sound: seq_midi_event: fix decoding of (N)RPN events
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / wireless / reg.c
blob66cebb5f9ff2c294391b301819cc812b27a880f7
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
45 /**
46 * struct regulatory_request - receipt of last regulatory request
48 * @wiphy: this is set if this request's initiator is
49 * %REGDOM_SET_BY_COUNTRY_IE or %REGDOM_SET_BY_DRIVER. This
50 * can be used by the wireless core to deal with conflicts
51 * and potentially inform users of which devices specifically
52 * cased the conflicts.
53 * @initiator: indicates who sent this request, could be any of
54 * of those set in reg_set_by, %REGDOM_SET_BY_*
55 * @alpha2: the ISO / IEC 3166 alpha2 country code of the requested
56 * regulatory domain. We have a few special codes:
57 * 00 - World regulatory domain
58 * 99 - built by driver but a specific alpha2 cannot be determined
59 * 98 - result of an intersection between two regulatory domains
60 * @intersect: indicates whether the wireless core should intersect
61 * the requested regulatory domain with the presently set regulatory
62 * domain.
63 * @country_ie_checksum: checksum of the last processed and accepted
64 * country IE
65 * @country_ie_env: lets us know if the AP is telling us we are outdoor,
66 * indoor, or if it doesn't matter
68 struct regulatory_request {
69 struct wiphy *wiphy;
70 enum reg_set_by initiator;
71 char alpha2[2];
72 bool intersect;
73 u32 country_ie_checksum;
74 enum environment_cap country_ie_env;
77 /* Receipt of information from last regulatory request */
78 static struct regulatory_request *last_request;
80 /* To trigger userspace events */
81 static struct platform_device *reg_pdev;
83 /* Keep the ordering from large to small */
84 static u32 supported_bandwidths[] = {
85 MHZ_TO_KHZ(40),
86 MHZ_TO_KHZ(20),
89 /* Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2 */
92 static const struct ieee80211_regdomain *cfg80211_regdomain;
94 /* We use this as a place for the rd structure built from the
95 * last parsed country IE to rest until CRDA gets back to us with
96 * what it thinks should apply for the same country */
97 static const struct ieee80211_regdomain *country_ie_regdomain;
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom = {
101 .n_reg_rules = 1,
102 .alpha2 = "00",
103 .reg_rules = {
104 REG_RULE(2412-10, 2462+10, 40, 6, 20,
105 NL80211_RRF_PASSIVE_SCAN |
106 NL80211_RRF_NO_IBSS),
110 static const struct ieee80211_regdomain *cfg80211_world_regdom =
111 &world_regdom;
113 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
114 static char *ieee80211_regdom = "US";
115 module_param(ieee80211_regdom, charp, 0444);
116 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
118 /* We assume 40 MHz bandwidth for the old regulatory work.
119 * We make emphasis we are using the exact same frequencies
120 * as before */
122 static const struct ieee80211_regdomain us_regdom = {
123 .n_reg_rules = 6,
124 .alpha2 = "US",
125 .reg_rules = {
126 /* IEEE 802.11b/g, channels 1..11 */
127 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
128 /* IEEE 802.11a, channel 36 */
129 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
130 /* IEEE 802.11a, channel 40 */
131 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
132 /* IEEE 802.11a, channel 44 */
133 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
134 /* IEEE 802.11a, channels 48..64 */
135 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
136 /* IEEE 802.11a, channels 149..165, outdoor */
137 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
141 static const struct ieee80211_regdomain jp_regdom = {
142 .n_reg_rules = 3,
143 .alpha2 = "JP",
144 .reg_rules = {
145 /* IEEE 802.11b/g, channels 1..14 */
146 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
147 /* IEEE 802.11a, channels 34..48 */
148 REG_RULE(5170-10, 5240+10, 40, 6, 20,
149 NL80211_RRF_PASSIVE_SCAN),
150 /* IEEE 802.11a, channels 52..64 */
151 REG_RULE(5260-10, 5320+10, 40, 6, 20,
152 NL80211_RRF_NO_IBSS |
153 NL80211_RRF_DFS),
157 static const struct ieee80211_regdomain eu_regdom = {
158 .n_reg_rules = 6,
159 /* This alpha2 is bogus, we leave it here just for stupid
160 * backward compatibility */
161 .alpha2 = "EU",
162 .reg_rules = {
163 /* IEEE 802.11b/g, channels 1..13 */
164 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
165 /* IEEE 802.11a, channel 36 */
166 REG_RULE(5180-10, 5180+10, 40, 6, 23,
167 NL80211_RRF_PASSIVE_SCAN),
168 /* IEEE 802.11a, channel 40 */
169 REG_RULE(5200-10, 5200+10, 40, 6, 23,
170 NL80211_RRF_PASSIVE_SCAN),
171 /* IEEE 802.11a, channel 44 */
172 REG_RULE(5220-10, 5220+10, 40, 6, 23,
173 NL80211_RRF_PASSIVE_SCAN),
174 /* IEEE 802.11a, channels 48..64 */
175 REG_RULE(5240-10, 5320+10, 40, 6, 20,
176 NL80211_RRF_NO_IBSS |
177 NL80211_RRF_DFS),
178 /* IEEE 802.11a, channels 100..140 */
179 REG_RULE(5500-10, 5700+10, 40, 6, 30,
180 NL80211_RRF_NO_IBSS |
181 NL80211_RRF_DFS),
185 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
187 if (alpha2[0] == 'U' && alpha2[1] == 'S')
188 return &us_regdom;
189 if (alpha2[0] == 'J' && alpha2[1] == 'P')
190 return &jp_regdom;
191 if (alpha2[0] == 'E' && alpha2[1] == 'U')
192 return &eu_regdom;
193 /* Default, as per the old rules */
194 return &us_regdom;
197 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
199 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
200 return true;
201 return false;
203 #else
204 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
206 return false;
208 #endif
210 static void reset_regdomains(void)
212 /* avoid freeing static information or freeing something twice */
213 if (cfg80211_regdomain == cfg80211_world_regdom)
214 cfg80211_regdomain = NULL;
215 if (cfg80211_world_regdom == &world_regdom)
