Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / input / serio / hp_sdc.c
blob7629452dd64b0d65e30cd1e53e9f112027ffe977
1 /*
2 * HP i8042-based System Device Controller driver.
4 * Copyright (c) 2001 Brian S. Julin
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * Alternatively, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL").
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * References:
30 * System Device Controller Microprocessor Firmware Theory of Operation
31 * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
32 * Helge Deller's original hilkbd.c port for PA-RISC.
35 * Driver theory of operation:
37 * hp_sdc_put does all writing to the SDC. ISR can run on a different
38 * CPU than hp_sdc_put, but only one CPU runs hp_sdc_put at a time
39 * (it cannot really benefit from SMP anyway.) A tasket fit this perfectly.
41 * All data coming back from the SDC is sent via interrupt and can be read
42 * fully in the ISR, so there are no latency/throughput problems there.
43 * The problem is with output, due to the slow clock speed of the SDC
44 * compared to the CPU. This should not be too horrible most of the time,
45 * but if used with HIL devices that support the multibyte transfer command,
46 * keeping outbound throughput flowing at the 6500KBps that the HIL is
47 * capable of is more than can be done at HZ=100.
49 * Busy polling for IBF clear wastes CPU cycles and bus cycles. hp_sdc.ibf
50 * is set to 0 when the IBF flag in the status register has cleared. ISR
51 * may do this, and may also access the parts of queued transactions related
52 * to reading data back from the SDC, but otherwise will not touch the
53 * hp_sdc state. Whenever a register is written hp_sdc.ibf is set to 1.
55 * The i8042 write index and the values in the 4-byte input buffer
56 * starting at 0x70 are kept track of in hp_sdc.wi, and .r7[], respectively,
57 * to minimize the amount of IO needed to the SDC. However these values
58 * do not need to be locked since they are only ever accessed by hp_sdc_put.
60 * A timer task schedules the tasklet once per second just to make
61 * sure it doesn't freeze up and to allow for bad reads to time out.
64 #include <linux/hp_sdc.h>
65 #include <linux/sched.h>
66 #include <linux/errno.h>
67 #include <linux/init.h>
68 #include <linux/module.h>
69 #include <linux/ioport.h>
70 #include <linux/time.h>
71 #include <linux/slab.h>
72 #include <linux/hil.h>
73 #include <asm/io.h>
74 #include <asm/system.h>
76 /* Machine-specific abstraction */
78 #if defined(__hppa__)
79 # include <asm/parisc-device.h>
80 # define sdc_readb(p) gsc_readb(p)
81 # define sdc_writeb(v,p) gsc_writeb((v),(p))
82 #elif defined(__mc68000__)
83 # include <asm/uaccess.h>
84 # define sdc_readb(p) in_8(p)
85 # define sdc_writeb(v,p) out_8((p),(v))
86 #else
87 # error "HIL is not supported on this platform"
88 #endif
90 #define PREFIX "HP SDC: "
92 MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
93 MODULE_DESCRIPTION("HP i8042-based SDC Driver");
94 MODULE_LICENSE("Dual BSD/GPL");
96 EXPORT_SYMBOL(hp_sdc_request_timer_irq);
97 EXPORT_SYMBOL(hp_sdc_request_hil_irq);
98 EXPORT_SYMBOL(hp_sdc_request_cooked_irq);
100 EXPORT_SYMBOL(hp_sdc_release_timer_irq);
101 EXPORT_SYMBOL(hp_sdc_release_hil_irq);
102 EXPORT_SYMBOL(hp_sdc_release_cooked_irq);
104 EXPORT_SYMBOL(hp_sdc_enqueue_transaction);
105 EXPORT_SYMBOL(hp_sdc_dequeue_transaction);
107 static hp_i8042_sdc hp_sdc; /* All driver state is kept in here. */
109 /*************** primitives for use in any context *********************/
110 static inline uint8_t hp_sdc_status_in8 (void) {
111 uint8_t status;
112 unsigned long flags;
114 write_lock_irqsave(&hp_sdc.ibf_lock, flags);
115 status = sdc_readb(hp_sdc.status_io);
116 if (!(status & HP_SDC_STATUS_IBF)) hp_sdc.ibf = 0;
117 write_unlock_irqrestore(&hp_sdc.ibf_lock, flags);
119 return status;
122 static inline uint8_t hp_sdc_data_in8 (void) {
123 return sdc_readb(hp_sdc.data_io);
126 static inline void hp_sdc_status_out8 (uint8_t val) {
127 unsigned long flags;
129 write_lock_irqsave(&hp_sdc.ibf_lock, flags);
130 hp_sdc.ibf = 1;
131 if ((val & 0xf0) == 0xe0) hp_sdc.wi = 0xff;
132 sdc_writeb(val, hp_sdc.status_io);
133 write_unlock_irqrestore(&hp_sdc.ibf_lock, flags);
136 static inline void hp_sdc_data_out8 (uint8_t val) {
137 unsigned long flags;
139 write_lock_irqsave(&hp_sdc.ibf_lock, flags);
140 hp_sdc.ibf = 1;
141 sdc_writeb(val, hp_sdc.data_io);
142 write_unlock_irqrestore(&hp_sdc.ibf_lock, flags);
145 /* Care must be taken to only invoke hp_sdc_spin_ibf when
146 * absolutely needed, or in rarely invoked subroutines.
