Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sparc64 / kernel / irq.c
bloba38cb5036df06283848d4a5b2a059ef4be1c88b5
1 /* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $
2 * irq.c: UltraSparc IRQ handling/init/registry.
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
7 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/errno.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/signal.h>
16 #include <linux/mm.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/random.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
25 #include <asm/ptrace.h>
26 #include <asm/processor.h>
27 #include <asm/atomic.h>
28 #include <asm/system.h>
29 #include <asm/irq.h>
30 #include <asm/sbus.h>
31 #include <asm/iommu.h>
32 #include <asm/upa.h>
33 #include <asm/oplib.h>
34 #include <asm/timer.h>
35 #include <asm/smp.h>
36 #include <asm/starfire.h>
37 #include <asm/uaccess.h>
38 #include <asm/cache.h>
39 #include <asm/cpudata.h>
41 #ifdef CONFIG_SMP
42 static void distribute_irqs(void);
43 #endif
45 /* UPA nodes send interrupt packet to UltraSparc with first data reg
46 * value low 5 (7 on Starfire) bits holding the IRQ identifier being
47 * delivered. We must translate this into a non-vector IRQ so we can
48 * set the softint on this cpu.
50 * To make processing these packets efficient and race free we use
51 * an array of irq buckets below. The interrupt vector handler in
52 * entry.S feeds incoming packets into per-cpu pil-indexed lists.
53 * The IVEC handler does not need to act atomically, the PIL dispatch
54 * code uses CAS to get an atomic snapshot of the list and clear it
55 * at the same time.
58 struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
60 /* This has to be in the main kernel image, it cannot be
61 * turned into per-cpu data. The reason is that the main
62 * kernel image is locked into the TLB and this structure
63 * is accessed from the vectored interrupt trap handler. If
64 * access to this structure takes a TLB miss it could cause
65 * the 5-level sparc v9 trap stack to overflow.
67 struct irq_work_struct {
68 unsigned int irq_worklists[16];
70 struct irq_work_struct __irq_work[NR_CPUS];
71 #define irq_work(__cpu, __pil) &(__irq_work[(__cpu)].irq_worklists[(__pil)])
73 #ifdef CONFIG_PCI
74 /* This is a table of physical addresses used to deal with IBF_DMA_SYNC.
75 * It is used for PCI only to synchronize DMA transfers with IRQ delivery
76 * for devices behind busses other than APB on Sabre systems.
78 * Currently these physical addresses are just config space accesses
79 * to the command register for that device.
81 unsigned long pci_dma_wsync;
82 unsigned long dma_sync_reg_table[256];
83 unsigned char dma_sync_reg_table_entry = 0;
84 #endif
86 /* This is based upon code in the 32-bit Sparc kernel written mostly by
87 * David Redman (djhr@tadpole.co.uk).
89 #define MAX_STATIC_ALLOC 4
90 static struct irqaction static_irqaction[MAX_STATIC_ALLOC];
91 static int static_irq_count;
93 /* This is exported so that fast IRQ handlers can get at it... -DaveM */
94 struct irqaction *irq_action[NR_IRQS+1] = {
95 NULL, NULL, NULL, NULL, NULL, NULL , NULL, NULL,
96 NULL, NULL, NULL, NULL, NULL, NULL , NULL, NULL
99 /* This only synchronizes entities which modify IRQ handler
100 * state and some selected user-level spots that want to
101 * read things in the table. IRQ handler processing orders
102 * its' accesses such that no locking is needed.
104 static DEFINE_SPINLOCK(irq_action_lock);
106 static void register_irq_proc (unsigned int irq);
109 * Upper 2b of irqaction->flags holds the ino.
110 * irqaction->mask holds the smp affinity information.
