Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / ppc64 / mm / init.c
blob23813d03e1c423a239deb5f7779cadd0434914b6
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
10 * Derived from "arch/i386/mm/init.c"
11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 * Dave Engebretsen <engebret@us.ibm.com>
14 * Rework for PPC64 port.
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version
19 * 2 of the License, or (at your option) any later version.
23 #include <linux/config.h>
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/bootmem.h>
38 #include <linux/highmem.h>
39 #include <linux/idr.h>
40 #include <linux/nodemask.h>
41 #include <linux/module.h>
43 #include <asm/pgalloc.h>
44 #include <asm/page.h>
45 #include <asm/abs_addr.h>
46 #include <asm/prom.h>
47 #include <asm/lmb.h>
48 #include <asm/rtas.h>
49 #include <asm/io.h>
50 #include <asm/mmu_context.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu.h>
53 #include <asm/uaccess.h>
54 #include <asm/smp.h>
55 #include <asm/machdep.h>
56 #include <asm/tlb.h>
57 #include <asm/eeh.h>
58 #include <asm/processor.h>
59 #include <asm/mmzone.h>
60 #include <asm/cputable.h>
61 #include <asm/ppcdebug.h>
62 #include <asm/sections.h>
63 #include <asm/system.h>
64 #include <asm/iommu.h>
65 #include <asm/abs_addr.h>
66 #include <asm/vdso.h>
68 int mem_init_done;
69 unsigned long ioremap_bot = IMALLOC_BASE;
70 static unsigned long phbs_io_bot = PHBS_IO_BASE;
72 extern pgd_t swapper_pg_dir[];
73 extern struct task_struct *current_set[NR_CPUS];
75 extern pgd_t ioremap_dir[];
76 pgd_t * ioremap_pgd = (pgd_t *)&ioremap_dir;
78 unsigned long klimit = (unsigned long)_end;
80 unsigned long _SDR1=0;
81 unsigned long _ASR=0;
83 /* max amount of RAM to use */
84 unsigned long __max_memory;
86 /* info on what we think the IO hole is */
87 unsigned long io_hole_start;
88 unsigned long io_hole_size;
90 void show_mem(void)
92 unsigned long total = 0, reserved = 0;
93 unsigned long shared = 0, cached = 0;
94 struct page *page;
95 pg_data_t *pgdat;
96 unsigned long i;
98 printk("Mem-info:\n");
99 show_free_areas();
100 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
101 for_each_pgdat(pgdat) {
102 for (i = 0; i < pgdat->node_spanned_pages; i++) {
103 page = pgdat->node_mem_map + i;
104 total++;
105 if (PageReserved(page))
106 reserved++;
107 else if (PageSwapCache(page))
108 cached++;
109 else if (page_count(page))
110 shared += page_count(page) - 1;
113 printk("%ld pages of RAM\n", total);
114 printk("%ld reserved pages\n", reserved);
115 printk("%ld pages shared\n", shared);
116 printk("%ld pages swap cached\n", cached);
119 #ifdef CONFIG_PPC_ISERIES
121 void __iomem *ioremap(unsigned long addr, unsigned long size)
123 return (void __iomem *)addr;
126 extern void __iomem *__ioremap(unsigned long addr, unsigned long size,
127 unsigned long flags)
129 return (void __iomem *)addr;
132 void iounmap(volatile void __iomem *addr)
134 return;
137 #else
140 * map_io_page currently only called by __ioremap
141 * map_io_page adds an entry to the ioremap page table
142 * and adds an entry to the HPT, possibly bolting it
144 static void map_io_page(unsigned long ea, unsigned long pa, int flags)
146 pgd_t *pgdp;
147 pmd_t *pmdp;
148 pte_t *ptep;
149 unsigned long vsid;
151 if (mem_init_done) {
152 spin_lock(&ioremap_mm.page_table_lock);
153 pgdp = pgd_offset_i(ea);
154 pmdp = pmd_alloc(&ioremap_mm, pgdp, ea);
155 ptep = pte_alloc_kernel(&ioremap_mm, pmdp, ea);
157 pa = abs_to_phys(pa);
158 set_pte_at(&ioremap_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, __pgprot(flags)));
159 spin_unlock(&ioremap_mm.page_table_lock);
160 } else {
161 unsigned long va, vpn, hash, hpteg;
164 * If the mm subsystem is not fully up, we cannot create a
165 * linux page table entry for this mapping. Simply bolt an
166 * entry in the hardware page table.