216 cfg80211_world_regdom = NULL;
217 if (cfg80211_regdomain == &world_regdom)
218 cfg80211_regdomain = NULL;
219 if (is_old_static_regdom(cfg80211_regdomain))
220 cfg80211_regdomain = NULL;
222 kfree(cfg80211_regdomain);
223 kfree(cfg80211_world_regdom);
225 cfg80211_world_regdom = &world_regdom;
226 cfg80211_regdomain = NULL;
229 /* Dynamic world regulatory domain requested by the wireless
230 * core upon initialization */
231 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
233 BUG_ON(!last_request);
235 reset_regdomains();
237 cfg80211_world_regdom = rd;
238 cfg80211_regdomain = rd;
241 bool is_world_regdom(const char *alpha2)
243 if (!alpha2)
244 return false;
245 if (alpha2[0] == '0' && alpha2[1] == '0')
246 return true;
247 return false;
250 static bool is_alpha2_set(const char *alpha2)
252 if (!alpha2)
253 return false;
254 if (alpha2[0] != 0 && alpha2[1] != 0)
255 return true;
256 return false;
259 static bool is_alpha_upper(char letter)
261 /* ASCII A - Z */
262 if (letter >= 65 && letter <= 90)
263 return true;
264 return false;
267 static bool is_unknown_alpha2(const char *alpha2)
269 if (!alpha2)
270 return false;
271 /* Special case where regulatory domain was built by driver
272 * but a specific alpha2 cannot be determined */
273 if (alpha2[0] == '9' && alpha2[1] == '9')
274 return true;
275 return false;
278 static bool is_intersected_alpha2(const char *alpha2)
280 if (!alpha2)
281 return false;
282 /* Special case where regulatory domain is the
283 * result of an intersection between two regulatory domain
284 * structures */
285 if (alpha2[0] == '9' && alpha2[1] == '8')
286 return true;
287 return false;
290 static bool is_an_alpha2(const char *alpha2)
292 if (!alpha2)
293 return false;
294 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
295 return true;
296 return false;
299 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
301 if (!alpha2_x || !alpha2_y)
302 return false;
303 if (alpha2_x[0] == alpha2_y[0] &&
304 alpha2_x[1] == alpha2_y[1])
305 return true;
306 return false;
309 static bool regdom_changed(const char *alpha2)
311 if (!cfg80211_regdomain)
312 return true;
313 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
314 return false;
315 return true;
319 * country_ie_integrity_changes - tells us if the country IE has changed
320 * @checksum: checksum of country IE of fields we are interested in
322 * If the country IE has not changed you can ignore it safely. This is
323 * useful to determine if two devices are seeing two different country IEs
324 * even on the same alpha2. Note that this will return false if no IE has
325 * been set on the wireless core yet.
327 static bool country_ie_integrity_changes(u32 checksum)
329 /* If no IE has been set then the checksum doesn't change */
330 if (unlikely(!last_request->country_ie_checksum))
331 return false;
332 if (unlikely(last_request->country_ie_checksum != checksum))
333 return true;
334 return false;
337 /* This lets us keep regulatory code which is updated on a regulatory
338 * basis in userspace. */
339 static int call_crda(const char *alpha2)
341 char country_env[9 + 2] = "COUNTRY=";
342 char *envp[] = {
343 country_env,
344 NULL
347 if (!is_world_regdom((char *) alpha2))
348 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
349 alpha2[0], alpha2[1]);
350 else
351 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
352 "regulatory domain\n");
354 country_env[8] = alpha2[0];
355 country_env[9] = alpha2[1];
357 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
360 /* Used by nl80211 before kmalloc'ing our regulatory domain */
361 bool reg_is_valid_request(const char *alpha2)
363 if (!last_request)
364 return false;
366 return alpha2_equal(last_request->alpha2, alpha2);
369 /* Sanity check on a regulatory rule */
370 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
372 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
373 u32 freq_diff;
375 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
376 return false;
378 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
379 return false;
381 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
383 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
384 freq_range->max_bandwidth_khz > freq_diff)
385 return false;
387 return true;
390 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
392 const struct ieee80211_reg_rule *reg_rule = NULL;
393 unsigned int i;
395 if (!rd->n_reg_rules)
396 return false;
398 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
399 return false;
401 for (i = 0; i < rd->n_reg_rules; i++) {
402 reg_rule = &rd->reg_rules[i];
403 if (!is_valid_reg_rule(reg_rule))
404 return false;
407 return true;
410 /* Returns value in KHz */
411 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
412 u32 freq)
414 unsigned int i;
415 for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
416 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
417 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
418 if (start_freq_khz >= freq_range->start_freq_khz &&
419 end_freq_khz <= freq_range->end_freq_khz)
420 return supported_bandwidths[i];
422 return 0;
426 * freq_in_rule_band - tells us if a frequency is in a frequency band
427 * @freq_range: frequency rule we want to query
428 * @freq_khz: frequency we are inquiring about
430 * This lets us know if a specific frequency rule is or is not relevant to
431 * a specific frequency's band. Bands are device specific and artificial
432 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
433 * safe for now to assume that a frequency rule should not be part of a
434 * frequency's band if the start freq or end freq are off by more than 2 GHz.
435 * This resolution can be lowered and should be considered as we add
436 * regulatory rule support for other "bands".
