Linux-2.6.12-rc2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / arm / mach-omap / time.c
blob4205fdcb632c238fd173df7ffc51b0bedfeed45b
1 /*
2 * linux/arch/arm/mach-omap/time.c
4 * OMAP Timers
6 * Copyright (C) 2004 Nokia Corporation
7 * Partial timer rewrite and additional VST timer support by
8 * Tony Lindgen <tony@atomide.com> and
9 * Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
11 * MPU timer code based on the older MPU timer code for OMAP
12 * Copyright (C) 2000 RidgeRun, Inc.
13 * Author: Greg Lonnon <glonnon@ridgerun.com>
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
23 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
26 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
27 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
36 #include <linux/config.h>
37 #include <linux/kernel.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/interrupt.h>
41 #include <linux/sched.h>
42 #include <linux/spinlock.h>
44 #include <asm/system.h>
45 #include <asm/hardware.h>
46 #include <asm/io.h>
47 #include <asm/leds.h>
48 #include <asm/irq.h>
49 #include <asm/mach/irq.h>
50 #include <asm/mach/time.h>
52 struct sys_timer omap_timer;
54 #ifdef CONFIG_OMAP_MPU_TIMER
57 * ---------------------------------------------------------------------------
58 * MPU timer
59 * ---------------------------------------------------------------------------
61 #define OMAP_MPU_TIMER1_BASE (0xfffec500)
62 #define OMAP_MPU_TIMER2_BASE (0xfffec600)
63 #define OMAP_MPU_TIMER3_BASE (0xfffec700)
64 #define OMAP_MPU_TIMER_BASE OMAP_MPU_TIMER1_BASE
65 #define OMAP_MPU_TIMER_OFFSET 0x100
67 #define MPU_TIMER_FREE (1 << 6)
68 #define MPU_TIMER_CLOCK_ENABLE (1 << 5)
69 #define MPU_TIMER_AR (1 << 1)
70 #define MPU_TIMER_ST (1 << 0)
72 /* cycles to nsec conversions taken from arch/i386/kernel/timers/timer_tsc.c,
73 * converted to use kHz by Kevin Hilman */
74 /* convert from cycles(64bits) => nanoseconds (64bits)
75 * basic equation:
76 * ns = cycles / (freq / ns_per_sec)
77 * ns = cycles * (ns_per_sec / freq)
78 * ns = cycles * (10^9 / (cpu_khz * 10^3))
79 * ns = cycles * (10^6 / cpu_khz)
81 * Then we use scaling math (suggested by george at mvista.com) to get:
82 * ns = cycles * (10^6 * SC / cpu_khz / SC
83 * ns = cycles * cyc2ns_scale / SC
85 * And since SC is a constant power of two, we can convert the div
86 * into a shift.
87 * -johnstul at us.ibm.com "math is hard, lets go shopping!"
89 static unsigned long cyc2ns_scale;
90 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
92 static inline void set_cyc2ns_scale(unsigned long cpu_khz)
94 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
97 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
99 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
103 * MPU_TICKS_PER_SEC must be an even number, otherwise machinecycles_to_usecs
104 * will break. On P2, the timer count rate is 6.5 MHz after programming PTV
105 * with 0. This divides the 13MHz input by 2, and is undocumented.
107 #ifdef CONFIG_MACH_OMAP_PERSEUS2
108 /* REVISIT: This ifdef construct should be replaced by a query to clock
109 * framework to see if timer base frequency is 12.0, 13.0 or 19.2 MHz.
