Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / mips / kernel / time.c
blob648c82292ed6c8ab8870b09902d694de87f211a1
1 /*
2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
27 #include <asm/bootinfo.h>
28 #include <asm/compiler.h>
29 #include <asm/cpu.h>
30 #include <asm/cpu-features.h>
31 #include <asm/div64.h>
32 #include <asm/sections.h>
33 #include <asm/time.h>
36 * The integer part of the number of usecs per jiffy is taken from tick,
37 * but the fractional part is not recorded, so we calculate it using the
38 * initial value of HZ. This aids systems where tick isn't really an
39 * integer (e.g. for HZ = 128).
41 #define USECS_PER_JIFFY TICK_SIZE
42 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
44 #define TICK_SIZE (tick_nsec / 1000)
46 u64 jiffies_64 = INITIAL_JIFFIES;
48 EXPORT_SYMBOL(jiffies_64);
51 * forward reference
53 extern volatile unsigned long wall_jiffies;
55 DEFINE_SPINLOCK(rtc_lock);
58 * By default we provide the null RTC ops
60 static unsigned long null_rtc_get_time(void)
62 return mktime(2000, 1, 1, 0, 0, 0);
65 static int null_rtc_set_time(unsigned long sec)
67 return 0;
70 unsigned long (*rtc_get_time)(void) = null_rtc_get_time;
71 int (*rtc_set_time)(unsigned long) = null_rtc_set_time;
72 int (*rtc_set_mmss)(unsigned long);
75 /* usecs per counter cycle, shifted to left by 32 bits */
76 static unsigned int sll32_usecs_per_cycle;
78 /* how many counter cycles in a jiffy */
79 static unsigned long cycles_per_jiffy;
81 /* Cycle counter value at the previous timer interrupt.. */
82 static unsigned int timerhi, timerlo;
84 /* expirelo is the count value for next CPU timer interrupt */
85 static unsigned int expirelo;
89 * Null timer ack for systems not needing one (e.g. i8254).
91 static void null_timer_ack(void) { /* nothing */ }
94 * Null high precision timer functions for systems lacking one.
96 static unsigned int null_hpt_read(void)
98 return 0;
101 static void null_hpt_init(unsigned int count) { /* nothing */ }
105 * Timer ack for an R4k-compatible timer of a known frequency.
107 static void c0_timer_ack(void)
109 unsigned int count;
111 /* Ack this timer interrupt and set the next one. */
112 expirelo += cycles_per_jiffy;
113 write_c0_compare(expirelo);
115 /* Check to see if we have missed any timer interrupts. */
116 count = read_c0_count();
117 if ((count - expirelo) < 0x7fffffff) {
118 /* missed_timer_count++; */
119 expirelo = count + cycles_per_jiffy;
120 write_c0_compare(expirelo);
125 * High precision timer functions for a R4k-compatible timer.
127 static unsigned int c0_hpt_read(void)
129 return read_c0_count();
132 /* For use solely as a high precision timer. */
133 static void c0_hpt_init(unsigned int count)
135 write_c0_count(read_c0_count() - count);
138 /* For use both as a high precision timer and an interrupt source. */
139 static void c0_hpt_timer_init(unsigned int count)
141 count = read_c0_count() - count;
142 expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
143 write_c0_count(expirelo - cycles_per_jiffy);
144 write_c0_compare(expirelo);
145 write_c0_count(count);
148 int (*mips_timer_state)(void);
149 void (*mips_timer_ack)(void);
150 unsigned int (*mips_hpt_read)(void);
151 void (*mips_hpt_init)(unsigned int);
155 * This version of gettimeofday has microsecond resolution and better than
156 * microsecond precision on fast machines with cycle counter.
158 void do_gettimeofday(struct timeval *tv)
160 unsigned long seq;
161 unsigned long lost;
162 unsigned long usec, sec;
163 unsigned long max_ntp_tick = tick_usec - tickadj;
165 do {
166 seq = read_seqbegin(&xtime_lock);
168 usec = do_gettimeoffset();
170 lost = jiffies - wall_jiffies;
173 * If time_adjust is negative then NTP is slowing the clock
174 * so make sure not to go into next possible interval.
