];
651 u16 pump_min = 0, pump_max = 0xffff;
652 u16 tmp[4];
654 /* Try to fetch pumps min/max infos from eeprom */
656 memcpy(&tmp, &state0->mpu.processor_part_num, 8);
657 if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
658 pump_min = max(pump_min, tmp[0]);
659 pump_max = min(pump_max, tmp[1]);
661 if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
662 pump_min = max(pump_min, tmp[2]);
663 pump_max = min(pump_max, tmp[3]);
666 /* Double check the values, this _IS_ needed as the EEPROM on
667 * some dual 2.5Ghz G5s seem, at least, to have both min & max
668 * same to the same value ... (grrrr)
670 if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
671 pump_min = CPU_PUMP_OUTPUT_MIN;
672 pump_max = CPU_PUMP_OUTPUT_MAX;
675 state0->pump_min = state1->pump_min = pump_min;
676 state0->pump_max = state1->pump_max = pump_max;
680 * Now, unfortunately, sysfs doesn't give us a nice void * we could
681 * pass around to the attribute functions, so we don't really have
682 * choice but implement a bunch of them...
684 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
685 * the input twice... I accept patches :)
687 #define BUILD_SHOW_FUNC_FIX(name, data) \
688 static ssize_t show_##name(struct device *dev, char *buf) \
690 ssize_t r; \
691 down(&driver_lock); \
692 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
693 up(&driver_lock); \
694 return r; \
696 #define BUILD_SHOW_FUNC_INT(name, data) \
697 static ssize_t show_##name(struct device *dev, char *buf) \
699 return sprintf(buf, "%d", data); \
702 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
703 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
704 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
705 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
706 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
708 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
709 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
710 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
711 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
712 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
714 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
715 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
717 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
718 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
720 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
722 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
723 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
724 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
725 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
726 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
728 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
729 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
730 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
731 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
732 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
734 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
735 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
737 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
738 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
740 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
743 * CPUs fans control loop
746 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
748 s32 ltemp, volts, amps;
749 int index, rc = 0;
751 /* Default (in case of error) */
752 *temp = state->cur_temp;
753 *power = state->cur_power;
755 if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
756 index = (state->index == 0) ?
757 CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
758 else
759 index = (state->index == 0) ?
760 CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
762 /* Read current fan status */
763 rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
764 if (rc < 0) {
765 /* XXX What do we do now ? Nothing for now, keep old value, but
766 * return error upstream
768 DBG(" cpu %d, fan reading error !\n", state->index);
769 } else {
770 state->rpm = rc;
771 DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
774 /* Get some sensor readings and scale it */
775 ltemp = read_smon_adc(state, 1);
776 if (ltemp == -1) {
777 /* XXX What do we do now ? */
778 state->overtemp++;
779 if (rc == 0)
780 rc = -EIO;
781 DBG(" cpu %d, temp reading error !\n", state->index);
782 } else {
783 /* Fixup temperature according to diode calibration
785 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
786 state->index,
787 ltemp, state->mpu.mdiode, state->mpu.bdiode);
788 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
789 state->last_temp = *temp;
790 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp)));
794 * Read voltage & current and calculate power
796 volts = read_smon_adc(state, 3);
797 amps = read_smon_adc(state, 4);
799 /* Scale voltage and current raw sensor values according to fixed scales
800 * obtained in Darwin and calculate power from I and V
802 volts *= ADC_CPU_VOLTAGE_SCALE;
803 amps *= ADC_CPU_CURRENT_SCALE;
804 *power = (((u64)volts) * ((u64)amps)) >> 16;
805 state->voltage = volts;
806 state->current_a = amps;
807 state->last_power = *power;
809 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
810 state->index, FIX32TOPRINT(state->current_a),
811 FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
813 return 0;
816 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
818 s32 power_target, integral, derivative, proportional, adj_in_target, sval;
819 s64 integ_p, deriv_p, prop_p, sum;
820 int i;
822 /* Calculate power target value (could be done once for all)
823 * and convert to a 16.16 fp number
825 power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
826 DBG(" power target: %d.%03d, error: %d.%03d\n",
827 FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
829 /* Store temperature and power in history array */
830 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
831 state->temp_history[state->cur_temp] = temp;
832 state->cur_power = (state->cur_power + 1) % state->count_power;
833 state->power_history[state->cur_power] = power;
834 state->error_history[state->cur_power] = power_target - power;
836 /* If first loop, fill the history table */
837 if (state->first) {
838 for (i = 0; i < (state->count_power - 1); i++) {
839 state->cur_power = (state->cur_power + 1) % state->count_power;
840 state->power_history[state->cur_power] = power;
841 state->error_history[state->cur_power] = power_target - power;
843 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
844 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
845 state->temp_history[state->cur_temp] = temp;
847 state->first = 0;
850 /* Calculate the integral term normally based on the "power" values */
851 sum = 0;
852 integral = 0;
853 for (i = 0; i < state->count_power; i++)
854 integral += state->error_history[i];
855 integral *= CPU_PID_INTERVAL;
856 DBG(" integral: %08x\n", integral);
858 /* Calculate the adjusted input (sense value).
