Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / mmtimer.c
blob58eddfdd3110a3a7168f2b8bdbfabefb9691016a
1 /*
2 * Intel Multimedia Timer device implementation for SGI SN platforms.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
8 * Copyright (c) 2001-2004 Silicon Graphics, Inc. All rights reserved.
10 * This driver exports an API that should be supportable by any HPET or IA-PC
11 * multimedia timer. The code below is currently specific to the SGI Altix
12 * SHub RTC, however.
14 * 11/01/01 - jbarnes - initial revision
15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18 * support via the posix timer interface
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/ioctl.h>
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/mm.h>
28 #include <linux/devfs_fs_kernel.h>
29 #include <linux/mmtimer.h>
30 #include <linux/miscdevice.h>
31 #include <linux/posix-timers.h>
32 #include <linux/interrupt.h>
34 #include <asm/uaccess.h>
35 #include <asm/sn/addrs.h>
36 #include <asm/sn/intr.h>
37 #include <asm/sn/shub_mmr.h>
38 #include <asm/sn/nodepda.h>
39 #include <asm/sn/shubio.h>
41 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
42 MODULE_DESCRIPTION("SGI Altix RTC Timer");
43 MODULE_LICENSE("GPL");
45 /* name of the device, usually in /dev */
46 #define MMTIMER_NAME "mmtimer"
47 #define MMTIMER_DESC "SGI Altix RTC Timer"
48 #define MMTIMER_VERSION "2.0"
50 #define RTC_BITS 55 /* 55 bits for this implementation */
52 extern unsigned long sn_rtc_cycles_per_second;
54 #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
56 #define rtc_time() (*RTC_COUNTER_ADDR)
58 static int mmtimer_ioctl(struct inode *inode, struct file *file,
59 unsigned int cmd, unsigned long arg);
60 static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
63 * Period in femtoseconds (10^-15 s)
65 static unsigned long mmtimer_femtoperiod = 0;
67 static struct file_operations mmtimer_fops = {
68 .owner = THIS_MODULE,
69 .mmap = mmtimer_mmap,
70 .ioctl = mmtimer_ioctl,
74 * We only have comparison registers RTC1-4 currently available per
75 * node. RTC0 is used by SAL.
77 #define NUM_COMPARATORS 3
78 /* Check for an RTC interrupt pending */
79 static int inline mmtimer_int_pending(int comparator)
81 if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
82 SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
83 return 1;
84 else
85 return 0;
87 /* Clear the RTC interrupt pending bit */
88 static void inline mmtimer_clr_int_pending(int comparator)
90 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
91 SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
94 /* Setup timer on comparator RTC1 */
95 static void inline mmtimer_setup_int_0(u64 expires)
97 u64 val;
99 /* Disable interrupt */
100 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
102 /* Initialize comparator value */
103 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
105 /* Clear pending bit */
106 mmtimer_clr_int_pending(0);
108 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
109 ((u64)cpu_physical_id(smp_processor_id()) <<
110 SH_RTC1_INT_CONFIG_PID_SHFT);
112 /* Set configuration */
113 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
115 /* Enable RTC interrupts */
116 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
118 /* Initialize comparator value */
119 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
124 /* Setup timer on comparator RTC2 */
125 static void inline mmtimer_setup_int_1(u64 expires)
127 u64 val;
129 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
131 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
133 mmtimer_clr_int_pending(1);
135 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
136 ((u64)cpu_physical_id(smp_processor_id()) <<
137 SH_RTC2_INT_CONFIG_PID_SHFT);
139 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
141 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
143 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
146 /* Setup timer on comparator RTC3 */
147 static void inline mmtimer_setup_int_2(u64 expires)
149 u64 val;
151 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
153 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
155 mmtimer_clr_int_pending(2);
157 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
158 ((u64)cpu_physical_id(smp_processor_id()) <<
159 SH_RTC3_INT_CONFIG_PID_SHFT);
161 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
163 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
165 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
169 * This function must be called with interrupts disabled and preemption off
170 * in order to insure that the setup succeeds in a deterministic time frame.
