sound: seq_midi_event: fix decoding of (N)RPN events
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / futex.c
blob2844297d985bcd063598ae3d3b5e0afe4201bafe
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
59 #include <asm/futex.h>
61 #include "rtmutex_common.h"
63 int __read_mostly futex_cmpxchg_enabled;
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
68 * Priority Inheritance state:
70 struct futex_pi_state {
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
75 struct list_head list;
78 * The PI object:
80 struct rt_mutex pi_mutex;
82 struct task_struct *owner;
83 atomic_t refcount;
85 union futex_key key;
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiter, then make the second condition true.
97 struct futex_q {
98 struct plist_node list;
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
102 /* Which hash list lock to use: */
103 spinlock_t *lock_ptr;
105 /* Key which the futex is hashed on: */
106 union futex_key key;
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
117 * Split the global futex_lock into every hash list lock.
119 struct futex_hash_bucket {
120 spinlock_t lock;
121 struct plist_head chain;
124 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
127 * We hash on the keys returned from get_futex_key (see below).
129 static struct futex_hash_bucket *hash_futex(union futex_key *key)
131 u32 hash = jhash2((u32*)&key->both.word,
132 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
133 key->both.offset);
134 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
138 * Return 1 if two futex_keys are equal, 0 otherwise.
140 static inline int match_futex(union futex_key *key1, union futex_key *key2)
142 return (key1->both.word == key2->both.word
143 && key1->both.ptr == key2->both.ptr
144 && key1->both.offset == key2->both.offset);
148 * Take a reference to the resource addressed by a key.
149 * Can be called while holding spinlocks.
152 static void get_futex_key_refs(union futex_key *key)
154 if (!key->both.ptr)
155 return;
157 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
158 case FUT_OFF_INODE:
159 atomic_inc(&key->shared.inode->i_count);
160 break;
161 case FUT_OFF_MMSHARED:
162 atomic_inc(&key->private.mm->mm_count);
163 break;
168 * Drop a reference to the resource addressed by a key.
169 * The hash bucket spinlock must not be held.
171 static void drop_futex_key_refs(union futex_key *key)
173 if (!key->both.ptr) {
174 /* If we're here then we tried to put a key we failed to get */
175 WARN_ON_ONCE(1);
176 return;
179 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
180 case FUT_OFF_INODE:
181 iput(key->shared.inode);
182 break;
183 case FUT_OFF_MMSHARED:
184 mmdrop(key->private.mm);
185 break;
190 * get_futex_key - Get parameters which are the keys for a futex.
191 * @uaddr: virtual address of the futex
192 * @shared: NULL for a PROCESS_PRIVATE futex,
193 * &current->mm->mmap_sem for a PROCESS_SHARED futex
194 * @key: address where result is stored.
195 * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
197 * Returns a negative error code or 0
198 * The key words are stored in *key on success.
200 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
201 * offset_within_page). For private mappings, it's (uaddr, current->mm).
202 * We can usually work out the index without swapping in the page.
204 * fshared is NULL for PROCESS_PRIVATE futexes
205 * For other futexes, it points to &current->mm->mmap_sem and
206 * caller must have taken the reader lock. but NOT any spinlocks.
208 static int
209 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
211 unsigned long address = (unsigned long)uaddr;
212 struct mm_struct *mm = current->mm;
213 struct page *page;
214 int err;
217 * The futex address must be "naturally" aligned.
219 key->both.offset = address % PAGE_SIZE;
220 if (unlikely((address % sizeof(u32)) != 0))
221 return -EINVAL;
222 address -= key->both.offset;
225 * PROCESS_PRIVATE futexes are fast.
226 * As the mm cannot disappear under us and the 'key' only needs
227 * virtual address, we dont even have to find the underlying vma.
228 * Note : We do have to check 'uaddr' is a valid user address,
229 * but access_ok() should be faster than find_vma()
231 if (!fshared) {
232 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
233 return -EFAULT;
234 key->private.mm = mm;
235 key->private.address = address;
236 get_futex_key_refs(key);
237 return 0;
240 again:
241 err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
242 if (err < 0)
243 return err;
245 lock_page(page);
246 if (!page->mapping) {
247 unlock_page(page);
248 put_page(page);
249 goto again;
253 * Private mappings are handled in a simple way.
255 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
256 * it's a read-only handle, it's expected that futexes attach to
257 * the object not the particular process.
259 if (PageAnon(page)) {
260 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
261 key->private.mm = mm;
262 key->private.address = address;
263 } else {
264 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
265 key->shared.inode = page->mapping->host;
266 key->shared.pgoff = page->index;
269 get_futex_key_refs(key);
271 unlock_page(page);
272 put_page(page);
273 return 0;
276 static inline
277 void put_futex_key(int fshared, union futex_key *key)
279 drop_futex_key_refs(key);
282 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
284 u32 curval;
286 pagefault_disable();
287 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
288 pagefault_enable();
290 return curval;
293 static int get_futex_value_locked(u32 *dest, u32 __user *from)
295 int ret;
297 pagefault_disable();
298 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
299 pagefault_enable();
301 return ret ? -EFAULT : 0;
305 * Fault handling.
307 static int futex_handle_fault(unsigned long address, int attempt)
309 struct vm_area_struct * vma;
310 struct mm_struct *mm = current->mm;
311 int ret = -EFAULT;
313 if (attempt > 2)
314 return ret;
316 down_read(&mm->mmap_sem);
317 vma = find_vma(mm, address);
318 if (vma && address >= vma->vm_start &&
319 (vma->vm_flags & VM_WRITE)) {
320 int fault;
321 fault = handle_mm_fault(mm, vma, address, 1);
322 if (unlikely((fault & VM_FAULT_ERROR))) {
323 #if 0
324 /* XXX: let's do this when we verify it is OK */
325 if (ret & VM_FAULT_OOM)
326 ret = -ENOMEM;
327 #endif
328 } else {
329 ret = 0;
330 if (fault & VM_FAULT_MAJOR)
331 current->maj_flt++;
332 else
333 current->min_flt++;
336 up_read(&mm->mmap_sem);
337 return ret;
341 * PI code:
343 static int refill_pi_state_cache(void)
345 struct futex_pi_state *pi_state;
347 if (likely(current->pi_state_cache))
348 return 0;
350 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
352 if (!pi_state)
353 return -ENOMEM;
355 INIT_LIST_HEAD(&pi_state->list);
356 /* pi_mutex gets initialized later */
357 pi_state->owner = NULL;
358 atomic_set(&pi_state->refcount, 1);
359 pi_state->key = FUTEX_KEY_INIT;
361 current->pi_state_cache = pi_state;
363 return 0;
366 static struct futex_pi_state * alloc_pi_state(void)
368 struct futex_pi_state *pi_state = current->pi_state_cache;
370 WARN_ON(!pi_state);
371 current->pi_state_cache = NULL;
373 return pi_state;
376 static void free_pi_state(struct futex_pi_state *pi_state)
378 if (!atomic_dec_and_test(&pi_state->refcount))
379 return;
382 * If pi_state->owner is NULL, the owner is most probably dying
383 * and has cleaned up the pi_state already
385 if (pi_state->owner) {
386 spin_lock_irq(&pi_state->owner->pi_lock);
387 list_del_init(&pi_state->list);
388 spin_unlock_irq(&pi_state->owner->pi_lock);
390 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
393 if (current->pi_state_cache)
394 kfree(pi_state);
395 else {
397 * pi_state->list is already empty.
