tcp: fix listening_get_next()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / tcp_ipv4.c
blobd978bb2f748b34d99efb0162e4e083a460275630
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
65 #include <net/net_namespace.h>
66 #include <net/icmp.h>
67 #include <net/inet_hashtables.h>
68 #include <net/tcp.h>
69 #include <net/transp_v6.h>
70 #include <net/ipv6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
73 #include <net/xfrm.h>
74 #include <net/netdma.h>
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
87 EXPORT_SYMBOL(sysctl_tcp_low_latency);
90 #ifdef CONFIG_TCP_MD5SIG
91 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
92 __be32 addr);
93 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
94 __be32 daddr, __be32 saddr, struct tcphdr *th);
95 #else
96 static inline
97 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
99 return NULL;
101 #endif
103 struct inet_hashinfo tcp_hashinfo;
104 EXPORT_SYMBOL(tcp_hashinfo);
106 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
108 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
109 ip_hdr(skb)->saddr,
110 tcp_hdr(skb)->dest,
111 tcp_hdr(skb)->source);
114 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
116 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
117 struct tcp_sock *tp = tcp_sk(sk);
119 /* With PAWS, it is safe from the viewpoint
120 of data integrity. Even without PAWS it is safe provided sequence
121 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123 Actually, the idea is close to VJ's one, only timestamp cache is
124 held not per host, but per port pair and TW bucket is used as state
125 holder.
127 If TW bucket has been already destroyed we fall back to VJ's scheme
128 and use initial timestamp retrieved from peer table.
130 if (tcptw->tw_ts_recent_stamp &&
131 (twp == NULL || (sysctl_tcp_tw_reuse &&
132 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
133 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
134 if (tp->write_seq == 0)
135 tp->write_seq = 1;
136 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
137 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
138 sock_hold(sktw);
139 return 1;
142 return 0;
144 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
146 /* This will initiate an outgoing connection. */
147 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
149 struct inet_sock *inet = inet_sk(sk);
150 struct tcp_sock *tp = tcp_sk(sk);
151 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
152 struct rtable *rt;
153 __be32 daddr, nexthop;
154 int tmp;
155 int err;
157 if (addr_len < sizeof(struct sockaddr_in))
158 return -EINVAL;
160 if (usin->sin_family != AF_INET)
161 return -EAFNOSUPPORT;
163 nexthop = daddr = usin->sin_addr.s_addr;
164 if (inet->opt && inet->opt->srr) {
165 if (!daddr)
166 return -EINVAL;
167 nexthop = inet->opt->faddr;
170 tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
171 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
172 IPPROTO_TCP,
173 inet->inet_sport, usin->sin_port, sk, 1);
174 if (tmp < 0) {
175 if (tmp == -ENETUNREACH)
176 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
177 return tmp;
180 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
181 ip_rt_put(rt);
182 return -ENETUNREACH;
185 if (!inet->opt || !inet->opt->srr)
186 daddr = rt->rt_dst;
188 if (!inet->inet_saddr)
189 inet->inet_saddr = rt->rt_src;
190 inet->inet_rcv_saddr = inet->inet_saddr;
192 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
193 /* Reset inherited state */
194 tp->rx_opt.ts_recent = 0;
195 tp->rx_opt.ts_recent_stamp = 0;
196 tp->write_seq = 0;
199 if (tcp_death_row.sysctl_tw_recycle &&
200 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
201 struct inet_peer *peer = rt_get_peer(rt);
203 * VJ's idea. We save last timestamp seen from
204 * the destination in peer table, when entering state
205 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
206 * when trying new connection.
208 if (peer) {
209 inet_peer_refcheck(peer);
210 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
211 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
212 tp->rx_opt.ts_recent = peer->tcp_ts;
217 inet->inet_dport = usin->sin_port;
218 inet->inet_daddr = daddr;
220 inet_csk(sk)->icsk_ext_hdr_len = 0;
221 if (inet->opt)
222 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
224 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
226 /* Socket identity is still unknown (sport may be zero).
227 * However we set state to SYN-SENT and not releasing socket
228 * lock select source port, enter ourselves into the hash tables and
229 * complete initialization after this.
231 tcp_set_state(sk, TCP_SYN_SENT);
232 err = inet_hash_connect(&tcp_death_row, sk);
233 if (err)
234 goto failure;
236 err = ip_route_newports(&rt, IPPROTO_TCP,
237 inet->inet_sport, inet->inet_dport, sk);
238 if (err)
239 goto failure;
241 /* OK, now commit destination to socket. */
242 sk->sk_gso_type = SKB_GSO_TCPV4;
243 sk_setup_caps(sk, &rt->dst);
245 if (!tp->write_seq)
246 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
247 inet->inet_daddr,
248 inet->inet_sport,
249 usin->sin_port);
251 inet->inet_id = tp->write_seq ^ jiffies;
253 err = tcp_connect(sk);
254 rt = NULL;
255 if (err)
256 goto failure;
258 return 0;
260 failure:
262 * This unhashes the socket and releases the local port,
263 * if necessary.
265 tcp_set_state(sk, TCP_CLOSE);
266 ip_rt_put(rt);
267 sk->sk_route_caps = 0;
268 inet->inet_dport = 0;
269 return err;
271 EXPORT_SYMBOL(tcp_v4_connect);
274 * This routine does path mtu discovery as defined in RFC1191.
276 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
278 struct dst_entry *dst;
279 struct inet_sock *inet = inet_sk(sk);
281 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
282 * send out by Linux are always <576bytes so they should go through
283 * unfragmented).
285 if (sk->sk_state == TCP_LISTEN)
286 return;
288 /* We don't check in the destentry if pmtu discovery is forbidden
289 * on this route. We just assume that no packet_to_big packets
290 * are send back when pmtu discovery is not active.
291 * There is a small race when the user changes this flag in the
292 * route, but I think that's acceptable.
294 if ((dst = __sk_dst_check(sk, 0)) == NULL)
295 return;
297 dst->ops->update_pmtu(dst, mtu);
299 /* Something is about to be wrong... Remember soft error
300 * for the case, if this connection will not able to recover.
302 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
303 sk->sk_err_soft = EMSGSIZE;
305 mtu = dst_mtu(dst);
307 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
308 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
309 tcp_sync_mss(sk, mtu);
311 /* Resend the TCP packet because it's
312 * clear that the old packet has been
313 * dropped. This is the new "fast" path mtu
314 * discovery.
316 tcp_simple_retransmit(sk);
317 } /* else let the usual retransmit timer handle it */
321 * This routine is called by the ICMP module when it gets some
322 * sort of error condition. If err < 0 then the socket should
323 * be closed and the error returned to the user. If err > 0
324 * it's just the icmp type << 8 | icmp code. After adjustment
325 * header points to the first 8 bytes of the tcp header. We need
326 * to find the appropriate port.
328 * The locking strategy used here is very "optimistic". When
329 * someone else accesses the socket the ICMP is just dropped
330 * and for some paths there is no check at all.
331 * A more general error queue to queue errors for later handling
332 * is probably better.
336 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
338 struct iphdr *iph = (struct iphdr *)icmp_skb->data;
339 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
340 struct inet_connection_sock *icsk;
341 struct tcp_sock *tp;
342 struct inet_sock *inet;
343 const int type = icmp_hdr(icmp_skb)->type;
344 const int code = icmp_hdr(icmp_skb)->code;
345 struct sock *sk;
346 struct sk_buff *skb;
347 __u32 seq;
348 __u32 remaining;
349 int err;
350 struct net *net = dev_net(icmp_skb->dev);
352 if (icmp_skb->len < (iph->ihl << 2) + 8) {
353 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
354 return;
357 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
358 iph->saddr, th->source, inet_iif(icmp_skb));
359 if (!sk) {
360 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
361 return;
363 if (sk->sk_state == TCP_TIME_WAIT) {
364 inet_twsk_put(inet_twsk(sk));
365 return;
368 bh_lock_sock(sk);
369 /* If too many ICMPs get dropped on busy
370 * servers this needs to be solved differently.
372 if (sock_owned_by_user(sk))
373 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
375 if (sk->sk_state == TCP_CLOSE)
376 goto out;
378 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
379 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
380 goto out;
383 icsk = inet_csk(sk);
384 tp = tcp_sk(sk);
385 seq = ntohl(th->seq);
386 if (sk->sk_state != TCP_LISTEN &&
387 !between(seq, tp->snd_una, tp->snd_nxt)) {
388 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
389 goto out;
392 switch (type) {
393 case ICMP_SOURCE_QUENCH:
394 /* Just silently ignore these. */
395 goto out;
396 case ICMP_PARAMETERPROB:
397 err = EPROTO;
398 break;
399 case ICMP_DEST_UNREACH:
400 if (code > NR_ICMP_UNREACH)
401 goto out;
403 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
404 if (!sock_owned_by_user(sk))
405 do_pmtu_discovery(sk, iph, info);
406 goto out;
409 err = icmp_err_convert[code].errno;
410 /* check if icmp_skb allows revert of backoff
411 * (see draft-zimmermann-tcp-lcd) */
412 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
413 break;
414 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
415 !icsk->icsk_backoff)
416 break;
418 if (sock_owned_by_user(sk))
419 break;
421 icsk->icsk_backoff--;
422 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
423 icsk->icsk_backoff;
424 tcp_bound_rto(sk);
426 skb = tcp_write_queue_head(sk);
427 BUG_ON(!skb);
429 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
430 tcp_time_stamp - TCP_SKB_CB(skb)->when);
432 if (remaining) {
433 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
434 remaining, TCP_RTO_MAX);
435 } else {
436 /* RTO revert clocked out retransmission.
