Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / ia64 / mm / contig.c
blob6daf15ac894059a109d0b047f3cf751686db2e9a
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1998-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10 * Copyright (C) 1999 VA Linux Systems
11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
15 * memory.
17 #include <linux/config.h>
18 #include <linux/bootmem.h>
19 #include <linux/efi.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
23 #include <asm/meminit.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
26 #include <asm/sections.h>
27 #include <asm/mca.h>
29 #ifdef CONFIG_VIRTUAL_MEM_MAP
30 static unsigned long num_dma_physpages;
31 #endif
33 /**
34 * show_mem - display a memory statistics summary
36 * Just walks the pages in the system and describes where they're allocated.
38 void
39 show_mem (void)
41 int i, total = 0, reserved = 0;
42 int shared = 0, cached = 0;
44 printk("Mem-info:\n");
45 show_free_areas();
47 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
48 i = max_mapnr;
49 while (i-- > 0) {
50 if (!pfn_valid(i))
51 continue;
52 total++;
53 if (PageReserved(mem_map+i))
54 reserved++;
55 else if (PageSwapCache(mem_map+i))
56 cached++;
57 else if (page_count(mem_map + i))
58 shared += page_count(mem_map + i) - 1;
60 printk("%d pages of RAM\n", total);
61 printk("%d reserved pages\n", reserved);
62 printk("%d pages shared\n", shared);
63 printk("%d pages swap cached\n", cached);
64 printk("%ld pages in page table cache\n", pgtable_cache_size);
67 /* physical address where the bootmem map is located */
68 unsigned long bootmap_start;
70 /**
71 * find_max_pfn - adjust the maximum page number callback
72 * @start: start of range
73 * @end: end of range
74 * @arg: address of pointer to global max_pfn variable
76 * Passed as a callback function to efi_memmap_walk() to determine the highest
77 * available page frame number in the system.
79 int
80 find_max_pfn (unsigned long start, unsigned long end, void *arg)
82 unsigned long *max_pfnp = arg, pfn;
84 pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
85 if (pfn > *max_pfnp)
86 *max_pfnp = pfn;
87 return 0;
90 /**
91 * find_bootmap_location - callback to find a memory area for the bootmap
92 * @start: start of region
93 * @end: end of region
94 * @arg: unused callback data
96 * Find a place to put the bootmap and return its starting address in
97 * bootmap_start. This address must be page-aligned.
99 int
100 find_bootmap_location (unsigned long start, unsigned long end, void *arg)
102 unsigned long needed = *(unsigned long *)arg;
103 unsigned long range_start, range_end, free_start;
104 int i;
106 #if IGNORE_PFN0
107 if (start == PAGE_OFFSET) {
108 start += PAGE_SIZE;
109 if (start >= end)
110 return 0;
112 #endif
114 free_start = PAGE_OFFSET;
116 for (i = 0; i < num_rsvd_regions; i++) {
117 range_start = max(start, free_start);
118 range_end = min(end, rsvd_region[i].start & PAGE_MASK);
120 free_start = PAGE_ALIGN(rsvd_region[i].end);
122 if (range_end <= range_start)
123 continue; /* skip over empty range */
125 if (range_end - range_start >= needed) {
126 bootmap_start = __pa(range_start);
127 return -1; /* done */
130 /* nothing more available in this segment */
131 if (range_end == end)
132 return 0;
134 return 0;
138 * find_memory - setup memory map
140 * Walk the EFI memory map and find usable memory for the system, taking
141 * into account reserved areas.