398 * clear pi_state->owner.
399 * refcount is at 0 - put it back to 1.
401 pi_state->owner = NULL;
402 atomic_set(&pi_state->refcount, 1);
403 current->pi_state_cache = pi_state;
408 * Look up the task based on what TID userspace gave us.
409 * We dont trust it.
411 static struct task_struct * futex_find_get_task(pid_t pid)
413 struct task_struct *p;
414 const struct cred *cred = current_cred(), *pcred;
416 rcu_read_lock();
417 p = find_task_by_vpid(pid);
418 if (!p) {
419 p = ERR_PTR(-ESRCH);
420 } else {
421 pcred = __task_cred(p);
422 if (cred->euid != pcred->euid &&
423 cred->euid != pcred->uid)
424 p = ERR_PTR(-ESRCH);
425 else
426 get_task_struct(p);
429 rcu_read_unlock();
431 return p;
435 * This task is holding PI mutexes at exit time => bad.
436 * Kernel cleans up PI-state, but userspace is likely hosed.
437 * (Robust-futex cleanup is separate and might save the day for userspace.)
439 void exit_pi_state_list(struct task_struct *curr)
441 struct list_head *next, *head = &curr->pi_state_list;
442 struct futex_pi_state *pi_state;
443 struct futex_hash_bucket *hb;
444 union futex_key key = FUTEX_KEY_INIT;
446 if (!futex_cmpxchg_enabled)
447 return;
449 * We are a ZOMBIE and nobody can enqueue itself on
450 * pi_state_list anymore, but we have to be careful
451 * versus waiters unqueueing themselves:
453 spin_lock_irq(&curr->pi_lock);
454 while (!list_empty(head)) {
456 next = head->next;
457 pi_state = list_entry(next, struct futex_pi_state, list);
458 key = pi_state->key;
459 hb = hash_futex(&key);
460 spin_unlock_irq(&curr->pi_lock);
462 spin_lock(&hb->lock);
464 spin_lock_irq(&curr->pi_lock);
466 * We dropped the pi-lock, so re-check whether this
467 * task still owns the PI-state:
469 if (head->next != next) {
470 spin_unlock(&hb->lock);
471 continue;
474 WARN_ON(pi_state->owner != curr);
475 WARN_ON(list_empty(&pi_state->list));
476 list_del_init(&pi_state->list);
477 pi_state->owner = NULL;
478 spin_unlock_irq(&curr->pi_lock);
480 rt_mutex_unlock(&pi_state->pi_mutex);
482 spin_unlock(&hb->lock);
484 spin_lock_irq(&curr->pi_lock);
486 spin_unlock_irq(&curr->pi_lock);
489 static int
490 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
491 union futex_key *key, struct futex_pi_state **ps)
493 struct futex_pi_state *pi_state = NULL;
494 struct futex_q *this, *next;
495 struct plist_head *head;
496 struct task_struct *p;
497 pid_t pid = uval & FUTEX_TID_MASK;
499 head = &hb->chain;
501 plist_for_each_entry_safe(this, next, head, list) {
502 if (match_futex(&this->key, key)) {
504 * Another waiter already exists - bump up
505 * the refcount and return its pi_state:
507 pi_state = this->pi_state;
509 * Userspace might have messed up non PI and PI futexes
511 if (unlikely(!pi_state))
512 return -EINVAL;
514 WARN_ON(!atomic_read(&pi_state->refcount));
515 WARN_ON(pid && pi_state->owner &&
516 pi_state->owner->pid != pid);
518 atomic_inc(&pi_state->refcount);
519 *ps = pi_state;
521 return 0;
526 * We are the first waiter - try to look up the real owner and attach
527 * the new pi_state to it, but bail out when TID = 0
529 if (!pid)
530 return -ESRCH;
531 p = futex_find_get_task(pid);
532 if (IS_ERR(p))
533 return PTR_ERR(p);
536 * We need to look at the task state flags to figure out,
537 * whether the task is exiting. To protect against the do_exit
538 * change of the task flags, we do this protected by
539 * p->pi_lock:
541 spin_lock_irq(&p->pi_lock);
542 if (unlikely(p->flags & PF_EXITING)) {
544 * The task is on the way out. When PF_EXITPIDONE is
545 * set, we know that the task has finished the
546 * cleanup:
548 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
550 spin_unlock_irq(&p->pi_lock);
551 put_task_struct(p);
552 return ret;
555 pi_state = alloc_pi_state();
558 * Initialize the pi_mutex in locked state and make 'p'
559 * the owner of it:
561 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
563 /* Store the key for possible exit cleanups: */
564 pi_state->key = *key;
566 WARN_ON(!list_empty(&pi_state->list));
567 list_add(&pi_state->list, &p->pi_state_list);
568 pi_state->owner = p;
569 spin_unlock_irq(&p->pi_lock);
571 put_task_struct(p);
573 *ps = pi_state;
575 return 0;
579 * The hash bucket lock must be held when this is called.
580 * Afterwards, the futex_q must not be accessed.
582 static void wake_futex(struct futex_q *q)
584 plist_del(&q->list, &q->list.plist);
586 * The lock in wake_up_all() is a crucial memory barrier after the
587 * plist_del() and also before assigning to q->lock_ptr.
589 wake_up(&q->waiter);
591 * The waiting task can free the futex_q as soon as this is written,
592 * without taking any locks. This must come last.