168 vsid = get_kernel_vsid(ea);
169 va = (vsid << 28) | (ea & 0xFFFFFFF);
170 vpn = va >> PAGE_SHIFT;
172 hash = hpt_hash(vpn, 0);
174 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
176 /* Panic if a pte grpup is full */
177 if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT, 0,
178 _PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX,
179 1, 0) == -1) {
180 panic("map_io_page: could not insert mapping");
186 static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
187 unsigned long ea, unsigned long size,
188 unsigned long flags)
190 unsigned long i;
192 if ((flags & _PAGE_PRESENT) == 0)
193 flags |= pgprot_val(PAGE_KERNEL);
194 if (flags & (_PAGE_NO_CACHE | _PAGE_WRITETHRU))
195 flags |= _PAGE_GUARDED;
197 for (i = 0; i < size; i += PAGE_SIZE) {
198 map_io_page(ea+i, pa+i, flags);
201 return (void __iomem *) (ea + (addr & ~PAGE_MASK));
205 void __iomem *
206 ioremap(unsigned long addr, unsigned long size)
208 return __ioremap(addr, size, _PAGE_NO_CACHE);
211 void __iomem *
212 __ioremap(unsigned long addr, unsigned long size, unsigned long flags)
214 unsigned long pa, ea;
217 * Choose an address to map it to.
218 * Once the imalloc system is running, we use it.
219 * Before that, we map using addresses going
220 * up from ioremap_bot. imalloc will use
221 * the addresses from ioremap_bot through
222 * IMALLOC_END (0xE000001fffffffff)
225 pa = addr & PAGE_MASK;
226 size = PAGE_ALIGN(addr + size) - pa;
228 if (size == 0)
229 return NULL;
231 if (mem_init_done) {
232 struct vm_struct *area;
233 area = im_get_free_area(size);
234 if (area == NULL)
235 return NULL;
236 ea = (unsigned long)(area->addr);
237 } else {
238 ea = ioremap_bot;
239 ioremap_bot += size;
242 return __ioremap_com(addr, pa, ea, size, flags);
245 #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
247 int __ioremap_explicit(unsigned long pa, unsigned long ea,
248 unsigned long size, unsigned long flags)
250 struct vm_struct *area;
252 /* For now, require page-aligned values for pa, ea, and size */
253 if (!IS_PAGE_ALIGNED(pa) || !IS_PAGE_ALIGNED(ea) ||
254 !IS_PAGE_ALIGNED(size)) {
255 printk(KERN_ERR "unaligned value in %s\n", __FUNCTION__);
256 return 1;
259 if (!mem_init_done) {
260 /* Two things to consider in this case:
261 * 1) No records will be kept (imalloc, etc) that the region
262 * has been remapped
263 * 2) It won't be easy to iounmap() the region later (because
264 * of 1)
267 } else {
268 area = im_get_area(ea, size,
269 IM_REGION_UNUSED|IM_REGION_SUBSET|IM_REGION_EXISTS);
270 if (area == NULL) {
271 /* Expected when PHB-dlpar is in play */
272 return 1;
274 if (ea != (unsigned long) area->addr) {
275 printk(KERN_ERR "unexpected addr return from im_get_area\n");
276 return 1;
280 if (__ioremap_com(pa, pa, ea, size, flags) != (void *) ea) {
281 printk(KERN_ERR "__ioremap_com() returned unexpected addr\n");
282 return 1;
285 return 0;
288 static void unmap_im_area_pte(pmd_t *pmd, unsigned long address,
289 unsigned long size)
291 unsigned long base, end;
292 pte_t *pte;
294 if (pmd_none(*pmd))
295 return;
296 if (pmd_bad(*pmd)) {
297 pmd_ERROR(*pmd);
298 pmd_clear(pmd);
299 return;
302 pte = pte_offset_kernel(pmd, address);
303 base = address & PMD_MASK;
304 address &= ~PMD_MASK;
305 end = address + size;
306 if (end > PMD_SIZE)
307 end = PMD_SIZE;
309 do {
310 pte_t page;
311 page = ptep_get_and_clear(&ioremap_mm, base + address, pte);
312 address += PAGE_SIZE;
313 pte++;
314 if (pte_none(page))
315 continue;
316 if (pte_present(page))
317 continue;
318 printk(KERN_CRIT "Whee.. Swapped out page in kernel page table\n");
319 } while (address < end);
322 static void unmap_im_area_pmd(pgd_t *dir, unsigned long address,
323 unsigned long size)
325 unsigned long base, end;
326 pmd_t *pmd;
328 if (pgd_none(*dir))
329 return;
330 if (pgd_bad(*dir)) {
331 pgd_ERROR(*dir);
332 pgd_clear(dir);
333 return;
336 pmd = pmd_offset(dir, address);
337 base = address & PGDIR_MASK;
338 address &= ~PGDIR_MASK;
339 end = address + size;
340 if (end > PGDIR_SIZE)
341 end = PGDIR_SIZE;
343 do {
344 unmap_im_area_pte(pmd, base + address, end - address);
345 address = (address + PMD_SIZE) & PMD_MASK;
346 pmd++;
347 } while (address < end);
351 * Unmap an IO region and remove it from imalloc'd list.
