Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sparc / kernel / smp.c
blobc6e721d8f4772850652034d9a97ad136fe830f38
1 /* smp.c: Sparc SMP support.
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
8 #include <asm/head.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/smp_lock.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
25 #include <asm/ptrace.h>
26 #include <asm/atomic.h>
28 #include <asm/irq.h>
29 #include <asm/page.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/oplib.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/cpudata.h>
37 volatile int smp_processors_ready = 0;
38 int smp_num_cpus = 1;
39 volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,};
40 unsigned char boot_cpu_id = 0;
41 unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */
42 int smp_activated = 0;
43 volatile int __cpu_number_map[NR_CPUS];
44 volatile int __cpu_logical_map[NR_CPUS];
46 cpumask_t cpu_online_map = CPU_MASK_NONE;
47 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
49 /* The only guaranteed locking primitive available on all Sparc
50 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
51 * places the current byte at the effective address into dest_reg and
52 * places 0xff there afterwards. Pretty lame locking primitive
53 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
54 * instruction which is much better...
57 /* Used to make bitops atomic */
58 unsigned char bitops_spinlock = 0;
60 volatile unsigned long ipi_count;
62 volatile int smp_process_available=0;
63 volatile int smp_commenced = 0;
65 void __init smp_store_cpu_info(int id)
67 int cpu_node;
69 cpu_data(id).udelay_val = loops_per_jiffy;
71 cpu_find_by_mid(id, &cpu_node);
72 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
73 "clock-frequency", 0);
74 cpu_data(id).prom_node = cpu_node;
75 cpu_data(id).mid = cpu_get_hwmid(cpu_node);
76 if (cpu_data(id).mid < 0)
77 panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
80 void __init smp_cpus_done(unsigned int max_cpus)
84 void cpu_panic(void)
86 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
87 panic("SMP bolixed\n");
90 struct linux_prom_registers smp_penguin_ctable __initdata = { 0 };
92 void __init smp_boot_cpus(void)
94 extern void smp4m_boot_cpus(void);
95 extern void smp4d_boot_cpus(void);
97 if (sparc_cpu_model == sun4m)
98 smp4m_boot_cpus();
99 else
100 smp4d_boot_cpus();
103 void smp_send_reschedule(int cpu)
105 /* See sparc64 */
108 void smp_send_stop(void)
112 void smp_flush_cache_all(void)
114 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
115 local_flush_cache_all();
118 void smp_flush_tlb_all(void)
120 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
121 local_flush_tlb_all();
124 void smp_flush_cache_mm(struct mm_struct *mm)
126 if(mm->context != NO_CONTEXT) {
127 cpumask_t cpu_mask = mm->cpu_vm_mask;
128 cpu_clear(smp_processor_id(), cpu_mask);
129 if (!cpus_empty(cpu_mask))
130 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
131 local_flush_cache_mm(mm);
135 void smp_flush_tlb_mm(struct mm_struct *mm)
137 if(mm->context != NO_CONTEXT) {
138 cpumask_t cpu_mask = mm->cpu_vm_mask;
139 cpu_clear(smp_processor_id(), cpu_mask);
140 if (!cpus_empty(cpu_mask)) {
141 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
142 if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
143 mm->cpu_vm_mask = cpumask_of_cpu(smp_processor_id());
145 local_flush_tlb_mm(mm);
149 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
150 unsigned long end)
152 struct mm_struct *mm = vma->vm_mm;
154 if (mm->context != NO_CONTEXT) {
155 cpumask_t cpu_mask = mm->cpu_vm_mask;
156 cpu_clear(smp_processor_id(), cpu_mask);
157 if (!cpus_empty(cpu_mask))
158 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
159 local_flush_cache_range(vma, start, end);
163 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
164 unsigned long end)
166 struct mm_struct *mm = vma->vm_mm;
168 if (mm->context != NO_CONTEXT) {
169 cpumask_t cpu_mask = mm->cpu_vm_mask;
170 cpu_clear(smp_processor_id(), cpu_mask);
171 if (!cpus_empty(cpu_mask))
172 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
173 local_flush_tlb_range(vma, start, end);
177 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
179 struct mm_struct *mm = vma->vm_mm;
181 if(mm->context != NO_CONTEXT) {
182 cpumask_t cpu_mask = mm->cpu_vm_mask;
183 cpu_clear(smp_processor_id(), cpu_mask);
184 if (!cpus_empty(cpu_mask))
185 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
186 local_flush_cache_page(vma, page);
190 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
192 struct mm_struct *mm = vma->vm_mm;
194 if(mm->context != NO_CONTEXT) {
195 cpumask_t cpu_mask = mm->cpu_vm_mask;
196 cpu_clear(smp_processor_id(), cpu_mask);
197 if (!cpus_empty(cpu_mask))
198 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
199 local_flush_tlb_page(vma, page);
203 void smp_reschedule_irq(void)
205 set_need_resched();
208 void smp_flush_page_to_ram(unsigned long page)
210 /* Current theory is that those who call this are the one's
211 * who have just dirtied their cache with the pages contents
212 * in kernel space, therefore we only run this on local cpu.
214 * XXX This experiment failed, research further... -DaveM
216 #if 1
217 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
218 #endif
219 local_flush_page_to_ram(page);
222 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
224 cpumask_t cpu_mask = mm->cpu_vm_mask;
225 cpu_clear(smp_processor_id(), cpu_mask);
226 if (!cpus_empty(cpu_mask))
227 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
228 local_flush_sig_insns(mm, insn_addr);
231 extern unsigned int lvl14_resolution;
233 /* /proc/profile writes can call this, don't __init it please. */
234 static DEFINE_SPINLOCK(prof_setup_lock);
236 int setup_profiling_timer(unsigned int multiplier)
238 int i;
239 unsigned long flags;
241 /* Prevent level14 ticker IRQ flooding. */
242 if((!multiplier) || (lvl14_resolution / multiplier) < 500)
243 return -EINVAL;
245 spin_lock_irqsave(&prof_setup_lock, flags);
246 for(i = 0; i < NR_CPUS; i++) {
247 if (cpu_possible(i))
248 load_profile_irq(i, lvl14_resolution / multiplier);
249 prof_multiplier(i) = multiplier;
251 spin_unlock_irqrestore(&prof_setup_lock, flags);
253 return 0;
256 void __init smp_prepare_cpus(unsigned int maxcpus)
260 void __devinit smp_prepare_boot_cpu(void)
262 current_thread_info()->cpu = hard_smp_processor_id();
263 cpu_set(smp_processor_id(), cpu_online_map);
264 cpu_set(smp_processor_id(), phys_cpu_present_map);
267 int __devinit __cpu_up(unsigned int cpu)
269 panic("smp doesn't work\n");
272 void smp_bogo(struct seq_file *m)
274 int i;
276 for (i = 0; i < NR_CPUS; i++) {
277 if (cpu_online(i))
278 seq_printf(m,
279 "Cpu%dBogo\t: %lu.%02lu\n",
281 cpu_data(i).udelay_val/(500000/HZ),
282 (cpu_data(i).udelay_val/(5000/HZ))%100);
286 void smp_info(struct seq_file *m)
288 int i;
290 seq_printf(m, "State:\n");
291 for (i = 0; i < NR_CPUS; i++) {
292 if (cpu_online(i))
293 seq_printf(m, "CPU%d\t\t: online\n", i);