112 #define put_ino_in_irqaction(action, irq) \
113 action->flags &= 0xffffffffffffUL; \
114 if (__bucket(irq) == &pil0_dummy_bucket) \
115 action->flags |= 0xdeadUL << 48; \
116 else \
117 action->flags |= __irq_ino(irq) << 48;
118 #define get_ino_in_irqaction(action) (action->flags >> 48)
120 #define put_smpaff_in_irqaction(action, smpaff) (action)->mask = (smpaff)
121 #define get_smpaff_in_irqaction(action) ((action)->mask)
123 int show_interrupts(struct seq_file *p, void *v)
125 unsigned long flags;
126 int i = *(loff_t *) v;
127 struct irqaction *action;
128 #ifdef CONFIG_SMP
129 int j;
130 #endif
132 spin_lock_irqsave(&irq_action_lock, flags);
133 if (i <= NR_IRQS) {
134 if (!(action = *(i + irq_action)))
135 goto out_unlock;
136 seq_printf(p, "%3d: ", i);
137 #ifndef CONFIG_SMP
138 seq_printf(p, "%10u ", kstat_irqs(i));
139 #else
140 for (j = 0; j < NR_CPUS; j++) {
141 if (!cpu_online(j))
142 continue;
143 seq_printf(p, "%10u ",
144 kstat_cpu(j).irqs[i]);
146 #endif
147 seq_printf(p, " %s:%lx", action->name,
148 get_ino_in_irqaction(action));
149 for (action = action->next; action; action = action->next) {
150 seq_printf(p, ", %s:%lx", action->name,
151 get_ino_in_irqaction(action));
153 seq_putc(p, '\n');
155 out_unlock:
156 spin_unlock_irqrestore(&irq_action_lock, flags);
158 return 0;
161 /* Now these are always passed a true fully specified sun4u INO. */
162 void enable_irq(unsigned int irq)
164 struct ino_bucket *bucket = __bucket(irq);
165 unsigned long imap;
166 unsigned long tid;
168 imap = bucket->imap;
169 if (imap == 0UL)
170 return;
172 preempt_disable();
174 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
175 unsigned long ver;
177 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
178 if ((ver >> 32) == 0x003e0016) {
179 /* We set it to our JBUS ID. */
180 __asm__ __volatile__("ldxa [%%g0] %1, %0"
181 : "=r" (tid)
182 : "i" (ASI_JBUS_CONFIG));
183 tid = ((tid & (0x1fUL<<17)) << 9);
184 tid &= IMAP_TID_JBUS;
185 } else {
186 /* We set it to our Safari AID. */
187 __asm__ __volatile__("ldxa [%%g0] %1, %0"
188 : "=r" (tid)
189 : "i" (ASI_SAFARI_CONFIG));
190 tid = ((tid & (0x3ffUL<<17)) << 9);
191 tid &= IMAP_AID_SAFARI;
193 } else if (this_is_starfire == 0) {
194 /* We set it to our UPA MID. */
195 __asm__ __volatile__("ldxa [%%g0] %1, %0"
196 : "=r" (tid)
197 : "i" (ASI_UPA_CONFIG));
198 tid = ((tid & UPA_CONFIG_MID) << 9);
199 tid &= IMAP_TID_UPA;
200 } else {
201 tid = (starfire_translate(imap, smp_processor_id()) << 26);
202 tid &= IMAP_TID_UPA;
205 /* NOTE NOTE NOTE, IGN and INO are read-only, IGN is a product
206 * of this SYSIO's preconfigured IGN in the SYSIO Control
207 * Register, the hardware just mirrors that value here.
208 * However for Graphics and UPA Slave devices the full
209 * IMAP_INR field can be set by the programmer here.
211 * Things like FFB can now be handled via the new IRQ mechanism.
213 upa_writel(tid | IMAP_VALID, imap);
215 preempt_enable();
218 /* This now gets passed true ino's as well. */
219 void disable_irq(unsigned int irq)
221 struct ino_bucket *bucket = __bucket(irq);
222 unsigned long imap;
224 imap = bucket->imap;
225 if (imap != 0UL) {
226 u32 tmp;
228 /* NOTE: We do not want to futz with the IRQ clear registers
229 * and move the state to IDLE, the SCSI code does call
230 * disable_irq() to assure atomicity in the queue cmd
231 * SCSI adapter driver code. Thus we'd lose interrupts.
233 tmp = upa_readl(imap);
234 tmp &= ~IMAP_VALID;
235 upa_writel(tmp, imap);
239 /* The timer is the one "weird" interrupt which is generated by
240 * the CPU %tick register and not by some normal vectored interrupt
241 * source. To handle this special case, we use this dummy INO bucket.
243 static struct ino_bucket pil0_dummy_bucket = {
244 0, /* irq_chain */
245 0, /* pil */
246 0, /* pending */
247 0, /* flags */
248 0, /* __unused */
249 NULL, /* irq_info */
250 0UL, /* iclr */
251 0UL, /* imap */
254 unsigned int build_irq(int pil, int inofixup, unsigned long iclr, unsigned long imap)
256 struct ino_bucket *bucket;
257 int ino;
259 if (pil == 0) {
260 if (iclr != 0UL || imap != 0UL) {
261 prom_printf("Invalid dummy bucket for PIL0 (%lx:%lx)\n",
262 iclr, imap);
263 prom_halt();
265 return __irq(&pil0_dummy_bucket);
268 /* RULE: Both must be specified in all other cases. */
269 if (iclr == 0UL || imap == 0UL) {
270 prom_printf("Invalid build_irq %d %d %016lx %016lx\n",
271 pil, inofixup, iclr, imap);
272 prom_halt();
275 ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
276 if (ino > NUM_IVECS) {
277 prom_printf("Invalid INO %04x (%d:%d:%016lx:%016lx)\n",
278 ino, pil, inofixup, iclr, imap);
279 prom_halt();
282 /* Ok, looks good, set it up. Don't touch the irq_chain or
283 * the pending flag.