859 * G_r is 12.20
860 * integ is 16.16
861 * so the result is 28.36
863 * input target is mpu.ttarget, input max is mpu.tmax
865 integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
866 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
867 sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
868 adj_in_target = (state->mpu.ttarget << 16);
869 if (adj_in_target > sval)
870 adj_in_target = sval;
871 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
872 state->mpu.ttarget);
874 /* Calculate the derivative term */
875 derivative = state->temp_history[state->cur_temp] -
876 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
877 % CPU_TEMP_HISTORY_SIZE];
878 derivative /= CPU_PID_INTERVAL;
879 deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
880 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
881 sum += deriv_p;
883 /* Calculate the proportional term */
884 proportional = temp - adj_in_target;
885 prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
886 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
887 sum += prop_p;
889 /* Scale sum */
890 sum >>= 36;
892 DBG(" sum: %d\n", (int)sum);
893 state->rpm += (s32)sum;
896 static void do_monitor_cpu_combined(void)
898 struct cpu_pid_state *state0 = &cpu_state[0];
899 struct cpu_pid_state *state1 = &cpu_state[1];
900 s32 temp0, power0, temp1, power1;
901 s32 temp_combi, power_combi;
902 int rc, intake, pump;
904 rc = do_read_one_cpu_values(state0, &temp0, &power0);
905 if (rc < 0) {
906 /* XXX What do we do now ? */
908 state1->overtemp = 0;
909 rc = do_read_one_cpu_values(state1, &temp1, &power1);
910 if (rc < 0) {
911 /* XXX What do we do now ? */
913 if (state1->overtemp)
914 state0->overtemp++;
916 temp_combi = max(temp0, temp1);
917 power_combi = max(power0, power1);
919 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
920 * full blown immediately and try to trigger a shutdown
922 if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
923 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
924 temp_combi >> 16);
925 state0->overtemp = CPU_MAX_OVERTEMP;
926 } else if (temp_combi > (state0->mpu.tmax << 16))
927 state0->overtemp++;
928 else
929 state0->overtemp = 0;
930 if (state0->overtemp >= CPU_MAX_OVERTEMP)
931 critical_state = 1;
932 if (state0->overtemp > 0) {
933 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
934 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
935 pump = state0->pump_min;
936 goto do_set_fans;
939 /* Do the PID */
940 do_cpu_pid(state0, temp_combi, power_combi);
942 /* Range check */
943 state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
944 state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
946 /* Calculate intake fan speed */
947 intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
948 intake = max(intake, (int)state0->mpu.rminn_intake_fan);
949 intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
950 state0->intake_rpm = intake;
952 /* Calculate pump speed */
953 pump = (state0->rpm * state0->pump_max) /
954 state0->mpu.rmaxn_exhaust_fan;
955 pump = min(pump, state0->pump_max);
956 pump = max(pump, state0->pump_min);
958 do_set_fans:
959 /* We copy values from state 0 to state 1 for /sysfs */
960 state1->rpm = state0->rpm;
961 state1->intake_rpm = state0->intake_rpm;
963 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
964 state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
966 /* We should check for errors, shouldn't we ? But then, what
967 * do we do once the error occurs ? For FCU notified fan
968 * failures (-EFAULT) we probably want to notify userland
969 * some way...