437 * Will retransmit now */
438 tcp_retransmit_timer(sk);
441 break;
442 case ICMP_TIME_EXCEEDED:
443 err = EHOSTUNREACH;
444 break;
445 default:
446 goto out;
449 switch (sk->sk_state) {
450 struct request_sock *req, **prev;
451 case TCP_LISTEN:
452 if (sock_owned_by_user(sk))
453 goto out;
455 req = inet_csk_search_req(sk, &prev, th->dest,
456 iph->daddr, iph->saddr);
457 if (!req)
458 goto out;
460 /* ICMPs are not backlogged, hence we cannot get
461 an established socket here.
463 WARN_ON(req->sk);
465 if (seq != tcp_rsk(req)->snt_isn) {
466 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
467 goto out;
471 * Still in SYN_RECV, just remove it silently.
472 * There is no good way to pass the error to the newly
473 * created socket, and POSIX does not want network
474 * errors returned from accept().
476 inet_csk_reqsk_queue_drop(sk, req, prev);
477 goto out;
479 case TCP_SYN_SENT:
480 case TCP_SYN_RECV: /* Cannot happen.
481 It can f.e. if SYNs crossed.
483 if (!sock_owned_by_user(sk)) {
484 sk->sk_err = err;
486 sk->sk_error_report(sk);
488 tcp_done(sk);
489 } else {
490 sk->sk_err_soft = err;
492 goto out;
495 /* If we've already connected we will keep trying
496 * until we time out, or the user gives up.
498 * rfc1122 4.2.3.9 allows to consider as hard errors
499 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
500 * but it is obsoleted by pmtu discovery).
502 * Note, that in modern internet, where routing is unreliable
503 * and in each dark corner broken firewalls sit, sending random
504 * errors ordered by their masters even this two messages finally lose
505 * their original sense (even Linux sends invalid PORT_UNREACHs)
507 * Now we are in compliance with RFCs.
508 * --ANK (980905)
511 inet = inet_sk(sk);
512 if (!sock_owned_by_user(sk) && inet->recverr) {
513 sk->sk_err = err;
514 sk->sk_error_report(sk);
515 } else { /* Only an error on timeout */
516 sk->sk_err_soft = err;
519 out:
520 bh_unlock_sock(sk);
521 sock_put(sk);
524 static void __tcp_v4_send_check(struct sk_buff *skb,
525 __be32 saddr, __be32 daddr)
527 struct tcphdr *th = tcp_hdr(skb);
529 if (skb->ip_summed == CHECKSUM_PARTIAL) {
530 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
531 skb->csum_start = skb_transport_header(skb) - skb->head;
532 skb->csum_offset = offsetof(struct tcphdr, check);
533 } else {
534 th->check = tcp_v4_check(skb->len, saddr, daddr,
535 csum_partial(th,
536 th->doff << 2,
537 skb->csum));
541 /* This routine computes an IPv4 TCP checksum. */
542 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
544 struct inet_sock *inet = inet_sk(sk);
546 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
548 EXPORT_SYMBOL(tcp_v4_send_check);
550 int tcp_v4_gso_send_check(struct sk_buff *skb)
552 const struct iphdr *iph;
553 struct tcphdr *th;
555 if (!pskb_may_pull(skb, sizeof(*th)))
556 return -EINVAL;
558 iph = ip_hdr(skb);
559 th = tcp_hdr(skb);
561 th->check = 0;
562 skb->ip_summed = CHECKSUM_PARTIAL;
563 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
564 return 0;
568 * This routine will send an RST to the other tcp.
570 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
571 * for reset.
572 * Answer: if a packet caused RST, it is not for a socket
573 * existing in our system, if it is matched to a socket,
574 * it is just duplicate segment or bug in other side's TCP.
575 * So that we build reply only basing on parameters
576 * arrived with segment.
577 * Exception: precedence violation. We do not implement it in any case.
580 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
582 struct tcphdr *th = tcp_hdr(skb);
583 struct {
584 struct tcphdr th;
585 #ifdef CONFIG_TCP_MD5SIG
586 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
587 #endif
588 } rep;
589 struct ip_reply_arg arg;
590 #ifdef CONFIG_TCP_MD5SIG
591 struct tcp_md5sig_key *key;
592 #endif
593 struct net *net;
595 /* Never send a reset in response to a reset. */
596 if (th->rst)
597 return;
599 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
600 return;
602 /* Swap the send and the receive. */
603 memset(&rep, 0, sizeof(rep));
604 rep.th.dest = th->source;
605 rep.th.source = th->dest;
606 rep.th.doff = sizeof(struct tcphdr) / 4;
607 rep.th.rst = 1;
609 if (th->ack) {
610 rep.th.seq = th->ack_seq;
611 } else {
612 rep.th.ack = 1;
613 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
614 skb->len - (th->doff << 2));
617 memset(&arg, 0, sizeof(arg));
618 arg.iov[0].iov_base = (unsigned char *)&rep;
619 arg.iov[0].iov_len = sizeof(rep.th);
621 #ifdef CONFIG_TCP_MD5SIG
622 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
623 if (key) {
624 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
625 (TCPOPT_NOP << 16) |
626 (TCPOPT_MD5SIG << 8) |
627 TCPOLEN_MD5SIG);
628 /* Update length and the length the header thinks exists */
629 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
630 rep.th.doff = arg.iov[0].iov_len / 4;
632 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
633 key, ip_hdr(skb)->saddr,
634 ip_hdr(skb)->daddr, &rep.th);
636 #endif
637 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
638 ip_hdr(skb)->saddr, /* XXX */
639 arg.iov[0].iov_len, IPPROTO_TCP, 0);
640 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
641 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
643 net = dev_net(skb_dst(skb)->dev);
644 ip_send_reply(net->ipv4.tcp_sock, skb,
645 &arg, arg.iov[0].iov_len);
647 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
648 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
651 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
652 outside socket context is ugly, certainly. What can I do?
655 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
656 u32 win, u32 ts, int oif,
657 struct tcp_md5sig_key *key,
658 int reply_flags)
660 struct tcphdr *th = tcp_hdr(skb);
661 struct {
662 struct tcphdr th;
663 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
664 #ifdef CONFIG_TCP_MD5SIG
665 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
666 #endif
668 } rep;
669 struct ip_reply_arg arg;
670 struct net *net = dev_net(skb_dst(skb)->dev);
672 memset(&rep.th, 0, sizeof(struct tcphdr));
673 memset(&arg, 0, sizeof(arg));
675 arg.iov[0].iov_base = (unsigned char *)&rep;
676 arg.iov[0].iov_len = sizeof(rep.th);
677 if (ts) {
678 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
679 (TCPOPT_TIMESTAMP << 8) |
680 TCPOLEN_TIMESTAMP);
681 rep.opt[1] = htonl(tcp_time_stamp);
682 rep.opt[2] = htonl(ts);
683 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
686 /* Swap the send and the receive. */
687 rep.th.dest = th->source;
688 rep.th.source = th->dest;
689 rep.th.doff = arg.iov[0].iov_len / 4;
690 rep.th.seq = htonl(seq);
691 rep.th.ack_seq = htonl(ack);
692 rep.th.ack = 1;
693 rep.th.window = htons(win);
695 #ifdef CONFIG_TCP_MD5SIG
696 if (key) {
697 int offset = (ts) ? 3 : 0;
699 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
700 (TCPOPT_NOP << 16) |
701 (TCPOPT_MD5SIG << 8) |
702 TCPOLEN_MD5SIG);
703 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
704 rep.th.doff = arg.iov[0].iov_len/4;
706 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
707 key, ip_hdr(skb)->saddr,
708 ip_hdr(skb)->daddr, &rep.th);
710 #endif
711 arg.flags = reply_flags;
712 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
713 ip_hdr(skb)->saddr, /* XXX */
714 arg.iov[0].iov_len, IPPROTO_TCP, 0);
715 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
716 if (oif)
717 arg.bound_dev_if = oif;
719 ip_send_reply(net->ipv4.tcp_sock, skb,
720 &arg, arg.iov[0].iov_len);
722 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
725 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
727 struct inet_timewait_sock *tw = inet_twsk(sk);
728 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
730 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
731 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
732 tcptw->tw_ts_recent,
733 tw->tw_bound_dev_if,
734 tcp_twsk_md5_key(tcptw),
735 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
738 inet_twsk_put(tw);
741 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
742 struct request_sock *req)
744 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
745 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
746 req->ts_recent,
748 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
749 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
753 * Send a SYN-ACK after having received a SYN.