285 bucket = &ivector_table[ino];
286 if ((bucket->flags & IBF_ACTIVE) ||
287 (bucket->irq_info != NULL)) {
288 /* This is a gross fatal error if it happens here. */
289 prom_printf("IRQ: Trying to reinit INO bucket, fatal error.\n");
290 prom_printf("IRQ: Request INO %04x (%d:%d:%016lx:%016lx)\n",
291 ino, pil, inofixup, iclr, imap);
292 prom_printf("IRQ: Existing (%d:%016lx:%016lx)\n",
293 bucket->pil, bucket->iclr, bucket->imap);
294 prom_printf("IRQ: Cannot continue, halting...\n");
295 prom_halt();
297 bucket->imap = imap;
298 bucket->iclr = iclr;
299 bucket->pil = pil;
300 bucket->flags = 0;
302 bucket->irq_info = NULL;
304 return __irq(bucket);
307 static void atomic_bucket_insert(struct ino_bucket *bucket)
309 unsigned long pstate;
310 unsigned int *ent;
312 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
313 __asm__ __volatile__("wrpr %0, %1, %%pstate"
314 : : "r" (pstate), "i" (PSTATE_IE));
315 ent = irq_work(smp_processor_id(), bucket->pil);
316 bucket->irq_chain = *ent;
317 *ent = __irq(bucket);
318 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
321 int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
322 unsigned long irqflags, const char *name, void *dev_id)
324 struct irqaction *action, *tmp = NULL;
325 struct ino_bucket *bucket = __bucket(irq);
326 unsigned long flags;
327 int pending = 0;
329 if ((bucket != &pil0_dummy_bucket) &&
330 (bucket < &ivector_table[0] ||
331 bucket >= &ivector_table[NUM_IVECS])) {
332 unsigned int *caller;
334 __asm__ __volatile__("mov %%i7, %0" : "=r" (caller));
335 printk(KERN_CRIT "request_irq: Old style IRQ registry attempt "
336 "from %p, irq %08x.\n", caller, irq);
337 return -EINVAL;
339 if (!handler)
340 return -EINVAL;
342 if ((bucket != &pil0_dummy_bucket) && (irqflags & SA_SAMPLE_RANDOM)) {
344 * This function might sleep, we want to call it first,
345 * outside of the atomic block. In SA_STATIC_ALLOC case,
346 * random driver's kmalloc will fail, but it is safe.
347 * If already initialized, random driver will not reinit.
348 * Yes, this might clear the entropy pool if the wrong
349 * driver is attempted to be loaded, without actually
350 * installing a new handler, but is this really a problem,
351 * only the sysadmin is able to do this.
353 rand_initialize_irq(irq);
356 spin_lock_irqsave(&irq_action_lock, flags);
358 action = *(bucket->pil + irq_action);
359 if (action) {
360 if ((action->flags & SA_SHIRQ) && (irqflags & SA_SHIRQ))
361 for (tmp = action; tmp->next; tmp = tmp->next)
363 else {
364 spin_unlock_irqrestore(&irq_action_lock, flags);
365 return -EBUSY;
367 action = NULL; /* Or else! */
370 /* If this is flagged as statically allocated then we use our
371 * private struct which is never freed.
373 if (irqflags & SA_STATIC_ALLOC) {
374 if (static_irq_count < MAX_STATIC_ALLOC)
375 action = &static_irqaction[static_irq_count++];
376 else
377 printk("Request for IRQ%d (%s) SA_STATIC_ALLOC failed "
378 "using kmalloc\n", irq, name);
380 if (action == NULL)
381 action = (struct irqaction *)kmalloc(sizeof(struct irqaction),
382 GFP_ATOMIC);
384 if (!action) {
385 spin_unlock_irqrestore(&irq_action_lock, flags);
386 return -ENOMEM;
389 if (bucket == &pil0_dummy_bucket) {
390 bucket->irq_info = action;
391 bucket->flags |= IBF_ACTIVE;
392 } else {
393 if ((bucket->flags & IBF_ACTIVE) != 0) {
394 void *orig = bucket->irq_info;
395 void **vector = NULL;
397 if ((bucket->flags & IBF_PCI) == 0) {
398 printk("IRQ: Trying to share non-PCI bucket.\n");
399 goto free_and_ebusy;
401 if ((bucket->flags & IBF_MULTI) == 0) {
402 vector = kmalloc(sizeof(void *) * 4, GFP_ATOMIC);
403 if (vector == NULL)
404 goto free_and_enomem;
406 /* We might have slept. */
407 if ((bucket->flags & IBF_MULTI) != 0) {
408 int ent;
410 kfree(vector);
411 vector = (void **)bucket->irq_info;
412 for(ent = 0; ent < 4; ent++) {
413 if (vector[ent] == NULL) {
414 vector[ent] = action;
415 break;
418 if (ent == 4)
419 goto free_and_ebusy;
420 } else {
421 vector[0] = orig;
422 vector[1] = action;
423 vector[2] = NULL;
424 vector[3] = NULL;
425 bucket->irq_info = vector;
426 bucket->flags |= IBF_MULTI;
428 } else {
429 int ent;
431 vector = (void **)orig;
432 for (ent = 0; ent < 4; ent++) {
433 if (vector[ent] == NULL) {
434 vector[ent] = action;
435 break;