971 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
972 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
973 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
974 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
976 if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
977 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
978 if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
979 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
982 static void do_monitor_cpu_split(struct cpu_pid_state *state)
984 s32 temp, power;
985 int rc, intake;
987 /* Read current fan status */
988 rc = do_read_one_cpu_values(state, &temp, &power);
989 if (rc < 0) {
990 /* XXX What do we do now ? */
993 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
994 * full blown immediately and try to trigger a shutdown
996 if (temp >= ((state->mpu.tmax + 8) << 16)) {
997 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
998 " (%d) !\n",
999 state->index, temp >> 16);
1000 state->overtemp = CPU_MAX_OVERTEMP;
1001 } else if (temp > (state->mpu.tmax << 16))
1002 state->overtemp++;
1003 else
1004 state->overtemp = 0;
1005 if (state->overtemp >= CPU_MAX_OVERTEMP)
1006 critical_state = 1;
1007 if (state->overtemp > 0) {
1008 state->rpm = state->mpu.rmaxn_exhaust_fan;
1009 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1010 goto do_set_fans;
1013 /* Do the PID */
1014 do_cpu_pid(state, temp, power);
1016 /* Range check */
1017 state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1018 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1020 /* Calculate intake fan */
1021 intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1022 intake = max(intake, (int)state->mpu.rminn_intake_fan);
1023 intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1024 state->intake_rpm = intake;
1026 do_set_fans:
1027 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1028 state->index, (int)state->rpm, intake, state->overtemp);
1030 /* We should check for errors, shouldn't we ? But then, what
1031 * do we do once the error occurs ? For FCU notified fan
1032 * failures (-EFAULT) we probably want to notify userland
1033 * some way...
1035 if (state->index == 0) {
1036 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1037 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1038 } else {
1039 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1040 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1044 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1046 s32 temp, power, fan_min;
1047 int rc;
1049 /* Read current fan status */
1050 rc = do_read_one_cpu_values(state, &temp, &power);
1051 if (rc < 0) {
1052 /* XXX What do we do now ? */
1055 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1056 * full blown immediately and try to trigger a shutdown
1058 if (temp >= ((state->mpu.tmax + 8) << 16)) {
1059 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1060 " (%d) !\n",
1061 state->index, temp >> 16);
1062 state->overtemp = CPU_MAX_OVERTEMP;
1063 } else if (temp > (state->mpu.tmax << 16))
1064 state->overtemp++;
1065 else
1066 state->overtemp = 0;
1067 if (state->overtemp >= CPU_MAX_OVERTEMP)
1068 critical_state = 1;
1069 if (state->overtemp > 0) {
1070 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1071 goto do_set_fans;
1074 /* Do the PID */
1075 do_cpu_pid(state, temp, power);
1077 /* Check clamp from dimms */
1078 fan_min = dimm_output_clamp;
1079 fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1081 state->rpm = max(state->rpm, (int)fan_min);
1082 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1083 state->intake_rpm = state->rpm;
1085 do_set_fans:
1086 DBG("** CPU %d RPM: %d overtemp: %d\n",
1087 state->index, (int)state->rpm, state->overtemp);
1089 /* We should check for errors, shouldn't we ? But then, what
1090 * do we do once the error occurs ? For FCU notified fan
1091 * failures (-EFAULT) we probably want to notify userland
1092 * some way...
1094 if (state->index == 0) {
1095 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1096 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1097 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1098 } else {
1099 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1100 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1101 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1106 * Initialize the state structure for one CPU control loop
1108 static int init_cpu_state(struct cpu_pid_state *state, int index)
1110 state->index = index;
1111 state->first = 1;
1112 state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1113 state->overtemp = 0;
1114 state->adc_config = 0x00;
1117 if (index == 0)
1118 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1119 else if (index == 1)
1120 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1121 if (state->monitor == NULL)
1122 goto fail;
1124 if (read_eeprom(index, &state->mpu))
1125 goto fail;
1127 state->count_power = state->mpu.tguardband;
1128 if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1129 printk(KERN_WARNING "Warning ! too many power history slots\n");
1130 state->count_power = CPU_POWER_HISTORY_SIZE;
1132 DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1134 if (index == 0) {