438 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
439 u32 freq_khz)
441 #define ONE_GHZ_IN_KHZ 1000000
442 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
443 return true;
444 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
445 return true;
446 return false;
447 #undef ONE_GHZ_IN_KHZ
450 /* Converts a country IE to a regulatory domain. A regulatory domain
451 * structure has a lot of information which the IE doesn't yet have,
452 * so for the other values we use upper max values as we will intersect
453 * with our userspace regulatory agent to get lower bounds. */
454 static struct ieee80211_regdomain *country_ie_2_rd(
455 u8 *country_ie,
456 u8 country_ie_len,
457 u32 *checksum)
459 struct ieee80211_regdomain *rd = NULL;
460 unsigned int i = 0;
461 char alpha2[2];
462 u32 flags = 0;
463 u32 num_rules = 0, size_of_regd = 0;
464 u8 *triplets_start = NULL;
465 u8 len_at_triplet = 0;
466 /* the last channel we have registered in a subband (triplet) */
467 int last_sub_max_channel = 0;
469 *checksum = 0xDEADBEEF;
471 /* Country IE requirements */
472 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
473 country_ie_len & 0x01);
475 alpha2[0] = country_ie[0];
476 alpha2[1] = country_ie[1];
479 * Third octet can be:
480 * 'I' - Indoor
481 * 'O' - Outdoor
483 * anything else we assume is no restrictions
485 if (country_ie[2] == 'I')
486 flags = NL80211_RRF_NO_OUTDOOR;
487 else if (country_ie[2] == 'O')
488 flags = NL80211_RRF_NO_INDOOR;
490 country_ie += 3;
491 country_ie_len -= 3;
493 triplets_start = country_ie;
494 len_at_triplet = country_ie_len;
496 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
498 /* We need to build a reg rule for each triplet, but first we must
499 * calculate the number of reg rules we will need. We will need one
500 * for each channel subband */
501 while (country_ie_len >= 3) {
502 int end_channel = 0;
503 struct ieee80211_country_ie_triplet *triplet =
504 (struct ieee80211_country_ie_triplet *) country_ie;
505 int cur_sub_max_channel = 0, cur_channel = 0;
507 if (triplet->ext.reg_extension_id >=
508 IEEE80211_COUNTRY_EXTENSION_ID) {
509 country_ie += 3;
510 country_ie_len -= 3;
511 continue;
514 /* 2 GHz */
515 if (triplet->chans.first_channel <= 14)
516 end_channel = triplet->chans.first_channel +
517 triplet->chans.num_channels;
518 else
520 * 5 GHz -- For example in country IEs if the first
521 * channel given is 36 and the number of channels is 4
522 * then the individual channel numbers defined for the
523 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
524 * and not 36, 37, 38, 39.
526 * See: http://tinyurl.com/11d-clarification
528 end_channel = triplet->chans.first_channel +
529 (4 * (triplet->chans.num_channels - 1));
531 cur_channel = triplet->chans.first_channel;
532 cur_sub_max_channel = end_channel;
534 /* Basic sanity check */
535 if (cur_sub_max_channel < cur_channel)
536 return NULL;
538 /* Do not allow overlapping channels. Also channels
539 * passed in each subband must be monotonically
540 * increasing */
541 if (last_sub_max_channel) {
542 if (cur_channel <= last_sub_max_channel)
543 return NULL;
544 if (cur_sub_max_channel <= last_sub_max_channel)
545 return NULL;
548 /* When dot11RegulatoryClassesRequired is supported
549 * we can throw ext triplets as part of this soup,
550 * for now we don't care when those change as we
551 * don't support them */
552 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
553 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
554 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
556 last_sub_max_channel = cur_sub_max_channel;
558 country_ie += 3;
559 country_ie_len -= 3;
560 num_rules++;
562 /* Note: this is not a IEEE requirement but
563 * simply a memory requirement */
564 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
565 return NULL;
568 country_ie = triplets_start;
569 country_ie_len = len_at_triplet;
571 size_of_regd = sizeof(struct ieee80211_regdomain) +
572 (num_rules * sizeof(struct ieee80211_reg_rule));
574 rd = kzalloc(size_of_regd, GFP_KERNEL);
575 if (!rd)
576 return NULL;
578 rd->n_reg_rules = num_rules;
579 rd->alpha2[0] = alpha2[0];
580 rd->alpha2[1] = alpha2[1];
582 /* This time around we fill in the rd */
583 while (country_ie_len >= 3) {
584 int end_channel = 0;
585 struct ieee80211_country_ie_triplet *triplet =
586 (struct ieee80211_country_ie_triplet *) country_ie;
587 struct ieee80211_reg_rule *reg_rule = NULL;
588 struct ieee80211_freq_range *freq_range = NULL;
589 struct ieee80211_power_rule *power_rule = NULL;
591 /* Must parse if dot11RegulatoryClassesRequired is true,
592 * we don't support this yet */
593 if (triplet->ext.reg_extension_id >=
594 IEEE80211_COUNTRY_EXTENSION_ID) {
595 country_ie += 3;
596 country_ie_len -= 3;
597 continue;
600 reg_rule = &rd->reg_rules[i];
601 freq_range = &reg_rule->freq_range;
602 power_rule = &reg_rule->power_rule;
604 reg_rule->flags = flags;
606 /* 2 GHz */
607 if (triplet->chans.first_channel <= 14)
608 end_channel = triplet->chans.first_channel +
609 triplet->chans.num_channels;
610 else
611 end_channel = triplet->chans.first_channel +
612 (4 * (triplet->chans.num_channels - 1));
614 /* The +10 is since the regulatory domain expects
615 * the actual band edge, not the center of freq for
616 * its start and end freqs, assuming 20 MHz bandwidth on
617 * the channels passed */
618 freq_range->start_freq_khz =
619 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
620 triplet->chans.first_channel) - 10);
621 freq_range->end_freq_khz =
622 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