754 * This still operates on a request_sock only, not on a big
755 * socket.
757 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
758 struct request_sock *req,
759 struct request_values *rvp)
761 const struct inet_request_sock *ireq = inet_rsk(req);
762 int err = -1;
763 struct sk_buff * skb;
765 /* First, grab a route. */
766 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
767 return -1;
769 skb = tcp_make_synack(sk, dst, req, rvp);
771 if (skb) {
772 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
774 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
775 ireq->rmt_addr,
776 ireq->opt);
777 err = net_xmit_eval(err);
780 dst_release(dst);
781 return err;
784 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
785 struct request_values *rvp)
787 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
788 return tcp_v4_send_synack(sk, NULL, req, rvp);
792 * IPv4 request_sock destructor.
794 static void tcp_v4_reqsk_destructor(struct request_sock *req)
796 kfree(inet_rsk(req)->opt);
799 static void syn_flood_warning(const struct sk_buff *skb)
801 const char *msg;
803 #ifdef CONFIG_SYN_COOKIES
804 if (sysctl_tcp_syncookies)
805 msg = "Sending cookies";
806 else
807 #endif
808 msg = "Dropping request";
810 pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
811 ntohs(tcp_hdr(skb)->dest), msg);
815 * Save and compile IPv4 options into the request_sock if needed.
817 static struct ip_options *tcp_v4_save_options(struct sock *sk,
818 struct sk_buff *skb)
820 struct ip_options *opt = &(IPCB(skb)->opt);
821 struct ip_options *dopt = NULL;
823 if (opt && opt->optlen) {
824 int opt_size = optlength(opt);
825 dopt = kmalloc(opt_size, GFP_ATOMIC);
826 if (dopt) {
827 if (ip_options_echo(dopt, skb)) {
828 kfree(dopt);
829 dopt = NULL;
833 return dopt;
836 #ifdef CONFIG_TCP_MD5SIG
838 * RFC2385 MD5 checksumming requires a mapping of
839 * IP address->MD5 Key.
840 * We need to maintain these in the sk structure.
843 /* Find the Key structure for an address. */
844 static struct tcp_md5sig_key *
845 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
847 struct tcp_sock *tp = tcp_sk(sk);
848 int i;
850 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
851 return NULL;
852 for (i = 0; i < tp->md5sig_info->entries4; i++) {
853 if (tp->md5sig_info->keys4[i].addr == addr)
854 return &tp->md5sig_info->keys4[i].base;
856 return NULL;
859 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
860 struct sock *addr_sk)
862 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
864 EXPORT_SYMBOL(tcp_v4_md5_lookup);
866 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
867 struct request_sock *req)
869 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
872 /* This can be called on a newly created socket, from other files */
873 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
874 u8 *newkey, u8 newkeylen)
876 /* Add Key to the list */
877 struct tcp_md5sig_key *key;
878 struct tcp_sock *tp = tcp_sk(sk);
879 struct tcp4_md5sig_key *keys;
881 key = tcp_v4_md5_do_lookup(sk, addr);
882 if (key) {
883 /* Pre-existing entry - just update that one. */
884 kfree(key->key);
885 key->key = newkey;
886 key->keylen = newkeylen;
887 } else {
888 struct tcp_md5sig_info *md5sig;
890 if (!tp->md5sig_info) {
891 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
892 GFP_ATOMIC);
893 if (!tp->md5sig_info) {
894 kfree(newkey);
895 return -ENOMEM;
897 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
899 if (tcp_alloc_md5sig_pool(sk) == NULL) {
900 kfree(newkey);
901 return -ENOMEM;
903 md5sig = tp->md5sig_info;
905 if (md5sig->alloced4 == md5sig->entries4) {
906 keys = kmalloc((sizeof(*keys) *
907 (md5sig->entries4 + 1)), GFP_ATOMIC);
908 if (!keys) {
909 kfree(newkey);
910 tcp_free_md5sig_pool();
911 return -ENOMEM;
914 if (md5sig->entries4)
915 memcpy(keys, md5sig->keys4,
916 sizeof(*keys) * md5sig->entries4);
918 /* Free old key list, and reference new one */
919 kfree(md5sig->keys4);
920 md5sig->keys4 = keys;
921 md5sig->alloced4++;
923 md5sig->entries4++;
924 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
925 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
926 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
928 return 0;
930 EXPORT_SYMBOL(tcp_v4_md5_do_add);
932 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
933 u8 *newkey, u8 newkeylen)
935 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
936 newkey, newkeylen);
939 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
941 struct tcp_sock *tp = tcp_sk(sk);
942 int i;
944 for (i = 0; i < tp->md5sig_info->entries4; i++) {
945 if (tp->md5sig_info->keys4[i].addr == addr) {
946 /* Free the key */
947 kfree(tp->md5sig_info->keys4[i].base.key);
948 tp->md5sig_info->entries4--;
950 if (tp->md5sig_info->entries4 == 0) {
951 kfree(tp->md5sig_info->keys4);
952 tp->md5sig_info->keys4 = NULL;
953 tp->md5sig_info->alloced4 = 0;
954 } else if (tp->md5sig_info->entries4 != i) {
955 /* Need to do some manipulation */
956 memmove(&tp->md5sig_info->keys4[i],
957 &tp->md5sig_info->keys4[i+1],
958 (tp->md5sig_info->entries4 - i) *
959 sizeof(struct tcp4_md5sig_key));
961 tcp_free_md5sig_pool();
962 return 0;
965 return -ENOENT;
967 EXPORT_SYMBOL(tcp_v4_md5_do_del);
969 static void tcp_v4_clear_md5_list(struct sock *sk)
971 struct tcp_sock *tp = tcp_sk(sk);
973 /* Free each key, then the set of key keys,
974 * the crypto element, and then decrement our
975 * hold on the last resort crypto.
977 if (tp->md5sig_info->entries4) {
978 int i;
979 for (i = 0; i < tp->md5sig_info->entries4; i++)
980 kfree(tp->md5sig_info->keys4[i].base.key);
981 tp->md5sig_info->entries4 = 0;
982 tcp_free_md5sig_pool();
984 if (tp->md5sig_info->keys4) {
985 kfree(tp->md5sig_info->keys4);
986 tp->md5sig_info->keys4 = NULL;
987 tp->md5sig_info->alloced4 = 0;
991 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
992 int optlen)
994 struct tcp_md5sig cmd;
995 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
996 u8 *newkey;
998 if (optlen < sizeof(cmd))
999 return -EINVAL;
1001 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1002 return -EFAULT;
1004 if (sin->sin_family != AF_INET)
1005 return -EINVAL;
1007 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1008 if (!tcp_sk(sk)->md5sig_info)
1009 return -ENOENT;
1010 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1013 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1014 return -EINVAL;
1016 if (!tcp_sk(sk)->md5sig_info) {
1017 struct tcp_sock *tp = tcp_sk(sk);
1018 struct tcp_md5sig_info *p;
1020 p = kzalloc(sizeof(*p), sk->sk_allocation);
1021 if (!p)
1022 return -EINVAL;
1024 tp->md5sig_info = p;
1025 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1028 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1029 if (!newkey)
1030 return -ENOMEM;
1031 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1032 newkey, cmd.tcpm_keylen);
1035 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1036 __be32 daddr, __be32 saddr, int nbytes)
1038 struct tcp4_pseudohdr *bp;
1039 struct scatterlist sg;
1041 bp = &hp->md5_blk.ip4;
1044 * 1. the TCP pseudo-header (in the order: source IP address,
1045 * destination IP address, zero-padded protocol number, and
1046 * segment length)
1048 bp->saddr = saddr;
1049 bp->daddr = daddr;
1050 bp->pad = 0;
1051 bp->protocol = IPPROTO_TCP;
1052 bp->len = cpu_to_be16(nbytes);
1054 sg_init_one(&sg, bp, sizeof(*bp));
1055 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1058 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1059 __be32 daddr, __be32 saddr, struct tcphdr *th)
1061 struct tcp_md5sig_pool *hp;
1062 struct hash_desc *desc;
1064 hp = tcp_get_md5sig_pool();
1065 if (!hp)
1066 goto clear_hash_noput;
1067 desc = &hp->md5_desc;
1069 if (crypto_hash_init(desc))
1070 goto clear_hash;
1071 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1072 goto clear_hash;
1073 if (tcp_md5_hash_header(hp, th))
1074 goto clear_hash;
1075 if (tcp_md5_hash_key(hp, key))
1076 goto clear_hash;
1077 if (crypto_hash_final(desc, md5_hash))
1078 goto clear_hash;
1080 tcp_put_md5sig_pool();
1081 return 0;
1083 clear_hash:
1084 tcp_put_md5sig_pool();
1085 clear_hash_noput:
1086 memset(md5_hash, 0, 16);
1087 return 1;
1090 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1091 struct sock *sk, struct request_sock *req,
1092 struct sk_buff *skb)
1094 struct tcp_md5sig_pool *hp;
1095 struct hash_desc *desc;
1096 struct tcphdr *th = tcp_hdr(skb);
1097 __be32 saddr, daddr;
1099 if (sk) {
1100 saddr = inet_sk(sk)->inet_saddr;
1101 daddr = inet_sk(sk)->inet_daddr;
1102 } else if (req) {
1103 saddr = inet_rsk(req)->loc_addr;
1104 daddr = inet_rsk(req)->rmt_addr;
1105 } else {
1106 const struct iphdr *iph = ip_hdr(skb);
1107 saddr = iph->saddr;
1108 daddr = iph->daddr;
1111 hp = tcp_get_md5sig_pool();
1112 if (!hp)
1113 goto clear_hash_noput;
1114 desc = &hp->md5_desc;
1116 if (crypto_hash_init(desc))
1117 goto clear_hash;
1119 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1120 goto clear_hash;
1121 if (tcp_md5_hash_header(hp, th))
1122 goto clear_hash;
1123 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1124 goto clear_hash;
1125 if (tcp_md5_hash_key(hp, key))
1126 goto clear_hash;
1127 if (crypto_hash_final(desc, md5_hash))
1128 goto clear_hash;
1130 tcp_put_md5sig_pool();
1131 return 0;
1133 clear_hash:
1134 tcp_put_md5sig_pool();
1135 clear_hash_noput:
1136 memset(md5_hash, 0, 16);
1137 return 1;
1139 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1141 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1144 * This gets called for each TCP segment that arrives
1145 * so we want to be efficient.