147 * Not only does it waste CPU cycles, it also wastes bus cycles.
149 static inline void hp_sdc_spin_ibf(void) {
150 unsigned long flags;
151 rwlock_t *lock;
153 lock = &hp_sdc.ibf_lock;
155 read_lock_irqsave(lock, flags);
156 if (!hp_sdc.ibf) {
157 read_unlock_irqrestore(lock, flags);
158 return;
160 read_unlock(lock);
161 write_lock(lock);
162 while (sdc_readb(hp_sdc.status_io) & HP_SDC_STATUS_IBF) {};
163 hp_sdc.ibf = 0;
164 write_unlock_irqrestore(lock, flags);
168 /************************ Interrupt context functions ************************/
169 static void hp_sdc_take (int irq, void *dev_id, uint8_t status, uint8_t data) {
170 hp_sdc_transaction *curr;
172 read_lock(&hp_sdc.rtq_lock);
173 if (hp_sdc.rcurr < 0) {
174 read_unlock(&hp_sdc.rtq_lock);
175 return;
177 curr = hp_sdc.tq[hp_sdc.rcurr];
178 read_unlock(&hp_sdc.rtq_lock);
180 curr->seq[curr->idx++] = status;
181 curr->seq[curr->idx++] = data;
182 hp_sdc.rqty -= 2;
183 do_gettimeofday(&hp_sdc.rtv);
185 if (hp_sdc.rqty <= 0) {
186 /* All data has been gathered. */
187 if(curr->seq[curr->actidx] & HP_SDC_ACT_SEMAPHORE) {
188 if (curr->act.semaphore) up(curr->act.semaphore);
190 if(curr->seq[curr->actidx] & HP_SDC_ACT_CALLBACK) {
191 if (curr->act.irqhook)
192 curr->act.irqhook(irq, dev_id, status, data);
194 curr->actidx = curr->idx;
195 curr->idx++;
196 /* Return control of this transaction */
197 write_lock(&hp_sdc.rtq_lock);
198 hp_sdc.rcurr = -1;
199 hp_sdc.rqty = 0;
200 write_unlock(&hp_sdc.rtq_lock);
201 tasklet_schedule(&hp_sdc.task);
205 static irqreturn_t hp_sdc_isr(int irq, void *dev_id, struct pt_regs * regs) {
206 uint8_t status, data;
208 status = hp_sdc_status_in8();
209 /* Read data unconditionally to advance i8042. */
210 data = hp_sdc_data_in8();
212 /* For now we are ignoring these until we get the SDC to behave. */
213 if (((status & 0xf1) == 0x51) && data == 0x82) {
214 return IRQ_HANDLED;
217 switch(status & HP_SDC_STATUS_IRQMASK) {
218 case 0: /* This case is not documented. */
219 break;
220 case HP_SDC_STATUS_USERTIMER:
221 case HP_SDC_STATUS_PERIODIC:
222 case HP_SDC_STATUS_TIMER:
223 read_lock(&hp_sdc.hook_lock);
224 if (hp_sdc.timer != NULL)
225 hp_sdc.timer(irq, dev_id, status, data);
226 read_unlock(&hp_sdc.hook_lock);
227 break;
228 case HP_SDC_STATUS_REG:
229 hp_sdc_take(irq, dev_id, status, data);
230 break;
231 case HP_SDC_STATUS_HILCMD:
232 case HP_SDC_STATUS_HILDATA:
233 read_lock(&hp_sdc.hook_lock);
234 if (hp_sdc.hil != NULL)
235 hp_sdc.hil(irq, dev_id, status, data);
236 read_unlock(&hp_sdc.hook_lock);
237 break;
238 case HP_SDC_STATUS_PUP:
239 read_lock(&hp_sdc.hook_lock);
240 if (hp_sdc.pup != NULL)
241 hp_sdc.pup(irq, dev_id, status, data);
242 else printk(KERN_INFO PREFIX "HP SDC reports successful PUP.\n");
243 read_unlock(&hp_sdc.hook_lock);
244 break;
245 default:
246 read_lock(&hp_sdc.hook_lock);
247 if (hp_sdc.cooked != NULL)
248 hp_sdc.cooked(irq, dev_id, status, data);
249 read_unlock(&hp_sdc.hook_lock);
250 break;
252 return IRQ_HANDLED;
256 static irqreturn_t hp_sdc_nmisr(int irq, void *dev_id, struct pt_regs * regs) {
257 int status;
259 status = hp_sdc_status_in8();
260 printk(KERN_WARNING PREFIX "NMI !\n");
262 #if 0
263 if (status & HP_SDC_NMISTATUS_FHS) {
264 read_lock(&hp_sdc.hook_lock);
265 if (hp_sdc.timer != NULL)
266 hp_sdc.timer(irq, dev_id, status, 0);
267 read_unlock(&hp_sdc.hook_lock);
269 else {
270 /* TODO: pass this on to the HIL handler, or do SAK here? */
271 printk(KERN_WARNING PREFIX "HIL NMI\n");
273 #endif
274 return IRQ_HANDLED;
278 /***************** Kernel (tasklet) context functions ****************/
280 unsigned long hp_sdc_put(void);
282 static void hp_sdc_tasklet(unsigned long foo) {
284 write_lock_irq(&hp_sdc.rtq_lock);
285 if (hp_sdc.rcurr >= 0) {
286 struct timeval tv;
287 do_gettimeofday(&tv);
288 if (tv.tv_sec > hp_sdc.rtv.tv_sec) tv.tv_usec += 1000000;
289 if (tv.tv_usec - hp_sdc.rtv.tv_usec > HP_SDC_MAX_REG_DELAY) {
290 hp_sdc_transaction *curr;
291 uint8_t tmp;
293 curr = hp_sdc.tq[hp_sdc.rcurr];
294 /* If this turns out to be a normal failure mode
295 * we'll need to figure out a way to communicate
296 * it back to the application. and be less verbose.