623 end_channel) + 10);
625 /* Large arbitrary values, we intersect later */
626 /* Increment this if we ever support >= 40 MHz channels
627 * in IEEE 802.11 */
628 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
629 power_rule->max_antenna_gain = DBI_TO_MBI(100);
630 power_rule->max_eirp = DBM_TO_MBM(100);
632 country_ie += 3;
633 country_ie_len -= 3;
634 i++;
636 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
639 return rd;
643 /* Helper for regdom_intersect(), this does the real
644 * mathematical intersection fun */
645 static int reg_rules_intersect(
646 const struct ieee80211_reg_rule *rule1,
647 const struct ieee80211_reg_rule *rule2,
648 struct ieee80211_reg_rule *intersected_rule)
650 const struct ieee80211_freq_range *freq_range1, *freq_range2;
651 struct ieee80211_freq_range *freq_range;
652 const struct ieee80211_power_rule *power_rule1, *power_rule2;
653 struct ieee80211_power_rule *power_rule;
654 u32 freq_diff;
656 freq_range1 = &rule1->freq_range;
657 freq_range2 = &rule2->freq_range;
658 freq_range = &intersected_rule->freq_range;
660 power_rule1 = &rule1->power_rule;
661 power_rule2 = &rule2->power_rule;
662 power_rule = &intersected_rule->power_rule;
664 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
665 freq_range2->start_freq_khz);
666 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
667 freq_range2->end_freq_khz);
668 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
669 freq_range2->max_bandwidth_khz);
671 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
672 if (freq_range->max_bandwidth_khz > freq_diff)
673 freq_range->max_bandwidth_khz = freq_diff;
675 power_rule->max_eirp = min(power_rule1->max_eirp,
676 power_rule2->max_eirp);
677 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
678 power_rule2->max_antenna_gain);
680 intersected_rule->flags = (rule1->flags | rule2->flags);
682 if (!is_valid_reg_rule(intersected_rule))
683 return -EINVAL;
685 return 0;
689 * regdom_intersect - do the intersection between two regulatory domains
690 * @rd1: first regulatory domain
691 * @rd2: second regulatory domain
693 * Use this function to get the intersection between two regulatory domains.
694 * Once completed we will mark the alpha2 for the rd as intersected, "98",
695 * as no one single alpha2 can represent this regulatory domain.
697 * Returns a pointer to the regulatory domain structure which will hold the
698 * resulting intersection of rules between rd1 and rd2. We will
699 * kzalloc() this structure for you.
701 static struct ieee80211_regdomain *regdom_intersect(
702 const struct ieee80211_regdomain *rd1,
703 const struct ieee80211_regdomain *rd2)
705 int r, size_of_regd;
706 unsigned int x, y;
707 unsigned int num_rules = 0, rule_idx = 0;
708 const struct ieee80211_reg_rule *rule1, *rule2;
709 struct ieee80211_reg_rule *intersected_rule;
710 struct ieee80211_regdomain *rd;
711 /* This is just a dummy holder to help us count */
712 struct ieee80211_reg_rule irule;
714 /* Uses the stack temporarily for counter arithmetic */
715 intersected_rule = &irule;
717 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
719 if (!rd1 || !rd2)
720 return NULL;
722 /* First we get a count of the rules we'll need, then we actually
723 * build them. This is to so we can malloc() and free() a
724 * regdomain once. The reason we use reg_rules_intersect() here
725 * is it will return -EINVAL if the rule computed makes no sense.
726 * All rules that do check out OK are valid. */
728 for (x = 0; x < rd1->n_reg_rules; x++) {
729 rule1 = &rd1->reg_rules[x];
730 for (y = 0; y < rd2->n_reg_rules; y++) {
731 rule2 = &rd2->reg_rules[y];
732 if (!reg_rules_intersect(rule1, rule2,
733 intersected_rule))
734 num_rules++;
735 memset(intersected_rule, 0,
736 sizeof(struct ieee80211_reg_rule));
740 if (!num_rules)
741 return NULL;
743 size_of_regd = sizeof(struct ieee80211_regdomain) +
744 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
746 rd = kzalloc(size_of_regd, GFP_KERNEL);
747 if (!rd)
748 return NULL;
750 for (x = 0; x < rd1->n_reg_rules; x++) {
751 rule1 = &rd1->reg_rules[x];
752 for (y = 0; y < rd2->n_reg_rules; y++) {
753 rule2 = &rd2->reg_rules[y];
754 /* This time around instead of using the stack lets
755 * write to the target rule directly saving ourselves
756 * a memcpy() */
757 intersected_rule = &rd->reg_rules[rule_idx];
758 r = reg_rules_intersect(rule1, rule2,
759 intersected_rule);
760 /* No need to memset here the intersected rule here as
761 * we're not using the stack anymore */
762 if (r)
763 continue;
764 rule_idx++;
768 if (rule_idx != num_rules) {
769 kfree(rd);
770 return NULL;
773 rd->n_reg_rules = num_rules;
774 rd->alpha2[0] = '9';
775 rd->alpha2[1] = '8';
777 return rd;
780 /* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
781 * want to just have the channel structure use these */
782 static u32 map_regdom_flags(u32 rd_flags)
784 u32 channel_flags = 0;
785 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
786 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
787 if (rd_flags & NL80211_RRF_NO_IBSS)
788 channel_flags |= IEEE80211_CHAN_NO_IBSS;
789 if (rd_flags & NL80211_RRF_DFS)
790 channel_flags |= IEEE80211_CHAN_RADAR;
791 return channel_flags;
795 * freq_reg_info - get regulatory information for the given frequency
796 * @center_freq: Frequency in KHz for which we want regulatory information for
797 * @bandwidth: the bandwidth requirement you have in KHz, if you do not have one
798 * you can set this to 0. If this frequency is allowed we then set
799 * this value to the maximum allowed bandwidth.