438 if (ent == 4)
439 goto free_and_ebusy;
441 } else {
442 bucket->irq_info = action;
443 bucket->flags |= IBF_ACTIVE;
445 pending = bucket->pending;
446 if (pending)
447 bucket->pending = 0;
450 action->handler = handler;
451 action->flags = irqflags;
452 action->name = name;
453 action->next = NULL;
454 action->dev_id = dev_id;
455 put_ino_in_irqaction(action, irq);
456 put_smpaff_in_irqaction(action, CPU_MASK_NONE);
458 if (tmp)
459 tmp->next = action;
460 else
461 *(bucket->pil + irq_action) = action;
463 enable_irq(irq);
465 /* We ate the IVEC already, this makes sure it does not get lost. */
466 if (pending) {
467 atomic_bucket_insert(bucket);
468 set_softint(1 << bucket->pil);
470 spin_unlock_irqrestore(&irq_action_lock, flags);
471 if ((bucket != &pil0_dummy_bucket) && (!(irqflags & SA_STATIC_ALLOC)))
472 register_irq_proc(__irq_ino(irq));
474 #ifdef CONFIG_SMP
475 distribute_irqs();
476 #endif
477 return 0;
479 free_and_ebusy:
480 kfree(action);
481 spin_unlock_irqrestore(&irq_action_lock, flags);
482 return -EBUSY;
484 free_and_enomem:
485 kfree(action);
486 spin_unlock_irqrestore(&irq_action_lock, flags);
487 return -ENOMEM;
490 EXPORT_SYMBOL(request_irq);
492 void free_irq(unsigned int irq, void *dev_id)
494 struct irqaction *action;
495 struct irqaction *tmp = NULL;
496 unsigned long flags;
497 struct ino_bucket *bucket = __bucket(irq), *bp;
499 if ((bucket != &pil0_dummy_bucket) &&
500 (bucket < &ivector_table[0] ||
501 bucket >= &ivector_table[NUM_IVECS])) {
502 unsigned int *caller;
504 __asm__ __volatile__("mov %%i7, %0" : "=r" (caller));
505 printk(KERN_CRIT "free_irq: Old style IRQ removal attempt "
506 "from %p, irq %08x.\n", caller, irq);
507 return;
510 spin_lock_irqsave(&irq_action_lock, flags);
512 action = *(bucket->pil + irq_action);
513 if (!action->handler) {
514 printk("Freeing free IRQ %d\n", bucket->pil);
515 return;
517 if (dev_id) {
518 for ( ; action; action = action->next) {
519 if (action->dev_id == dev_id)
520 break;
521 tmp = action;
523 if (!action) {
524 printk("Trying to free free shared IRQ %d\n", bucket->pil);
525 spin_unlock_irqrestore(&irq_action_lock, flags);
526 return;
528 } else if (action->flags & SA_SHIRQ) {
529 printk("Trying to free shared IRQ %d with NULL device ID\n", bucket->pil);
530 spin_unlock_irqrestore(&irq_action_lock, flags);
531 return;
534 if (action->flags & SA_STATIC_ALLOC) {
535 printk("Attempt to free statically allocated IRQ %d (%s)\n",
536 bucket->pil, action->name);
537 spin_unlock_irqrestore(&irq_action_lock, flags);
538 return;
541 if (action && tmp)
542 tmp->next = action->next;
543 else
544 *(bucket->pil + irq_action) = action->next;
546 spin_unlock_irqrestore(&irq_action_lock, flags);
548 synchronize_irq(irq);
550 spin_lock_irqsave(&irq_action_lock, flags);
552 if (bucket != &pil0_dummy_bucket) {
553 unsigned long imap = bucket->imap;
554 void **vector, *orig;
555 int ent;
557 orig = bucket->irq_info;
558 vector = (void **)orig;
560 if ((bucket->flags & IBF_MULTI) != 0) {
561 int other = 0;
562 void *orphan = NULL;
563 for (ent = 0; ent < 4; ent++) {
564 if (vector[ent] == action)
565 vector[ent] = NULL;
566 else if (vector[ent] != NULL) {
567 orphan = vector[ent];
568 other++;
572 /* Only free when no other shared irq
573 * uses this bucket.
575 if (other) {
576 if (other == 1) {
577 /* Convert back to non-shared bucket. */
578 bucket->irq_info = orphan;
579 bucket->flags &= ~(IBF_MULTI);
580 kfree(vector);
582 goto out;
584 } else {
585 bucket->irq_info = NULL;
588 /* This unique interrupt source is now inactive. */
589 bucket->flags &= ~IBF_ACTIVE;
591 /* See if any other buckets share this bucket's IMAP
592 * and are still active.
594 for (ent = 0; ent < NUM_IVECS; ent++) {
595 bp = &ivector_table[ent];
596 if (bp != bucket &&
597 bp->imap == imap &&
598 (bp->flags & IBF_ACTIVE) != 0)
599 break;
602 /* Only disable when no other sub-irq levels of
603 * the same IMAP are active.
605 if (ent == NUM_IVECS)
606 disable_irq(irq);
609 out:
610 kfree(action);
611 spin_unlock_irqrestore(&irq_action_lock, flags);
614 EXPORT_SYMBOL(free_irq);
616 #ifdef CONFIG_SMP
617 void synchronize_irq(unsigned int irq)
619 struct ino_bucket *bucket = __bucket(irq);
621 #if 0
622 /* The following is how I wish I could implement this.