111 #define MPU_TICKS_PER_SEC (13000000 / 2)
112 #else
113 #define MPU_TICKS_PER_SEC (12000000 / 2)
114 #endif
116 #define MPU_TIMER_TICK_PERIOD ((MPU_TICKS_PER_SEC / HZ) - 1)
118 typedef struct {
119 u32 cntl; /* CNTL_TIMER, R/W */
120 u32 load_tim; /* LOAD_TIM, W */
121 u32 read_tim; /* READ_TIM, R */
122 } omap_mpu_timer_regs_t;
124 #define omap_mpu_timer_base(n) \
125 ((volatile omap_mpu_timer_regs_t*)IO_ADDRESS(OMAP_MPU_TIMER_BASE + \
126 (n)*OMAP_MPU_TIMER_OFFSET))
128 static inline unsigned long omap_mpu_timer_read(int nr)
130 volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
131 return timer->read_tim;
134 static inline void omap_mpu_timer_start(int nr, unsigned long load_val)
136 volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
138 timer->cntl = MPU_TIMER_CLOCK_ENABLE;
139 udelay(1);
140 timer->load_tim = load_val;
141 udelay(1);
142 timer->cntl = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_AR | MPU_TIMER_ST);
145 unsigned long omap_mpu_timer_ticks_to_usecs(unsigned long nr_ticks)
147 unsigned long long nsec;
149 nsec = cycles_2_ns((unsigned long long)nr_ticks);
150 return (unsigned long)nsec / 1000;
154 * Last processed system timer interrupt
156 static unsigned long omap_mpu_timer_last = 0;
159 * Returns elapsed usecs since last system timer interrupt
161 static unsigned long omap_mpu_timer_gettimeoffset(void)
163 unsigned long now = 0 - omap_mpu_timer_read(0);
164 unsigned long elapsed = now - omap_mpu_timer_last;
166 return omap_mpu_timer_ticks_to_usecs(elapsed);
170 * Elapsed time between interrupts is calculated using timer0.
171 * Latency during the interrupt is calculated using timer1.
172 * Both timer0 and timer1 are counting at 6MHz (P2 6.5MHz).
174 static irqreturn_t omap_mpu_timer_interrupt(int irq, void *dev_id,
175 struct pt_regs *regs)
177 unsigned long now, latency;
179 write_seqlock(&xtime_lock);
180 now = 0 - omap_mpu_timer_read(0);
181 latency = MPU_TICKS_PER_SEC / HZ - omap_mpu_timer_read(1);
182 omap_mpu_timer_last = now - latency;
183 timer_tick(regs);
184 write_sequnlock(&xtime_lock);
186 return IRQ_HANDLED;
189 static struct irqaction omap_mpu_timer_irq = {
190 .name = "mpu timer",
191 .flags = SA_INTERRUPT,
192 .handler = omap_mpu_timer_interrupt
195 static unsigned long omap_mpu_timer1_overflows;
196 static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id,
197 struct pt_regs *regs)
199 omap_mpu_timer1_overflows++;
200 return IRQ_HANDLED;
203 static struct irqaction omap_mpu_timer1_irq = {
204 .name = "mpu timer1 overflow",
205 .flags = SA_INTERRUPT,
206 .handler = omap_mpu_timer1_interrupt
209 static __init void omap_init_mpu_timer(void)
211 set_cyc2ns_scale(MPU_TICKS_PER_SEC / 1000);
212 omap_timer.offset = omap_mpu_timer_gettimeoffset;
213 setup_irq(INT_TIMER1, &omap_mpu_timer1_irq);
214 setup_irq(INT_TIMER2, &omap_mpu_timer_irq);
215 omap_mpu_timer_start(0, 0xffffffff);
216 omap_mpu_timer_start(1, MPU_TIMER_TICK_PERIOD);
220 * Scheduler clock - returns current time in nanosec units.
222 unsigned long long sched_clock(void)
224 unsigned long ticks = 0 - omap_mpu_timer_read(0);
225 unsigned long long ticks64;
227 ticks64 = omap_mpu_timer1_overflows;
228 ticks64 <<= 32;
229 ticks64 |= ticks;
231 return cycles_2_ns(ticks64);
233 #endif /* CONFIG_OMAP_MPU_TIMER */
235 #ifdef CONFIG_OMAP_32K_TIMER
237 #ifdef CONFIG_ARCH_OMAP1510
238 #error OMAP 32KHz timer does not currently work on 1510!
239 #endif
242 * ---------------------------------------------------------------------------
243 * 32KHz OS timer
245 * This currently works only on 16xx, as 1510 does not have the continuous
246 * 32KHz synchronous timer. The 32KHz synchronous timer is used to keep track
247 * of time in addition to the 32KHz OS timer. Using only the 32KHz OS timer
248 * on 1510 would be possible, but the timer would not be as accurate as
249 * with the 32KHz synchronized timer.