1135 device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1136 device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1137 device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1138 device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1139 device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1140 } else {
1141 device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1142 device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1143 device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1144 device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1145 device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1148 return 0;
1149 fail:
1150 if (state->monitor)
1151 detach_i2c_chip(state->monitor);
1152 state->monitor = NULL;
1154 return -ENODEV;
1158 * Dispose of the state data for one CPU control loop
1160 static void dispose_cpu_state(struct cpu_pid_state *state)
1162 if (state->monitor == NULL)
1163 return;
1165 if (state->index == 0) {
1166 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1167 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1168 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1169 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1170 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1171 } else {
1172 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1173 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1174 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1175 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1176 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1179 detach_i2c_chip(state->monitor);
1180 state->monitor = NULL;
1184 * Motherboard backside & U3 heatsink fan control loop
1186 static void do_monitor_backside(struct backside_pid_state *state)
1188 s32 temp, integral, derivative, fan_min;
1189 s64 integ_p, deriv_p, prop_p, sum;
1190 int i, rc;
1192 if (--state->ticks != 0)
1193 return;
1194 state->ticks = backside_params.interval;
1196 DBG("backside:\n");
1198 /* Check fan status */
1199 rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1200 if (rc < 0) {
1201 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1202 /* XXX What do we do now ? */
1203 } else
1204 state->pwm = rc;
1205 DBG(" current pwm: %d\n", state->pwm);
1207 /* Get some sensor readings */
1208 temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1209 state->last_temp = temp;
1210 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1211 FIX32TOPRINT(backside_params.input_target));
1213 /* Store temperature and error in history array */
1214 state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1215 state->sample_history[state->cur_sample] = temp;
1216 state->error_history[state->cur_sample] = temp - backside_params.input_target;
1218 /* If first loop, fill the history table */
1219 if (state->first) {
1220 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1221 state->cur_sample = (state->cur_sample + 1) %
1222 BACKSIDE_PID_HISTORY_SIZE;
1223 state->sample_history[state->cur_sample] = temp;
1224 state->error_history[state->cur_sample] =
1225 temp - backside_params.input_target;
1227 state->first = 0;
1230 /* Calculate the integral term */
1231 sum = 0;
1232 integral = 0;
1233 for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1234 integral += state->error_history[i];
1235 integral *= backside_params.interval;
1236 DBG(" integral: %08x\n", integral);
1237 integ_p = ((s64)backside_params.G_r) * (s64)integral;
1238 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1239 sum += integ_p;
1241 /* Calculate the derivative term */
1242 derivative = state->error_history[state->cur_sample] -
1243 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1244 % BACKSIDE_PID_HISTORY_SIZE];
1245 derivative /= backside_params.interval;
1246 deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1247 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1248 sum += deriv_p;
1250 /* Calculate the proportional term */
1251 prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1252 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1253 sum += prop_p;
1255 /* Scale sum */
1256 sum >>= 36;
1258 DBG(" sum: %d\n", (int)sum);
1259 if (backside_params.additive)
1260 state->pwm += (s32)sum;
1261 else
1262 state->pwm = sum;
1264 /* Check for clamp */
1265 fan_min = (dimm_output_clamp * 100) / 14000;
1266 fan_min = max(fan_min, backside_params.output_min);
1268 state->pwm = max(state->pwm, fan_min);
1269 state->pwm = min(state->pwm, backside_params.output_max);
1271 DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1272 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1276 * Initialize the state structure for the backside fan control loop
1278 static int init_backside_state(struct backside_pid_state *state)
1280 struct device_node *u3;
1281 int u3h = 1; /* conservative by default */
1284 * There are different PID params for machines with U3 and machines
1285 * with U3H, pick the right ones now
1287 u3 = of_find_node_by_path("/u3@0,f8000000");
1288 if (u3 != NULL) {
1289 u32 *vers = (u32 *)get_property(u3, "device-rev", NULL);
1290 if (vers)
1291 if (((*vers) & 0x3f) < 0x34)
1292 u3h = 0;
1293 of_node_put(u3);
1296 if (rackmac) {