623 * Unfortunately the ICLR registers are read-only, you can
624 * only write ICLR_foo values to them. To get the current
625 * IRQ status you would need to get at the IRQ diag registers
626 * in the PCI/SBUS controller and the layout of those vary
627 * from one controller to the next, sigh... -DaveM
629 unsigned long iclr = bucket->iclr;
631 while (1) {
632 u32 tmp = upa_readl(iclr);
634 if (tmp == ICLR_TRANSMIT ||
635 tmp == ICLR_PENDING) {
636 cpu_relax();
637 continue;
639 break;
641 #else
642 /* So we have to do this with a INPROGRESS bit just like x86. */
643 while (bucket->flags & IBF_INPROGRESS)
644 cpu_relax();
645 #endif
647 #endif /* CONFIG_SMP */
649 void catch_disabled_ivec(struct pt_regs *regs)
651 int cpu = smp_processor_id();
652 struct ino_bucket *bucket = __bucket(*irq_work(cpu, 0));
654 /* We can actually see this on Ultra/PCI PCI cards, which are bridges
655 * to other devices. Here a single IMAP enabled potentially multiple
656 * unique interrupt sources (which each do have a unique ICLR register.
658 * So what we do is just register that the IVEC arrived, when registered
659 * for real the request_irq() code will check the bit and signal
660 * a local CPU interrupt for it.
662 #if 0
663 printk("IVEC: Spurious interrupt vector (%x) received at (%016lx)\n",
664 bucket - &ivector_table[0], regs->tpc);
665 #endif
666 *irq_work(cpu, 0) = 0;
667 bucket->pending = 1;
670 /* Tune this... */
671 #define FORWARD_VOLUME 12
673 #ifdef CONFIG_SMP
675 static inline void redirect_intr(int cpu, struct ino_bucket *bp)
677 /* Ok, here is what is going on:
678 * 1) Retargeting IRQs on Starfire is very
679 * expensive so just forget about it on them.
680 * 2) Moving around very high priority interrupts
681 * is a losing game.
682 * 3) If the current cpu is idle, interrupts are
683 * useful work, so keep them here. But do not
684 * pass to our neighbour if he is not very idle.
685 * 4) If sysadmin explicitly asks for directed intrs,
686 * Just Do It.
688 struct irqaction *ap = bp->irq_info;
689 cpumask_t cpu_mask;
690 unsigned int buddy, ticks;
692 cpu_mask = get_smpaff_in_irqaction(ap);
693 cpus_and(cpu_mask, cpu_mask, cpu_online_map);
694 if (cpus_empty(cpu_mask))
695 cpu_mask = cpu_online_map;
697 if (this_is_starfire != 0 ||
698 bp->pil >= 10 || current->pid == 0)
699 goto out;
701 /* 'cpu' is the MID (ie. UPAID), calculate the MID
702 * of our buddy.
704 buddy = cpu + 1;
705 if (buddy >= NR_CPUS)
706 buddy = 0;
708 ticks = 0;
709 while (!cpu_isset(buddy, cpu_mask)) {
710 if (++buddy >= NR_CPUS)
711 buddy = 0;
712 if (++ticks > NR_CPUS) {
713 put_smpaff_in_irqaction(ap, CPU_MASK_NONE);
714 goto out;
718 if (buddy == cpu)
719 goto out;
721 /* Voo-doo programming. */
722 if (cpu_data(buddy).idle_volume < FORWARD_VOLUME)
723 goto out;
725 /* This just so happens to be correct on Cheetah
726 * at the moment.
728 buddy <<= 26;
730 /* Push it to our buddy. */
731 upa_writel(buddy | IMAP_VALID, bp->imap);
733 out:
734 return;
737 #endif
739 void handler_irq(int irq, struct pt_regs *regs)
741 struct ino_bucket *bp, *nbp;
742 int cpu = smp_processor_id();
744 #ifndef CONFIG_SMP
746 * Check for TICK_INT on level 14 softint.
749 unsigned long clr_mask = 1 << irq;
750 unsigned long tick_mask = tick_ops->softint_mask;
752 if ((irq == 14) && (get_softint() & tick_mask)) {
753 irq = 0;
754 clr_mask = tick_mask;
756 clear_softint(clr_mask);
758 #else
759 int should_forward = 1;
761 clear_softint(1 << irq);
762 #endif
764 irq_enter();
765 kstat_this_cpu.irqs[irq]++;
767 /* Sliiiick... */
768 #ifndef CONFIG_SMP
769 bp = ((irq != 0) ?