175 * Better to lose some accuracy than have time go backwards..
177 if (unlikely(time_adjust < 0)) {
178 usec = min(usec, max_ntp_tick);
180 if (lost)
181 usec += lost * max_ntp_tick;
182 } else if (unlikely(lost))
183 usec += lost * tick_usec;
185 sec = xtime.tv_sec;
186 usec += (xtime.tv_nsec / 1000);
188 } while (read_seqretry(&xtime_lock, seq));
190 while (usec >= 1000000) {
191 usec -= 1000000;
192 sec++;
195 tv->tv_sec = sec;
196 tv->tv_usec = usec;
199 EXPORT_SYMBOL(do_gettimeofday);
201 int do_settimeofday(struct timespec *tv)
203 time_t wtm_sec, sec = tv->tv_sec;
204 long wtm_nsec, nsec = tv->tv_nsec;
206 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
207 return -EINVAL;
209 write_seqlock_irq(&xtime_lock);
212 * This is revolting. We need to set "xtime" correctly. However,
213 * the value in this location is the value at the most recent update
214 * of wall time. Discover what correction gettimeofday() would have
215 * made, and then undo it!
217 nsec -= do_gettimeoffset() * NSEC_PER_USEC;
218 nsec -= (jiffies - wall_jiffies) * tick_nsec;
220 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
221 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
223 set_normalized_timespec(&xtime, sec, nsec);
224 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
226 time_adjust = 0; /* stop active adjtime() */
227 time_status |= STA_UNSYNC;
228 time_maxerror = NTP_PHASE_LIMIT;
229 time_esterror = NTP_PHASE_LIMIT;
231 write_sequnlock_irq(&xtime_lock);
232 clock_was_set();
233 return 0;
236 EXPORT_SYMBOL(do_settimeofday);
239 * Gettimeoffset routines. These routines returns the time duration
240 * since last timer interrupt in usecs.
242 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
243 * Otherwise use calibrate_gettimeoffset()
245 * If the CPU does not have the counter register, you can either supply
246 * your own gettimeoffset() routine, or use null_gettimeoffset(), which
247 * gives the same resolution as HZ.
250 static unsigned long null_gettimeoffset(void)
252 return 0;
256 /* The function pointer to one of the gettimeoffset funcs. */
257 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
260 static unsigned long fixed_rate_gettimeoffset(void)
262 u32 count;
263 unsigned long res;
265 /* Get last timer tick in absolute kernel time */
266 count = mips_hpt_read();
268 /* .. relative to previous jiffy (32 bits is enough) */
269 count -= timerlo;
271 __asm__("multu %1,%2"
272 : "=h" (res)
273 : "r" (count), "r" (sll32_usecs_per_cycle)
274 : "lo", GCC_REG_ACCUM);
277 * Due to possible jiffies inconsistencies, we need to check
278 * the result so that we'll get a timer that is monotonic.
280 if (res >= USECS_PER_JIFFY)
281 res = USECS_PER_JIFFY - 1;
283 return res;
288 * Cached "1/(clocks per usec) * 2^32" value.
289 * It has to be recalculated once each jiffy.
291 static unsigned long cached_quotient;
293 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
294 static unsigned long last_jiffies;
297 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
299 static unsigned long calibrate_div32_gettimeoffset(void)
301 u32 count;
302 unsigned long res, tmp;
303 unsigned long quotient;
305 tmp = jiffies;
307 quotient = cached_quotient;
309 if (last_jiffies != tmp) {
310 last_jiffies = tmp;
311 if (last_jiffies != 0) {
312 unsigned long r0;
313 do_div64_32(r0, timerhi, timerlo, tmp);
314 do_div64_32(quotient, USECS_PER_JIFFY,
315 USECS_PER_JIFFY_FRAC, r0);
316 cached_quotient = quotient;
320 /* Get last timer tick in absolute kernel time */
321 count = mips_hpt_read();
323 /* .. relative to previous jiffy (32 bits is enough) */
324 count -= timerlo;
326 __asm__("multu %1,%2"
327 : "=h" (res)
328 : "r" (count), "r" (quotient)
329 : "lo", GCC_REG_ACCUM);
332 * Due to possible jiffies inconsistencies, we need to check
333 * the result so that we'll get a timer that is monotonic.
