Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / i386 / kernel / time_hpet.c
blob244a31b04be703a4e46cc3234d72df2de4bd2603
1 /*
2 * linux/arch/i386/kernel/time_hpet.c
3 * This code largely copied from arch/x86_64/kernel/time.c
4 * See that file for credits.
6 * 2003-06-30 Venkatesh Pallipadi - Additional changes for HPET support
7 */
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/param.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/smp.h>
16 #include <asm/timer.h>
17 #include <asm/fixmap.h>
18 #include <asm/apic.h>
20 #include <linux/timex.h>
21 #include <linux/config.h>
23 #include <asm/hpet.h>
24 #include <linux/hpet.h>
26 static unsigned long hpet_period; /* fsecs / HPET clock */
27 unsigned long hpet_tick; /* hpet clks count per tick */
28 unsigned long hpet_address; /* hpet memory map physical address */
30 static int use_hpet; /* can be used for runtime check of hpet */
31 static int boot_hpet_disable; /* boottime override for HPET timer */
32 static void __iomem * hpet_virt_address; /* hpet kernel virtual address */
34 #define FSEC_TO_USEC (1000000000UL)
36 int hpet_readl(unsigned long a)
38 return readl(hpet_virt_address + a);
41 static void hpet_writel(unsigned long d, unsigned long a)
43 writel(d, hpet_virt_address + a);
46 #ifdef CONFIG_X86_LOCAL_APIC
48 * HPET counters dont wrap around on every tick. They just change the
49 * comparator value and continue. Next tick can be caught by checking
50 * for a change in the comparator value. Used in apic.c.
52 static void __init wait_hpet_tick(void)
54 unsigned int start_cmp_val, end_cmp_val;
56 start_cmp_val = hpet_readl(HPET_T0_CMP);
57 do {
58 end_cmp_val = hpet_readl(HPET_T0_CMP);
59 } while (start_cmp_val == end_cmp_val);
61 #endif
63 static int hpet_timer_stop_set_go(unsigned long tick)
65 unsigned int cfg;
68 * Stop the timers and reset the main counter.
70 cfg = hpet_readl(HPET_CFG);
71 cfg &= ~HPET_CFG_ENABLE;
72 hpet_writel(cfg, HPET_CFG);
73 hpet_writel(0, HPET_COUNTER);
74 hpet_writel(0, HPET_COUNTER + 4);
77 * Set up timer 0, as periodic with first interrupt to happen at
78 * hpet_tick, and period also hpet_tick.
80 cfg = hpet_readl(HPET_T0_CFG);
81 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
82 HPET_TN_SETVAL | HPET_TN_32BIT;
83 hpet_writel(cfg, HPET_T0_CFG);
86 * The first write after writing TN_SETVAL to the config register sets
87 * the counter value, the second write sets the threshold.
89 hpet_writel(tick, HPET_T0_CMP);
90 hpet_writel(tick, HPET_T0_CMP);
93 * Go!
95 cfg = hpet_readl(HPET_CFG);
96 cfg |= HPET_CFG_ENABLE | HPET_CFG_LEGACY;
97 hpet_writel(cfg, HPET_CFG);
99 return 0;
103 * Check whether HPET was found by ACPI boot parse. If yes setup HPET
104 * counter 0 for kernel base timer.
106 int __init hpet_enable(void)
108 unsigned int id;
109 unsigned long tick_fsec_low, tick_fsec_high; /* tick in femto sec */
110 unsigned long hpet_tick_rem;
112 if (boot_hpet_disable)
113 return -1;
115 if (!hpet_address) {
116 return -1;
118 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
120 * Read the period, compute tick and quotient.
122 id = hpet_readl(HPET_ID);
125 * We are checking for value '1' or more in number field if
126 * CONFIG_HPET_EMULATE_RTC is set because we will need an
127 * additional timer for RTC emulation.
128 * However, we can do with one timer otherwise using the
129 * the single HPET timer for system time.