770 __bucket(xchg32(irq_work(cpu, irq), 0)) :
771 &pil0_dummy_bucket);
772 #else
773 bp = __bucket(xchg32(irq_work(cpu, irq), 0));
774 #endif
775 for ( ; bp != NULL; bp = nbp) {
776 unsigned char flags = bp->flags;
777 unsigned char random = 0;
779 nbp = __bucket(bp->irq_chain);
780 bp->irq_chain = 0;
782 bp->flags |= IBF_INPROGRESS;
784 if ((flags & IBF_ACTIVE) != 0) {
785 #ifdef CONFIG_PCI
786 if ((flags & IBF_DMA_SYNC) != 0) {
787 upa_readl(dma_sync_reg_table[bp->synctab_ent]);
788 upa_readq(pci_dma_wsync);
790 #endif
791 if ((flags & IBF_MULTI) == 0) {
792 struct irqaction *ap = bp->irq_info;
793 int ret;
795 ret = ap->handler(__irq(bp), ap->dev_id, regs);
796 if (ret == IRQ_HANDLED)
797 random |= ap->flags;
798 } else {
799 void **vector = (void **)bp->irq_info;
800 int ent;
801 for (ent = 0; ent < 4; ent++) {
802 struct irqaction *ap = vector[ent];
803 if (ap != NULL) {
804 int ret;
806 ret = ap->handler(__irq(bp),
807 ap->dev_id,
808 regs);
809 if (ret == IRQ_HANDLED)
810 random |= ap->flags;
814 /* Only the dummy bucket lacks IMAP/ICLR. */
815 if (bp->pil != 0) {
816 #ifdef CONFIG_SMP
817 if (should_forward) {
818 redirect_intr(cpu, bp);
819 should_forward = 0;
821 #endif
822 upa_writel(ICLR_IDLE, bp->iclr);
824 /* Test and add entropy */
825 if (random & SA_SAMPLE_RANDOM)
826 add_interrupt_randomness(irq);
828 } else
829 bp->pending = 1;
831 bp->flags &= ~IBF_INPROGRESS;
833 irq_exit();
836 #ifdef CONFIG_BLK_DEV_FD
837 extern void floppy_interrupt(int irq, void *dev_cookie, struct pt_regs *regs);
839 void sparc_floppy_irq(int irq, void *dev_cookie, struct pt_regs *regs)
841 struct irqaction *action = *(irq + irq_action);
842 struct ino_bucket *bucket;
843 int cpu = smp_processor_id();
845 irq_enter();
846 kstat_this_cpu.irqs[irq]++;
848 *(irq_work(cpu, irq)) = 0;
849 bucket = get_ino_in_irqaction(action) + ivector_table;
851 bucket->flags |= IBF_INPROGRESS;
853 floppy_interrupt(irq, dev_cookie, regs);
854 upa_writel(ICLR_IDLE, bucket->iclr);
856 bucket->flags &= ~IBF_INPROGRESS;
858 irq_exit();
860 #endif
862 /* The following assumes that the branch lies before the place we
863 * are branching to. This is the case for a trap vector...
864 * You have been warned.
866 #define SPARC_BRANCH(dest_addr, inst_addr) \
867 (0x10800000 | ((((dest_addr)-(inst_addr))>>2)&0x3fffff))
869 #define SPARC_NOP (0x01000000)
871 static void install_fast_irq(unsigned int cpu_irq,
872 irqreturn_t (*handler)(int, void *, struct pt_regs *))
874 extern unsigned long sparc64_ttable_tl0;
875 unsigned long ttent = (unsigned long) &sparc64_ttable_tl0;
876 unsigned int *insns;
878 ttent += 0x820;
879 ttent += (cpu_irq - 1) << 5;
880 insns = (unsigned int *) ttent;
881 insns[0] = SPARC_BRANCH(((unsigned long) handler),
882 ((unsigned long)&insns[0]));
883 insns[1] = SPARC_NOP;
884 __asm__ __volatile__("membar #StoreStore; flush %0" : : "r" (ttent));
887 int request_fast_irq(unsigned int irq,
888 irqreturn_t (*handler)(int, void *, struct pt_regs *),
889 unsigned long irqflags, const char *name, void *dev_id)
891 struct irqaction *action;
892 struct ino_bucket *bucket = __bucket(irq);
893 unsigned long flags;
895 /* No pil0 dummy buckets allowed here. */
896 if (bucket < &ivector_table[0] ||
897 bucket >= &ivector_table[NUM_IVECS]) {
898 unsigned int *caller;
900 __asm__ __volatile__("mov %%i7, %0" : "=r" (caller));
901 printk(KERN_CRIT "request_fast_irq: Old style IRQ registry attempt "
902 "from %p, irq %08x.\n", caller, irq);
903 return -EINVAL;
906 if (!handler)
907 return -EINVAL;
909 if ((bucket->pil == 0) || (bucket->pil == 14)) {
910 printk("request_fast_irq: Trying to register shared IRQ 0 or 14.\n");
911 return -EBUSY;
914 spin_lock_irqsave(&irq_action_lock, flags);
916 action = *(bucket->pil + irq_action);
917 if (action) {
918 if (action->flags & SA_SHIRQ)
919 panic("Trying to register fast irq when already shared.\n");
920 if (irqflags & SA_SHIRQ)
921 panic("Trying to register fast irq as shared.\n");
922 printk("request_fast_irq: Trying to register yet already owned.\n");
923 spin_unlock_irqrestore(&irq_action_lock, flags);
924 return -EBUSY;
928 * We do not check for SA_SAMPLE_RANDOM in this path. Neither do we
929 * support smp intr affinity in this path.