594 * A memory barrier is required here to prevent the following store
595 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
596 * at the end of wake_up_all() does not prevent this store from
597 * moving.
599 smp_wmb();
600 q->lock_ptr = NULL;
603 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
605 struct task_struct *new_owner;
606 struct futex_pi_state *pi_state = this->pi_state;
607 u32 curval, newval;
609 if (!pi_state)
610 return -EINVAL;
612 spin_lock(&pi_state->pi_mutex.wait_lock);
613 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
616 * This happens when we have stolen the lock and the original
617 * pending owner did not enqueue itself back on the rt_mutex.
618 * Thats not a tragedy. We know that way, that a lock waiter
619 * is on the fly. We make the futex_q waiter the pending owner.
621 if (!new_owner)
622 new_owner = this->task;
625 * We pass it to the next owner. (The WAITERS bit is always
626 * kept enabled while there is PI state around. We must also
627 * preserve the owner died bit.)
629 if (!(uval & FUTEX_OWNER_DIED)) {
630 int ret = 0;
632 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
634 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
636 if (curval == -EFAULT)
637 ret = -EFAULT;
638 else if (curval != uval)
639 ret = -EINVAL;
640 if (ret) {
641 spin_unlock(&pi_state->pi_mutex.wait_lock);
642 return ret;
646 spin_lock_irq(&pi_state->owner->pi_lock);
647 WARN_ON(list_empty(&pi_state->list));
648 list_del_init(&pi_state->list);
649 spin_unlock_irq(&pi_state->owner->pi_lock);
651 spin_lock_irq(&new_owner->pi_lock);
652 WARN_ON(!list_empty(&pi_state->list));
653 list_add(&pi_state->list, &new_owner->pi_state_list);
654 pi_state->owner = new_owner;
655 spin_unlock_irq(&new_owner->pi_lock);
657 spin_unlock(&pi_state->pi_mutex.wait_lock);
658 rt_mutex_unlock(&pi_state->pi_mutex);
660 return 0;
663 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
665 u32 oldval;
668 * There is no waiter, so we unlock the futex. The owner died
669 * bit has not to be preserved here. We are the owner:
671 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
673 if (oldval == -EFAULT)
674 return oldval;
675 if (oldval != uval)
676 return -EAGAIN;
678 return 0;
682 * Express the locking dependencies for lockdep:
684 static inline void
685 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
687 if (hb1 <= hb2) {
688 spin_lock(&hb1->lock);
689 if (hb1 < hb2)
690 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
691 } else { /* hb1 > hb2 */
692 spin_lock(&hb2->lock);
693 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
698 * Wake up all waiters hashed on the physical page that is mapped
699 * to this virtual address:
701 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
703 struct futex_hash_bucket *hb;
704 struct futex_q *this, *next;
705 struct plist_head *head;
706 union futex_key key = FUTEX_KEY_INIT;
707 int ret;
709 if (!bitset)
710 return -EINVAL;
712 ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
713 if (unlikely(ret != 0))
714 goto out;
716 hb = hash_futex(&key);
717 spin_lock(&hb->lock);
718 head = &hb->chain;
720 plist_for_each_entry_safe(this, next, head, list) {
721 if (match_futex (&this->key, &key)) {
722 if (this->pi_state) {
723 ret = -EINVAL;
724 break;
727 /* Check if one of the bits is set in both bitsets */
728 if (!(this->bitset & bitset))
729 continue;
731 wake_futex(this);
732 if (++ret >= nr_wake)
733 break;
737 spin_unlock(&hb->lock);
738 put_futex_key(fshared, &key);
739 out:
740 return ret;
744 * Wake up all waiters hashed on the physical page that is mapped
745 * to this virtual address:
747 static int
748 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
749 int nr_wake, int nr_wake2, int op)
751 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
752 struct futex_hash_bucket *hb1, *hb2;
753 struct plist_head *head;
754 struct futex_q *this, *next;
755 int ret, op_ret, attempt = 0;
757 retryfull:
758 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
759 if (unlikely(ret != 0))
760 goto out;
761 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
762 if (unlikely(ret != 0))
763 goto out_put_key1;
765 hb1 = hash_futex(&key1);
766 hb2 = hash_futex(&key2);
768 retry:
769 double_lock_hb(hb1, hb2);
771 op_ret = futex_atomic_op_inuser(op, uaddr2);
772 if (unlikely(op_ret < 0)) {
773 u32 dummy;
775 spin_unlock(&hb1->lock);
776 if (hb1 != hb2)
777 spin_unlock(&hb2->lock);
779 #ifndef CONFIG_MMU
781 * we don't get EFAULT from MMU faults if we don't have an MMU,
782 * but we might get them from range checking
784 ret = op_ret;
785 goto out_put_keys;
786 #endif
788 if (unlikely(op_ret != -EFAULT)) {
789 ret = op_ret;
790 goto out_put_keys;
794 * futex_atomic_op_inuser needs to both read and write
795 * *(int __user *)uaddr2, but we can't modify it
796 * non-atomically. Therefore, if get_user below is not
797 * enough, we need to handle the fault ourselves, while
798 * still holding the mmap_sem.
800 if (attempt++) {
801 ret = futex_handle_fault((unsigned long)uaddr2,
802 attempt);
803 if (ret)
804 goto out_put_keys;
805 goto retry;
808 ret = get_user(dummy, uaddr2);
809 if (ret)
810 return ret;
812 goto retryfull;
815 head = &hb1->chain;
817 plist_for_each_entry_safe(this, next, head, list) {
818 if (match_futex (&this->key, &key1)) {
819 wake_futex(this);
820 if (++ret >= nr_wake)
821 break;
825 if (op_ret > 0) {
826 head = &hb2->chain;
828 op_ret = 0;
829 plist_for_each_entry_safe(this, next, head, list) {
830 if (match_futex (&this->key, &key2)) {
831 wake_futex(this);
832 if (++op_ret >= nr_wake2)
833 break;
836 ret += op_ret;
839 spin_unlock(&hb1->lock);
840 if (hb1 != hb2)
841 spin_unlock(&hb2->lock);
842 out_put_keys:
843 put_futex_key(fshared, &key2);
844 out_put_key1:
845 put_futex_key(fshared, &key1);
846 out:
847 return ret;
851 * Requeue all waiters hashed on one physical page to another
852 * physical page.