1146 * We have 3 drop cases:
1147 * o No MD5 hash and one expected.
1148 * o MD5 hash and we're not expecting one.
1149 * o MD5 hash and its wrong.
1151 __u8 *hash_location = NULL;
1152 struct tcp_md5sig_key *hash_expected;
1153 const struct iphdr *iph = ip_hdr(skb);
1154 struct tcphdr *th = tcp_hdr(skb);
1155 int genhash;
1156 unsigned char newhash[16];
1158 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1159 hash_location = tcp_parse_md5sig_option(th);
1161 /* We've parsed the options - do we have a hash? */
1162 if (!hash_expected && !hash_location)
1163 return 0;
1165 if (hash_expected && !hash_location) {
1166 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1167 return 1;
1170 if (!hash_expected && hash_location) {
1171 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1172 return 1;
1175 /* Okay, so this is hash_expected and hash_location -
1176 * so we need to calculate the checksum.
1178 genhash = tcp_v4_md5_hash_skb(newhash,
1179 hash_expected,
1180 NULL, NULL, skb);
1182 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1183 if (net_ratelimit()) {
1184 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1185 &iph->saddr, ntohs(th->source),
1186 &iph->daddr, ntohs(th->dest),
1187 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1189 return 1;
1191 return 0;
1194 #endif
1196 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1197 .family = PF_INET,
1198 .obj_size = sizeof(struct tcp_request_sock),
1199 .rtx_syn_ack = tcp_v4_rtx_synack,
1200 .send_ack = tcp_v4_reqsk_send_ack,
1201 .destructor = tcp_v4_reqsk_destructor,
1202 .send_reset = tcp_v4_send_reset,
1203 .syn_ack_timeout = tcp_syn_ack_timeout,
1206 #ifdef CONFIG_TCP_MD5SIG
1207 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1208 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1209 .calc_md5_hash = tcp_v4_md5_hash_skb,
1211 #endif
1213 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1214 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1215 .twsk_unique = tcp_twsk_unique,
1216 .twsk_destructor= tcp_twsk_destructor,
1219 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1221 struct tcp_extend_values tmp_ext;
1222 struct tcp_options_received tmp_opt;
1223 u8 *hash_location;
1224 struct request_sock *req;
1225 struct inet_request_sock *ireq;
1226 struct tcp_sock *tp = tcp_sk(sk);
1227 struct dst_entry *dst = NULL;
1228 __be32 saddr = ip_hdr(skb)->saddr;
1229 __be32 daddr = ip_hdr(skb)->daddr;
1230 __u32 isn = TCP_SKB_CB(skb)->when;
1231 #ifdef CONFIG_SYN_COOKIES
1232 int want_cookie = 0;
1233 #else
1234 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1235 #endif
1237 /* Never answer to SYNs send to broadcast or multicast */
1238 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1239 goto drop;
1241 /* TW buckets are converted to open requests without
1242 * limitations, they conserve resources and peer is
1243 * evidently real one.
1245 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1246 if (net_ratelimit())
1247 syn_flood_warning(skb);
1248 #ifdef CONFIG_SYN_COOKIES
1249 if (sysctl_tcp_syncookies) {
1250 want_cookie = 1;
1251 } else
1252 #endif
1253 goto drop;
1256 /* Accept backlog is full. If we have already queued enough
1257 * of warm entries in syn queue, drop request. It is better than
1258 * clogging syn queue with openreqs with exponentially increasing
1259 * timeout.
1261 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1262 goto drop;
1264 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1265 if (!req)
1266 goto drop;
1268 #ifdef CONFIG_TCP_MD5SIG
1269 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1270 #endif
1272 tcp_clear_options(&tmp_opt);
1273 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1274 tmp_opt.user_mss = tp->rx_opt.user_mss;
1275 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1277 if (tmp_opt.cookie_plus > 0 &&
1278 tmp_opt.saw_tstamp &&
1279 !tp->rx_opt.cookie_out_never &&
1280 (sysctl_tcp_cookie_size > 0 ||
1281 (tp->cookie_values != NULL &&
1282 tp->cookie_values->cookie_desired > 0))) {
1283 u8 *c;
1284 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1285 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1287 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1288 goto drop_and_release;
1290 /* Secret recipe starts with IP addresses */
1291 *mess++ ^= (__force u32)daddr;
1292 *mess++ ^= (__force u32)saddr;
1294 /* plus variable length Initiator Cookie */
1295 c = (u8 *)mess;
1296 while (l-- > 0)
1297 *c++ ^= *hash_location++;
1299 #ifdef CONFIG_SYN_COOKIES
1300 want_cookie = 0; /* not our kind of cookie */
1301 #endif
1302 tmp_ext.cookie_out_never = 0; /* false */
1303 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1304 } else if (!tp->rx_opt.cookie_in_always) {
1305 /* redundant indications, but ensure initialization. */
1306 tmp_ext.cookie_out_never = 1; /* true */
1307 tmp_ext.cookie_plus = 0;
1308 } else {
1309 goto drop_and_release;
1311 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1313 if (want_cookie && !tmp_opt.saw_tstamp)
1314 tcp_clear_options(&tmp_opt);
1316 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1317 tcp_openreq_init(req, &tmp_opt, skb);
1319 ireq = inet_rsk(req);
1320 ireq->loc_addr = daddr;
1321 ireq->rmt_addr = saddr;
1322 ireq->no_srccheck = inet_sk(sk)->transparent;
1323 ireq->opt = tcp_v4_save_options(sk, skb);
1325 if (security_inet_conn_request(sk, skb, req))
1326 goto drop_and_free;
1328 if (!want_cookie || tmp_opt.tstamp_ok)
1329 TCP_ECN_create_request(req, tcp_hdr(skb));
1331 if (want_cookie) {
1332 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1333 req->cookie_ts = tmp_opt.tstamp_ok;
1334 } else if (!isn) {
1335 struct inet_peer *peer = NULL;
1337 /* VJ's idea. We save last timestamp seen
1338 * from the destination in peer table, when entering
1339 * state TIME-WAIT, and check against it before
1340 * accepting new connection request.
1342 * If "isn" is not zero, this request hit alive
1343 * timewait bucket, so that all the necessary checks
1344 * are made in the function processing timewait state.
1346 if (tmp_opt.saw_tstamp &&
1347 tcp_death_row.sysctl_tw_recycle &&
1348 (dst = inet_csk_route_req(sk, req)) != NULL &&
1349 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1350 peer->v4daddr == saddr) {
1351 inet_peer_refcheck(peer);
1352 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1353 (s32)(peer->tcp_ts - req->ts_recent) >
1354 TCP_PAWS_WINDOW) {
1355 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1356 goto drop_and_release;
1359 /* Kill the following clause, if you dislike this way. */
1360 else if (!sysctl_tcp_syncookies &&
1361 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1362 (sysctl_max_syn_backlog >> 2)) &&
1363 (!peer || !peer->tcp_ts_stamp) &&
1364 (!dst || !dst_metric(dst, RTAX_RTT))) {
1365 /* Without syncookies last quarter of
1366 * backlog is filled with destinations,
1367 * proven to be alive.
1368 * It means that we continue to communicate
1369 * to destinations, already remembered
1370 * to the moment of synflood.