352 * Access to IO memory should be serialized by driver.
353 * This code is modeled after vmalloc code - unmap_vm_area()
355 * XXX what about calls before mem_init_done (ie python_countermeasures())
357 void iounmap(volatile void __iomem *token)
359 unsigned long address, start, end, size;
360 struct mm_struct *mm;
361 pgd_t *dir;
362 void *addr;
364 if (!mem_init_done) {
365 return;
368 addr = (void *) ((unsigned long __force) token & PAGE_MASK);
370 if ((size = im_free(addr)) == 0) {
371 return;
374 address = (unsigned long)addr;
375 start = address;
376 end = address + size;
378 mm = &ioremap_mm;
379 spin_lock(&mm->page_table_lock);
381 dir = pgd_offset_i(address);
382 flush_cache_vunmap(address, end);
383 do {
384 unmap_im_area_pmd(dir, address, end - address);
385 address = (address + PGDIR_SIZE) & PGDIR_MASK;
386 dir++;
387 } while (address && (address < end));
388 flush_tlb_kernel_range(start, end);
390 spin_unlock(&mm->page_table_lock);
391 return;
394 static int iounmap_subset_regions(unsigned long addr, unsigned long size)
396 struct vm_struct *area;
398 /* Check whether subsets of this region exist */
399 area = im_get_area(addr, size, IM_REGION_SUPERSET);
400 if (area == NULL)
401 return 1;
403 while (area) {
404 iounmap((void __iomem *) area->addr);
405 area = im_get_area(addr, size,
406 IM_REGION_SUPERSET);
409 return 0;
412 int iounmap_explicit(volatile void __iomem *start, unsigned long size)
414 struct vm_struct *area;
415 unsigned long addr;
416 int rc;
418 addr = (unsigned long __force) start & PAGE_MASK;
420 /* Verify that the region either exists or is a subset of an existing
421 * region. In the latter case, split the parent region to create
422 * the exact region
424 area = im_get_area(addr, size,
425 IM_REGION_EXISTS | IM_REGION_SUBSET);
426 if (area == NULL) {
427 /* Determine whether subset regions exist. If so, unmap */
428 rc = iounmap_subset_regions(addr, size);
429 if (rc) {
430 printk(KERN_ERR
431 "%s() cannot unmap nonexistent range 0x%lx\n",
432 __FUNCTION__, addr);
433 return 1;
435 } else {
436 iounmap((void __iomem *) area->addr);
439 * FIXME! This can't be right:
440 iounmap(area->addr);
441 * Maybe it should be "iounmap(area);"
443 return 0;
446 #endif
448 EXPORT_SYMBOL(ioremap);
449 EXPORT_SYMBOL(__ioremap);
450 EXPORT_SYMBOL(iounmap);
452 void free_initmem(void)
454 unsigned long addr;
456 addr = (unsigned long)__init_begin;
457 for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
458 ClearPageReserved(virt_to_page(addr));
459 set_page_count(virt_to_page(addr), 1);
460 free_page(addr);
461 totalram_pages++;
463 printk ("Freeing unused kernel memory: %luk freed\n",
464 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
467 #ifdef CONFIG_BLK_DEV_INITRD
468 void free_initrd_mem(unsigned long start, unsigned long end)
470 if (start < end)
471 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
472 for (; start < end; start += PAGE_SIZE) {
473 ClearPageReserved(virt_to_page(start));
474 set_page_count(virt_to_page(start), 1);
475 free_page(start);
476 totalram_pages++;
479 #endif
481 static DEFINE_SPINLOCK(mmu_context_lock);
482 static DEFINE_IDR(mmu_context_idr);
484 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
486 int index;
487 int err;