298 printk(KERN_WARNING PREFIX "read timeout (%ius)!\n",
299 tv.tv_usec - hp_sdc.rtv.tv_usec);
300 curr->idx += hp_sdc.rqty;
301 hp_sdc.rqty = 0;
302 tmp = curr->seq[curr->actidx];
303 curr->seq[curr->actidx] |= HP_SDC_ACT_DEAD;
304 if(tmp & HP_SDC_ACT_SEMAPHORE) {
305 if (curr->act.semaphore)
306 up(curr->act.semaphore);
308 if(tmp & HP_SDC_ACT_CALLBACK) {
309 /* Note this means that irqhooks may be called
310 * in tasklet/bh context.
312 if (curr->act.irqhook)
313 curr->act.irqhook(0, 0, 0, 0);
315 curr->actidx = curr->idx;
316 curr->idx++;
317 hp_sdc.rcurr = -1;
320 write_unlock_irq(&hp_sdc.rtq_lock);
321 hp_sdc_put();
324 unsigned long hp_sdc_put(void) {
325 hp_sdc_transaction *curr;
326 uint8_t act;
327 int idx, curridx;
329 int limit = 0;
331 write_lock(&hp_sdc.lock);
333 /* If i8042 buffers are full, we cannot do anything that
334 requires output, so we skip to the administrativa. */
335 if (hp_sdc.ibf) {
336 hp_sdc_status_in8();
337 if (hp_sdc.ibf) goto finish;
340 anew:
341 /* See if we are in the middle of a sequence. */
342 if (hp_sdc.wcurr < 0) hp_sdc.wcurr = 0;
343 read_lock_irq(&hp_sdc.rtq_lock);
344 if (hp_sdc.rcurr == hp_sdc.wcurr) hp_sdc.wcurr++;
345 read_unlock_irq(&hp_sdc.rtq_lock);
346 if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN) hp_sdc.wcurr = 0;
347 curridx = hp_sdc.wcurr;
349 if (hp_sdc.tq[curridx] != NULL) goto start;
351 while (++curridx != hp_sdc.wcurr) {
352 if (curridx >= HP_SDC_QUEUE_LEN) {
353 curridx = -1; /* Wrap to top */
354 continue;
356 read_lock_irq(&hp_sdc.rtq_lock);
357 if (hp_sdc.rcurr == curridx) {
358 read_unlock_irq(&hp_sdc.rtq_lock);
359 continue;
361 read_unlock_irq(&hp_sdc.rtq_lock);
362 if (hp_sdc.tq[curridx] != NULL) break; /* Found one. */
364 if (curridx == hp_sdc.wcurr) { /* There's nothing queued to do. */
365 curridx = -1;
367 hp_sdc.wcurr = curridx;
369 start:
371 /* Check to see if the interrupt mask needs to be set. */
372 if (hp_sdc.set_im) {
373 hp_sdc_status_out8(hp_sdc.im | HP_SDC_CMD_SET_IM);
374 hp_sdc.set_im = 0;
375 goto finish;
378 if (hp_sdc.wcurr == -1) goto done;
380 curr = hp_sdc.tq[curridx];
381 idx = curr->actidx;
383 if (curr->actidx >= curr->endidx) {
384 hp_sdc.tq[curridx] = NULL;
385 /* Interleave outbound data between the transactions. */
386 hp_sdc.wcurr++;
387 if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN) hp_sdc.wcurr = 0;
388 goto finish;
391 act = curr->seq[idx];
392 idx++;
394 if (curr->idx >= curr->endidx) {
395 if (act & HP_SDC_ACT_DEALLOC) kfree(curr);
396 hp_sdc.tq[curridx] = NULL;
397 /* Interleave outbound data between the transactions. */
398 hp_sdc.wcurr++;
399 if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN) hp_sdc.wcurr = 0;
400 goto finish;
403 while (act & HP_SDC_ACT_PRECMD) {
404 if (curr->idx != idx) {
405 idx++;
406 act &= ~HP_SDC_ACT_PRECMD;
407 break;
409 hp_sdc_status_out8(curr->seq[idx]);
410 curr->idx++;
411 /* act finished? */
412 if ((act & HP_SDC_ACT_DURING) == HP_SDC_ACT_PRECMD)
413 goto actdone;
414 /* skip quantity field if data-out sequence follows. */
415 if (act & HP_SDC_ACT_DATAOUT) curr->idx++;
416 goto finish;
418 if (act & HP_SDC_ACT_DATAOUT) {
419 int qty;
421 qty = curr->seq[idx];
422 idx++;
423 if (curr->idx - idx < qty) {
424 hp_sdc_data_out8(curr->seq[curr->idx]);
425 curr->idx++;
426 /* act finished? */