131 if (
132 #ifdef CONFIG_HPET_EMULATE_RTC
133 !(id & HPET_ID_NUMBER) ||
134 #endif
135 !(id & HPET_ID_LEGSUP))
136 return -1;
138 hpet_period = hpet_readl(HPET_PERIOD);
139 if ((hpet_period < HPET_MIN_PERIOD) || (hpet_period > HPET_MAX_PERIOD))
140 return -1;
143 * 64 bit math
144 * First changing tick into fsec
145 * Then 64 bit div to find number of hpet clk per tick
147 ASM_MUL64_REG(tick_fsec_low, tick_fsec_high,
148 KERNEL_TICK_USEC, FSEC_TO_USEC);
149 ASM_DIV64_REG(hpet_tick, hpet_tick_rem,
150 hpet_period, tick_fsec_low, tick_fsec_high);
152 if (hpet_tick_rem > (hpet_period >> 1))
153 hpet_tick++; /* rounding the result */
155 if (hpet_timer_stop_set_go(hpet_tick))
156 return -1;
158 use_hpet = 1;
160 #ifdef CONFIG_HPET
162 struct hpet_data hd;
163 unsigned int ntimer;
165 memset(&hd, 0, sizeof (hd));
167 ntimer = hpet_readl(HPET_ID);
168 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
169 ntimer++;
172 * Register with driver.
173 * Timer0 and Timer1 is used by platform.
175 hd.hd_phys_address = hpet_address;
176 hd.hd_address = hpet_virt_address;
177 hd.hd_nirqs = ntimer;
178 hd.hd_flags = HPET_DATA_PLATFORM;
179 hpet_reserve_timer(&hd, 0);
180 #ifdef CONFIG_HPET_EMULATE_RTC
181 hpet_reserve_timer(&hd, 1);
182 #endif
183 hd.hd_irq[0] = HPET_LEGACY_8254;
184 hd.hd_irq[1] = HPET_LEGACY_RTC;
185 if (ntimer > 2) {
186 struct hpet __iomem *hpet;
187 struct hpet_timer __iomem *timer;
188 int i;
190 hpet = hpet_virt_address;
192 for (i = 2, timer = &hpet->hpet_timers[2]; i < ntimer;
193 timer++, i++)
194 hd.hd_irq[i] = (timer->hpet_config &
195 Tn_INT_ROUTE_CNF_MASK) >>
196 Tn_INT_ROUTE_CNF_SHIFT;
200 hpet_alloc(&hd);
202 #endif
204 #ifdef CONFIG_X86_LOCAL_APIC
205 wait_timer_tick = wait_hpet_tick;
206 #endif
207 return 0;
210 int hpet_reenable(void)
212 return hpet_timer_stop_set_go(hpet_tick);
215 int is_hpet_enabled(void)
217 return use_hpet;
220 int is_hpet_capable(void)
222 if (!boot_hpet_disable && hpet_address)
223 return 1;
224 return 0;
227 static int __init hpet_setup(char* str)
229 if (str) {
230 if (!strncmp("disable", str, 7))
231 boot_hpet_disable = 1;
233 return 1;
236 __setup("hpet=", hpet_setup);
238 #ifdef CONFIG_HPET_EMULATE_RTC
239 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
240 * is enabled, we support RTC interrupt functionality in software.
241 * RTC has 3 kinds of interrupts:
242 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
243 * is updated
244 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
245 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
246 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
247 * (1) and (2) above are implemented using polling at a frequency of
248 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
249 * overhead. (DEFAULT_RTC_INT_FREQ)
250 * For (3), we use interrupts at 64Hz or user specified periodic
251 * frequency, whichever is higher.
253 #include <linux/mc146818rtc.h>
254 #include <linux/rtc.h>
256 extern irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs);
258 #define DEFAULT_RTC_INT_FREQ 64
259 #define RTC_NUM_INTS 1
261 static unsigned long UIE_on;
262 static unsigned long prev_update_sec;
264 static unsigned long AIE_on;
265 static struct rtc_time alarm_time;
267 static unsigned long PIE_on;
268 static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
269 static unsigned long PIE_count;
271 static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
274 * Timer 1 for RTC, we do not use periodic interrupt feature,
275 * even if HPET supports periodic interrupts on Timer 1.
276 * The reason being, to set up a periodic interrupt in HPET, we need to
277 * stop the main counter. And if we do that everytime someone diables/enables
278 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
279 * So, for the time being, simulate the periodic interrupt in software.
281 * hpet_rtc_timer_init() is called for the first time and during subsequent
282 * interuppts reinit happens through hpet_rtc_timer_reinit().