931 if (irqflags & SA_STATIC_ALLOC) {
932 if (static_irq_count < MAX_STATIC_ALLOC)
933 action = &static_irqaction[static_irq_count++];
934 else
935 printk("Request for IRQ%d (%s) SA_STATIC_ALLOC failed "
936 "using kmalloc\n", bucket->pil, name);
938 if (action == NULL)
939 action = (struct irqaction *)kmalloc(sizeof(struct irqaction),
940 GFP_ATOMIC);
941 if (!action) {
942 spin_unlock_irqrestore(&irq_action_lock, flags);
943 return -ENOMEM;
945 install_fast_irq(bucket->pil, handler);
947 bucket->irq_info = action;
948 bucket->flags |= IBF_ACTIVE;
950 action->handler = handler;
951 action->flags = irqflags;
952 action->dev_id = NULL;
953 action->name = name;
954 action->next = NULL;
955 put_ino_in_irqaction(action, irq);
956 put_smpaff_in_irqaction(action, CPU_MASK_NONE);
958 *(bucket->pil + irq_action) = action;
959 enable_irq(irq);
961 spin_unlock_irqrestore(&irq_action_lock, flags);
963 #ifdef CONFIG_SMP
964 distribute_irqs();
965 #endif
966 return 0;
969 /* We really don't need these at all on the Sparc. We only have
970 * stubs here because they are exported to modules.
972 unsigned long probe_irq_on(void)
974 return 0;
977 EXPORT_SYMBOL(probe_irq_on);
979 int probe_irq_off(unsigned long mask)
981 return 0;
984 EXPORT_SYMBOL(probe_irq_off);
986 #ifdef CONFIG_SMP
987 static int retarget_one_irq(struct irqaction *p, int goal_cpu)
989 struct ino_bucket *bucket = get_ino_in_irqaction(p) + ivector_table;
990 unsigned long imap = bucket->imap;
991 unsigned int tid;
993 while (!cpu_online(goal_cpu)) {
994 if (++goal_cpu >= NR_CPUS)
995 goal_cpu = 0;
998 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
999 tid = goal_cpu << 26;
1000 tid &= IMAP_AID_SAFARI;
1001 } else if (this_is_starfire == 0) {
1002 tid = goal_cpu << 26;
1003 tid &= IMAP_TID_UPA;
1004 } else {
1005 tid = (starfire_translate(imap, goal_cpu) << 26);
1006 tid &= IMAP_TID_UPA;
1008 upa_writel(tid | IMAP_VALID, imap);
1010 while (!cpu_online(goal_cpu)) {
1011 if (++goal_cpu >= NR_CPUS)
1012 goal_cpu = 0;
1015 return goal_cpu;
1018 /* Called from request_irq. */
1019 static void distribute_irqs(void)
1021 unsigned long flags;
1022 int cpu, level;
1024 spin_lock_irqsave(&irq_action_lock, flags);
1025 cpu = 0;
1028 * Skip the timer at [0], and very rare error/power intrs at [15].
1029 * Also level [12], it causes problems on Ex000 systems.
1031 for (level = 1; level < NR_IRQS; level++) {
1032 struct irqaction *p = irq_action[level];
1033 if (level == 12) continue;
1034 while(p) {
1035 cpu = retarget_one_irq(p, cpu);
1036 p = p->next;
1039 spin_unlock_irqrestore(&irq_action_lock, flags);
1041 #endif
1044 struct sun5_timer *prom_timers;
1045 static u64 prom_limit0, prom_limit1;
1047 static void map_prom_timers(void)
1049 unsigned int addr[3];
1050 int tnode, err;
1052 /* PROM timer node hangs out in the top level of device siblings... */
1053 tnode = prom_finddevice("/counter-timer");
1055 /* Assume if node is not present, PROM uses different tick mechanism
1056 * which we should not care about.
1058 if (tnode == 0 || tnode == -1) {
1059 prom_timers = (struct sun5_timer *) 0;
1060 return;
1063 /* If PROM is really using this, it must be mapped by him. */
1064 err = prom_getproperty(tnode, "address", (char *)addr, sizeof(addr));
1065 if (err == -1) {
1066 prom_printf("PROM does not have timer mapped, trying to continue.\n");
1067 prom_timers = (struct sun5_timer *) 0;
1068 return;
1070 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
1073 static void kill_prom_timer(void)
1075 if (!prom_timers)
1076 return;
1078 /* Save them away for later. */
1079 prom_limit0 = prom_timers->limit0;
1080 prom_limit1 = prom_timers->limit1;
1082 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
1083 * We turn both off here just to be paranoid.