1297 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1298 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1299 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1300 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1301 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1302 backside_params.G_r = BACKSIDE_PID_G_r;
1303 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1304 backside_params.additive = 0;
1305 } else if (u3h) {
1306 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1307 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1308 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1309 backside_params.interval = BACKSIDE_PID_INTERVAL;
1310 backside_params.G_p = BACKSIDE_PID_G_p;
1311 backside_params.G_r = BACKSIDE_PID_G_r;
1312 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1313 backside_params.additive = 1;
1314 } else {
1315 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1316 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1317 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1318 backside_params.interval = BACKSIDE_PID_INTERVAL;
1319 backside_params.G_p = BACKSIDE_PID_G_p;
1320 backside_params.G_r = BACKSIDE_PID_G_r;
1321 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1322 backside_params.additive = 1;
1325 state->ticks = 1;
1326 state->first = 1;
1327 state->pwm = 50;
1329 state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1330 if (state->monitor == NULL)
1331 return -ENODEV;
1333 device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1334 device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1336 return 0;
1340 * Dispose of the state data for the backside control loop
1342 static void dispose_backside_state(struct backside_pid_state *state)
1344 if (state->monitor == NULL)
1345 return;
1347 device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1348 device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1350 detach_i2c_chip(state->monitor);
1351 state->monitor = NULL;
1355 * Drives bay fan control loop
1357 static void do_monitor_drives(struct drives_pid_state *state)
1359 s32 temp, integral, derivative;
1360 s64 integ_p, deriv_p, prop_p, sum;
1361 int i, rc;
1363 if (--state->ticks != 0)
1364 return;
1365 state->ticks = DRIVES_PID_INTERVAL;
1367 DBG("drives:\n");
1369 /* Check fan status */
1370 rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1371 if (rc < 0) {
1372 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1373 /* XXX What do we do now ? */
1374 } else
1375 state->rpm = rc;
1376 DBG(" current rpm: %d\n", state->rpm);
1378 /* Get some sensor readings */
1379 temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, DS1775_TEMP)) << 8;
1380 state->last_temp = temp;
1381 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1382 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1384 /* Store temperature and error in history array */
1385 state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1386 state->sample_history[state->cur_sample] = temp;
1387 state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1389 /* If first loop, fill the history table */
1390 if (state->first) {
1391 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1392 state->cur_sample = (state->cur_sample + 1) %
1393 DRIVES_PID_HISTORY_SIZE;
1394 state->sample_history[state->cur_sample] = temp;
1395 state->error_history[state->cur_sample] =
1396 temp - DRIVES_PID_INPUT_TARGET;
1398 state->first = 0;
1401 /* Calculate the integral term */
1402 sum = 0;
1403 integral = 0;
1404 for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1405 integral += state->error_history[i];
1406 integral *= DRIVES_PID_INTERVAL;
1407 DBG(" integral: %08x\n", integral);
1408 integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1409 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1410 sum += integ_p;
1412 /* Calculate the derivative term */
1413 derivative = state->error_history[state->cur_sample] -
1414 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1415 % DRIVES_PID_HISTORY_SIZE];
1416 derivative /= DRIVES_PID_INTERVAL;
1417 deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1418 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1419 sum += deriv_p;
1421 /* Calculate the proportional term */
1422 prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1423 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1424 sum += prop_p;
1426 /* Scale sum */
1427 sum >>= 36;
1429 DBG(" sum: %d\n", (int)sum);
1430 state->rpm += (s32)sum;
1432 state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1433 state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1435 DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1436 set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1440 * Initialize the state structure for the drives bay fan control loop
1442 static int init_drives_state(struct drives_pid_state *state)
1444 state->ticks = 1;
1445 state->first = 1;
1446 state->rpm = 1000;
1448 state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1449 if (state->monitor == NULL)
1450 return -ENODEV;
1452 device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1453 device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1455 return 0;
1459 * Dispose of the state data for the drives control loop
1461 static void dispose_drives_state(struct drives_pid_state *state)