335 if (res >= USECS_PER_JIFFY)
336 res = USECS_PER_JIFFY - 1;
338 return res;
341 static unsigned long calibrate_div64_gettimeoffset(void)
343 u32 count;
344 unsigned long res, tmp;
345 unsigned long quotient;
347 tmp = jiffies;
349 quotient = cached_quotient;
351 if (last_jiffies != tmp) {
352 last_jiffies = tmp;
353 if (last_jiffies) {
354 unsigned long r0;
355 __asm__(".set push\n\t"
356 ".set mips3\n\t"
357 "lwu %0,%3\n\t"
358 "dsll32 %1,%2,0\n\t"
359 "or %1,%1,%0\n\t"
360 "ddivu $0,%1,%4\n\t"
361 "mflo %1\n\t"
362 "dsll32 %0,%5,0\n\t"
363 "or %0,%0,%6\n\t"
364 "ddivu $0,%0,%1\n\t"
365 "mflo %0\n\t"
366 ".set pop"
367 : "=&r" (quotient), "=&r" (r0)
368 : "r" (timerhi), "m" (timerlo),
369 "r" (tmp), "r" (USECS_PER_JIFFY),
370 "r" (USECS_PER_JIFFY_FRAC)
371 : "hi", "lo", GCC_REG_ACCUM);
372 cached_quotient = quotient;
376 /* Get last timer tick in absolute kernel time */
377 count = mips_hpt_read();
379 /* .. relative to previous jiffy (32 bits is enough) */
380 count -= timerlo;
382 __asm__("multu %1,%2"
383 : "=h" (res)
384 : "r" (count), "r" (quotient)
385 : "lo", GCC_REG_ACCUM);
388 * Due to possible jiffies inconsistencies, we need to check
389 * the result so that we'll get a timer that is monotonic.
391 if (res >= USECS_PER_JIFFY)
392 res = USECS_PER_JIFFY - 1;
394 return res;
398 /* last time when xtime and rtc are sync'ed up */
399 static long last_rtc_update;
402 * local_timer_interrupt() does profiling and process accounting
403 * on a per-CPU basis.
405 * In UP mode, it is invoked from the (global) timer_interrupt.
407 * In SMP mode, it might invoked by per-CPU timer interrupt, or
408 * a broadcasted inter-processor interrupt which itself is triggered
409 * by the global timer interrupt.
411 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
413 if (current->pid)
414 profile_tick(CPU_PROFILING, regs);
415 update_process_times(user_mode(regs));
419 * High-level timer interrupt service routines. This function
420 * is set as irqaction->handler and is invoked through do_IRQ.
422 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
424 unsigned long j;
425 unsigned int count;
427 count = mips_hpt_read();
428 mips_timer_ack();
430 /* Update timerhi/timerlo for intra-jiffy calibration. */
431 timerhi += count < timerlo; /* Wrap around */
432 timerlo = count;
435 * call the generic timer interrupt handling
437 do_timer(regs);
440 * If we have an externally synchronized Linux clock, then update
441 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be
442 * called as close as possible to 500 ms before the new second starts.
444 write_seqlock(&xtime_lock);
445 if ((time_status & STA_UNSYNC) == 0 &&
446 xtime.tv_sec > last_rtc_update + 660 &&
447 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
448 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
449 if (rtc_set_mmss(xtime.tv_sec) == 0) {
450 last_rtc_update = xtime.tv_sec;
451 } else {
452 /* do it again in 60 s */
453 last_rtc_update = xtime.tv_sec - 600;
456 write_sequnlock(&xtime_lock);
459 * If jiffies has overflown in this timer_interrupt, we must
460 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
461 * quotient calc still valid. -arca
463 * The first timer interrupt comes late as interrupts are
464 * enabled long after timers are initialized. Therefore the
465 * high precision timer is fast, leading to wrong gettimeoffset()
466 * calculations. We deal with it by setting it based on the
467 * number of its ticks between the second and the third interrupt.
468 * That is still somewhat imprecise, but it's a good estimate.