800 * @reg_rule: the regulatory rule which we have for this frequency
802 * Use this function to get the regulatory rule for a specific frequency on
803 * a given wireless device. If the device has a specific regulatory domain
804 * it wants to follow we respect that unless a country IE has been received
805 * and processed already.
807 * Returns 0 if it was able to find a valid regulatory rule which does
808 * apply to the given center_freq otherwise it returns non-zero. It will
809 * also return -ERANGE if we determine the given center_freq does not even have
810 * a regulatory rule for a frequency range in the center_freq's band. See
811 * freq_in_rule_band() for our current definition of a band -- this is purely
812 * subjective and right now its 802.11 specific.
814 static int freq_reg_info(u32 center_freq, u32 *bandwidth,
815 const struct ieee80211_reg_rule **reg_rule)
817 int i;
818 bool band_rule_found = false;
819 u32 max_bandwidth = 0;
821 if (!cfg80211_regdomain)
822 return -EINVAL;
824 for (i = 0; i < cfg80211_regdomain->n_reg_rules; i++) {
825 const struct ieee80211_reg_rule *rr;
826 const struct ieee80211_freq_range *fr = NULL;
827 const struct ieee80211_power_rule *pr = NULL;
829 rr = &cfg80211_regdomain->reg_rules[i];
830 fr = &rr->freq_range;
831 pr = &rr->power_rule;
833 /* We only need to know if one frequency rule was
834 * was in center_freq's band, that's enough, so lets
835 * not overwrite it once found */
836 if (!band_rule_found)
837 band_rule_found = freq_in_rule_band(fr, center_freq);
839 max_bandwidth = freq_max_bandwidth(fr, center_freq);
841 if (max_bandwidth && *bandwidth <= max_bandwidth) {
842 *reg_rule = rr;
843 *bandwidth = max_bandwidth;
844 break;
848 if (!band_rule_found)
849 return -ERANGE;
851 return !max_bandwidth;
854 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
855 unsigned int chan_idx)
857 int r;
858 u32 flags;
859 u32 max_bandwidth = 0;
860 const struct ieee80211_reg_rule *reg_rule = NULL;
861 const struct ieee80211_power_rule *power_rule = NULL;
862 struct ieee80211_supported_band *sband;
863 struct ieee80211_channel *chan;
865 sband = wiphy->bands[band];
866 BUG_ON(chan_idx >= sband->n_channels);
867 chan = &sband->channels[chan_idx];
869 flags = chan->orig_flags;
871 r = freq_reg_info(MHZ_TO_KHZ(chan->center_freq),
872 &max_bandwidth, &reg_rule);
874 if (r) {
875 /* This means no regulatory rule was found in the country IE
876 * with a frequency range on the center_freq's band, since
877 * IEEE-802.11 allows for a country IE to have a subset of the
878 * regulatory information provided in a country we ignore
879 * disabling the channel unless at least one reg rule was
880 * found on the center_freq's band. For details see this
881 * clarification:
883 * http://tinyurl.com/11d-clarification
885 if (r == -ERANGE &&
886 last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
887 #ifdef CONFIG_CFG80211_REG_DEBUG
888 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
889 "intact on %s - no rule found in band on "
890 "Country IE\n",
891 chan->center_freq, wiphy_name(wiphy));
892 #endif
893 } else {
894 /* In this case we know the country IE has at least one reg rule
895 * for the band so we respect its band definitions */
896 #ifdef CONFIG_CFG80211_REG_DEBUG
897 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
898 printk(KERN_DEBUG "cfg80211: Disabling "
899 "channel %d MHz on %s due to "
900 "Country IE\n",
901 chan->center_freq, wiphy_name(wiphy));
902 #endif
903 flags |= IEEE80211_CHAN_DISABLED;
904 chan->flags = flags;
906 return;
909 power_rule = &reg_rule->power_rule;
911 chan->flags = flags | map_regdom_flags(reg_rule->flags);
912 chan->max_antenna_gain = min(chan->orig_mag,
913 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
914 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
915 if (chan->orig_mpwr)
916 chan->max_power = min(chan->orig_mpwr,
917 (int) MBM_TO_DBM(power_rule->max_eirp));
918 else
919 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
922 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
924 unsigned int i;
925 struct ieee80211_supported_band *sband;
927 BUG_ON(!wiphy->bands[band]);
928 sband = wiphy->bands[band];
930 for (i = 0; i < sband->n_channels; i++)
931 handle_channel(wiphy, band, i);
934 static bool ignore_reg_update(struct wiphy *wiphy, enum reg_set_by setby)
936 if (!last_request)
937 return true;
938 if (setby == REGDOM_SET_BY_CORE &&
939 wiphy->fw_handles_regulatory)
940 return true;
941 return false;
944 static void update_all_wiphy_regulatory(enum reg_set_by setby)
946 struct cfg80211_registered_device *drv;
948 list_for_each_entry(drv, &cfg80211_drv_list, list)
949 if (!ignore_reg_update(&drv->wiphy, setby))
950 wiphy_update_regulatory(&drv->wiphy, setby);
953 void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
955 enum ieee80211_band band;
956 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
957 if (wiphy->bands[band])
958 handle_band(wiphy, band);
959 if (wiphy->reg_notifier)
960 wiphy->reg_notifier(wiphy, setby);
964 /* Return value which can be used by ignore_request() to indicate
965 * it has been determined we should intersect two regulatory domains */
966 #define REG_INTERSECT 1
968 /* This has the logic which determines when a new request
969 * should be ignored. */
970 static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by,
971 const char *alpha2)
973 /* All initial requests are respected */
974 if (!last_request)
975 return 0;
977 switch (set_by) {
978 case REGDOM_SET_BY_INIT:
979 return -EINVAL;
980 case REGDOM_SET_BY_CORE:
982 * Always respect new wireless core hints, should only happen
983 * when updating the world regulatory domain at init.