1463 if (state->monitor == NULL)
1464 return;
1466 device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1467 device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1469 detach_i2c_chip(state->monitor);
1470 state->monitor = NULL;
1474 * DIMMs temp control loop
1476 static void do_monitor_dimms(struct dimm_pid_state *state)
1478 s32 temp, integral, derivative, fan_min;
1479 s64 integ_p, deriv_p, prop_p, sum;
1480 int i;
1482 if (--state->ticks != 0)
1483 return;
1484 state->ticks = DIMM_PID_INTERVAL;
1486 DBG("DIMM:\n");
1488 DBG(" current value: %d\n", state->output);
1490 temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1491 if (temp < 0)
1492 return;
1493 temp <<= 16;
1494 state->last_temp = temp;
1495 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1496 FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1498 /* Store temperature and error in history array */
1499 state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1500 state->sample_history[state->cur_sample] = temp;
1501 state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1503 /* If first loop, fill the history table */
1504 if (state->first) {
1505 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1506 state->cur_sample = (state->cur_sample + 1) %
1507 DIMM_PID_HISTORY_SIZE;
1508 state->sample_history[state->cur_sample] = temp;
1509 state->error_history[state->cur_sample] =
1510 temp - DIMM_PID_INPUT_TARGET;
1512 state->first = 0;
1515 /* Calculate the integral term */
1516 sum = 0;
1517 integral = 0;
1518 for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1519 integral += state->error_history[i];
1520 integral *= DIMM_PID_INTERVAL;
1521 DBG(" integral: %08x\n", integral);
1522 integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1523 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1524 sum += integ_p;
1526 /* Calculate the derivative term */
1527 derivative = state->error_history[state->cur_sample] -
1528 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1529 % DIMM_PID_HISTORY_SIZE];
1530 derivative /= DIMM_PID_INTERVAL;
1531 deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1532 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1533 sum += deriv_p;
1535 /* Calculate the proportional term */
1536 prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1537 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1538 sum += prop_p;
1540 /* Scale sum */
1541 sum >>= 36;
1543 DBG(" sum: %d\n", (int)sum);
1544 state->output = (s32)sum;
1545 state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1546 state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1547 dimm_output_clamp = state->output;
1549 DBG("** DIMM clamp value: %d\n", (int)state->output);
1551 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1552 fan_min = (dimm_output_clamp * 100) / 14000;
1553 fan_min = max(fan_min, backside_params.output_min);
1554 if (backside_state.pwm < fan_min) {
1555 backside_state.pwm = fan_min;
1556 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min);
1557 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1562 * Initialize the state structure for the DIMM temp control loop
1564 static int init_dimms_state(struct dimm_pid_state *state)
1566 state->ticks = 1;
1567 state->first = 1;
1568 state->output = 4000;
1570 state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1571 if (state->monitor == NULL)
1572 return -ENODEV;
1574 device_create_file(&of_dev->dev, &dev_attr_dimms_temperature);
1576 return 0;
1580 * Dispose of the state data for the drives control loop
1582 static void dispose_dimms_state(struct dimm_pid_state *state)
1584 if (state->monitor == NULL)
1585 return;
1587 device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1589 detach_i2c_chip(state->monitor);
1590 state->monitor = NULL;
1593 static int call_critical_overtemp(void)
1595 char *argv[] = { critical_overtemp_path, NULL };
1596 static char *envp[] = { "HOME=/",
1597 "TERM=linux",
1598 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1599 NULL };
1601 return call_usermodehelper(critical_overtemp_path, argv, envp, 0);
1606 * Here's the kernel thread that calls the various control loops
1608 static int main_control_loop(void *x)
1610 daemonize("kfand");
1612 DBG("main_control_loop started\n");
1614 down(&driver_lock);
1616 if (start_fcu() < 0) {
1617 printk(KERN_ERR "kfand: failed to start FCU\n");
1618 up(&driver_lock);
1619 goto out;
1622 /* Set the PCI fan once for now */
1623 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1625 /* Initialize ADCs */
1626 initialize_adc(&cpu_state[0]);
1627 if (cpu_state[1].monitor != NULL)
1628 initialize_adc(&cpu_state[1]);
1630 up(&driver_lock);
1632 while (state == state_attached) {
1633 unsigned long elapsed, start;
1635 start = jiffies;
1637 down(&driver_lock);
1639 /* First, we always calculate the new DIMMs state on an Xserve */
1640 if (rackmac)
1641 do_monitor_dimms(&dimms_state);
1643 /* Then, the CPUs */
1644 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1645 do_monitor_cpu_combined();
1646 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1647 do_monitor_cpu_rack(&cpu_state[0]);
1648 if (cpu_state[1].monitor != NULL)
1649 do_monitor_cpu_rack(&cpu_state[1]);
1650 // better deal with UP
1651 } else {