854 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
855 int nr_wake, int nr_requeue, u32 *cmpval)
857 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
858 struct futex_hash_bucket *hb1, *hb2;
859 struct plist_head *head1;
860 struct futex_q *this, *next;
861 int ret, drop_count = 0;
863 retry:
864 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
865 if (unlikely(ret != 0))
866 goto out;
867 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
868 if (unlikely(ret != 0))
869 goto out_put_key1;
871 hb1 = hash_futex(&key1);
872 hb2 = hash_futex(&key2);
874 double_lock_hb(hb1, hb2);
876 if (likely(cmpval != NULL)) {
877 u32 curval;
879 ret = get_futex_value_locked(&curval, uaddr1);
881 if (unlikely(ret)) {
882 spin_unlock(&hb1->lock);
883 if (hb1 != hb2)
884 spin_unlock(&hb2->lock);
886 ret = get_user(curval, uaddr1);
888 if (!ret)
889 goto retry;
891 goto out_put_keys;
893 if (curval != *cmpval) {
894 ret = -EAGAIN;
895 goto out_unlock;
899 head1 = &hb1->chain;
900 plist_for_each_entry_safe(this, next, head1, list) {
901 if (!match_futex (&this->key, &key1))
902 continue;
903 if (++ret <= nr_wake) {
904 wake_futex(this);
905 } else {
907 * If key1 and key2 hash to the same bucket, no need to
908 * requeue.
910 if (likely(head1 != &hb2->chain)) {
911 plist_del(&this->list, &hb1->chain);
912 plist_add(&this->list, &hb2->chain);
913 this->lock_ptr = &hb2->lock;
914 #ifdef CONFIG_DEBUG_PI_LIST
915 this->list.plist.lock = &hb2->lock;
916 #endif
918 this->key = key2;
919 get_futex_key_refs(&key2);
920 drop_count++;
922 if (ret - nr_wake >= nr_requeue)
923 break;
927 out_unlock:
928 spin_unlock(&hb1->lock);
929 if (hb1 != hb2)
930 spin_unlock(&hb2->lock);
932 /* drop_futex_key_refs() must be called outside the spinlocks. */
933 while (--drop_count >= 0)
934 drop_futex_key_refs(&key1);
936 out_put_keys:
937 put_futex_key(fshared, &key2);
938 out_put_key1:
939 put_futex_key(fshared, &key1);
940 out:
941 return ret;
944 /* The key must be already stored in q->key. */
945 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
947 struct futex_hash_bucket *hb;
949 init_waitqueue_head(&q->waiter);
951 get_futex_key_refs(&q->key);
952 hb = hash_futex(&q->key);
953 q->lock_ptr = &hb->lock;
955 spin_lock(&hb->lock);
956 return hb;
959 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
961 int prio;
964 * The priority used to register this element is
965 * - either the real thread-priority for the real-time threads
966 * (i.e. threads with a priority lower than MAX_RT_PRIO)
967 * - or MAX_RT_PRIO for non-RT threads.
968 * Thus, all RT-threads are woken first in priority order, and
969 * the others are woken last, in FIFO order.
971 prio = min(current->normal_prio, MAX_RT_PRIO);
973 plist_node_init(&q->list, prio);
974 #ifdef CONFIG_DEBUG_PI_LIST
975 q->list.plist.lock = &hb->lock;
976 #endif
977 plist_add(&q->list, &hb->chain);
978 q->task = current;
979 spin_unlock(&hb->lock);
982 static inline void
983 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
985 spin_unlock(&hb->lock);
986 drop_futex_key_refs(&q->key);
990 * queue_me and unqueue_me must be called as a pair, each
991 * exactly once. They are called with the hashed spinlock held.
994 /* Return 1 if we were still queued (ie. 0 means we were woken) */
995 static int unqueue_me(struct futex_q *q)
997 spinlock_t *lock_ptr;
998 int ret = 0;
1000 /* In the common case we don't take the spinlock, which is nice. */
1001 retry:
1002 lock_ptr = q->lock_ptr;
1003 barrier();
1004 if (lock_ptr != NULL) {
1005 spin_lock(lock_ptr);
1007 * q->lock_ptr can change between reading it and
1008 * spin_lock(), causing us to take the wrong lock. This
1009 * corrects the race condition.
1011 * Reasoning goes like this: if we have the wrong lock,
1012 * q->lock_ptr must have changed (maybe several times)
1013 * between reading it and the spin_lock(). It can
1014 * change again after the spin_lock() but only if it was
1015 * already changed before the spin_lock(). It cannot,
1016 * however, change back to the original value. Therefore
1017 * we can detect whether we acquired the correct lock.
1019 if (unlikely(lock_ptr != q->lock_ptr)) {
1020 spin_unlock(lock_ptr);
1021 goto retry;
1023 WARN_ON(plist_node_empty(&q->list));
1024 plist_del(&q->list, &q->list.plist);
1026 BUG_ON(q->pi_state);
1028 spin_unlock(lock_ptr);
1029 ret = 1;
1032 drop_futex_key_refs(&q->key);
1033 return ret;
1037 * PI futexes can not be requeued and must remove themself from the
1038 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1039 * and dropped here.
1041 static void unqueue_me_pi(struct futex_q *q)
1043 WARN_ON(plist_node_empty(&q->list));
1044 plist_del(&q->list, &q->list.plist);
1046 BUG_ON(!q->pi_state);
1047 free_pi_state(q->pi_state);
1048 q->pi_state = NULL;
1050 spin_unlock(q->lock_ptr);
1052 drop_futex_key_refs(&q->key);
1056 * Fixup the pi_state owner with the new owner.
1058 * Must be called with hash bucket lock held and mm->sem held for non
1059 * private futexes.
1061 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1062 struct task_struct *newowner, int fshared)
1064 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1065 struct futex_pi_state *pi_state = q->pi_state;
1066 struct task_struct *oldowner = pi_state->owner;
1067 u32 uval, curval, newval;
1068 int ret, attempt = 0;
1070 /* Owner died? */
1071 if (!pi_state->owner)
1072 newtid |= FUTEX_OWNER_DIED;
1075 * We are here either because we stole the rtmutex from the
1076 * pending owner or we are the pending owner which failed to
1077 * get the rtmutex. We have to replace the pending owner TID
1078 * in the user space variable. This must be atomic as we have
1079 * to preserve the owner died bit here.
1081 * Note: We write the user space value _before_ changing the
1082 * pi_state because we can fault here. Imagine swapped out
1083 * pages or a fork, which was running right before we acquired
1084 * mmap_sem, that marked all the anonymous memory readonly for
1085 * cow.