985 return 0;
986 case REGDOM_SET_BY_COUNTRY_IE:
987 if (unlikely(!is_an_alpha2(alpha2)))
988 return -EINVAL;
989 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
990 if (last_request->wiphy != wiphy) {
992 * Two cards with two APs claiming different
993 * different Country IE alpha2s. We could
994 * intersect them, but that seems unlikely
995 * to be correct. Reject second one for now.
997 if (!alpha2_equal(alpha2,
998 cfg80211_regdomain->alpha2))
999 return -EOPNOTSUPP;
1000 return -EALREADY;
1002 /* Two consecutive Country IE hints on the same wiphy.
1003 * This should be picked up early by the driver/stack */
1004 if (WARN_ON(!alpha2_equal(cfg80211_regdomain->alpha2,
1005 alpha2)))
1006 return 0;
1007 return -EALREADY;
1009 return REG_INTERSECT;
1010 case REGDOM_SET_BY_DRIVER:
1011 if (last_request->initiator == REGDOM_SET_BY_DRIVER)
1012 return -EALREADY;
1013 return 0;
1014 case REGDOM_SET_BY_USER:
1015 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
1016 return REG_INTERSECT;
1017 /* If the user knows better the user should set the regdom
1018 * to their country before the IE is picked up */
1019 if (last_request->initiator == REGDOM_SET_BY_USER &&
1020 last_request->intersect)
1021 return -EOPNOTSUPP;
1022 return 0;
1025 return -EINVAL;
1028 /* Caller must hold &cfg80211_drv_mutex */
1029 int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by,
1030 const char *alpha2,
1031 u32 country_ie_checksum,
1032 enum environment_cap env)
1034 struct regulatory_request *request;
1035 bool intersect = false;
1036 int r = 0;
1038 r = ignore_request(wiphy, set_by, alpha2);
1040 if (r == REG_INTERSECT)
1041 intersect = true;
1042 else if (r)
1043 return r;
1045 request = kzalloc(sizeof(struct regulatory_request),
1046 GFP_KERNEL);
1047 if (!request)
1048 return -ENOMEM;
1050 request->alpha2[0] = alpha2[0];
1051 request->alpha2[1] = alpha2[1];
1052 request->initiator = set_by;
1053 request->wiphy = wiphy;
1054 request->intersect = intersect;
1055 request->country_ie_checksum = country_ie_checksum;
1056 request->country_ie_env = env;
1058 kfree(last_request);
1059 last_request = request;
1061 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
1062 * AND if CRDA is NOT present nothing will happen, if someone
1063 * wants to bother with 11d with OLD_REG you can add a timer.
1064 * If after x amount of time nothing happens you can call:
1066 * return set_regdom(country_ie_regdomain);
1068 * to intersect with the static rd
1070 return call_crda(alpha2);
1073 void regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1075 BUG_ON(!alpha2);
1077 mutex_lock(&cfg80211_drv_mutex);
1078 __regulatory_hint(wiphy, REGDOM_SET_BY_DRIVER, alpha2, 0, ENVIRON_ANY);
1079 mutex_unlock(&cfg80211_drv_mutex);
1081 EXPORT_SYMBOL(regulatory_hint);
1083 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1084 u32 country_ie_checksum)
1086 if (unlikely(last_request->initiator != REGDOM_SET_BY_COUNTRY_IE))
1087 return false;
1088 if (!last_request->wiphy)
1089 return false;
1090 if (likely(last_request->wiphy != wiphy))
1091 return !country_ie_integrity_changes(country_ie_checksum);
1092 /* We should not have let these through at this point, they
1093 * should have been picked up earlier by the first alpha2 check
1094 * on the device */
1095 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1096 return true;
1097 return false;
1100 void regulatory_hint_11d(struct wiphy *wiphy,
1101 u8 *country_ie,
1102 u8 country_ie_len)
1104 struct ieee80211_regdomain *rd = NULL;
1105 char alpha2[2];
1106 u32 checksum = 0;
1107 enum environment_cap env = ENVIRON_ANY;
1109 if (!last_request)
1110 return;
1112 mutex_lock(&cfg80211_drv_mutex);
1114 /* IE len must be evenly divisible by 2 */
1115 if (country_ie_len & 0x01)
1116 goto out;
1118 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1119 goto out;
1121 /* Pending country IE processing, this can happen after we
1122 * call CRDA and wait for a response if a beacon was received before
1123 * we were able to process the last regulatory_hint_11d() call */
1124 if (country_ie_regdomain)
1125 goto out;
1127 alpha2[0] = country_ie[0];
1128 alpha2[1] = country_ie[1];
1130 if (country_ie[2] == 'I')
1131 env = ENVIRON_INDOOR;
1132 else if (country_ie[2] == 'O')
1133 env = ENVIRON_OUTDOOR;
1135 /* We will run this for *every* beacon processed for the BSSID, so
1136 * we optimize an early check to exit out early if we don't have to
1137 * do anything */
1138 if (likely(last_request->initiator ==
1139 REGDOM_SET_BY_COUNTRY_IE &&
1140 likely(last_request->wiphy))) {
1141 struct cfg80211_registered_device *drv_last_ie;
1143 drv_last_ie = wiphy_to_dev(last_request->wiphy);
1145 /* Lets keep this simple -- we trust the first AP
1146 * after we intersect with CRDA */
1147 if (likely(last_request->wiphy == wiphy)) {
1148 /* Ignore IEs coming in on this wiphy with
1149 * the same alpha2 and environment cap */
1150 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1151 alpha2) &&
1152 env == drv_last_ie->env)) {
1153 goto out;
1155 /* the wiphy moved on to another BSSID or the AP
1156 * was reconfigured. XXX: We need to deal with the
1157 * case where the user suspends and goes to goes
1158 * to another country, and then gets IEs from an
1159 * AP with different settings */
1160 goto out;
1161 } else {
1162 /* Ignore IEs coming in on two separate wiphys with