1652 do_monitor_cpu_split(&cpu_state[0]);
1653 if (cpu_state[1].monitor != NULL)
1654 do_monitor_cpu_split(&cpu_state[1]);
1655 // better deal with UP
1657 /* Then, the rest */
1658 do_monitor_backside(&backside_state);
1659 if (!rackmac)
1660 do_monitor_drives(&drives_state);
1661 up(&driver_lock);
1663 if (critical_state == 1) {
1664 printk(KERN_WARNING "Temperature control detected a critical condition\n");
1665 printk(KERN_WARNING "Attempting to shut down...\n");
1666 if (call_critical_overtemp()) {
1667 printk(KERN_WARNING "Can't call %s, power off now!\n",
1668 critical_overtemp_path);
1669 machine_power_off();
1672 if (critical_state > 0)
1673 critical_state++;
1674 if (critical_state > MAX_CRITICAL_STATE) {
1675 printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1676 machine_power_off();
1679 // FIXME: Deal with signals
1680 set_current_state(TASK_INTERRUPTIBLE);
1681 elapsed = jiffies - start;
1682 if (elapsed < HZ)
1683 schedule_timeout(HZ - elapsed);
1686 out:
1687 DBG("main_control_loop ended\n");
1689 ctrl_task = 0;
1690 complete_and_exit(&ctrl_complete, 0);
1694 * Dispose the control loops when tearing down
1696 static void dispose_control_loops(void)
1698 dispose_cpu_state(&cpu_state[0]);
1699 dispose_cpu_state(&cpu_state[1]);
1700 dispose_backside_state(&backside_state);
1701 dispose_drives_state(&drives_state);
1702 dispose_dimms_state(&dimms_state);
1706 * Create the control loops. U3-0 i2c bus is up, so we can now
1707 * get to the various sensors
1709 static int create_control_loops(void)
1711 struct device_node *np;
1713 /* Count CPUs from the device-tree, we don't care how many are
1714 * actually used by Linux
1716 cpu_count = 0;
1717 for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1718 cpu_count++;
1720 DBG("counted %d CPUs in the device-tree\n", cpu_count);
1722 /* Decide the type of PID algorithm to use based on the presence of
1723 * the pumps, though that may not be the best way, that is good enough
1724 * for now
1726 if (rackmac)
1727 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1728 else if (machine_is_compatible("PowerMac7,3")
1729 && (cpu_count > 1)
1730 && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1731 && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1732 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1733 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1734 } else
1735 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1737 /* Create control loops for everything. If any fail, everything
1738 * fails
1740 if (init_cpu_state(&cpu_state[0], 0))
1741 goto fail;
1742 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1743 fetch_cpu_pumps_minmax();
1745 if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1746 goto fail;
1747 if (init_backside_state(&backside_state))
1748 goto fail;
1749 if (rackmac && init_dimms_state(&dimms_state))
1750 goto fail;
1751 if (!rackmac && init_drives_state(&drives_state))
1752 goto fail;
1754 DBG("all control loops up !\n");
1756 return 0;
1758 fail:
1759 DBG("failure creating control loops, disposing\n");
1761 dispose_control_loops();
1763 return -ENODEV;
1767 * Start the control loops after everything is up, that is create
1768 * the thread that will make them run
1770 static void start_control_loops(void)
1772 init_completion(&ctrl_complete);
1774 ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL);
1778 * Stop the control loops when tearing down
1780 static void stop_control_loops(void)
1782 if (ctrl_task != 0)
1783 wait_for_completion(&ctrl_complete);
1787 * Attach to the i2c FCU after detecting U3-1 bus
1789 static int attach_fcu(void)
1791 fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1792 if (fcu == NULL)
1793 return -ENODEV;
1795 DBG("FCU attached\n");
1797 return 0;
1801 * Detach from the i2c FCU when tearing down
1803 static void detach_fcu(void)
1805 if (fcu)
1806 detach_i2c_chip(fcu);
1807 fcu = NULL;
1811 * Attach to the i2c controller. We probe the various chips based
1812 * on the device-tree nodes and build everything for the driver to
1813 * run, we then kick the driver monitoring thread
1815 static int therm_pm72_attach(struct i2c_adapter *adapter)
1817 down(&driver_lock);
1819 /* Check state */
1820 if (state == state_detached)
1821 state = state_attaching;
1822 if (state != state_attaching) {
1823 up(&driver_lock);
1824 return 0;
1827 /* Check if we are looking for one of these */
1828 if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
1829 u3_0 = adapter;
1830 DBG("found U3-0\n");
1831 if (k2 || !rackmac)
1832 if (create_control_loops())
1833 u3_0 = NULL;
1834 } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
1835 u3_1 = adapter;
1836 DBG("found U3-1, attaching FCU\n");
1837 if (attach_fcu())
1838 u3_1 = NULL;
1839 } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
1840 k2 = adapter;
1841 DBG("Found K2\n");
1842 if (u3_0 && rackmac)
1843 if (create_control_loops())
1844 k2 = NULL;
1846 /* We got all we need, start control loops */
1847 if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
1848 DBG("everything up, starting control loops\n");
1849 state = state_attached;
1850 start_control_loops();
1852 up(&driver_lock);
1854 return 0;
1858 * Called on every adapter when the driver or the i2c controller