171 * It will check if the interrupt setup succeeded.
173 static int inline mmtimer_setup(int comparator, unsigned long expires)
176 switch (comparator) {
177 case 0:
178 mmtimer_setup_int_0(expires);
179 break;
180 case 1:
181 mmtimer_setup_int_1(expires);
182 break;
183 case 2:
184 mmtimer_setup_int_2(expires);
185 break;
187 /* We might've missed our expiration time */
188 if (rtc_time() < expires)
189 return 1;
192 * If an interrupt is already pending then its okay
193 * if not then we failed
195 return mmtimer_int_pending(comparator);
198 static int inline mmtimer_disable_int(long nasid, int comparator)
200 switch (comparator) {
201 case 0:
202 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
203 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
204 break;
205 case 1:
206 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
207 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
208 break;
209 case 2:
210 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
211 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
212 break;
213 default:
214 return -EFAULT;
216 return 0;
219 #define TIMER_OFF 0xbadcabLL
221 /* There is one of these for each comparator */
222 typedef struct mmtimer {
223 spinlock_t lock ____cacheline_aligned;
224 struct k_itimer *timer;
225 int i;
226 int cpu;
227 struct tasklet_struct tasklet;
228 } mmtimer_t;
231 * Total number of comparators is comparators/node * MAX nodes/running kernel
233 static mmtimer_t timers[NUM_COMPARATORS*MAX_COMPACT_NODES];
236 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
237 * @inode: inode of the device
238 * @file: file structure for the device
239 * @cmd: command to execute
240 * @arg: optional argument to command
242 * Executes the command specified by @cmd. Returns 0 for success, < 0 for
243 * failure.
245 * Valid commands:
247 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
248 * of the page where the registers are mapped) for the counter in question.
250 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
251 * seconds
253 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
254 * specified by @arg
256 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
258 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
260 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
261 * in the address specified by @arg.
263 static int mmtimer_ioctl(struct inode *inode, struct file *file,
264 unsigned int cmd, unsigned long arg)
266 int ret = 0;
268 switch (cmd) {
269 case MMTIMER_GETOFFSET: /* offset of the counter */
271 * SN RTC registers are on their own 64k page
273 if(PAGE_SIZE <= (1 << 16))
274 ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
275 else
276 ret = -ENOSYS;
277 break;
279 case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
280 if(copy_to_user((unsigned long __user *)arg,
281 &mmtimer_femtoperiod, sizeof(unsigned long)))
282 return -EFAULT;
283 break;
285 case MMTIMER_GETFREQ: /* frequency in Hz */
286 if(copy_to_user((unsigned long __user *)arg,
287 &sn_rtc_cycles_per_second,
288 sizeof(unsigned long)))
289 return -EFAULT;
290 ret = 0;
291 break;
293 case MMTIMER_GETBITS: /* number of bits in the clock */
294 ret = RTC_BITS;
295 break;
297 case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
298 ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
299 break;
301 case MMTIMER_GETCOUNTER:
302 if(copy_to_user((unsigned long __user *)arg,
303 RTC_COUNTER_ADDR, sizeof(unsigned long)))
304 return -EFAULT;
305 break;
306 default:
307 ret = -ENOSYS;
308 break;
311 return ret;
315 * mmtimer_mmap - maps the clock's registers into userspace
316 * @file: file structure for the device
317 * @vma: VMA to map the registers into
319 * Calls remap_pfn_range() to map the clock's registers into
320 * the calling process' address space.