1163 * the same alpha2 and environment cap */
1164 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1165 alpha2) &&
1166 env == drv_last_ie->env)) {
1167 goto out;
1169 /* We could potentially intersect though */
1170 goto out;
1174 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1175 if (!rd)
1176 goto out;
1178 /* This will not happen right now but we leave it here for the
1179 * the future when we want to add suspend/resume support and having
1180 * the user move to another country after doing so, or having the user
1181 * move to another AP. Right now we just trust the first AP. This is why
1182 * this is marked as likley(). If we hit this before we add this support
1183 * we want to be informed of it as it would indicate a mistake in the
1184 * current design */
1185 if (likely(WARN_ON(reg_same_country_ie_hint(wiphy, checksum))))
1186 goto out;
1188 /* We keep this around for when CRDA comes back with a response so
1189 * we can intersect with that */
1190 country_ie_regdomain = rd;
1192 __regulatory_hint(wiphy, REGDOM_SET_BY_COUNTRY_IE,
1193 country_ie_regdomain->alpha2, checksum, env);
1195 out:
1196 mutex_unlock(&cfg80211_drv_mutex);
1198 EXPORT_SYMBOL(regulatory_hint_11d);
1200 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1202 unsigned int i;
1203 const struct ieee80211_reg_rule *reg_rule = NULL;
1204 const struct ieee80211_freq_range *freq_range = NULL;
1205 const struct ieee80211_power_rule *power_rule = NULL;
1207 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1208 "(max_antenna_gain, max_eirp)\n");
1210 for (i = 0; i < rd->n_reg_rules; i++) {
1211 reg_rule = &rd->reg_rules[i];
1212 freq_range = &reg_rule->freq_range;
1213 power_rule = &reg_rule->power_rule;
1215 /* There may not be documentation for max antenna gain
1216 * in certain regions */
1217 if (power_rule->max_antenna_gain)
1218 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1219 "(%d mBi, %d mBm)\n",
1220 freq_range->start_freq_khz,
1221 freq_range->end_freq_khz,
1222 freq_range->max_bandwidth_khz,
1223 power_rule->max_antenna_gain,
1224 power_rule->max_eirp);
1225 else
1226 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1227 "(N/A, %d mBm)\n",
1228 freq_range->start_freq_khz,
1229 freq_range->end_freq_khz,
1230 freq_range->max_bandwidth_khz,
1231 power_rule->max_eirp);
1235 static void print_regdomain(const struct ieee80211_regdomain *rd)
1238 if (is_intersected_alpha2(rd->alpha2)) {
1239 struct wiphy *wiphy = NULL;
1240 struct cfg80211_registered_device *drv;
1242 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1243 if (last_request->wiphy) {
1244 wiphy = last_request->wiphy;
1245 drv = wiphy_to_dev(wiphy);
1246 printk(KERN_INFO "cfg80211: Current regulatory "
1247 "domain updated by AP to: %c%c\n",
1248 drv->country_ie_alpha2[0],
1249 drv->country_ie_alpha2[1]);
1250 } else
1251 printk(KERN_INFO "cfg80211: Current regulatory "
1252 "domain intersected: \n");
1253 } else
1254 printk(KERN_INFO "cfg80211: Current regulatory "
1255 "intersected: \n");
1256 } else if (is_world_regdom(rd->alpha2))
1257 printk(KERN_INFO "cfg80211: World regulatory "
1258 "domain updated:\n");
1259 else {
1260 if (is_unknown_alpha2(rd->alpha2))
1261 printk(KERN_INFO "cfg80211: Regulatory domain "
1262 "changed to driver built-in settings "
1263 "(unknown country)\n");
1264 else
1265 printk(KERN_INFO "cfg80211: Regulatory domain "
1266 "changed to country: %c%c\n",
1267 rd->alpha2[0], rd->alpha2[1]);
1269 print_rd_rules(rd);
1272 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1274 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1275 rd->alpha2[0], rd->alpha2[1]);
1276 print_rd_rules(rd);
1279 #ifdef CONFIG_CFG80211_REG_DEBUG
1280 static void reg_country_ie_process_debug(
1281 const struct ieee80211_regdomain *rd,
1282 const struct ieee80211_regdomain *country_ie_regdomain,
1283 const struct ieee80211_regdomain *intersected_rd)
1285 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1286 print_regdomain_info(country_ie_regdomain);
1287 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1288 print_regdomain_info(rd);
1289 if (intersected_rd) {
1290 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1291 "and get:\n");
1292 print_regdomain_info(intersected_rd);
1293 return;
1295 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1297 #else
1298 static inline void reg_country_ie_process_debug(
1299 const struct ieee80211_regdomain *rd,
1300 const struct ieee80211_regdomain *country_ie_regdomain,
1301 const struct ieee80211_regdomain *intersected_rd)
1304 #endif
1306 /* Takes ownership of rd only if it doesn't fail */
1307 static int __set_regdom(const struct ieee80211_regdomain *rd)
1309 const struct ieee80211_regdomain *intersected_rd = NULL;
1310 struct cfg80211_registered_device *drv = NULL;
1311 struct wiphy *wiphy = NULL;
1312 /* Some basic sanity checks first */
1314 if (is_world_regdom(rd->alpha2)) {
1315 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1316 return -EINVAL;
1317 update_world_regdomain(rd);
1318 return 0;
1321 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1322 !is_unknown_alpha2(rd->alpha2))
1323 return -EINVAL;
1325 if (!last_request)
1326 return -EINVAL;
1328 /* Lets only bother proceeding on the same alpha2 if the current
1329 * rd is non static (it means CRDA was present and was used last)