469 * --macro
471 j = jiffies;
472 if (j < 4) {
473 static unsigned int prev_count;
474 static int hpt_initialized;
476 switch (j) {
477 case 0:
478 timerhi = timerlo = 0;
479 mips_hpt_init(count);
480 break;
481 case 2:
482 prev_count = count;
483 break;
484 case 3:
485 if (!hpt_initialized) {
486 unsigned int c3 = 3 * (count - prev_count);
488 timerhi = 0;
489 timerlo = c3;
490 mips_hpt_init(count - c3);
491 hpt_initialized = 1;
493 break;
494 default:
495 break;
500 * In UP mode, we call local_timer_interrupt() to do profiling
501 * and process accouting.
503 * In SMP mode, local_timer_interrupt() is invoked by appropriate
504 * low-level local timer interrupt handler.
506 local_timer_interrupt(irq, dev_id, regs);
508 return IRQ_HANDLED;
511 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
513 irq_enter();
514 kstat_this_cpu.irqs[irq]++;
516 /* we keep interrupt disabled all the time */
517 timer_interrupt(irq, NULL, regs);
519 irq_exit();
522 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
524 irq_enter();
525 if (smp_processor_id() != 0)
526 kstat_this_cpu.irqs[irq]++;
528 /* we keep interrupt disabled all the time */
529 local_timer_interrupt(irq, NULL, regs);
531 irq_exit();
535 * time_init() - it does the following things.
537 * 1) board_time_init() -
538 * a) (optional) set up RTC routines,
539 * b) (optional) calibrate and set the mips_hpt_frequency
540 * (only needed if you intended to use fixed_rate_gettimeoffset
541 * or use cpu counter as timer interrupt source)
542 * 2) setup xtime based on rtc_get_time().
543 * 3) choose a appropriate gettimeoffset routine.
544 * 4) calculate a couple of cached variables for later usage
545 * 5) board_timer_setup() -
546 * a) (optional) over-write any choices made above by time_init().
547 * b) machine specific code should setup the timer irqaction.
548 * c) enable the timer interrupt
551 void (*board_time_init)(void);
552 void (*board_timer_setup)(struct irqaction *irq);
554 unsigned int mips_hpt_frequency;
556 static struct irqaction timer_irqaction = {
557 .handler = timer_interrupt,
558 .flags = SA_INTERRUPT,
559 .name = "timer",
562 static unsigned int __init calibrate_hpt(void)
564 u64 frequency;
565 u32 hpt_start, hpt_end, hpt_count, hz;
567 const int loops = HZ / 10;
568 int log_2_loops = 0;
569 int i;
572 * We want to calibrate for 0.1s, but to avoid a 64-bit
573 * division we round the number of loops up to the nearest
574 * power of 2.
576 while (loops > 1 << log_2_loops)
577 log_2_loops++;
578 i = 1 << log_2_loops;
581 * Wait for a rising edge of the timer interrupt.
583 while (mips_timer_state());
584 while (!mips_timer_state());
587 * Now see how many high precision timer ticks happen
588 * during the calculated number of periods between timer
589 * interrupts.
591 hpt_start = mips_hpt_read();
592 do {
593 while (mips_timer_state());
594 while (!mips_timer_state());
595 } while (--i);
596 hpt_end = mips_hpt_read();
598 hpt_count = hpt_end - hpt_start;
599 hz = HZ;
600 frequency = (u64)hpt_count * (u64)hz;
602 return frequency >> log_2_loops;
605 void __init time_init(void)
607 if (board_time_init)
608 board_time_init();
610 if (!rtc_set_mmss)
611 rtc_set_mmss = rtc_set_time;
613 xtime.tv_sec = rtc_get_time();
614 xtime.tv_nsec = 0;
616 set_normalized_timespec(&wall_to_monotonic,
617 -xtime.tv_sec, -xtime.tv_nsec);
619 /* Choose appropriate high precision timer routines. */
620 if (!cpu_has_counter && !mips_hpt_read) {
621 /* No high precision timer -- sorry. */
622 mips_hpt_read = null_hpt_read;
623 mips_hpt_init = null_hpt_init;
624 } else if (!mips_hpt_frequency && !mips_timer_state) {
625 /* A high precision timer of unknown frequency. */
626 if (!mips_hpt_read) {
627 /* No external high precision timer -- use R4k. */
628 mips_hpt_read = c0_hpt_read;
629 mips_hpt_init = c0_hpt_init;
632 if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) ||
633 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
634 (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
636 * We need to calibrate the counter but we don't have
637 * 64-bit division.