1372 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1373 &saddr, ntohs(tcp_hdr(skb)->source));
1374 goto drop_and_release;
1377 isn = tcp_v4_init_sequence(skb);
1379 tcp_rsk(req)->snt_isn = isn;
1381 if (tcp_v4_send_synack(sk, dst, req,
1382 (struct request_values *)&tmp_ext) ||
1383 want_cookie)
1384 goto drop_and_free;
1386 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1387 return 0;
1389 drop_and_release:
1390 dst_release(dst);
1391 drop_and_free:
1392 reqsk_free(req);
1393 drop:
1394 return 0;
1396 EXPORT_SYMBOL(tcp_v4_conn_request);
1400 * The three way handshake has completed - we got a valid synack -
1401 * now create the new socket.
1403 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1404 struct request_sock *req,
1405 struct dst_entry *dst)
1407 struct inet_request_sock *ireq;
1408 struct inet_sock *newinet;
1409 struct tcp_sock *newtp;
1410 struct sock *newsk;
1411 #ifdef CONFIG_TCP_MD5SIG
1412 struct tcp_md5sig_key *key;
1413 #endif
1415 if (sk_acceptq_is_full(sk))
1416 goto exit_overflow;
1418 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1419 goto exit;
1421 newsk = tcp_create_openreq_child(sk, req, skb);
1422 if (!newsk)
1423 goto exit_nonewsk;
1425 newsk->sk_gso_type = SKB_GSO_TCPV4;
1426 sk_setup_caps(newsk, dst);
1428 newtp = tcp_sk(newsk);
1429 newinet = inet_sk(newsk);
1430 ireq = inet_rsk(req);
1431 newinet->inet_daddr = ireq->rmt_addr;
1432 newinet->inet_rcv_saddr = ireq->loc_addr;
1433 newinet->inet_saddr = ireq->loc_addr;
1434 newinet->opt = ireq->opt;
1435 ireq->opt = NULL;
1436 newinet->mc_index = inet_iif(skb);
1437 newinet->mc_ttl = ip_hdr(skb)->ttl;
1438 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1439 if (newinet->opt)
1440 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1441 newinet->inet_id = newtp->write_seq ^ jiffies;
1443 tcp_mtup_init(newsk);
1444 tcp_sync_mss(newsk, dst_mtu(dst));
1445 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1446 if (tcp_sk(sk)->rx_opt.user_mss &&
1447 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1448 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1450 tcp_initialize_rcv_mss(newsk);
1452 #ifdef CONFIG_TCP_MD5SIG
1453 /* Copy over the MD5 key from the original socket */
1454 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1455 if (key != NULL) {
1457 * We're using one, so create a matching key
1458 * on the newsk structure. If we fail to get
1459 * memory, then we end up not copying the key
1460 * across. Shucks.
1462 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1463 if (newkey != NULL)
1464 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1465 newkey, key->keylen);
1466 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1468 #endif
1470 if (__inet_inherit_port(sk, newsk) < 0) {
1471 sock_put(newsk);
1472 goto exit;
1474 __inet_hash_nolisten(newsk, NULL);
1476 return newsk;
1478 exit_overflow:
1479 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1480 exit_nonewsk:
1481 dst_release(dst);
1482 exit:
1483 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1484 return NULL;
1486 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1488 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1490 struct tcphdr *th = tcp_hdr(skb);
1491 const struct iphdr *iph = ip_hdr(skb);
1492 struct sock *nsk;
1493 struct request_sock **prev;
1494 /* Find possible connection requests. */
1495 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1496 iph->saddr, iph->daddr);
1497 if (req)
1498 return tcp_check_req(sk, skb, req, prev);
1500 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1501 th->source, iph->daddr, th->dest, inet_iif(skb));
1503 if (nsk) {
1504 if (nsk->sk_state != TCP_TIME_WAIT) {
1505 bh_lock_sock(nsk);
1506 return nsk;
1508 inet_twsk_put(inet_twsk(nsk));
1509 return NULL;
1512 #ifdef CONFIG_SYN_COOKIES
1513 if (!th->syn)
1514 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1515 #endif
1516 return sk;
1519 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1521 const struct iphdr *iph = ip_hdr(skb);
1523 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1524 if (!tcp_v4_check(skb->len, iph->saddr,
1525 iph->daddr, skb->csum)) {
1526 skb->ip_summed = CHECKSUM_UNNECESSARY;
1527 return 0;
1531 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1532 skb->len, IPPROTO_TCP, 0);
1534 if (skb->len <= 76) {
1535 return __skb_checksum_complete(skb);
1537 return 0;
1541 /* The socket must have it's spinlock held when we get
1542 * here.
1544 * We have a potential double-lock case here, so even when
1545 * doing backlog processing we use the BH locking scheme.
1546 * This is because we cannot sleep with the original spinlock
1547 * held.
1549 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1551 struct sock *rsk;
1552 #ifdef CONFIG_TCP_MD5SIG
1554 * We really want to reject the packet as early as possible
1555 * if:
1556 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1557 * o There is an MD5 option and we're not expecting one
1559 if (tcp_v4_inbound_md5_hash(sk, skb))
1560 goto discard;
1561 #endif
1563 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1564 sock_rps_save_rxhash(sk, skb->rxhash);
1565 TCP_CHECK_TIMER(sk);
1566 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1567 rsk = sk;
1568 goto reset;
1570 TCP_CHECK_TIMER(sk);
1571 return 0;
1574 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1575 goto csum_err;
1577 if (sk->sk_state == TCP_LISTEN) {
1578 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1579 if (!nsk)
1580 goto discard;
1582 if (nsk != sk) {
1583 if (tcp_child_process(sk, nsk, skb)) {
1584 rsk = nsk;
1585 goto reset;
1587 return 0;
1589 } else
1590 sock_rps_save_rxhash(sk, skb->rxhash);
1593 TCP_CHECK_TIMER(sk);
1594 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1595 rsk = sk;
1596 goto reset;
1598 TCP_CHECK_TIMER(sk);
1599 return 0;
1601 reset:
1602 tcp_v4_send_reset(rsk, skb);
1603 discard:
1604 kfree_skb(skb);
1605 /* Be careful here. If this function gets more complicated and
1606 * gcc suffers from register pressure on the x86, sk (in %ebx)
1607 * might be destroyed here. This current version compiles correctly,
1608 * but you have been warned.
1610 return 0;
1612 csum_err:
1613 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1614 goto discard;
1616 EXPORT_SYMBOL(tcp_v4_do_rcv);
1619 * From tcp_input.c
1622 int tcp_v4_rcv(struct sk_buff *skb)
1624 const struct iphdr *iph;
1625 struct tcphdr *th;
1626 struct sock *sk;
1627 int ret;
1628 struct net *net = dev_net(skb->dev);
1630 if (skb->pkt_type != PACKET_HOST)
1631 goto discard_it;
1633 /* Count it even if it's bad */
1634 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1636 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1637 goto discard_it;
1639 th = tcp_hdr(skb);
1641 if (th->doff < sizeof(struct tcphdr) / 4)
1642 goto bad_packet;
1643 if (!pskb_may_pull(skb, th->doff * 4))
1644 goto discard_it;
1646 /* An explanation is required here, I think.
1647 * Packet length and doff are validated by header prediction,
1648 * provided case of th->doff==0 is eliminated.
1649 * So, we defer the checks. */
1650 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1651 goto bad_packet;
1653 th = tcp_hdr(skb);
1654 iph = ip_hdr(skb);
1655 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1656 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1657 skb->len - th->doff * 4);
1658 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1659 TCP_SKB_CB(skb)->when = 0;
1660 TCP_SKB_CB(skb)->flags = iph->tos;
1661 TCP_SKB_CB(skb)->sacked = 0;
1663 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1664 if (!sk)
1665 goto no_tcp_socket;
1667 process:
1668 if (sk->sk_state == TCP_TIME_WAIT)
1669 goto do_time_wait;
1671 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1672 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1673 goto discard_and_relse;
1676 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1677 goto discard_and_relse;
1678 nf_reset(skb);
1680 if (sk_filter(sk, skb))
1681 goto discard_and_relse;
1683 skb->dev = NULL;
1685 bh_lock_sock_nested(sk);
1686 ret = 0;
1687 if (!sock_owned_by_user(sk)) {
1688 #ifdef CONFIG_NET_DMA
1689 struct tcp_sock *tp = tcp_sk(sk);
1690 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1691 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1692 if (tp->ucopy.dma_chan)
1693 ret = tcp_v4_do_rcv(sk, skb);
1694 else
1695 #endif
1697 if (!tcp_prequeue(sk, skb))
1698 ret = tcp_v4_do_rcv(sk, skb);
1700 } else if (unlikely(sk_add_backlog(sk, skb))) {
1701 bh_unlock_sock(sk);
1702 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1703 goto discard_and_relse;
1705 bh_unlock_sock(sk);
1707 sock_put(sk);
1709 return ret;
1711 no_tcp_socket:
1712 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1713 goto discard_it;
1715 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1716 bad_packet:
1717 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1718 } else {
1719 tcp_v4_send_reset(NULL, skb);
1722 discard_it:
1723 /* Discard frame. */
1724 kfree_skb(skb);
1725 return 0;
1727 discard_and_relse:
1728 sock_put(sk);
1729 goto discard_it;
1731 do_time_wait:
1732 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1733 inet_twsk_put(inet_twsk(sk));
1734 goto discard_it;
1737 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1738 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1739 inet_twsk_put(inet_twsk(sk));
1740 goto discard_it;
1742 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1743 case TCP_TW_SYN: {
1744 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1745 &tcp_hashinfo,
1746 iph->daddr, th->dest,
1747 inet_iif(skb));
1748 if (sk2) {
1749 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1750 inet_twsk_put(inet_twsk(sk));
1751 sk = sk2;
1752 goto process;
1754 /* Fall through to ACK */
1756 case TCP_TW_ACK:
1757 tcp_v4_timewait_ack(sk, skb);
1758 break;
1759 case TCP_TW_RST:
1760 goto no_tcp_socket;
1761 case TCP_TW_SUCCESS:;
1763 goto discard_it;
1766 /* VJ's idea. Save last timestamp seen from this destination
1767 * and hold it at least for normal timewait interval to use for duplicate
1768 * segment detection in subsequent connections, before they enter synchronized
1769 * state.