1859 * is going away.
1861 static int therm_pm72_detach(struct i2c_adapter *adapter)
1863 down(&driver_lock);
1865 if (state != state_detached)
1866 state = state_detaching;
1868 /* Stop control loops if any */
1869 DBG("stopping control loops\n");
1870 up(&driver_lock);
1871 stop_control_loops();
1872 down(&driver_lock);
1874 if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
1875 DBG("lost U3-0, disposing control loops\n");
1876 dispose_control_loops();
1877 u3_0 = NULL;
1880 if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
1881 DBG("lost U3-1, detaching FCU\n");
1882 detach_fcu();
1883 u3_1 = NULL;
1885 if (u3_0 == NULL && u3_1 == NULL)
1886 state = state_detached;
1888 up(&driver_lock);
1890 return 0;
1893 static int fan_check_loc_match(const char *loc, int fan)
1895 char tmp[64];
1896 char *c, *e;
1898 strlcpy(tmp, fcu_fans[fan].loc, 64);
1900 c = tmp;
1901 for (;;) {
1902 e = strchr(c, ',');
1903 if (e)
1904 *e = 0;
1905 if (strcmp(loc, c) == 0)
1906 return 1;
1907 if (e == NULL)
1908 break;
1909 c = e + 1;
1911 return 0;
1914 static void fcu_lookup_fans(struct device_node *fcu_node)
1916 struct device_node *np = NULL;
1917 int i;
1919 /* The table is filled by default with values that are suitable
1920 * for the old machines without device-tree informations. We scan
1921 * the device-tree and override those values with whatever is
1922 * there
1925 DBG("Looking up FCU controls in device-tree...\n");
1927 while ((np = of_get_next_child(fcu_node, np)) != NULL) {
1928 int type = -1;
1929 char *loc;
1930 u32 *reg;
1932 DBG(" control: %s, type: %s\n", np->name, np->type);
1934 /* Detect control type */
1935 if (!strcmp(np->type, "fan-rpm-control") ||
1936 !strcmp(np->type, "fan-rpm"))
1937 type = FCU_FAN_RPM;
1938 if (!strcmp(np->type, "fan-pwm-control") ||
1939 !strcmp(np->type, "fan-pwm"))
1940 type = FCU_FAN_PWM;
1941 /* Only care about fans for now */
1942 if (type == -1)
1943 continue;
1945 /* Lookup for a matching location */
1946 loc = (char *)get_property(np, "location", NULL);
1947 reg = (u32 *)get_property(np, "reg", NULL);
1948 if (loc == NULL || reg == NULL)
1949 continue;
1950 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
1952 for (i = 0; i < FCU_FAN_COUNT; i++) {
1953 int fan_id;
1955 if (!fan_check_loc_match(loc, i))
1956 continue;
1957 DBG(" location match, index: %d\n", i);
1958 fcu_fans[i].id = FCU_FAN_ABSENT_ID;
1959 if (type != fcu_fans[i].type) {
1960 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
1961 "in device-tree for %s\n", np->full_name);
1962 break;
1964 if (type == FCU_FAN_RPM)
1965 fan_id = ((*reg) - 0x10) / 2;
1966 else
1967 fan_id = ((*reg) - 0x30) / 2;
1968 if (fan_id > 7) {
1969 printk(KERN_WARNING "therm_pm72: Can't parse "
1970 "fan ID in device-tree for %s\n", np->full_name);
1971 break;
1973 DBG(" fan id -> %d, type -> %d\n", fan_id, type);
1974 fcu_fans[i].id = fan_id;
1978 /* Now dump the array */
1979 printk(KERN_INFO "Detected fan controls:\n");
1980 for (i = 0; i < FCU_FAN_COUNT; i++) {
1981 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
1982 continue;
1983 printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i,
1984 fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
1985 fcu_fans[i].id, fcu_fans[i].loc);
1989 static int fcu_of_probe(struct of_device* dev, const struct of_match *match)
1991 int rc;
1993 state = state_detached;
1995 /* Lookup the fans in the device tree */
1996 fcu_lookup_fans(dev->node);
1998 /* Add the driver */
1999 rc = i2c_add_driver(&therm_pm72_driver);
2000 if (rc < 0)
2001 return rc;
2002 return 0;
2005 static int fcu_of_remove(struct of_device* dev)
2007 i2c_del_driver(&therm_pm72_driver);
2009 return 0;
2012 static struct of_match fcu_of_match[] =
2015 .name = OF_ANY_MATCH,
2016 .type = "fcu",
2017 .compatible = OF_ANY_MATCH
2022 static struct of_platform_driver fcu_of_platform_driver =
2024 .name = "temperature",
2025 .match_table = fcu_of_match,
2026 .probe = fcu_of_probe,
2027 .remove = fcu_of_remove
2031 * Check machine type, attach to i2c controller
2033 static int __init therm_pm72_init(void)
2035 struct device_node *np;
2037 rackmac = machine_is_compatible("RackMac3,1");
2039 if (!machine_is_compatible("PowerMac7,2") &&
2040 !machine_is_compatible("PowerMac7,3") &&
2041 !rackmac)
2042 return -ENODEV;
2044 printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2046 np = of_find_node_by_type(NULL, "fcu");
2047 if (np == NULL) {
2048 /* Some machines have strangely broken device-tree */
2049 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2050 if (np == NULL) {
2051 printk(KERN_ERR "Can't find FCU in device-tree !\n");
2052 return -ENODEV;
2055 of_dev = of_platform_device_create(np, "temperature");
2056 if (of_dev == NULL) {
2057 printk(KERN_ERR "Can't register FCU platform device !\n");
2058 return -ENODEV;
2061 of_register_driver(&fcu_of_platform_driver);
2063 return 0;
2066 static void __exit therm_pm72_exit(void)
2068 of_unregister_driver(&fcu_of_platform_driver);
2070 if (of_dev)
2071 of_device_unregister(of_dev);
2074 module_init(therm_pm72_init);
2075 module_exit(therm_pm72_exit);
2077 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2078 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2079 MODULE_LICENSE("GPL");