427 if ((curr->idx - idx >= qty) &&
428 ((act & HP_SDC_ACT_DURING) == HP_SDC_ACT_DATAOUT))
429 goto actdone;
430 goto finish;
432 idx += qty;
433 act &= ~HP_SDC_ACT_DATAOUT;
435 else while (act & HP_SDC_ACT_DATAREG) {
436 int mask;
437 uint8_t w7[4];
439 mask = curr->seq[idx];
440 if (idx != curr->idx) {
441 idx++;
442 idx += !!(mask & 1);
443 idx += !!(mask & 2);
444 idx += !!(mask & 4);
445 idx += !!(mask & 8);
446 act &= ~HP_SDC_ACT_DATAREG;
447 break;
450 w7[0] = (mask & 1) ? curr->seq[++idx] : hp_sdc.r7[0];
451 w7[1] = (mask & 2) ? curr->seq[++idx] : hp_sdc.r7[1];
452 w7[2] = (mask & 4) ? curr->seq[++idx] : hp_sdc.r7[2];
453 w7[3] = (mask & 8) ? curr->seq[++idx] : hp_sdc.r7[3];
455 if (hp_sdc.wi > 0x73 || hp_sdc.wi < 0x70 ||
456 w7[hp_sdc.wi-0x70] == hp_sdc.r7[hp_sdc.wi-0x70]) {
457 int i = 0;
459 /* Need to point the write index register */
460 while ((i < 4) && w7[i] == hp_sdc.r7[i]) i++;
461 if (i < 4) {
462 hp_sdc_status_out8(HP_SDC_CMD_SET_D0 + i);
463 hp_sdc.wi = 0x70 + i;
464 goto finish;
466 idx++;
467 if ((act & HP_SDC_ACT_DURING) == HP_SDC_ACT_DATAREG)
468 goto actdone;
469 curr->idx = idx;
470 act &= ~HP_SDC_ACT_DATAREG;
471 break;
474 hp_sdc_data_out8(w7[hp_sdc.wi - 0x70]);
475 hp_sdc.r7[hp_sdc.wi - 0x70] = w7[hp_sdc.wi - 0x70];
476 hp_sdc.wi++; /* write index register autoincrements */
478 int i = 0;
480 while ((i < 4) && w7[i] == hp_sdc.r7[i]) i++;
481 if (i >= 4) {
482 curr->idx = idx + 1;
483 if ((act & HP_SDC_ACT_DURING) ==
484 HP_SDC_ACT_DATAREG)
485 goto actdone;
488 goto finish;
490 /* We don't go any further in the command if there is a pending read,
491 because we don't want interleaved results. */
492 read_lock_irq(&hp_sdc.rtq_lock);
493 if (hp_sdc.rcurr >= 0) {
494 read_unlock_irq(&hp_sdc.rtq_lock);
495 goto finish;
497 read_unlock_irq(&hp_sdc.rtq_lock);
500 if (act & HP_SDC_ACT_POSTCMD) {
501 uint8_t postcmd;
503 /* curr->idx should == idx at this point. */
504 postcmd = curr->seq[idx];
505 curr->idx++;
506 if (act & HP_SDC_ACT_DATAIN) {
508 /* Start a new read */
509 hp_sdc.rqty = curr->seq[curr->idx];
510 do_gettimeofday(&hp_sdc.rtv);
511 curr->idx++;
512 /* Still need to lock here in case of spurious irq. */
513 write_lock_irq(&hp_sdc.rtq_lock);
514 hp_sdc.rcurr = curridx;
515 write_unlock_irq(&hp_sdc.rtq_lock);
516 hp_sdc_status_out8(postcmd);
517 goto finish;
519 hp_sdc_status_out8(postcmd);
520 goto actdone;
523 actdone:
524 if (act & HP_SDC_ACT_SEMAPHORE) {
525 up(curr->act.semaphore);
527 else if (act & HP_SDC_ACT_CALLBACK) {
528 curr->act.irqhook(0,0,0,0);
530 if (curr->idx >= curr->endidx) { /* This transaction is over. */
531 if (act & HP_SDC_ACT_DEALLOC) kfree(curr);
532 hp_sdc.tq[curridx] = NULL;
534 else {
535 curr->actidx = idx + 1;
536 curr->idx = idx + 2;
538 /* Interleave outbound data between the transactions. */
539 hp_sdc.wcurr++;
540 if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN) hp_sdc.wcurr = 0;
542 finish:
543 /* If by some quirk IBF has cleared and our ISR has run to
544 see that that has happened, do it all again. */
545 if (!hp_sdc.ibf && limit++ < 20) goto anew;
547 done:
548 if (hp_sdc.wcurr >= 0) tasklet_schedule(&hp_sdc.task);
549 write_unlock(&hp_sdc.lock);
550 return 0;
553 /******* Functions called in either user or kernel context ****/