284 int hpet_rtc_timer_init(void)
286 unsigned int cfg, cnt;
287 unsigned long flags;
289 if (!is_hpet_enabled())
290 return 0;
292 * Set the counter 1 and enable the interrupts.
294 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
295 hpet_rtc_int_freq = PIE_freq;
296 else
297 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
299 local_irq_save(flags);
300 cnt = hpet_readl(HPET_COUNTER);
301 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
302 hpet_writel(cnt, HPET_T1_CMP);
303 local_irq_restore(flags);
305 cfg = hpet_readl(HPET_T1_CFG);
306 cfg |= HPET_TN_ENABLE | HPET_TN_SETVAL | HPET_TN_32BIT;
307 hpet_writel(cfg, HPET_T1_CFG);
309 return 1;
312 static void hpet_rtc_timer_reinit(void)
314 unsigned int cfg, cnt;
316 if (!(PIE_on | AIE_on | UIE_on))
317 return;
319 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
320 hpet_rtc_int_freq = PIE_freq;
321 else
322 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
324 /* It is more accurate to use the comparator value than current count.*/
325 cnt = hpet_readl(HPET_T1_CMP);
326 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
327 hpet_writel(cnt, HPET_T1_CMP);
329 cfg = hpet_readl(HPET_T1_CFG);
330 cfg |= HPET_TN_ENABLE | HPET_TN_SETVAL | HPET_TN_32BIT;
331 hpet_writel(cfg, HPET_T1_CFG);
333 return;
337 * The functions below are called from rtc driver.
338 * Return 0 if HPET is not being used.
339 * Otherwise do the necessary changes and return 1.
341 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
343 if (!is_hpet_enabled())
344 return 0;
346 if (bit_mask & RTC_UIE)
347 UIE_on = 0;
348 if (bit_mask & RTC_PIE)
349 PIE_on = 0;
350 if (bit_mask & RTC_AIE)
351 AIE_on = 0;
353 return 1;
356 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
358 int timer_init_reqd = 0;
360 if (!is_hpet_enabled())
361 return 0;
363 if (!(PIE_on | AIE_on | UIE_on))
364 timer_init_reqd = 1;
366 if (bit_mask & RTC_UIE) {
367 UIE_on = 1;
369 if (bit_mask & RTC_PIE) {
370 PIE_on = 1;
371 PIE_count = 0;
373 if (bit_mask & RTC_AIE) {
374 AIE_on = 1;
377 if (timer_init_reqd)
378 hpet_rtc_timer_init();
380 return 1;
383 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
385 if (!is_hpet_enabled())
386 return 0;
388 alarm_time.tm_hour = hrs;
389 alarm_time.tm_min = min;
390 alarm_time.tm_sec = sec;
392 return 1;
395 int hpet_set_periodic_freq(unsigned long freq)
397 if (!is_hpet_enabled())
398 return 0;
400 PIE_freq = freq;
401 PIE_count = 0;
403 return 1;
406 int hpet_rtc_dropped_irq(void)
408 if (!is_hpet_enabled())
409 return 0;
411 return 1;
414 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
416 struct rtc_time curr_time;
417 unsigned long rtc_int_flag = 0;
418 int call_rtc_interrupt = 0;
420 hpet_rtc_timer_reinit();
422 if (UIE_on | AIE_on) {
423 rtc_get_rtc_time(&curr_time);
425 if (UIE_on) {
426 if (curr_time.tm_sec != prev_update_sec) {
427 /* Set update int info, call real rtc int routine */
428 call_rtc_interrupt = 1;
429 rtc_int_flag = RTC_UF;
430 prev_update_sec = curr_time.tm_sec;
433 if (PIE_on) {
434 PIE_count++;
435 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
436 /* Set periodic int info, call real rtc int routine */
437 call_rtc_interrupt = 1;
438 rtc_int_flag |= RTC_PF;
439 PIE_count = 0;
442 if (AIE_on) {
443 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
444 (curr_time.tm_min == alarm_time.tm_min) &&
445 (curr_time.tm_hour == alarm_time.tm_hour)) {
446 /* Set alarm int info, call real rtc int routine */
447 call_rtc_interrupt = 1;
448 rtc_int_flag |= RTC_AF;
451 if (call_rtc_interrupt) {
452 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
453 rtc_interrupt(rtc_int_flag, dev_id, regs);
455 return IRQ_HANDLED;
457 #endif