1085 prom_timers->limit0 = 0;
1086 prom_timers->limit1 = 0;
1088 /* Wheee, eat the interrupt packet too... */
1089 __asm__ __volatile__(
1090 " mov 0x40, %%g2\n"
1091 " ldxa [%%g0] %0, %%g1\n"
1092 " ldxa [%%g2] %1, %%g1\n"
1093 " stxa %%g0, [%%g0] %0\n"
1094 " membar #Sync\n"
1095 : /* no outputs */
1096 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
1097 : "g1", "g2");
1100 void enable_prom_timer(void)
1102 if (!prom_timers)
1103 return;
1105 /* Set it to whatever was there before. */
1106 prom_timers->limit1 = prom_limit1;
1107 prom_timers->count1 = 0;
1108 prom_timers->limit0 = prom_limit0;
1109 prom_timers->count0 = 0;
1112 void init_irqwork_curcpu(void)
1114 register struct irq_work_struct *workp asm("o2");
1115 register unsigned long tmp asm("o3");
1116 int cpu = hard_smp_processor_id();
1118 memset(__irq_work + cpu, 0, sizeof(*workp));
1120 /* Make sure we are called with PSTATE_IE disabled. */
1121 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1122 : "=r" (tmp));
1123 if (tmp & PSTATE_IE) {
1124 prom_printf("BUG: init_irqwork_curcpu() called with "
1125 "PSTATE_IE enabled, bailing.\n");
1126 __asm__ __volatile__("mov %%i7, %0\n\t"
1127 : "=r" (tmp));
1128 prom_printf("BUG: Called from %lx\n", tmp);
1129 prom_halt();
1132 /* Set interrupt globals. */
1133 workp = &__irq_work[cpu];
1134 __asm__ __volatile__(
1135 "rdpr %%pstate, %0\n\t"
1136 "wrpr %0, %1, %%pstate\n\t"
1137 "mov %2, %%g6\n\t"
1138 "wrpr %0, 0x0, %%pstate\n\t"
1139 : "=&r" (tmp)
1140 : "i" (PSTATE_IG), "r" (workp));
1143 /* Only invoked on boot processor. */
1144 void __init init_IRQ(void)
1146 map_prom_timers();
1147 kill_prom_timer();
1148 memset(&ivector_table[0], 0, sizeof(ivector_table));
1150 /* We need to clear any IRQ's pending in the soft interrupt
1151 * registers, a spurious one could be left around from the
1152 * PROM timer which we just disabled.
1154 clear_softint(get_softint());
1156 /* Now that ivector table is initialized, it is safe
1157 * to receive IRQ vector traps. We will normally take
1158 * one or two right now, in case some device PROM used
1159 * to boot us wants to speak to us. We just ignore them.
1161 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1162 "or %%g1, %0, %%g1\n\t"
1163 "wrpr %%g1, 0x0, %%pstate"
1164 : /* No outputs */
1165 : "i" (PSTATE_IE)
1166 : "g1");
1169 static struct proc_dir_entry * root_irq_dir;
1170 static struct proc_dir_entry * irq_dir [NUM_IVECS];
1172 #ifdef CONFIG_SMP
1174 static int irq_affinity_read_proc (char *page, char **start, off_t off,
1175 int count, int *eof, void *data)
1177 struct ino_bucket *bp = ivector_table + (long)data;
1178 struct irqaction *ap = bp->irq_info;
1179 cpumask_t mask;
1180 int len;
1182 mask = get_smpaff_in_irqaction(ap);
1183 if (cpus_empty(mask))
1184 mask = cpu_online_map;
1186 len = cpumask_scnprintf(page, count, mask);
1187 if (count - len < 2)
1188 return -EINVAL;
1189 len += sprintf(page + len, "\n");
1190 return len;
1193 static inline void set_intr_affinity(int irq, cpumask_t hw_aff)
1195 struct ino_bucket *bp = ivector_table + irq;
1197 /* Users specify affinity in terms of hw cpu ids.
1198 * As soon as we do this, handler_irq() might see and take action.
1200 put_smpaff_in_irqaction((struct irqaction *)bp->irq_info, hw_aff);
1202 /* Migration is simply done by the next cpu to service this
1203 * interrupt.
1207 static int irq_affinity_write_proc (struct file *file, const char __user *buffer,
1208 unsigned long count, void *data)
1210 int irq = (long) data, full_count = count, err;
1211 cpumask_t new_value;
1213 err = cpumask_parse(buffer, count, new_value);
1216 * Do not allow disabling IRQs completely - it's a too easy
1217 * way to make the system unusable accidentally :-) At least
1218 * one online CPU still has to be targeted.
1220 cpus_and(new_value, new_value, cpu_online_map);
1221 if (cpus_empty(new_value))
1222 return -EINVAL;
1224 set_intr_affinity(irq, new_value);
1226 return full_count;
1229 #endif
1231 #define MAX_NAMELEN 10
1233 static void register_irq_proc (unsigned int irq)
1235 char name [MAX_NAMELEN];
1237 if (!root_irq_dir || irq_dir[irq])
1238 return;
1240 memset(name, 0, MAX_NAMELEN);
1241 sprintf(name, "%x", irq);
1243 /* create /proc/irq/1234 */
1244 irq_dir[irq] = proc_mkdir(name, root_irq_dir);
1246 #ifdef CONFIG_SMP
1247 /* XXX SMP affinity not supported on starfire yet. */
1248 if (this_is_starfire == 0) {
1249 struct proc_dir_entry *entry;
1251 /* create /proc/irq/1234/smp_affinity */
1252 entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
1254 if (entry) {
1255 entry->nlink = 1;
1256 entry->data = (void *)(long)irq;
1257 entry->read_proc = irq_affinity_read_proc;
1258 entry->write_proc = irq_affinity_write_proc;
1261 #endif
1264 void init_irq_proc (void)
1266 /* create /proc/irq */
1267 root_irq_dir = proc_mkdir("irq", NULL);