554 int hp_sdc_enqueue_transaction(hp_sdc_transaction *this) {
555 unsigned long flags;
556 int i;
558 if (this == NULL) {
559 tasklet_schedule(&hp_sdc.task);
560 return -EINVAL;
563 write_lock_irqsave(&hp_sdc.lock, flags);
565 /* Can't have same transaction on queue twice */
566 for (i=0; i < HP_SDC_QUEUE_LEN; i++)
567 if (hp_sdc.tq[i] == this) goto fail;
569 this->actidx = 0;
570 this->idx = 1;
572 /* Search for empty slot */
573 for (i=0; i < HP_SDC_QUEUE_LEN; i++) {
574 if (hp_sdc.tq[i] == NULL) {
575 hp_sdc.tq[i] = this;
576 write_unlock_irqrestore(&hp_sdc.lock, flags);
577 tasklet_schedule(&hp_sdc.task);
578 return 0;
581 write_unlock_irqrestore(&hp_sdc.lock, flags);
582 printk(KERN_WARNING PREFIX "No free slot to add transaction.\n");
583 return -EBUSY;
585 fail:
586 write_unlock_irqrestore(&hp_sdc.lock,flags);
587 printk(KERN_WARNING PREFIX "Transaction add failed: transaction already queued?\n");
588 return -EINVAL;
591 int hp_sdc_dequeue_transaction(hp_sdc_transaction *this) {
592 unsigned long flags;
593 int i;
595 write_lock_irqsave(&hp_sdc.lock, flags);
597 /* TODO: don't remove it if it's not done. */
599 for (i=0; i < HP_SDC_QUEUE_LEN; i++)
600 if (hp_sdc.tq[i] == this) hp_sdc.tq[i] = NULL;
602 write_unlock_irqrestore(&hp_sdc.lock, flags);
603 return 0;
608 /********************** User context functions **************************/
609 int hp_sdc_request_timer_irq(hp_sdc_irqhook *callback) {
611 if (callback == NULL || hp_sdc.dev == NULL) {
612 return -EINVAL;
614 write_lock_irq(&hp_sdc.hook_lock);
615 if (hp_sdc.timer != NULL) {
616 write_unlock_irq(&hp_sdc.hook_lock);
617 return -EBUSY;
620 hp_sdc.timer = callback;
621 /* Enable interrupts from the timers */
622 hp_sdc.im &= ~HP_SDC_IM_FH;
623 hp_sdc.im &= ~HP_SDC_IM_PT;
624 hp_sdc.im &= ~HP_SDC_IM_TIMERS;
625 hp_sdc.set_im = 1;
626 write_unlock_irq(&hp_sdc.hook_lock);
628 tasklet_schedule(&hp_sdc.task);
630 return 0;
633 int hp_sdc_request_hil_irq(hp_sdc_irqhook *callback) {
635 if (callback == NULL || hp_sdc.dev == NULL) {
636 return -EINVAL;
638 write_lock_irq(&hp_sdc.hook_lock);
639 if (hp_sdc.hil != NULL) {
640 write_unlock_irq(&hp_sdc.hook_lock);
641 return -EBUSY;
644 hp_sdc.hil = callback;
645 hp_sdc.im &= ~(HP_SDC_IM_HIL | HP_SDC_IM_RESET);
646 hp_sdc.set_im = 1;
647 write_unlock_irq(&hp_sdc.hook_lock);
649 tasklet_schedule(&hp_sdc.task);
651 return 0;
654 int hp_sdc_request_cooked_irq(hp_sdc_irqhook *callback) {
656 if (callback == NULL || hp_sdc.dev == NULL) {
657 return -EINVAL;
659 write_lock_irq(&hp_sdc.hook_lock);
660 if (hp_sdc.cooked != NULL) {
661 write_unlock_irq(&hp_sdc.hook_lock);
662 return -EBUSY;
665 /* Enable interrupts from the HIL MLC */
666 hp_sdc.cooked = callback;
667 hp_sdc.im &= ~(HP_SDC_IM_HIL | HP_SDC_IM_RESET);
668 hp_sdc.set_im = 1;
669 write_unlock_irq(&hp_sdc.hook_lock);
671 tasklet_schedule(&hp_sdc.task);
673 return 0;
676 int hp_sdc_release_timer_irq(hp_sdc_irqhook *callback) {
679 write_lock_irq(&hp_sdc.hook_lock);
680 if ((callback != hp_sdc.timer) ||
681 (hp_sdc.timer == NULL)) {
682 write_unlock_irq(&hp_sdc.hook_lock);
683 return -EINVAL;
686 /* Disable interrupts from the timers */
687 hp_sdc.timer = NULL;
688 hp_sdc.im |= HP_SDC_IM_TIMERS;
689 hp_sdc.im |= HP_SDC_IM_FH;
690 hp_sdc.im |= HP_SDC_IM_PT;
691 hp_sdc.set_im = 1;
692 write_unlock_irq(&hp_sdc.hook_lock);