322 static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
324 unsigned long mmtimer_addr;
326 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
327 return -EINVAL;
329 if (vma->vm_flags & VM_WRITE)
330 return -EPERM;
332 if (PAGE_SIZE > (1 << 16))
333 return -ENOSYS;
335 vma->vm_flags |= (VM_IO | VM_SHM | VM_LOCKED );
336 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
338 mmtimer_addr = __pa(RTC_COUNTER_ADDR);
339 mmtimer_addr &= ~(PAGE_SIZE - 1);
340 mmtimer_addr &= 0xfffffffffffffffUL;
342 if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
343 PAGE_SIZE, vma->vm_page_prot)) {
344 printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
345 return -EAGAIN;
348 return 0;
351 static struct miscdevice mmtimer_miscdev = {
352 SGI_MMTIMER,
353 MMTIMER_NAME,
354 &mmtimer_fops
357 static struct timespec sgi_clock_offset;
358 static int sgi_clock_period;
361 * Posix Timer Interface
364 static struct timespec sgi_clock_offset;
365 static int sgi_clock_period;
367 static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
369 u64 nsec;
371 nsec = rtc_time() * sgi_clock_period
372 + sgi_clock_offset.tv_nsec;
373 tp->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tp->tv_nsec)
374 + sgi_clock_offset.tv_sec;
375 return 0;
378 static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
381 u64 nsec;
382 u64 rem;
384 nsec = rtc_time() * sgi_clock_period;
386 sgi_clock_offset.tv_sec = tp->tv_sec - div_long_long_rem(nsec, NSEC_PER_SEC, &rem);
388 if (rem <= tp->tv_nsec)
389 sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
390 else {
391 sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
392 sgi_clock_offset.tv_sec--;
394 return 0;
398 * Schedule the next periodic interrupt. This function will attempt
399 * to schedule a periodic interrupt later if necessary. If the scheduling
400 * of an interrupt fails then the time to skip is lengthened
401 * exponentially in order to ensure that the next interrupt
402 * can be properly scheduled..
404 static int inline reschedule_periodic_timer(mmtimer_t *x)
406 int n;
407 struct k_itimer *t = x->timer;
409 t->it.mmtimer.clock = x->i;
410 t->it_overrun--;
412 n = 0;
413 do {
415 t->it.mmtimer.expires += t->it.mmtimer.incr << n;
416 t->it_overrun += 1 << n;
417 n++;
418 if (n > 20)
419 return 1;
421 } while (!mmtimer_setup(x->i, t->it.mmtimer.expires));
423 return 0;
427 * mmtimer_interrupt - timer interrupt handler
428 * @irq: irq received
429 * @dev_id: device the irq came from
430 * @regs: register state upon receipt of the interrupt
432 * Called when one of the comarators matches the counter, This
433 * routine will send signals to processes that have requested
434 * them.
436 * This interrupt is run in an interrupt context
437 * by the SHUB. It is therefore safe to locally access SHub
438 * registers.
440 static irqreturn_t
441 mmtimer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
443 int i;
444 mmtimer_t *base = timers + cpuid_to_cnodeid(smp_processor_id()) *
445 NUM_COMPARATORS;
446 unsigned long expires = 0;
447 int result = IRQ_NONE;
450 * Do this once for each comparison register
452 for (i = 0; i < NUM_COMPARATORS; i++) {
453 /* Make sure this doesn't get reused before tasklet_sched */
454 spin_lock(&base[i].lock);
455 if (base[i].cpu == smp_processor_id()) {
456 if (base[i].timer)
457 expires = base[i].timer->it.mmtimer.expires;
458 /* expires test won't work with shared irqs */
459 if ((mmtimer_int_pending(i) > 0) ||
460 (expires && (expires < rtc_time()))) {
461 mmtimer_clr_int_pending(i);