489 #ifdef CONFIG_HUGETLB_PAGE
490 /* We leave htlb_segs as it was, but for a fork, we need to
491 * clear the huge_pgdir. */
492 mm->context.huge_pgdir = NULL;
493 #endif
495 again:
496 if (!idr_pre_get(&mmu_context_idr, GFP_KERNEL))
497 return -ENOMEM;
499 spin_lock(&mmu_context_lock);
500 err = idr_get_new_above(&mmu_context_idr, NULL, 1, &index);
501 spin_unlock(&mmu_context_lock);
503 if (err == -EAGAIN)
504 goto again;
505 else if (err)
506 return err;
508 if (index > MAX_CONTEXT) {
509 idr_remove(&mmu_context_idr, index);
510 return -ENOMEM;
513 mm->context.id = index;
515 return 0;
518 void destroy_context(struct mm_struct *mm)
520 spin_lock(&mmu_context_lock);
521 idr_remove(&mmu_context_idr, mm->context.id);
522 spin_unlock(&mmu_context_lock);
524 mm->context.id = NO_CONTEXT;
526 hugetlb_mm_free_pgd(mm);
530 * Do very early mm setup.
532 void __init mm_init_ppc64(void)
534 #ifndef CONFIG_PPC_ISERIES
535 unsigned long i;
536 #endif
538 ppc64_boot_msg(0x100, "MM Init");
540 /* This is the story of the IO hole... please, keep seated,
541 * unfortunately, we are out of oxygen masks at the moment.
542 * So we need some rough way to tell where your big IO hole
543 * is. On pmac, it's between 2G and 4G, on POWER3, it's around
544 * that area as well, on POWER4 we don't have one, etc...
545 * We need that as a "hint" when sizing the TCE table on POWER3
546 * So far, the simplest way that seem work well enough for us it
547 * to just assume that the first discontinuity in our physical
548 * RAM layout is the IO hole. That may not be correct in the future
549 * (and isn't on iSeries but then we don't care ;)
552 #ifndef CONFIG_PPC_ISERIES
553 for (i = 1; i < lmb.memory.cnt; i++) {
554 unsigned long base, prevbase, prevsize;
556 prevbase = lmb.memory.region[i-1].physbase;
557 prevsize = lmb.memory.region[i-1].size;
558 base = lmb.memory.region[i].physbase;
559 if (base > (prevbase + prevsize)) {
560 io_hole_start = prevbase + prevsize;
561 io_hole_size = base - (prevbase + prevsize);
562 break;
565 #endif /* CONFIG_PPC_ISERIES */
566 if (io_hole_start)
567 printk("IO Hole assumed to be %lx -> %lx\n",
568 io_hole_start, io_hole_start + io_hole_size - 1);
570 ppc64_boot_msg(0x100, "MM Init Done");
574 * This is called by /dev/mem to know if a given address has to
575 * be mapped non-cacheable or not
577 int page_is_ram(unsigned long pfn)
579 int i;
580 unsigned long paddr = (pfn << PAGE_SHIFT);
582 for (i=0; i < lmb.memory.cnt; i++) {
583 unsigned long base;
585 #ifdef CONFIG_MSCHUNKS
586 base = lmb.memory.region[i].physbase;
587 #else
588 base = lmb.memory.region[i].base;
589 #endif
590 if ((paddr >= base) &&
591 (paddr < (base + lmb.memory.region[i].size))) {
592 return 1;
596 return 0;
598 EXPORT_SYMBOL(page_is_ram);
601 * Initialize the bootmem system and give it all the memory we
602 * have available.
604 #ifndef CONFIG_DISCONTIGMEM
605 void __init do_init_bootmem(void)
607 unsigned long i;
608 unsigned long start, bootmap_pages;
609 unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
610 int boot_mapsize;
613 * Find an area to use for the bootmem bitmap. Calculate the size of
614 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
615 * Add 1 additional page in case the address isn't page-aligned.