1772 int tcp_v4_remember_stamp(struct sock *sk)
1774 struct inet_sock *inet = inet_sk(sk);
1775 struct tcp_sock *tp = tcp_sk(sk);
1776 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1777 struct inet_peer *peer = NULL;
1778 int release_it = 0;
1780 if (!rt || rt->rt_dst != inet->inet_daddr) {
1781 peer = inet_getpeer(inet->inet_daddr, 1);
1782 release_it = 1;
1783 } else {
1784 if (!rt->peer)
1785 rt_bind_peer(rt, 1);
1786 peer = rt->peer;
1789 if (peer) {
1790 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1791 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1792 peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
1793 peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
1794 peer->tcp_ts = tp->rx_opt.ts_recent;
1796 if (release_it)
1797 inet_putpeer(peer);
1798 return 1;
1801 return 0;
1803 EXPORT_SYMBOL(tcp_v4_remember_stamp);
1805 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1807 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1809 if (peer) {
1810 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1812 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1813 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1814 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1815 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1816 peer->tcp_ts = tcptw->tw_ts_recent;
1818 inet_putpeer(peer);
1819 return 1;
1822 return 0;
1825 const struct inet_connection_sock_af_ops ipv4_specific = {
1826 .queue_xmit = ip_queue_xmit,
1827 .send_check = tcp_v4_send_check,
1828 .rebuild_header = inet_sk_rebuild_header,
1829 .conn_request = tcp_v4_conn_request,
1830 .syn_recv_sock = tcp_v4_syn_recv_sock,
1831 .remember_stamp = tcp_v4_remember_stamp,
1832 .net_header_len = sizeof(struct iphdr),
1833 .setsockopt = ip_setsockopt,
1834 .getsockopt = ip_getsockopt,
1835 .addr2sockaddr = inet_csk_addr2sockaddr,
1836 .sockaddr_len = sizeof(struct sockaddr_in),
1837 .bind_conflict = inet_csk_bind_conflict,
1838 #ifdef CONFIG_COMPAT
1839 .compat_setsockopt = compat_ip_setsockopt,
1840 .compat_getsockopt = compat_ip_getsockopt,
1841 #endif
1843 EXPORT_SYMBOL(ipv4_specific);
1845 #ifdef CONFIG_TCP_MD5SIG
1846 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1847 .md5_lookup = tcp_v4_md5_lookup,
1848 .calc_md5_hash = tcp_v4_md5_hash_skb,
1849 .md5_add = tcp_v4_md5_add_func,
1850 .md5_parse = tcp_v4_parse_md5_keys,
1852 #endif
1854 /* NOTE: A lot of things set to zero explicitly by call to
1855 * sk_alloc() so need not be done here.
1857 static int tcp_v4_init_sock(struct sock *sk)
1859 struct inet_connection_sock *icsk = inet_csk(sk);
1860 struct tcp_sock *tp = tcp_sk(sk);
1862 skb_queue_head_init(&tp->out_of_order_queue);
1863 tcp_init_xmit_timers(sk);
1864 tcp_prequeue_init(tp);
1866 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1867 tp->mdev = TCP_TIMEOUT_INIT;
1869 /* So many TCP implementations out there (incorrectly) count the
1870 * initial SYN frame in their delayed-ACK and congestion control
1871 * algorithms that we must have the following bandaid to talk
1872 * efficiently to them. -DaveM
1874 tp->snd_cwnd = 2;
1876 /* See draft-stevens-tcpca-spec-01 for discussion of the
1877 * initialization of these values.
1879 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1880 tp->snd_cwnd_clamp = ~0;
1881 tp->mss_cache = TCP_MSS_DEFAULT;
1883 tp->reordering = sysctl_tcp_reordering;
1884 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1886 sk->sk_state = TCP_CLOSE;
1888 sk->sk_write_space = sk_stream_write_space;
1889 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1891 icsk->icsk_af_ops = &ipv4_specific;
1892 icsk->icsk_sync_mss = tcp_sync_mss;
1893 #ifdef CONFIG_TCP_MD5SIG
1894 tp->af_specific = &tcp_sock_ipv4_specific;
1895 #endif
1897 /* TCP Cookie Transactions */
1898 if (sysctl_tcp_cookie_size > 0) {
1899 /* Default, cookies without s_data_payload. */
1900 tp->cookie_values =
1901 kzalloc(sizeof(*tp->cookie_values),
1902 sk->sk_allocation);
1903 if (tp->cookie_values != NULL)
1904 kref_init(&tp->cookie_values->kref);
1906 /* Presumed zeroed, in order of appearance:
1907 * cookie_in_always, cookie_out_never,
1908 * s_data_constant, s_data_in, s_data_out
1910 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1911 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1913 local_bh_disable();
1914 percpu_counter_inc(&tcp_sockets_allocated);
1915 local_bh_enable();
1917 return 0;
1920 void tcp_v4_destroy_sock(struct sock *sk)
1922 struct tcp_sock *tp = tcp_sk(sk);
1924 tcp_clear_xmit_timers(sk);
1926 tcp_cleanup_congestion_control(sk);
1928 /* Cleanup up the write buffer. */
1929 tcp_write_queue_purge(sk);
1931 /* Cleans up our, hopefully empty, out_of_order_queue. */
1932 __skb_queue_purge(&tp->out_of_order_queue);
1934 #ifdef CONFIG_TCP_MD5SIG
1935 /* Clean up the MD5 key list, if any */
1936 if (tp->md5sig_info) {
1937 tcp_v4_clear_md5_list(sk);
1938 kfree(tp->md5sig_info);
1939 tp->md5sig_info = NULL;
1941 #endif
1943 #ifdef CONFIG_NET_DMA
1944 /* Cleans up our sk_async_wait_queue */
1945 __skb_queue_purge(&sk->sk_async_wait_queue);
1946 #endif
1948 /* Clean prequeue, it must be empty really */
1949 __skb_queue_purge(&tp->ucopy.prequeue);
1951 /* Clean up a referenced TCP bind bucket. */
1952 if (inet_csk(sk)->icsk_bind_hash)
1953 inet_put_port(sk);
1956 * If sendmsg cached page exists, toss it.
1958 if (sk->sk_sndmsg_page) {
1959 __free_page(sk->sk_sndmsg_page);
1960 sk->sk_sndmsg_page = NULL;
1963 /* TCP Cookie Transactions */
1964 if (tp->cookie_values != NULL) {
1965 kref_put(&tp->cookie_values->kref,
1966 tcp_cookie_values_release);
1967 tp->cookie_values = NULL;
1970 percpu_counter_dec(&tcp_sockets_allocated);
1972 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1974 #ifdef CONFIG_PROC_FS
1975 /* Proc filesystem TCP sock list dumping. */
1977 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1979 return hlist_nulls_empty(head) ? NULL :
1980 list_entry(head->first, struct inet_timewait_sock, tw_node);
1983 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1985 return !is_a_nulls(tw->tw_node.next) ?
1986 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1990 * Get next listener socket follow cur. If cur is NULL, get first socket
1991 * starting from bucket given in st->bucket; when st->bucket is zero the
1992 * very first socket in the hash table is returned.