143 void
144 find_memory (void)
146 unsigned long bootmap_size;
148 reserve_memory();
150 /* first find highest page frame number */
151 max_pfn = 0;
152 efi_memmap_walk(find_max_pfn, &max_pfn);
154 /* how many bytes to cover all the pages */
155 bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
157 /* look for a location to hold the bootmap */
158 bootmap_start = ~0UL;
159 efi_memmap_walk(find_bootmap_location, &bootmap_size);
160 if (bootmap_start == ~0UL)
161 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
163 bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);
165 /* Free all available memory, then mark bootmem-map as being in use. */
166 efi_memmap_walk(filter_rsvd_memory, free_bootmem);
167 reserve_bootmem(bootmap_start, bootmap_size);
169 find_initrd();
172 #ifdef CONFIG_SMP
174 * per_cpu_init - setup per-cpu variables
176 * Allocate and setup per-cpu data areas.
178 void *
179 per_cpu_init (void)
181 void *cpu_data;
182 int cpu;
185 * get_free_pages() cannot be used before cpu_init() done. BSP
186 * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
187 * get_zeroed_page().
189 if (smp_processor_id() == 0) {
190 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
191 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
192 for (cpu = 0; cpu < NR_CPUS; cpu++) {
193 memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
194 __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
195 cpu_data += PERCPU_PAGE_SIZE;
196 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
199 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
201 #endif /* CONFIG_SMP */
203 static int
204 count_pages (u64 start, u64 end, void *arg)
206 unsigned long *count = arg;
208 *count += (end - start) >> PAGE_SHIFT;
209 return 0;
212 #ifdef CONFIG_VIRTUAL_MEM_MAP
213 static int
214 count_dma_pages (u64 start, u64 end, void *arg)
216 unsigned long *count = arg;
218 if (start < MAX_DMA_ADDRESS)
219 *count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT;
220 return 0;
222 #endif
225 * Set up the page tables.
228 void
229 paging_init (void)
231 unsigned long max_dma;
232 unsigned long zones_size[MAX_NR_ZONES];
233 #ifdef CONFIG_VIRTUAL_MEM_MAP
234 unsigned long zholes_size[MAX_NR_ZONES];
235 unsigned long max_gap;
236 #endif
238 /* initialize mem_map[] */
240 memset(zones_size, 0, sizeof(zones_size));
242 num_physpages = 0;
243 efi_memmap_walk(count_pages, &num_physpages);
245 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
247 #ifdef CONFIG_VIRTUAL_MEM_MAP
248 memset(zholes_size, 0, sizeof(zholes_size));
250 num_dma_physpages = 0;
251 efi_memmap_walk(count_dma_pages, &num_dma_physpages);
253 if (max_low_pfn < max_dma) {
254 zones_size[ZONE_DMA] = max_low_pfn;
255 zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages;
256 } else {
257 zones_size[ZONE_DMA] = max_dma;
258 zholes_size[ZONE_DMA] = max_dma - num_dma_physpages;
259 if (num_physpages > num_dma_physpages) {
260 zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
261 zholes_size[ZONE_NORMAL] =
262 ((max_low_pfn - max_dma) -
263 (num_physpages - num_dma_physpages));
267 max_gap = 0;
268 efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
269 if (max_gap < LARGE_GAP) {
270 vmem_map = (struct page *) 0;
271 free_area_init_node(0, &contig_page_data, zones_size, 0,
272 zholes_size);
273 } else {
274 unsigned long map_size;
276 /* allocate virtual_mem_map */
278 map_size = PAGE_ALIGN(max_low_pfn * sizeof(struct page));
279 vmalloc_end -= map_size;
280 vmem_map = (struct page *) vmalloc_end;
281 efi_memmap_walk(create_mem_map_page_table, NULL);
283 NODE_DATA(0)->node_mem_map = vmem_map;
284 free_area_init_node(0, &contig_page_data, zones_size,
285 0, zholes_size);
287 printk("Virtual mem_map starts at 0x%p\n", mem_map);
289 #else /* !CONFIG_VIRTUAL_MEM_MAP */
290 if (max_low_pfn < max_dma)
291 zones_size[ZONE_DMA] = max_low_pfn;
292 else {
293 zones_size[ZONE_DMA] = max_dma;
294 zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
296 free_area_init(zones_size);
297 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
298 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));