693 tasklet_schedule(&hp_sdc.task);
695 return 0;
698 int hp_sdc_release_hil_irq(hp_sdc_irqhook *callback) {
700 write_lock_irq(&hp_sdc.hook_lock);
701 if ((callback != hp_sdc.hil) ||
702 (hp_sdc.hil == NULL)) {
703 write_unlock_irq(&hp_sdc.hook_lock);
704 return -EINVAL;
707 hp_sdc.hil = NULL;
708 /* Disable interrupts from HIL only if there is no cooked driver. */
709 if(hp_sdc.cooked == NULL) {
710 hp_sdc.im |= (HP_SDC_IM_HIL | HP_SDC_IM_RESET);
711 hp_sdc.set_im = 1;
713 write_unlock_irq(&hp_sdc.hook_lock);
714 tasklet_schedule(&hp_sdc.task);
716 return 0;
719 int hp_sdc_release_cooked_irq(hp_sdc_irqhook *callback) {
721 write_lock_irq(&hp_sdc.hook_lock);
722 if ((callback != hp_sdc.cooked) ||
723 (hp_sdc.cooked == NULL)) {
724 write_unlock_irq(&hp_sdc.hook_lock);
725 return -EINVAL;
728 hp_sdc.cooked = NULL;
729 /* Disable interrupts from HIL only if there is no raw HIL driver. */
730 if(hp_sdc.hil == NULL) {
731 hp_sdc.im |= (HP_SDC_IM_HIL | HP_SDC_IM_RESET);
732 hp_sdc.set_im = 1;
734 write_unlock_irq(&hp_sdc.hook_lock);
735 tasklet_schedule(&hp_sdc.task);
737 return 0;
740 /************************* Keepalive timer task *********************/
742 void hp_sdc_kicker (unsigned long data) {
743 tasklet_schedule(&hp_sdc.task);
744 /* Re-insert the periodic task. */
745 mod_timer(&hp_sdc.kicker, jiffies + HZ);
748 /************************** Module Initialization ***************************/
750 #if defined(__hppa__)
752 static struct parisc_device_id hp_sdc_tbl[] = {
754 .hw_type = HPHW_FIO,
755 .hversion_rev = HVERSION_REV_ANY_ID,
756 .hversion = HVERSION_ANY_ID,
757 .sversion = 0x73,
759 { 0, }
762 MODULE_DEVICE_TABLE(parisc, hp_sdc_tbl);
764 static int __init hp_sdc_init_hppa(struct parisc_device *d);
766 static struct parisc_driver hp_sdc_driver = {
767 .name = "HP SDC",
768 .id_table = hp_sdc_tbl,
769 .probe = hp_sdc_init_hppa,
772 #endif /* __hppa__ */
774 static int __init hp_sdc_init(void)
776 int i;
777 char *errstr;
778 hp_sdc_transaction t_sync;
779 uint8_t ts_sync[6];
780 struct semaphore s_sync;
782 rwlock_init(&hp_sdc.lock);
783 rwlock_init(&hp_sdc.ibf_lock);
784 rwlock_init(&hp_sdc.rtq_lock);
785 rwlock_init(&hp_sdc.hook_lock);
787 hp_sdc.timer = NULL;
788 hp_sdc.hil = NULL;
789 hp_sdc.pup = NULL;
790 hp_sdc.cooked = NULL;
791 hp_sdc.im = HP_SDC_IM_MASK; /* Mask maskable irqs */
792 hp_sdc.set_im = 1;
793 hp_sdc.wi = 0xff;
794 hp_sdc.r7[0] = 0xff;
795 hp_sdc.r7[1] = 0xff;
796 hp_sdc.r7[2] = 0xff;
797 hp_sdc.r7[3] = 0xff;
798 hp_sdc.ibf = 1;
800 for (i = 0; i < HP_SDC_QUEUE_LEN; i++) hp_sdc.tq[i] = NULL;
801 hp_sdc.wcurr = -1;
802 hp_sdc.rcurr = -1;
803 hp_sdc.rqty = 0;
805 hp_sdc.dev_err = -ENODEV;
807 errstr = "IO not found for";
808 if (!hp_sdc.base_io) goto err0;
810 errstr = "IRQ not found for";
811 if (!hp_sdc.irq) goto err0;
813 hp_sdc.dev_err = -EBUSY;
815 #if defined(__hppa__)
816 errstr = "IO not available for";
817 if (request_region(hp_sdc.data_io, 2, hp_sdc_driver.name)) goto err0;
818 #endif
820 errstr = "IRQ not available for";
821 if(request_irq(hp_sdc.irq, &hp_sdc_isr, 0, "HP SDC",
822 (void *) hp_sdc.base_io)) goto err1;
824 errstr = "NMI not available for";
825 if (request_irq(hp_sdc.nmi, &hp_sdc_nmisr, 0, "HP SDC NMI",
826 (void *) hp_sdc.base_io)) goto err2;
828 printk(KERN_INFO PREFIX "HP SDC at 0x%p, IRQ %d (NMI IRQ %d)\n",