250 * ---------------------------------------------------------------------------
252 #define OMAP_32K_TIMER_BASE 0xfffb9000
253 #define OMAP_32K_TIMER_CR 0x08
254 #define OMAP_32K_TIMER_TVR 0x00
255 #define OMAP_32K_TIMER_TCR 0x04
257 #define OMAP_32K_TICKS_PER_HZ (32768 / HZ)
260 * TRM says 1 / HZ = ( TVR + 1) / 32768, so TRV = (32768 / HZ) - 1
261 * so with HZ = 100, TVR = 327.68.
263 #define OMAP_32K_TIMER_TICK_PERIOD ((32768 / HZ) - 1)
264 #define MAX_SKIP_JIFFIES 25
265 #define TIMER_32K_SYNCHRONIZED 0xfffbc410
267 #define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate) \
268 (((nr_jiffies) * (clock_rate)) / HZ)
270 static inline void omap_32k_timer_write(int val, int reg)
272 omap_writew(val, reg + OMAP_32K_TIMER_BASE);
275 static inline unsigned long omap_32k_timer_read(int reg)
277 return omap_readl(reg + OMAP_32K_TIMER_BASE) & 0xffffff;
281 * The 32KHz synchronized timer is an additional timer on 16xx.
282 * It is always running.
284 static inline unsigned long omap_32k_sync_timer_read(void)
286 return omap_readl(TIMER_32K_SYNCHRONIZED);
289 static inline void omap_32k_timer_start(unsigned long load_val)
291 omap_32k_timer_write(load_val, OMAP_32K_TIMER_TVR);
292 omap_32k_timer_write(0x0f, OMAP_32K_TIMER_CR);
295 static inline void omap_32k_timer_stop(void)
297 omap_32k_timer_write(0x0, OMAP_32K_TIMER_CR);
301 * Rounds down to nearest usec
303 static inline unsigned long omap_32k_ticks_to_usecs(unsigned long ticks_32k)
305 return (ticks_32k * 5*5*5*5*5*5) >> 9;
308 static unsigned long omap_32k_last_tick = 0;
311 * Returns elapsed usecs since last 32k timer interrupt
313 static unsigned long omap_32k_timer_gettimeoffset(void)
315 unsigned long now = omap_32k_sync_timer_read();
316 return omap_32k_ticks_to_usecs(now - omap_32k_last_tick);
320 * Timer interrupt for 32KHz timer. When dynamic tick is enabled, this
321 * function is also called from other interrupts to remove latency
322 * issues with dynamic tick. In the dynamic tick case, we need to lock
323 * with irqsave.
325 static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id,
326 struct pt_regs *regs)
328 unsigned long flags;
329 unsigned long now;
331 write_seqlock_irqsave(&xtime_lock, flags);
332 now = omap_32k_sync_timer_read();
334 while (now - omap_32k_last_tick >= OMAP_32K_TICKS_PER_HZ) {
335 omap_32k_last_tick += OMAP_32K_TICKS_PER_HZ;
336 timer_tick(regs);
339 /* Restart timer so we don't drift off due to modulo or dynamic tick.
340 * By default we program the next timer to be continuous to avoid
341 * latencies during high system load. During dynamic tick operation the
342 * continuous timer can be overridden from pm_idle to be longer.
344 omap_32k_timer_start(omap_32k_last_tick + OMAP_32K_TICKS_PER_HZ - now);
345 write_sequnlock_irqrestore(&xtime_lock, flags);
347 return IRQ_HANDLED;
350 static struct irqaction omap_32k_timer_irq = {
351 .name = "32KHz timer",
352 .flags = SA_INTERRUPT,
353 .handler = omap_32k_timer_interrupt
356 static __init void omap_init_32k_timer(void)
358 setup_irq(INT_OS_TIMER, &omap_32k_timer_irq);
359 omap_timer.offset = omap_32k_timer_gettimeoffset;
360 omap_32k_last_tick = omap_32k_sync_timer_read();
361 omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD);
363 #endif /* CONFIG_OMAP_32K_TIMER */
366 * ---------------------------------------------------------------------------
367 * Timer initialization
368 * ---------------------------------------------------------------------------
370 void __init omap_timer_init(void)
372 #if defined(CONFIG_OMAP_MPU_TIMER)
373 omap_init_mpu_timer();
374 #elif defined(CONFIG_OMAP_32K_TIMER)
375 omap_init_32k_timer();
376 #else
377 #error No system timer selected in Kconfig!
378 #endif
381 struct sys_timer omap_timer = {
382 .init = omap_timer_init,
383 .offset = NULL, /* Initialized later */