639 do_gettimeoffset = calibrate_div32_gettimeoffset;
640 else
642 * We need to calibrate the counter but we *do* have
643 * 64-bit division.
645 do_gettimeoffset = calibrate_div64_gettimeoffset;
646 } else {
647 /* We know counter frequency. Or we can get it. */
648 if (!mips_hpt_read) {
649 /* No external high precision timer -- use R4k. */
650 mips_hpt_read = c0_hpt_read;
652 if (mips_timer_state)
653 mips_hpt_init = c0_hpt_init;
654 else {
655 /* No external timer interrupt -- use R4k. */
656 mips_hpt_init = c0_hpt_timer_init;
657 mips_timer_ack = c0_timer_ack;
660 if (!mips_hpt_frequency)
661 mips_hpt_frequency = calibrate_hpt();
663 do_gettimeoffset = fixed_rate_gettimeoffset;
665 /* Calculate cache parameters. */
666 cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
668 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
669 do_div64_32(sll32_usecs_per_cycle,
670 1000000, mips_hpt_frequency / 2,
671 mips_hpt_frequency);
673 /* Report the high precision timer rate for a reference. */
674 printk("Using %u.%03u MHz high precision timer.\n",
675 ((mips_hpt_frequency + 500) / 1000) / 1000,
676 ((mips_hpt_frequency + 500) / 1000) % 1000);
679 if (!mips_timer_ack)
680 /* No timer interrupt ack (e.g. i8254). */
681 mips_timer_ack = null_timer_ack;
683 /* This sets up the high precision timer for the first interrupt. */
684 mips_hpt_init(mips_hpt_read());
687 * Call board specific timer interrupt setup.
689 * this pointer must be setup in machine setup routine.
691 * Even if a machine chooses to use a low-level timer interrupt,
692 * it still needs to setup the timer_irqaction.
693 * In that case, it might be better to set timer_irqaction.handler
694 * to be NULL function so that we are sure the high-level code
695 * is not invoked accidentally.
697 board_timer_setup(&timer_irqaction);
700 #define FEBRUARY 2
701 #define STARTOFTIME 1970
702 #define SECDAY 86400L
703 #define SECYR (SECDAY * 365)
704 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
705 #define days_in_year(y) (leapyear(y) ? 366 : 365)
706 #define days_in_month(m) (month_days[(m) - 1])
708 static int month_days[12] = {
709 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
712 void to_tm(unsigned long tim, struct rtc_time *tm)
714 long hms, day, gday;
715 int i;
717 gday = day = tim / SECDAY;
718 hms = tim % SECDAY;
720 /* Hours, minutes, seconds are easy */
721 tm->tm_hour = hms / 3600;
722 tm->tm_min = (hms % 3600) / 60;
723 tm->tm_sec = (hms % 3600) % 60;
725 /* Number of years in days */
726 for (i = STARTOFTIME; day >= days_in_year(i); i++)
727 day -= days_in_year(i);
728 tm->tm_year = i;
730 /* Number of months in days left */
731 if (leapyear(tm->tm_year))
732 days_in_month(FEBRUARY) = 29;
733 for (i = 1; day >= days_in_month(i); i++)
734 day -= days_in_month(i);
735 days_in_month(FEBRUARY) = 28;
736 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
738 /* Days are what is left over (+1) from all that. */
739 tm->tm_mday = day + 1;
742 * Determine the day of week
744 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
747 EXPORT_SYMBOL(rtc_lock);
748 EXPORT_SYMBOL(to_tm);
749 EXPORT_SYMBOL(rtc_set_time);
750 EXPORT_SYMBOL(rtc_get_time);
752 unsigned long long sched_clock(void)
754 return (unsigned long long)jiffies*(1000000000/HZ);