462 tasklet_schedule(&base[i].tasklet);
463 result = IRQ_HANDLED;
466 spin_unlock(&base[i].lock);
467 expires = 0;
469 return result;
472 void mmtimer_tasklet(unsigned long data) {
473 mmtimer_t *x = (mmtimer_t *)data;
474 struct k_itimer *t = x->timer;
475 unsigned long flags;
477 if (t == NULL)
478 return;
480 /* Send signal and deal with periodic signals */
481 spin_lock_irqsave(&t->it_lock, flags);
482 spin_lock(&x->lock);
483 /* If timer was deleted between interrupt and here, leave */
484 if (t != x->timer)
485 goto out;
486 t->it_overrun = 0;
488 if (tasklist_lock.write_lock || posix_timer_event(t, 0) != 0) {
490 // printk(KERN_WARNING "mmtimer: cannot deliver signal.\n");
492 t->it_overrun++;
494 if(t->it.mmtimer.incr) {
495 /* Periodic timer */
496 if (reschedule_periodic_timer(x)) {
497 printk(KERN_WARNING "mmtimer: unable to reschedule\n");
498 x->timer = NULL;
500 } else {
501 /* Ensure we don't false trigger in mmtimer_interrupt */
502 t->it.mmtimer.expires = 0;
504 t->it_overrun_last = t->it_overrun;
505 out:
506 spin_unlock(&x->lock);
507 spin_unlock_irqrestore(&t->it_lock, flags);
510 static int sgi_timer_create(struct k_itimer *timer)
512 /* Insure that a newly created timer is off */
513 timer->it.mmtimer.clock = TIMER_OFF;
514 return 0;
517 /* This does not really delete a timer. It just insures
518 * that the timer is not active
520 * Assumption: it_lock is already held with irq's disabled
522 static int sgi_timer_del(struct k_itimer *timr)
524 int i = timr->it.mmtimer.clock;
525 cnodeid_t nodeid = timr->it.mmtimer.node;
526 mmtimer_t *t = timers + nodeid * NUM_COMPARATORS +i;
527 unsigned long irqflags;
529 if (i != TIMER_OFF) {
530 spin_lock_irqsave(&t->lock, irqflags);
531 mmtimer_disable_int(cnodeid_to_nasid(nodeid),i);
532 t->timer = NULL;
533 timr->it.mmtimer.clock = TIMER_OFF;
534 timr->it.mmtimer.expires = 0;
535 spin_unlock_irqrestore(&t->lock, irqflags);
537 return 0;
540 #define timespec_to_ns(x) ((x).tv_nsec + (x).tv_sec * NSEC_PER_SEC)
541 #define ns_to_timespec(ts, nsec) (ts).tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &(ts).tv_nsec)
543 /* Assumption: it_lock is already held with irq's disabled */
544 static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
547 if (timr->it.mmtimer.clock == TIMER_OFF) {
548 cur_setting->it_interval.tv_nsec = 0;
549 cur_setting->it_interval.tv_sec = 0;
550 cur_setting->it_value.tv_nsec = 0;
551 cur_setting->it_value.tv_sec =0;
552 return;
555 ns_to_timespec(cur_setting->it_interval, timr->it.mmtimer.incr * sgi_clock_period);
556 ns_to_timespec(cur_setting->it_value, (timr->it.mmtimer.expires - rtc_time())* sgi_clock_period);
557 return;
561 static int sgi_timer_set(struct k_itimer *timr, int flags,
562 struct itimerspec * new_setting,
563 struct itimerspec * old_setting)
566 int i;
567 unsigned long when, period, irqflags;
568 int err = 0;
569 cnodeid_t nodeid;
570 mmtimer_t *base;
572 if (old_setting)
573 sgi_timer_get(timr, old_setting);
575 sgi_timer_del(timr);
576 when = timespec_to_ns(new_setting->it_value);
577 period = timespec_to_ns(new_setting->it_interval);
579 if (when == 0)
580 /* Clear timer */
581 return 0;
583 if (flags & TIMER_ABSTIME) {
584 struct timespec n;
585 unsigned long now;
587 getnstimeofday(&n);
588 now = timespec_to_ns(n);
589 if (when > now)
590 when -= now;
591 else
592 /* Fire the timer immediately */
593 when = 0;
597 * Convert to sgi clock period. Need to keep rtc_time() as near as possible
598 * to getnstimeofday() in order to be as faithful as possible to the time
599 * specified.