1994 static void *listening_get_next(struct seq_file *seq, void *cur)
1996 struct inet_connection_sock *icsk;
1997 struct hlist_nulls_node *node;
1998 struct sock *sk = cur;
1999 struct inet_listen_hashbucket *ilb;
2000 struct tcp_iter_state *st = seq->private;
2001 struct net *net = seq_file_net(seq);
2003 if (!sk) {
2004 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2005 spin_lock_bh(&ilb->lock);
2006 sk = sk_nulls_head(&ilb->head);
2007 st->offset = 0;
2008 goto get_sk;
2010 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2011 ++st->num;
2012 ++st->offset;
2014 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2015 struct request_sock *req = cur;
2017 icsk = inet_csk(st->syn_wait_sk);
2018 req = req->dl_next;
2019 while (1) {
2020 while (req) {
2021 if (req->rsk_ops->family == st->family) {
2022 cur = req;
2023 goto out;
2025 req = req->dl_next;
2027 st->offset = 0;
2028 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2029 break;
2030 get_req:
2031 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2033 sk = sk_nulls_next(st->syn_wait_sk);
2034 st->state = TCP_SEQ_STATE_LISTENING;
2035 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2036 } else {
2037 icsk = inet_csk(sk);
2038 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2039 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2040 goto start_req;
2041 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2042 sk = sk_nulls_next(sk);
2044 get_sk:
2045 sk_nulls_for_each_from(sk, node) {
2046 if (!net_eq(sock_net(sk), net))
2047 continue;
2048 if (sk->sk_family == st->family) {
2049 cur = sk;
2050 goto out;
2052 icsk = inet_csk(sk);
2053 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2054 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2055 start_req:
2056 st->uid = sock_i_uid(sk);
2057 st->syn_wait_sk = sk;
2058 st->state = TCP_SEQ_STATE_OPENREQ;
2059 st->sbucket = 0;
2060 goto get_req;
2062 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2064 spin_unlock_bh(&ilb->lock);
2065 st->offset = 0;
2066 if (++st->bucket < INET_LHTABLE_SIZE) {
2067 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2068 spin_lock_bh(&ilb->lock);
2069 sk = sk_nulls_head(&ilb->head);
2070 goto get_sk;
2072 cur = NULL;
2073 out:
2074 return cur;
2077 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2079 struct tcp_iter_state *st = seq->private;
2080 void *rc;
2082 st->bucket = 0;
2083 st->offset = 0;
2084 rc = listening_get_next(seq, NULL);
2086 while (rc && *pos) {
2087 rc = listening_get_next(seq, rc);
2088 --*pos;
2090 return rc;
2093 static inline int empty_bucket(struct tcp_iter_state *st)
2095 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2096 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2100 * Get first established socket starting from bucket given in st->bucket.
2101 * If st->bucket is zero, the very first socket in the hash is returned.
2103 static void *established_get_first(struct seq_file *seq)
2105 struct tcp_iter_state *st = seq->private;
2106 struct net *net = seq_file_net(seq);
2107 void *rc = NULL;
2109 st->offset = 0;
2110 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2111 struct sock *sk;
2112 struct hlist_nulls_node *node;
2113 struct inet_timewait_sock *tw;
2114 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2116 /* Lockless fast path for the common case of empty buckets */
2117 if (empty_bucket(st))
2118 continue;
2120 spin_lock_bh(lock);
2121 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2122 if (sk->sk_family != st->family ||
2123 !net_eq(sock_net(sk), net)) {
2124 continue;
2126 rc = sk;
2127 goto out;
2129 st->state = TCP_SEQ_STATE_TIME_WAIT;
2130 inet_twsk_for_each(tw, node,
2131 &tcp_hashinfo.ehash[st->bucket].twchain) {
2132 if (tw->tw_family != st->family ||
2133 !net_eq(twsk_net(tw), net)) {
2134 continue;
2136 rc = tw;
2137 goto out;
2139 spin_unlock_bh(lock);
2140 st->state = TCP_SEQ_STATE_ESTABLISHED;
2142 out:
2143 return rc;
2146 static void *established_get_next(struct seq_file *seq, void *cur)
2148 struct sock *sk = cur;
2149 struct inet_timewait_sock *tw;
2150 struct hlist_nulls_node *node;
2151 struct tcp_iter_state *st = seq->private;
2152 struct net *net = seq_file_net(seq);
2154 ++st->num;
2155 ++st->offset;
2157 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2158 tw = cur;
2159 tw = tw_next(tw);
2160 get_tw:
2161 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2162 tw = tw_next(tw);
2164 if (tw) {
2165 cur = tw;
2166 goto out;
2168 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2169 st->state = TCP_SEQ_STATE_ESTABLISHED;
2171 /* Look for next non empty bucket */
2172 st->offset = 0;
2173 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2174 empty_bucket(st))
2176 if (st->bucket > tcp_hashinfo.ehash_mask)
2177 return NULL;
2179 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2180 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2181 } else
2182 sk = sk_nulls_next(sk);
2184 sk_nulls_for_each_from(sk, node) {
2185 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2186 goto found;
2189 st->state = TCP_SEQ_STATE_TIME_WAIT;
2190 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2191 goto get_tw;
2192 found:
2193 cur = sk;
2194 out:
2195 return cur;
2198 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2200 struct tcp_iter_state *st = seq->private;
2201 void *rc;
2203 st->bucket = 0;
2204 rc = established_get_first(seq);
2206 while (rc && pos) {
2207 rc = established_get_next(seq, rc);
2208 --pos;
2210 return rc;
2213 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2215 void *rc;
2216 struct tcp_iter_state *st = seq->private;
2218 st->state = TCP_SEQ_STATE_LISTENING;
2219 rc = listening_get_idx(seq, &pos);
2221 if (!rc) {
2222 st->state = TCP_SEQ_STATE_ESTABLISHED;
2223 rc = established_get_idx(seq, pos);
2226 return rc;
2229 static void *tcp_seek_last_pos(struct seq_file *seq)
2231 struct tcp_iter_state *st = seq->private;
2232 int offset = st->offset;
2233 int orig_num = st->num;
2234 void *rc = NULL;
2236 switch (st->state) {
2237 case TCP_SEQ_STATE_OPENREQ:
2238 case TCP_SEQ_STATE_LISTENING:
2239 if (st->bucket >= INET_LHTABLE_SIZE)
2240 break;
2241 st->state = TCP_SEQ_STATE_LISTENING;
2242 rc = listening_get_next(seq, NULL);
2243 while (offset-- && rc)
2244 rc = listening_get_next(seq, rc);
2245 if (rc)
2246 break;
2247 st->bucket = 0;
2248 /* Fallthrough */
2249 case TCP_SEQ_STATE_ESTABLISHED:
2250 case TCP_SEQ_STATE_TIME_WAIT:
2251 st->state = TCP_SEQ_STATE_ESTABLISHED;
2252 if (st->bucket > tcp_hashinfo.ehash_mask)
2253 break;
2254 rc = established_get_first(seq);
2255 while (offset-- && rc)
2256 rc = established_get_next(seq, rc);
2259 st->num = orig_num;
2261 return rc;
2264 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2266 struct tcp_iter_state *st = seq->private;
2267 void *rc;
2269 if (*pos && *pos == st->last_pos) {
2270 rc = tcp_seek_last_pos(seq);
2271 if (rc)
2272 goto out;
2275 st->state = TCP_SEQ_STATE_LISTENING;
2276 st->num = 0;
2277 st->bucket = 0;
2278 st->offset = 0;
2279 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2281 out:
2282 st->last_pos = *pos;
2283 return rc;
2286 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2288 struct tcp_iter_state *st = seq->private;
2289 void *rc = NULL;
2291 if (v == SEQ_START_TOKEN) {
2292 rc = tcp_get_idx(seq, 0);
2293 goto out;
2296 switch (st->state) {
2297 case TCP_SEQ_STATE_OPENREQ:
2298 case TCP_SEQ_STATE_LISTENING:
2299 rc = listening_get_next(seq, v);
2300 if (!rc) {
2301 st->state = TCP_SEQ_STATE_ESTABLISHED;
2302 st->bucket = 0;
2303 st->offset = 0;
2304 rc = established_get_first(seq);
2306 break;
2307 case TCP_SEQ_STATE_ESTABLISHED:
2308 case TCP_SEQ_STATE_TIME_WAIT:
2309 rc = established_get_next(seq, v);
2310 break;
2312 out:
2313 ++*pos;
2314 st->last_pos = *pos;
2315 return rc;
2318 static void tcp_seq_stop(struct seq_file *seq, void *v)
2320 struct tcp_iter_state *st = seq->private;
2322 switch (st->state) {
2323 case TCP_SEQ_STATE_OPENREQ:
2324 if (v) {
2325 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2326 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2328 case TCP_SEQ_STATE_LISTENING:
2329 if (v != SEQ_START_TOKEN)
2330 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2331 break;
2332 case TCP_SEQ_STATE_TIME_WAIT:
2333 case TCP_SEQ_STATE_ESTABLISHED:
2334 if (v)
2335 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2336 break;
2340 static int tcp_seq_open(struct inode *inode, struct file *file)
2342 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2343 struct tcp_iter_state *s;