617 bootmap_pages = bootmem_bootmap_pages(total_pages);
619 start = abs_to_phys(lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE));
620 BUG_ON(!start);
622 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
624 max_pfn = max_low_pfn;
626 /* add all physical memory to the bootmem map. Also find the first */
627 for (i=0; i < lmb.memory.cnt; i++) {
628 unsigned long physbase, size;
630 physbase = lmb.memory.region[i].physbase;
631 size = lmb.memory.region[i].size;
632 free_bootmem(physbase, size);
635 /* reserve the sections we're already using */
636 for (i=0; i < lmb.reserved.cnt; i++) {
637 unsigned long physbase = lmb.reserved.region[i].physbase;
638 unsigned long size = lmb.reserved.region[i].size;
640 reserve_bootmem(physbase, size);
645 * paging_init() sets up the page tables - in fact we've already done this.
647 void __init paging_init(void)
649 unsigned long zones_size[MAX_NR_ZONES];
650 unsigned long zholes_size[MAX_NR_ZONES];
651 unsigned long total_ram = lmb_phys_mem_size();
652 unsigned long top_of_ram = lmb_end_of_DRAM();
654 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
655 top_of_ram, total_ram);
656 printk(KERN_INFO "Memory hole size: %ldMB\n",
657 (top_of_ram - total_ram) >> 20);
659 * All pages are DMA-able so we put them all in the DMA zone.
661 memset(zones_size, 0, sizeof(zones_size));
662 memset(zholes_size, 0, sizeof(zholes_size));
664 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
665 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
667 free_area_init_node(0, &contig_page_data, zones_size,
668 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
670 #endif /* CONFIG_DISCONTIGMEM */
672 static struct kcore_list kcore_vmem;
674 static int __init setup_kcore(void)
676 int i;
678 for (i=0; i < lmb.memory.cnt; i++) {
679 unsigned long physbase, size;
680 struct kcore_list *kcore_mem;
682 physbase = lmb.memory.region[i].physbase;
683 size = lmb.memory.region[i].size;
685 /* GFP_ATOMIC to avoid might_sleep warnings during boot */
686 kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC);
687 if (!kcore_mem)
688 panic("mem_init: kmalloc failed\n");
690 kclist_add(kcore_mem, __va(physbase), size);
693 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
695 return 0;
697 module_init(setup_kcore);
699 void __init mem_init(void)
701 #ifdef CONFIG_DISCONTIGMEM
702 int nid;
703 #endif
704 pg_data_t *pgdat;
705 unsigned long i;
706 struct page *page;
707 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
709 num_physpages = max_low_pfn; /* RAM is assumed contiguous */
710 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
712 #ifdef CONFIG_DISCONTIGMEM
713 for_each_online_node(nid) {
714 if (NODE_DATA(nid)->node_spanned_pages != 0) {
715 printk("freeing bootmem node %x\n", nid);
716 totalram_pages +=
717 free_all_bootmem_node(NODE_DATA(nid));
720 #else
721 max_mapnr = num_physpages;
722 totalram_pages += free_all_bootmem();
723 #endif
725 for_each_pgdat(pgdat) {
726 for (i = 0; i < pgdat->node_spanned_pages; i++) {
727 page = pgdat->node_mem_map + i;
728 if (PageReserved(page))
729 reservedpages++;
733 codesize = (unsigned long)&_etext - (unsigned long)&_stext;
734 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
735 datasize = (unsigned long)&_edata - (unsigned long)&__init_end;
736 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
738 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
739 "%luk reserved, %luk data, %luk bss, %luk init)\n",
740 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
741 num_physpages << (PAGE_SHIFT-10),
742 codesize >> 10,
743 reservedpages << (PAGE_SHIFT-10),
744 datasize >> 10,
745 bsssize >> 10,
746 initsize >> 10);
748 mem_init_done = 1;
750 #ifdef CONFIG_PPC_ISERIES
751 iommu_vio_init();
752 #endif
753 /* Initialize the vDSO */
754 vdso_init();
758 * This is called when a page has been modified by the kernel.
759 * It just marks the page as not i-cache clean. We do the i-cache
760 * flush later when the page is given to a user process, if necessary.