829 (void *)hp_sdc.base_io, hp_sdc.irq, hp_sdc.nmi);
831 hp_sdc_status_in8();
832 hp_sdc_data_in8();
834 tasklet_init(&hp_sdc.task, hp_sdc_tasklet, 0);
836 /* Sync the output buffer registers, thus scheduling hp_sdc_tasklet. */
837 t_sync.actidx = 0;
838 t_sync.idx = 1;
839 t_sync.endidx = 6;
840 t_sync.seq = ts_sync;
841 ts_sync[0] = HP_SDC_ACT_DATAREG | HP_SDC_ACT_SEMAPHORE;
842 ts_sync[1] = 0x0f;
843 ts_sync[2] = ts_sync[3] = ts_sync[4] = ts_sync[5] = 0;
844 t_sync.act.semaphore = &s_sync;
845 init_MUTEX_LOCKED(&s_sync);
846 hp_sdc_enqueue_transaction(&t_sync);
847 down(&s_sync); /* Wait for t_sync to complete */
849 /* Create the keepalive task */
850 init_timer(&hp_sdc.kicker);
851 hp_sdc.kicker.expires = jiffies + HZ;
852 hp_sdc.kicker.function = &hp_sdc_kicker;
853 add_timer(&hp_sdc.kicker);
855 hp_sdc.dev_err = 0;
856 return 0;
857 err2:
858 free_irq(hp_sdc.irq, NULL);
859 err1:
860 release_region(hp_sdc.data_io, 2);
861 err0:
862 printk(KERN_WARNING PREFIX ": %s SDC IO=0x%p IRQ=0x%x NMI=0x%x\n",
863 errstr, (void *)hp_sdc.base_io, hp_sdc.irq, hp_sdc.nmi);
864 hp_sdc.dev = NULL;
865 return hp_sdc.dev_err;
868 #if defined(__hppa__)
870 static int __init hp_sdc_init_hppa(struct parisc_device *d)
872 if (!d) return 1;
873 if (hp_sdc.dev != NULL) return 1; /* We only expect one SDC */
875 hp_sdc.dev = d;
876 hp_sdc.irq = d->irq;
877 hp_sdc.nmi = d->aux_irq;
878 hp_sdc.base_io = d->hpa;
879 hp_sdc.data_io = d->hpa + 0x800;
880 hp_sdc.status_io = d->hpa + 0x801;
882 return hp_sdc_init();
885 #endif /* __hppa__ */
887 #if !defined(__mc68000__) /* Link error on m68k! */
888 static void __exit hp_sdc_exit(void)
889 #else
890 static void hp_sdc_exit(void)
891 #endif
893 write_lock_irq(&hp_sdc.lock);
895 /* Turn off all maskable "sub-function" irq's. */
896 hp_sdc_spin_ibf();
897 sdc_writeb(HP_SDC_CMD_SET_IM | HP_SDC_IM_MASK, hp_sdc.status_io);
899 /* Wait until we know this has been processed by the i8042 */
900 hp_sdc_spin_ibf();
902 free_irq(hp_sdc.nmi, NULL);
903 free_irq(hp_sdc.irq, NULL);
904 write_unlock_irq(&hp_sdc.lock);
906 del_timer(&hp_sdc.kicker);
908 tasklet_kill(&hp_sdc.task);
910 /* release_region(hp_sdc.data_io, 2); */
912 #if defined(__hppa__)
913 if (unregister_parisc_driver(&hp_sdc_driver))
914 printk(KERN_WARNING PREFIX "Error unregistering HP SDC");
915 #endif
918 static int __init hp_sdc_register(void)
920 hp_sdc_transaction tq_init;
921 uint8_t tq_init_seq[5];
922 struct semaphore tq_init_sem;
923 #if defined(__mc68000__)
924 mm_segment_t fs;
925 unsigned char i;
926 #endif
928 hp_sdc.dev = NULL;
929 hp_sdc.dev_err = 0;
930 #if defined(__hppa__)
931 if (register_parisc_driver(&hp_sdc_driver)) {
932 printk(KERN_WARNING PREFIX "Error registering SDC with system bus tree.\n");
933 return -ENODEV;
935 #elif defined(__mc68000__)
936 if (!MACH_IS_HP300)
937 return -ENODEV;
939 hp_sdc.irq = 1;
940 hp_sdc.nmi = 7;
941 hp_sdc.base_io = (unsigned long) 0xf0428000;
942 hp_sdc.data_io = (unsigned long) hp_sdc.base_io + 1;
943 hp_sdc.status_io = (unsigned long) hp_sdc.base_io + 3;
944 fs = get_fs();
945 set_fs(KERNEL_DS);
946 if (!get_user(i, (unsigned char *)hp_sdc.data_io))
947 hp_sdc.dev = (void *)1;
948 set_fs(fs);
949 hp_sdc.dev_err = hp_sdc_init();
950 #endif
951 if (hp_sdc.dev == NULL) {