1087 * Modifying pi_state _before_ the user space value would
1088 * leave the pi_state in an inconsistent state when we fault
1089 * here, because we need to drop the hash bucket lock to
1090 * handle the fault. This might be observed in the PID check
1091 * in lookup_pi_state.
1093 retry:
1094 if (get_futex_value_locked(&uval, uaddr))
1095 goto handle_fault;
1097 while (1) {
1098 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1100 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1102 if (curval == -EFAULT)
1103 goto handle_fault;
1104 if (curval == uval)
1105 break;
1106 uval = curval;
1110 * We fixed up user space. Now we need to fix the pi_state
1111 * itself.
1113 if (pi_state->owner != NULL) {
1114 spin_lock_irq(&pi_state->owner->pi_lock);
1115 WARN_ON(list_empty(&pi_state->list));
1116 list_del_init(&pi_state->list);
1117 spin_unlock_irq(&pi_state->owner->pi_lock);
1120 pi_state->owner = newowner;
1122 spin_lock_irq(&newowner->pi_lock);
1123 WARN_ON(!list_empty(&pi_state->list));
1124 list_add(&pi_state->list, &newowner->pi_state_list);
1125 spin_unlock_irq(&newowner->pi_lock);
1126 return 0;
1129 * To handle the page fault we need to drop the hash bucket
1130 * lock here. That gives the other task (either the pending
1131 * owner itself or the task which stole the rtmutex) the
1132 * chance to try the fixup of the pi_state. So once we are
1133 * back from handling the fault we need to check the pi_state
1134 * after reacquiring the hash bucket lock and before trying to
1135 * do another fixup. When the fixup has been done already we
1136 * simply return.
1138 handle_fault:
1139 spin_unlock(q->lock_ptr);
1141 ret = futex_handle_fault((unsigned long)uaddr, attempt++);
1143 spin_lock(q->lock_ptr);
1146 * Check if someone else fixed it for us:
1148 if (pi_state->owner != oldowner)
1149 return 0;
1151 if (ret)
1152 return ret;
1154 goto retry;
1158 * In case we must use restart_block to restart a futex_wait,
1159 * we encode in the 'flags' shared capability
1161 #define FLAGS_SHARED 0x01
1162 #define FLAGS_CLOCKRT 0x02
1164 static long futex_wait_restart(struct restart_block *restart);
1166 static int futex_wait(u32 __user *uaddr, int fshared,
1167 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1169 struct task_struct *curr = current;
1170 struct restart_block *restart;
1171 DECLARE_WAITQUEUE(wait, curr);
1172 struct futex_hash_bucket *hb;
1173 struct futex_q q;
1174 u32 uval;
1175 int ret;
1176 struct hrtimer_sleeper t;
1177 int rem = 0;
1179 if (!bitset)
1180 return -EINVAL;
1182 q.pi_state = NULL;
1183 q.bitset = bitset;
1184 retry:
1185 q.key = FUTEX_KEY_INIT;
1186 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_READ);
1187 if (unlikely(ret != 0))
1188 goto out;
1190 hb = queue_lock(&q);
1193 * Access the page AFTER the futex is queued.
1194 * Order is important:
1196 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1197 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1199 * The basic logical guarantee of a futex is that it blocks ONLY
1200 * if cond(var) is known to be true at the time of blocking, for
1201 * any cond. If we queued after testing *uaddr, that would open
1202 * a race condition where we could block indefinitely with
1203 * cond(var) false, which would violate the guarantee.
1205 * A consequence is that futex_wait() can return zero and absorb
1206 * a wakeup when *uaddr != val on entry to the syscall. This is
1207 * rare, but normal.
1209 * for shared futexes, we hold the mmap semaphore, so the mapping
1210 * cannot have changed since we looked it up in get_futex_key.
1212 ret = get_futex_value_locked(&uval, uaddr);
1214 if (unlikely(ret)) {
1215 queue_unlock(&q, hb);
1216 put_futex_key(fshared, &q.key);
1218 ret = get_user(uval, uaddr);
1220 if (!ret)
1221 goto retry;
1222 goto out;
1224 ret = -EWOULDBLOCK;
1225 if (unlikely(uval != val)) {
1226 queue_unlock(&q, hb);
1227 goto out_put_key;
1230 /* Only actually queue if *uaddr contained val. */
1231 queue_me(&q, hb);
1234 * There might have been scheduling since the queue_me(), as we
1235 * cannot hold a spinlock across the get_user() in case it
1236 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1237 * queueing ourselves into the futex hash. This code thus has to
1238 * rely on the futex_wake() code removing us from hash when it
1239 * wakes us up.
1242 /* add_wait_queue is the barrier after __set_current_state. */
1243 __set_current_state(TASK_INTERRUPTIBLE);
1244 add_wait_queue(&q.waiter, &wait);
1246 * !plist_node_empty() is safe here without any lock.
1247 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1249 if (likely(!plist_node_empty(&q.list))) {
1250 if (!abs_time)
1251 schedule();
1252 else {
1253 unsigned long slack;
1254 slack = current->timer_slack_ns;
1255 if (rt_task(current))
1256 slack = 0;
1257 hrtimer_init_on_stack(&t.timer,
1258 clockrt ? CLOCK_REALTIME :
1259 CLOCK_MONOTONIC,
1260 HRTIMER_MODE_ABS);
1261 hrtimer_init_sleeper(&t, current);
1262 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
1264 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1265 if (!hrtimer_active(&t.timer))
1266 t.task = NULL;
1269 * the timer could have already expired, in which
1270 * case current would be flagged for rescheduling.
1271 * Don't bother calling schedule.
1273 if (likely(t.task))
1274 schedule();
1276 hrtimer_cancel(&t.timer);
1278 /* Flag if a timeout occured */
1279 rem = (t.task == NULL);
1281 destroy_hrtimer_on_stack(&t.timer);
1284 __set_current_state(TASK_RUNNING);
1287 * NOTE: we don't remove ourselves from the waitqueue because
1288 * we are the only user of it.
1291 /* If we were woken (and unqueued), we succeeded, whatever. */
1292 ret = 0;
1293 if (!unqueue_me(&q))
1294 goto out_put_key;
1295 ret = -ETIMEDOUT;
1296 if (rem)
1297 goto out_put_key;
1300 * We expect signal_pending(current), but another thread may
1301 * have handled it for us already.