1330 * and the pending request came in from a country IE */
1331 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1332 /* If someone else asked us to change the rd lets only bother
1333 * checking if the alpha2 changes if CRDA was already called */
1334 if (!is_old_static_regdom(cfg80211_regdomain) &&
1335 !regdom_changed(rd->alpha2))
1336 return -EINVAL;
1339 wiphy = last_request->wiphy;
1341 /* Now lets set the regulatory domain, update all driver channels
1342 * and finally inform them of what we have done, in case they want
1343 * to review or adjust their own settings based on their own
1344 * internal EEPROM data */
1346 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1347 return -EINVAL;
1349 if (!is_valid_rd(rd)) {
1350 printk(KERN_ERR "cfg80211: Invalid "
1351 "regulatory domain detected:\n");
1352 print_regdomain_info(rd);
1353 return -EINVAL;
1356 if (!last_request->intersect) {
1357 reset_regdomains();
1358 cfg80211_regdomain = rd;
1359 return 0;
1362 /* Intersection requires a bit more work */
1364 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1366 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1367 if (!intersected_rd)
1368 return -EINVAL;
1370 /* We can trash what CRDA provided now */
1371 kfree(rd);
1372 rd = NULL;
1374 reset_regdomains();
1375 cfg80211_regdomain = intersected_rd;
1377 return 0;
1381 * Country IE requests are handled a bit differently, we intersect
1382 * the country IE rd with what CRDA believes that country should have
1385 BUG_ON(!country_ie_regdomain);
1387 if (rd != country_ie_regdomain) {
1388 /* Intersect what CRDA returned and our what we
1389 * had built from the Country IE received */
1391 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
1393 reg_country_ie_process_debug(rd, country_ie_regdomain,
1394 intersected_rd);
1396 kfree(country_ie_regdomain);
1397 country_ie_regdomain = NULL;
1398 } else {
1399 /* This would happen when CRDA was not present and
1400 * OLD_REGULATORY was enabled. We intersect our Country
1401 * IE rd and what was set on cfg80211 originally */
1402 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1405 if (!intersected_rd)
1406 return -EINVAL;
1408 drv = wiphy_to_dev(wiphy);
1410 drv->country_ie_alpha2[0] = rd->alpha2[0];
1411 drv->country_ie_alpha2[1] = rd->alpha2[1];
1412 drv->env = last_request->country_ie_env;
1414 BUG_ON(intersected_rd == rd);
1416 kfree(rd);
1417 rd = NULL;
1419 reset_regdomains();
1420 cfg80211_regdomain = intersected_rd;
1422 return 0;
1426 /* Use this call to set the current regulatory domain. Conflicts with
1427 * multiple drivers can be ironed out later. Caller must've already
1428 * kmalloc'd the rd structure. Caller must hold cfg80211_drv_mutex */
1429 int set_regdom(const struct ieee80211_regdomain *rd)
1431 int r;
1433 /* Note that this doesn't update the wiphys, this is done below */
1434 r = __set_regdom(rd);
1435 if (r) {
1436 kfree(rd);
1437 return r;
1440 /* This would make this whole thing pointless */
1441 if (!last_request->intersect)
1442 BUG_ON(rd != cfg80211_regdomain);
1444 /* update all wiphys now with the new established regulatory domain */
1445 update_all_wiphy_regulatory(last_request->initiator);
1447 print_regdomain(cfg80211_regdomain);
1449 return r;
1452 /* Caller must hold cfg80211_drv_mutex */
1453 void reg_device_remove(struct wiphy *wiphy)
1455 if (!last_request || !last_request->wiphy)
1456 return;
1457 if (last_request->wiphy != wiphy)
1458 return;
1459 last_request->wiphy = NULL;
1460 last_request->country_ie_env = ENVIRON_ANY;
1463 int regulatory_init(void)
1465 int err;
1467 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1468 if (IS_ERR(reg_pdev))
1469 return PTR_ERR(reg_pdev);
1471 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
1472 cfg80211_regdomain = static_regdom(ieee80211_regdom);
1474 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
1475 print_regdomain_info(cfg80211_regdomain);
1477 * The old code still requests for a new regdomain and if
1478 * you have CRDA you get it updated, otherwise you get
1479 * stuck with the static values. We ignore "EU" code as
1480 * that is not a valid ISO / IEC 3166 alpha2
1481 * stuck with the static values. Since "EU" is not a valid
1482 * ISO / IEC 3166 alpha2 code we can't expect userpace to
1483 * give us a regulatory domain for it. We need last_request
1484 * iniitalized though so lets just send a request which we
1485 * know will be ignored... this crap will be removed once
1486 * OLD_REG dies.
1488 err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE,
1489 ieee80211_regdom, 0, ENVIRON_ANY);
1490 #else
1491 cfg80211_regdomain = cfg80211_world_regdom;
1493 err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE, "00", 0, ENVIRON_ANY);
1494 if (err)
1495 printk(KERN_ERR "cfg80211: calling CRDA failed - "
1496 "unable to update world regulatory domain, "
1497 "using static definition\n");
1498 #endif
1501 * This ensures last_request is populated once modules
1502 * come swinging in and calling regulatory hints and
1503 * wiphy_apply_custom_regulatory().
1505 flush_scheduled_work();
1507 return 0;
1510 void regulatory_exit(void)
1512 mutex_lock(&cfg80211_drv_mutex);
1514 reset_regdomains();
1516 kfree(country_ie_regdomain);
1517 country_ie_regdomain = NULL;
1519 kfree(last_request);
1521 platform_device_unregister(reg_pdev);
1523 mutex_unlock(&cfg80211_drv_mutex);