2344 int err;
2346 err = seq_open_net(inode, file, &afinfo->seq_ops,
2347 sizeof(struct tcp_iter_state));
2348 if (err < 0)
2349 return err;
2351 s = ((struct seq_file *)file->private_data)->private;
2352 s->family = afinfo->family;
2353 s->last_pos = 0;
2354 return 0;
2357 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2359 int rc = 0;
2360 struct proc_dir_entry *p;
2362 afinfo->seq_fops.open = tcp_seq_open;
2363 afinfo->seq_fops.read = seq_read;
2364 afinfo->seq_fops.llseek = seq_lseek;
2365 afinfo->seq_fops.release = seq_release_net;
2367 afinfo->seq_ops.start = tcp_seq_start;
2368 afinfo->seq_ops.next = tcp_seq_next;
2369 afinfo->seq_ops.stop = tcp_seq_stop;
2371 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2372 &afinfo->seq_fops, afinfo);
2373 if (!p)
2374 rc = -ENOMEM;
2375 return rc;
2377 EXPORT_SYMBOL(tcp_proc_register);
2379 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2381 proc_net_remove(net, afinfo->name);
2383 EXPORT_SYMBOL(tcp_proc_unregister);
2385 static void get_openreq4(struct sock *sk, struct request_sock *req,
2386 struct seq_file *f, int i, int uid, int *len)
2388 const struct inet_request_sock *ireq = inet_rsk(req);
2389 int ttd = req->expires - jiffies;
2391 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2392 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2394 ireq->loc_addr,
2395 ntohs(inet_sk(sk)->inet_sport),
2396 ireq->rmt_addr,
2397 ntohs(ireq->rmt_port),
2398 TCP_SYN_RECV,
2399 0, 0, /* could print option size, but that is af dependent. */
2400 1, /* timers active (only the expire timer) */
2401 jiffies_to_clock_t(ttd),
2402 req->retrans,
2403 uid,
2404 0, /* non standard timer */
2405 0, /* open_requests have no inode */
2406 atomic_read(&sk->sk_refcnt),
2407 req,
2408 len);
2411 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2413 int timer_active;
2414 unsigned long timer_expires;
2415 struct tcp_sock *tp = tcp_sk(sk);
2416 const struct inet_connection_sock *icsk = inet_csk(sk);
2417 struct inet_sock *inet = inet_sk(sk);
2418 __be32 dest = inet->inet_daddr;
2419 __be32 src = inet->inet_rcv_saddr;
2420 __u16 destp = ntohs(inet->inet_dport);
2421 __u16 srcp = ntohs(inet->inet_sport);
2422 int rx_queue;
2424 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2425 timer_active = 1;
2426 timer_expires = icsk->icsk_timeout;
2427 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2428 timer_active = 4;
2429 timer_expires = icsk->icsk_timeout;
2430 } else if (timer_pending(&sk->sk_timer)) {
2431 timer_active = 2;
2432 timer_expires = sk->sk_timer.expires;
2433 } else {
2434 timer_active = 0;
2435 timer_expires = jiffies;
2438 if (sk->sk_state == TCP_LISTEN)
2439 rx_queue = sk->sk_ack_backlog;
2440 else
2442 * because we dont lock socket, we might find a transient negative value
2444 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2446 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2447 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2448 i, src, srcp, dest, destp, sk->sk_state,
2449 tp->write_seq - tp->snd_una,
2450 rx_queue,
2451 timer_active,
2452 jiffies_to_clock_t(timer_expires - jiffies),
2453 icsk->icsk_retransmits,
2454 sock_i_uid(sk),
2455 icsk->icsk_probes_out,
2456 sock_i_ino(sk),
2457 atomic_read(&sk->sk_refcnt), sk,
2458 jiffies_to_clock_t(icsk->icsk_rto),
2459 jiffies_to_clock_t(icsk->icsk_ack.ato),
2460 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2461 tp->snd_cwnd,
2462 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2463 len);
2466 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2467 struct seq_file *f, int i, int *len)
2469 __be32 dest, src;
2470 __u16 destp, srcp;
2471 int ttd = tw->tw_ttd - jiffies;
2473 if (ttd < 0)
2474 ttd = 0;
2476 dest = tw->tw_daddr;
2477 src = tw->tw_rcv_saddr;
2478 destp = ntohs(tw->tw_dport);
2479 srcp = ntohs(tw->tw_sport);
2481 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2482 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2483 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2484 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2485 atomic_read(&tw->tw_refcnt), tw, len);
2488 #define TMPSZ 150
2490 static int tcp4_seq_show(struct seq_file *seq, void *v)
2492 struct tcp_iter_state *st;
2493 int len;
2495 if (v == SEQ_START_TOKEN) {
2496 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2497 " sl local_address rem_address st tx_queue "
2498 "rx_queue tr tm->when retrnsmt uid timeout "
2499 "inode");
2500 goto out;
2502 st = seq->private;
2504 switch (st->state) {
2505 case TCP_SEQ_STATE_LISTENING:
2506 case TCP_SEQ_STATE_ESTABLISHED:
2507 get_tcp4_sock(v, seq, st->num, &len);
2508 break;
2509 case TCP_SEQ_STATE_OPENREQ:
2510 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2511 break;
2512 case TCP_SEQ_STATE_TIME_WAIT:
2513 get_timewait4_sock(v, seq, st->num, &len);
2514 break;
2516 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2517 out:
2518 return 0;
2521 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2522 .name = "tcp",
2523 .family = AF_INET,
2524 .seq_fops = {
2525 .owner = THIS_MODULE,
2527 .seq_ops = {
2528 .show = tcp4_seq_show,
2532 static int __net_init tcp4_proc_init_net(struct net *net)
2534 return tcp_proc_register(net, &tcp4_seq_afinfo);
2537 static void __net_exit tcp4_proc_exit_net(struct net *net)
2539 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2542 static struct pernet_operations tcp4_net_ops = {
2543 .init = tcp4_proc_init_net,
2544 .exit = tcp4_proc_exit_net,
2547 int __init tcp4_proc_init(void)
2549 return register_pernet_subsys(&tcp4_net_ops);
2552 void tcp4_proc_exit(void)
2554 unregister_pernet_subsys(&tcp4_net_ops);
2556 #endif /* CONFIG_PROC_FS */
2558 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2560 struct iphdr *iph = skb_gro_network_header(skb);
2562 switch (skb->ip_summed) {
2563 case CHECKSUM_COMPLETE:
2564 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2565 skb->csum)) {
2566 skb->ip_summed = CHECKSUM_UNNECESSARY;
2567 break;
2570 /* fall through */
2571 case CHECKSUM_NONE:
2572 NAPI_GRO_CB(skb)->flush = 1;
2573 return NULL;
2576 return tcp_gro_receive(head, skb);
2579 int tcp4_gro_complete(struct sk_buff *skb)
2581 struct iphdr *iph = ip_hdr(skb);
2582 struct tcphdr *th = tcp_hdr(skb);
2584 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2585 iph->saddr, iph->daddr, 0);
2586 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2588 return tcp_gro_complete(skb);
2591 struct proto tcp_prot = {
2592 .name = "TCP",
2593 .owner = THIS_MODULE,
2594 .close = tcp_close,
2595 .connect = tcp_v4_connect,
2596 .disconnect = tcp_disconnect,
2597 .accept = inet_csk_accept,
2598 .ioctl = tcp_ioctl,
2599 .init = tcp_v4_init_sock,
2600 .destroy = tcp_v4_destroy_sock,
2601 .shutdown = tcp_shutdown,
2602 .setsockopt = tcp_setsockopt,
2603 .getsockopt = tcp_getsockopt,
2604 .recvmsg = tcp_recvmsg,
2605 .sendmsg = tcp_sendmsg,
2606 .sendpage = tcp_sendpage,
2607 .backlog_rcv = tcp_v4_do_rcv,
2608 .hash = inet_hash,
2609 .unhash = inet_unhash,
2610 .get_port = inet_csk_get_port,
2611 .enter_memory_pressure = tcp_enter_memory_pressure,
2612 .sockets_allocated = &tcp_sockets_allocated,
2613 .orphan_count = &tcp_orphan_count,
2614 .memory_allocated = &tcp_memory_allocated,
2615 .memory_pressure = &tcp_memory_pressure,
2616 .sysctl_mem = sysctl_tcp_mem,
2617 .sysctl_wmem = sysctl_tcp_wmem,
2618 .sysctl_rmem = sysctl_tcp_rmem,
2619 .max_header = MAX_TCP_HEADER,
2620 .obj_size = sizeof(struct tcp_sock),
2621 .slab_flags = SLAB_DESTROY_BY_RCU,
2622 .twsk_prot = &tcp_timewait_sock_ops,
2623 .rsk_prot = &tcp_request_sock_ops,
2624 .h.hashinfo = &tcp_hashinfo,
2625 .no_autobind = true,
2626 #ifdef CONFIG_COMPAT
2627 .compat_setsockopt = compat_tcp_setsockopt,
2628 .compat_getsockopt = compat_tcp_getsockopt,
2629 #endif
2631 EXPORT_SYMBOL(tcp_prot);
2634 static int __net_init tcp_sk_init(struct net *net)
2636 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2637 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2640 static void __net_exit tcp_sk_exit(struct net *net)
2642 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2645 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2647 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2650 static struct pernet_operations __net_initdata tcp_sk_ops = {
2651 .init = tcp_sk_init,
2652 .exit = tcp_sk_exit,
2653 .exit_batch = tcp_sk_exit_batch,
2656 void __init tcp_v4_init(void)
2658 inet_hashinfo_init(&tcp_hashinfo);
2659 if (register_pernet_subsys(&tcp_sk_ops))
2660 panic("Failed to create the TCP control socket.\n");