1303 ret = -ERESTARTSYS;
1304 if (!abs_time)
1305 goto out_put_key;
1307 restart = &current_thread_info()->restart_block;
1308 restart->fn = futex_wait_restart;
1309 restart->futex.uaddr = (u32 *)uaddr;
1310 restart->futex.val = val;
1311 restart->futex.time = abs_time->tv64;
1312 restart->futex.bitset = bitset;
1313 restart->futex.flags = 0;
1315 if (fshared)
1316 restart->futex.flags |= FLAGS_SHARED;
1317 if (clockrt)
1318 restart->futex.flags |= FLAGS_CLOCKRT;
1320 ret = -ERESTART_RESTARTBLOCK;
1322 out_put_key:
1323 put_futex_key(fshared, &q.key);
1324 out:
1325 return ret;
1329 static long futex_wait_restart(struct restart_block *restart)
1331 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1332 int fshared = 0;
1333 ktime_t t;
1335 t.tv64 = restart->futex.time;
1336 restart->fn = do_no_restart_syscall;
1337 if (restart->futex.flags & FLAGS_SHARED)
1338 fshared = 1;
1339 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1340 restart->futex.bitset,
1341 restart->futex.flags & FLAGS_CLOCKRT);
1346 * Userspace tried a 0 -> TID atomic transition of the futex value
1347 * and failed. The kernel side here does the whole locking operation:
1348 * if there are waiters then it will block, it does PI, etc. (Due to
1349 * races the kernel might see a 0 value of the futex too.)
1351 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1352 int detect, ktime_t *time, int trylock)
1354 struct hrtimer_sleeper timeout, *to = NULL;
1355 struct task_struct *curr = current;
1356 struct futex_hash_bucket *hb;
1357 u32 uval, newval, curval;
1358 struct futex_q q;
1359 int ret, lock_taken, ownerdied = 0, attempt = 0;
1361 if (refill_pi_state_cache())
1362 return -ENOMEM;
1364 if (time) {
1365 to = &timeout;
1366 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1367 HRTIMER_MODE_ABS);
1368 hrtimer_init_sleeper(to, current);
1369 hrtimer_set_expires(&to->timer, *time);
1372 q.pi_state = NULL;
1373 retry:
1374 q.key = FUTEX_KEY_INIT;
1375 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1376 if (unlikely(ret != 0))
1377 goto out;
1379 retry_unlocked:
1380 hb = queue_lock(&q);
1382 retry_locked:
1383 ret = lock_taken = 0;
1386 * To avoid races, we attempt to take the lock here again
1387 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1388 * the locks. It will most likely not succeed.
1390 newval = task_pid_vnr(current);
1392 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1394 if (unlikely(curval == -EFAULT))
1395 goto uaddr_faulted;
1398 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1399 * situation and we return success to user space.
1401 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1402 ret = -EDEADLK;
1403 goto out_unlock_put_key;
1407 * Surprise - we got the lock. Just return to userspace:
1409 if (unlikely(!curval))
1410 goto out_unlock_put_key;
1412 uval = curval;
1415 * Set the WAITERS flag, so the owner will know it has someone
1416 * to wake at next unlock
1418 newval = curval | FUTEX_WAITERS;
1421 * There are two cases, where a futex might have no owner (the
1422 * owner TID is 0): OWNER_DIED. We take over the futex in this
1423 * case. We also do an unconditional take over, when the owner
1424 * of the futex died.
1426 * This is safe as we are protected by the hash bucket lock !
1428 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1429 /* Keep the OWNER_DIED bit */
1430 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1431 ownerdied = 0;
1432 lock_taken = 1;
1435 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1437 if (unlikely(curval == -EFAULT))
1438 goto uaddr_faulted;
1439 if (unlikely(curval != uval))
1440 goto retry_locked;
1443 * We took the lock due to owner died take over.
1445 if (unlikely(lock_taken))
1446 goto out_unlock_put_key;
1449 * We dont have the lock. Look up the PI state (or create it if
1450 * we are the first waiter):
1452 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1454 if (unlikely(ret)) {
1455 switch (ret) {
1457 case -EAGAIN:
1459 * Task is exiting and we just wait for the
1460 * exit to complete.
1462 queue_unlock(&q, hb);
1463 cond_resched();
1464 goto retry;
1466 case -ESRCH:
1468 * No owner found for this futex. Check if the
1469 * OWNER_DIED bit is set to figure out whether
1470 * this is a robust futex or not.
1472 if (get_futex_value_locked(&curval, uaddr))
1473 goto uaddr_faulted;
1476 * We simply start over in case of a robust
1477 * futex. The code above will take the futex
1478 * and return happy.
1480 if (curval & FUTEX_OWNER_DIED) {
1481 ownerdied = 1;
1482 goto retry_locked;
1484 default:
1485 goto out_unlock_put_key;
1490 * Only actually queue now that the atomic ops are done:
1492 queue_me(&q, hb);
1494 WARN_ON(!q.pi_state);
1496 * Block on the PI mutex:
1498 if (!trylock)
1499 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1500 else {
1501 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1502 /* Fixup the trylock return value: */
1503 ret = ret ? 0 : -EWOULDBLOCK;
1506 spin_lock(q.lock_ptr);
1508 if (!ret) {
1510 * Got the lock. We might not be the anticipated owner
1511 * if we did a lock-steal - fix up the PI-state in
1512 * that case:
1514 if (q.pi_state->owner != curr)
1515 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1516 } else {
1518 * Catch the rare case, where the lock was released
1519 * when we were on the way back before we locked the
1520 * hash bucket.
1522 if (q.pi_state->owner == curr) {
1524 * Try to get the rt_mutex now. This might
1525 * fail as some other task acquired the
1526 * rt_mutex after we removed ourself from the
1527 * rt_mutex waiters list.
1529 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1530 ret = 0;
1531 else {
1533 * pi_state is incorrect, some other
1534 * task did a lock steal and we
1535 * returned due to timeout or signal
1536 * without taking the rt_mutex. Too
1537 * late. We can access the
1538 * rt_mutex_owner without locking, as
1539 * the other task is now blocked on
1540 * the hash bucket lock. Fix the state
1541 * up.