762 void flush_dcache_page(struct page *page)
764 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
765 return;
766 /* avoid an atomic op if possible */
767 if (test_bit(PG_arch_1, &page->flags))
768 clear_bit(PG_arch_1, &page->flags);
770 EXPORT_SYMBOL(flush_dcache_page);
772 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
774 clear_page(page);
776 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
777 return;
779 * We shouldnt have to do this, but some versions of glibc
780 * require it (ld.so assumes zero filled pages are icache clean)
781 * - Anton
784 /* avoid an atomic op if possible */
785 if (test_bit(PG_arch_1, &pg->flags))
786 clear_bit(PG_arch_1, &pg->flags);
788 EXPORT_SYMBOL(clear_user_page);
790 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
791 struct page *pg)
793 copy_page(vto, vfrom);
796 * We should be able to use the following optimisation, however
797 * there are two problems.
798 * Firstly a bug in some versions of binutils meant PLT sections
799 * were not marked executable.
800 * Secondly the first word in the GOT section is blrl, used
801 * to establish the GOT address. Until recently the GOT was
802 * not marked executable.
803 * - Anton
805 #if 0
806 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
807 return;
808 #endif
810 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
811 return;
813 /* avoid an atomic op if possible */
814 if (test_bit(PG_arch_1, &pg->flags))
815 clear_bit(PG_arch_1, &pg->flags);
818 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
819 unsigned long addr, int len)
821 unsigned long maddr;
823 maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK);
824 flush_icache_range(maddr, maddr + len);
826 EXPORT_SYMBOL(flush_icache_user_range);
829 * This is called at the end of handling a user page fault, when the
830 * fault has been handled by updating a PTE in the linux page tables.
831 * We use it to preload an HPTE into the hash table corresponding to
832 * the updated linux PTE.
834 * This must always be called with the mm->page_table_lock held
836 void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea,
837 pte_t pte)
839 unsigned long vsid;
840 void *pgdir;
841 pte_t *ptep;
842 int local = 0;
843 cpumask_t tmp;
844 unsigned long flags;
846 /* handle i-cache coherency */
847 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
848 !cpu_has_feature(CPU_FTR_NOEXECUTE)) {
849 unsigned long pfn = pte_pfn(pte);
850 if (pfn_valid(pfn)) {
851 struct page *page = pfn_to_page(pfn);
852 if (!PageReserved(page)
853 && !test_bit(PG_arch_1, &page->flags)) {
854 __flush_dcache_icache(page_address(page));
855 set_bit(PG_arch_1, &page->flags);
860 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
861 if (!pte_young(pte))
862 return;
864 pgdir = vma->vm_mm->pgd;
865 if (pgdir == NULL)
866 return;
868 ptep = find_linux_pte(pgdir, ea);
869 if (!ptep)
870 return;
872 vsid = get_vsid(vma->vm_mm->context.id, ea);
874 local_irq_save(flags);
875 tmp = cpumask_of_cpu(smp_processor_id());
876 if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp))
877 local = 1;
879 __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep,
880 0x300, local);
881 local_irq_restore(flags);
884 void __iomem * reserve_phb_iospace(unsigned long size)
886 void __iomem *virt_addr;
888 if (phbs_io_bot >= IMALLOC_BASE)
889 panic("reserve_phb_iospace(): phb io space overflow\n");
891 virt_addr = (void __iomem *) phbs_io_bot;
892 phbs_io_bot += size;
894 return virt_addr;
897 kmem_cache_t *zero_cache;
899 static void zero_ctor(void *pte, kmem_cache_t *cache, unsigned long flags)
901 memset(pte, 0, PAGE_SIZE);
904 void pgtable_cache_init(void)
906 zero_cache = kmem_cache_create("zero",
907 PAGE_SIZE,
909 SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN,
910 zero_ctor,
911 NULL);
912 if (!zero_cache)
913 panic("pgtable_cache_init(): could not create zero_cache!\n");
916 pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr,
917 unsigned long size, pgprot_t vma_prot)
919 if (ppc_md.phys_mem_access_prot)
920 return ppc_md.phys_mem_access_prot(file, addr, size, vma_prot);
922 if (!page_is_ram(addr >> PAGE_SHIFT))
923 vma_prot = __pgprot(pgprot_val(vma_prot)
924 | _PAGE_GUARDED | _PAGE_NO_CACHE);
925 return vma_prot;
927 EXPORT_SYMBOL(phys_mem_access_prot);