601 when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
602 period = (period + sgi_clock_period - 1) / sgi_clock_period;
605 * We are allocating a local SHub comparator. If we would be moved to another
606 * cpu then another SHub may be local to us. Prohibit that by switching off
607 * preemption.
609 preempt_disable();
611 nodeid = cpuid_to_cnodeid(smp_processor_id());
612 base = timers + nodeid * NUM_COMPARATORS;
613 retry:
614 /* Don't use an allocated timer, or a deleted one that's pending */
615 for(i = 0; i< NUM_COMPARATORS; i++) {
616 if (!base[i].timer && !base[i].tasklet.state) {
617 break;
621 if (i == NUM_COMPARATORS) {
622 preempt_enable();
623 return -EBUSY;
626 spin_lock_irqsave(&base[i].lock, irqflags);
628 if (base[i].timer || base[i].tasklet.state != 0) {
629 spin_unlock_irqrestore(&base[i].lock, irqflags);
630 goto retry;
632 base[i].timer = timr;
633 base[i].cpu = smp_processor_id();
635 timr->it.mmtimer.clock = i;
636 timr->it.mmtimer.node = nodeid;
637 timr->it.mmtimer.incr = period;
638 timr->it.mmtimer.expires = when;
640 if (period == 0) {
641 if (!mmtimer_setup(i, when)) {
642 mmtimer_disable_int(-1, i);
643 posix_timer_event(timr, 0);
644 timr->it.mmtimer.expires = 0;
646 } else {
647 timr->it.mmtimer.expires -= period;
648 if (reschedule_periodic_timer(base+i))
649 err = -EINVAL;
652 spin_unlock_irqrestore(&base[i].lock, irqflags);
654 preempt_enable();
656 return err;
659 static struct k_clock sgi_clock = {
660 .res = 0,
661 .clock_set = sgi_clock_set,
662 .clock_get = sgi_clock_get,
663 .timer_create = sgi_timer_create,
664 .nsleep = do_posix_clock_nonanosleep,
665 .timer_set = sgi_timer_set,
666 .timer_del = sgi_timer_del,
667 .timer_get = sgi_timer_get
671 * mmtimer_init - device initialization routine
673 * Does initial setup for the mmtimer device.
675 static int __init mmtimer_init(void)
677 unsigned i;
679 if (!ia64_platform_is("sn2"))
680 return -1;
683 * Sanity check the cycles/sec variable
685 if (sn_rtc_cycles_per_second < 100000) {
686 printk(KERN_ERR "%s: unable to determine clock frequency\n",
687 MMTIMER_NAME);
688 return -1;
691 mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
692 2) / sn_rtc_cycles_per_second;
694 for (i=0; i< NUM_COMPARATORS*MAX_COMPACT_NODES; i++) {
695 spin_lock_init(&timers[i].lock);
696 timers[i].timer = NULL;
697 timers[i].cpu = 0;
698 timers[i].i = i % NUM_COMPARATORS;
699 tasklet_init(&timers[i].tasklet, mmtimer_tasklet, (unsigned long) (timers+i));
702 if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, SA_PERCPU_IRQ, MMTIMER_NAME, NULL)) {
703 printk(KERN_WARNING "%s: unable to allocate interrupt.",
704 MMTIMER_NAME);
705 return -1;
708 strcpy(mmtimer_miscdev.devfs_name, MMTIMER_NAME);
709 if (misc_register(&mmtimer_miscdev)) {
710 printk(KERN_ERR "%s: failed to register device\n",
711 MMTIMER_NAME);
712 return -1;
715 sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
716 register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);
718 printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
719 sn_rtc_cycles_per_second/(unsigned long)1E6);
721 return 0;
724 module_init(mmtimer_init);