1543 struct task_struct *owner;
1544 int res;
1546 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1547 res = fixup_pi_state_owner(uaddr, &q, owner,
1548 fshared);
1550 /* propagate -EFAULT, if the fixup failed */
1551 if (res)
1552 ret = res;
1554 } else {
1556 * Paranoia check. If we did not take the lock
1557 * in the trylock above, then we should not be
1558 * the owner of the rtmutex, neither the real
1559 * nor the pending one:
1561 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1562 printk(KERN_ERR "futex_lock_pi: ret = %d "
1563 "pi-mutex: %p pi-state %p\n", ret,
1564 q.pi_state->pi_mutex.owner,
1565 q.pi_state->owner);
1569 /* Unqueue and drop the lock */
1570 unqueue_me_pi(&q);
1572 if (to)
1573 destroy_hrtimer_on_stack(&to->timer);
1574 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1576 out_unlock_put_key:
1577 queue_unlock(&q, hb);
1579 out_put_key:
1580 put_futex_key(fshared, &q.key);
1581 out:
1582 if (to)
1583 destroy_hrtimer_on_stack(&to->timer);
1584 return ret;
1586 uaddr_faulted:
1588 * We have to r/w *(int __user *)uaddr, and we have to modify it
1589 * atomically. Therefore, if we continue to fault after get_user()
1590 * below, we need to handle the fault ourselves, while still holding
1591 * the mmap_sem. This can occur if the uaddr is under contention as
1592 * we have to drop the mmap_sem in order to call get_user().
1594 queue_unlock(&q, hb);
1596 if (attempt++) {
1597 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1598 if (ret)
1599 goto out_put_key;
1600 goto retry_unlocked;
1603 ret = get_user(uval, uaddr);
1604 if (!ret)
1605 goto retry;
1607 if (to)
1608 destroy_hrtimer_on_stack(&to->timer);
1609 return ret;
1613 * Userspace attempted a TID -> 0 atomic transition, and failed.
1614 * This is the in-kernel slowpath: we look up the PI state (if any),
1615 * and do the rt-mutex unlock.
1617 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1619 struct futex_hash_bucket *hb;
1620 struct futex_q *this, *next;
1621 u32 uval;
1622 struct plist_head *head;
1623 union futex_key key = FUTEX_KEY_INIT;
1624 int ret, attempt = 0;
1626 retry:
1627 if (get_user(uval, uaddr))
1628 return -EFAULT;
1630 * We release only a lock we actually own:
1632 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1633 return -EPERM;
1635 ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
1636 if (unlikely(ret != 0))
1637 goto out;
1639 hb = hash_futex(&key);
1640 retry_unlocked:
1641 spin_lock(&hb->lock);
1644 * To avoid races, try to do the TID -> 0 atomic transition
1645 * again. If it succeeds then we can return without waking
1646 * anyone else up:
1648 if (!(uval & FUTEX_OWNER_DIED))
1649 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1652 if (unlikely(uval == -EFAULT))
1653 goto pi_faulted;
1655 * Rare case: we managed to release the lock atomically,
1656 * no need to wake anyone else up:
1658 if (unlikely(uval == task_pid_vnr(current)))
1659 goto out_unlock;
1662 * Ok, other tasks may need to be woken up - check waiters
1663 * and do the wakeup if necessary:
1665 head = &hb->chain;
1667 plist_for_each_entry_safe(this, next, head, list) {
1668 if (!match_futex (&this->key, &key))
1669 continue;
1670 ret = wake_futex_pi(uaddr, uval, this);
1672 * The atomic access to the futex value
1673 * generated a pagefault, so retry the
1674 * user-access and the wakeup:
1676 if (ret == -EFAULT)
1677 goto pi_faulted;
1678 goto out_unlock;
1681 * No waiters - kernel unlocks the futex:
1683 if (!(uval & FUTEX_OWNER_DIED)) {
1684 ret = unlock_futex_pi(uaddr, uval);
1685 if (ret == -EFAULT)
1686 goto pi_faulted;
1689 out_unlock:
1690 spin_unlock(&hb->lock);
1691 put_futex_key(fshared, &key);
1693 out:
1694 return ret;
1696 pi_faulted:
1698 * We have to r/w *(int __user *)uaddr, and we have to modify it
1699 * atomically. Therefore, if we continue to fault after get_user()
1700 * below, we need to handle the fault ourselves, while still holding
1701 * the mmap_sem. This can occur if the uaddr is under contention as
1702 * we have to drop the mmap_sem in order to call get_user().
1704 spin_unlock(&hb->lock);
1706 if (attempt++) {
1707 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1708 if (ret)
1709 goto out;
1710 uval = 0;
1711 goto retry_unlocked;
1714 ret = get_user(uval, uaddr);
1715 if (!ret)
1716 goto retry;
1718 return ret;
1722 * Support for robust futexes: the kernel cleans up held futexes at
1723 * thread exit time.
1725 * Implementation: user-space maintains a per-thread list of locks it
1726 * is holding. Upon do_exit(), the kernel carefully walks this list,
1727 * and marks all locks that are owned by this thread with the
1728 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1729 * always manipulated with the lock held, so the list is private and
1730 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1731 * field, to allow the kernel to clean up if the thread dies after
1732 * acquiring the lock, but just before it could have added itself to
1733 * the list. There can only be one such pending lock.
1737 * sys_set_robust_list - set the robust-futex list head of a task
1738 * @head: pointer to the list-head
1739 * @len: length of the list-head, as userspace expects
1741 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1742 size_t, len)
1744 if (!futex_cmpxchg_enabled)
1745 return -ENOSYS;
1747 * The kernel knows only one size for now:
1749 if (unlikely(len != sizeof(*head)))
1750 return -EINVAL;
1752 current->robust_list = head;
1754 return 0;
1758 * sys_get_robust_list - get the robust-futex list head of a task
1759 * @pid: pid of the process [zero for current task]
1760 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1761 * @len_ptr: pointer to a length field, the kernel fills in the header size
1763 SYSCALL_DEFINE3(get_robust_list, int, pid,
1764 struct robust_list_head __user * __user *, head_ptr,
1765 size_t __user *, len_ptr)
1767 struct robust_list_head __user *head;
1768 unsigned long ret;
1769 const struct cred *cred = current_cred(), *pcred;
1771 if (!futex_cmpxchg_enabled)
1772 return -ENOSYS;
1774 if (!pid)
1775 head = current->robust_list;
1776 else {
1777 struct task_struct *p;
1779 ret = -ESRCH;
1780 rcu_read_lock();
1781 p = find_task_by_vpid(pid);
1782 if (!p)
1783 goto err_unlock;
1784 ret = -EPERM;
1785 pcred = __task_cred(p);
1786 if (cred->euid != pcred->euid &&
1787 cred->euid != pcred->uid &&
1788 !capable(CAP_SYS_PTRACE))
1789 goto err_unlock;
1790 head = p->robust_list;
1791 rcu_read_unlock();
1794 if (put_user(sizeof(*head), len_ptr))
1795 return -EFAULT;
1796 return put_user(head, head_ptr);
1798 err_unlock:
1799 rcu_read_unlock();
1801 return ret;
1805 * Process a futex-list entry, check whether it's owned by the
1806 * dying task, and do notification if so:
1808 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1810 u32 uval, nval, mval;
1812 retry:
1813 if (get_user(uval, uaddr))
1814 return -1;
1816 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1818 * Ok, this dying thread is truly holding a futex
1819 * of interest. Set the OWNER_DIED bit atomically
1820 * via cmpxchg, and if the value had FUTEX_WAITERS
1821 * set, wake up a waiter (if any). (We have to do a
1822 * futex_wake() even if OWNER_DIED is already set -
1823 * to handle the rare but possible case of recursive
1824 * thread-death.) The rest of the cleanup is done in
1825 * userspace.