952 printk(KERN_WARNING PREFIX "No SDC found.\n");
953 return hp_sdc.dev_err;
956 init_MUTEX_LOCKED(&tq_init_sem);
958 tq_init.actidx = 0;
959 tq_init.idx = 1;
960 tq_init.endidx = 5;
961 tq_init.seq = tq_init_seq;
962 tq_init.act.semaphore = &tq_init_sem;
964 tq_init_seq[0] =
965 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN | HP_SDC_ACT_SEMAPHORE;
966 tq_init_seq[1] = HP_SDC_CMD_READ_KCC;
967 tq_init_seq[2] = 1;
968 tq_init_seq[3] = 0;
969 tq_init_seq[4] = 0;
971 hp_sdc_enqueue_transaction(&tq_init);
973 down(&tq_init_sem);
974 up(&tq_init_sem);
976 if ((tq_init_seq[0] & HP_SDC_ACT_DEAD) == HP_SDC_ACT_DEAD) {
977 printk(KERN_WARNING PREFIX "Error reading config byte.\n");
978 hp_sdc_exit();
979 return -ENODEV;
981 hp_sdc.r11 = tq_init_seq[4];
982 if (hp_sdc.r11 & HP_SDC_CFG_NEW) {
983 char *str;
984 printk(KERN_INFO PREFIX "New style SDC\n");
985 tq_init_seq[1] = HP_SDC_CMD_READ_XTD;
986 tq_init.actidx = 0;
987 tq_init.idx = 1;
988 down(&tq_init_sem);
989 hp_sdc_enqueue_transaction(&tq_init);
990 down(&tq_init_sem);
991 up(&tq_init_sem);
992 if ((tq_init_seq[0] & HP_SDC_ACT_DEAD) == HP_SDC_ACT_DEAD) {
993 printk(KERN_WARNING PREFIX "Error reading extended config byte.\n");
994 return -ENODEV;
996 hp_sdc.r7e = tq_init_seq[4];
997 HP_SDC_XTD_REV_STRINGS(hp_sdc.r7e & HP_SDC_XTD_REV, str)
998 printk(KERN_INFO PREFIX "Revision: %s\n", str);
999 if (hp_sdc.r7e & HP_SDC_XTD_BEEPER) {
1000 printk(KERN_INFO PREFIX "TI SN76494 beeper present\n");
1002 if (hp_sdc.r7e & HP_SDC_XTD_BBRTC) {
1003 printk(KERN_INFO PREFIX "OKI MSM-58321 BBRTC present\n");
1005 printk(KERN_INFO PREFIX "Spunking the self test register to force PUP "
1006 "on next firmware reset.\n");
1007 tq_init_seq[0] = HP_SDC_ACT_PRECMD |
1008 HP_SDC_ACT_DATAOUT | HP_SDC_ACT_SEMAPHORE;
1009 tq_init_seq[1] = HP_SDC_CMD_SET_STR;
1010 tq_init_seq[2] = 1;
1011 tq_init_seq[3] = 0;
1012 tq_init.actidx = 0;
1013 tq_init.idx = 1;
1014 tq_init.endidx = 4;
1015 down(&tq_init_sem);
1016 hp_sdc_enqueue_transaction(&tq_init);
1017 down(&tq_init_sem);
1018 up(&tq_init_sem);
1020 else {
1021 printk(KERN_INFO PREFIX "Old style SDC (1820-%s).\n",
1022 (hp_sdc.r11 & HP_SDC_CFG_REV) ? "3300" : "2564/3087");
1025 return 0;
1028 module_init(hp_sdc_register);
1029 module_exit(hp_sdc_exit);
1031 /* Timing notes: These measurements taken on my 64MHz 7100-LC (715/64)
1032 * cycles cycles-adj time
1033 * between two consecutive mfctl(16)'s: 4 n/a 63ns
1034 * hp_sdc_spin_ibf when idle: 119 115 1.7us
1035 * gsc_writeb status register: 83 79 1.2us
1036 * IBF to clear after sending SET_IM: 6204 6006 93us
1037 * IBF to clear after sending LOAD_RT: 4467 4352 68us
1038 * IBF to clear after sending two LOAD_RTs: 18974 18859 295us
1039 * READ_T1, read status/data, IRQ, call handler: 35564 n/a 556us
1040 * cmd to ~IBF READ_T1 2nd time right after: 5158403 n/a 81ms
1041 * between IRQ received and ~IBF for above: 2578877 n/a 40ms
1043 * Performance stats after a run of this module configuring HIL and
1044 * receiving a few mouse events:
1046 * status in8 282508 cycles 7128 calls
1047 * status out8 8404 cycles 341 calls
1048 * data out8 1734 cycles 78 calls
1049 * isr 174324 cycles 617 calls (includes take)
1050 * take 1241 cycles 2 calls
1051 * put 1411504 cycles 6937 calls
1052 * task 1655209 cycles 6937 calls (includes put)