1827 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1828 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1830 if (nval == -EFAULT)
1831 return -1;
1833 if (nval != uval)
1834 goto retry;
1837 * Wake robust non-PI futexes here. The wakeup of
1838 * PI futexes happens in exit_pi_state():
1840 if (!pi && (uval & FUTEX_WAITERS))
1841 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
1843 return 0;
1847 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1849 static inline int fetch_robust_entry(struct robust_list __user **entry,
1850 struct robust_list __user * __user *head,
1851 int *pi)
1853 unsigned long uentry;
1855 if (get_user(uentry, (unsigned long __user *)head))
1856 return -EFAULT;
1858 *entry = (void __user *)(uentry & ~1UL);
1859 *pi = uentry & 1;
1861 return 0;
1865 * Walk curr->robust_list (very carefully, it's a userspace list!)
1866 * and mark any locks found there dead, and notify any waiters.
1868 * We silently return on any sign of list-walking problem.
1870 void exit_robust_list(struct task_struct *curr)
1872 struct robust_list_head __user *head = curr->robust_list;
1873 struct robust_list __user *entry, *next_entry, *pending;
1874 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1875 unsigned long futex_offset;
1876 int rc;
1878 if (!futex_cmpxchg_enabled)
1879 return;
1882 * Fetch the list head (which was registered earlier, via
1883 * sys_set_robust_list()):
1885 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1886 return;
1888 * Fetch the relative futex offset:
1890 if (get_user(futex_offset, &head->futex_offset))
1891 return;
1893 * Fetch any possibly pending lock-add first, and handle it
1894 * if it exists:
1896 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1897 return;
1899 next_entry = NULL; /* avoid warning with gcc */
1900 while (entry != &head->list) {
1902 * Fetch the next entry in the list before calling
1903 * handle_futex_death:
1905 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1907 * A pending lock might already be on the list, so
1908 * don't process it twice:
1910 if (entry != pending)
1911 if (handle_futex_death((void __user *)entry + futex_offset,
1912 curr, pi))
1913 return;
1914 if (rc)
1915 return;
1916 entry = next_entry;
1917 pi = next_pi;
1919 * Avoid excessively long or circular lists:
1921 if (!--limit)
1922 break;
1924 cond_resched();
1927 if (pending)
1928 handle_futex_death((void __user *)pending + futex_offset,
1929 curr, pip);
1932 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1933 u32 __user *uaddr2, u32 val2, u32 val3)
1935 int clockrt, ret = -ENOSYS;
1936 int cmd = op & FUTEX_CMD_MASK;
1937 int fshared = 0;
1939 if (!(op & FUTEX_PRIVATE_FLAG))
1940 fshared = 1;
1942 clockrt = op & FUTEX_CLOCK_REALTIME;
1943 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1944 return -ENOSYS;
1946 switch (cmd) {
1947 case FUTEX_WAIT:
1948 val3 = FUTEX_BITSET_MATCH_ANY;
1949 case FUTEX_WAIT_BITSET:
1950 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1951 break;
1952 case FUTEX_WAKE:
1953 val3 = FUTEX_BITSET_MATCH_ANY;
1954 case FUTEX_WAKE_BITSET:
1955 ret = futex_wake(uaddr, fshared, val, val3);
1956 break;
1957 case FUTEX_REQUEUE:
1958 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1959 break;
1960 case FUTEX_CMP_REQUEUE:
1961 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1962 break;
1963 case FUTEX_WAKE_OP:
1964 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
1965 break;
1966 case FUTEX_LOCK_PI:
1967 if (futex_cmpxchg_enabled)
1968 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
1969 break;
1970 case FUTEX_UNLOCK_PI:
1971 if (futex_cmpxchg_enabled)
1972 ret = futex_unlock_pi(uaddr, fshared);
1973 break;
1974 case FUTEX_TRYLOCK_PI:
1975 if (futex_cmpxchg_enabled)
1976 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
1977 break;
1978 default:
1979 ret = -ENOSYS;
1981 return ret;
1985 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1986 struct timespec __user *, utime, u32 __user *, uaddr2,
1987 u32, val3)
1989 struct timespec ts;
1990 ktime_t t, *tp = NULL;
1991 u32 val2 = 0;
1992 int cmd = op & FUTEX_CMD_MASK;
1994 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1995 cmd == FUTEX_WAIT_BITSET)) {
1996 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1997 return -EFAULT;
1998 if (!timespec_valid(&ts))
1999 return -EINVAL;
2001 t = timespec_to_ktime(ts);
2002 if (cmd == FUTEX_WAIT)
2003 t = ktime_add_safe(ktime_get(), t);
2004 tp = &t;
2007 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2008 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2010 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2011 cmd == FUTEX_WAKE_OP)
2012 val2 = (u32) (unsigned long) utime;
2014 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2017 static int __init futex_init(void)
2019 u32 curval;
2020 int i;
2023 * This will fail and we want it. Some arch implementations do
2024 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2025 * functionality. We want to know that before we call in any
2026 * of the complex code paths. Also we want to prevent
2027 * registration of robust lists in that case. NULL is
2028 * guaranteed to fault and we get -EFAULT on functional
2029 * implementation, the non functional ones will return
2030 * -ENOSYS.
2032 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2033 if (curval == -EFAULT)
2034 futex_cmpxchg_enabled = 1;
2036 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2037 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2038 spin_lock_init(&futex_queues[i].lock);
2041 return 0;
2043 __initcall(futex_init);