sound: seq_midi_event: fix decoding of (N)RPN events
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
bloba33f399a52f2124530f5ca8378d190acb68ce86b
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
62 static void exit_mm(struct task_struct * tsk);
64 static inline int task_detached(struct task_struct *p)
66 return p->exit_signal == -1;
69 static void __unhash_process(struct task_struct *p)
71 nr_threads--;
72 detach_pid(p, PIDTYPE_PID);
73 if (thread_group_leader(p)) {
74 detach_pid(p, PIDTYPE_PGID);
75 detach_pid(p, PIDTYPE_SID);
77 list_del_rcu(&p->tasks);
78 __get_cpu_var(process_counts)--;
80 list_del_rcu(&p->thread_group);
81 list_del_init(&p->sibling);
85 * This function expects the tasklist_lock write-locked.
87 static void __exit_signal(struct task_struct *tsk)
89 struct signal_struct *sig = tsk->signal;
90 struct sighand_struct *sighand;
92 BUG_ON(!sig);
93 BUG_ON(!atomic_read(&sig->count));
95 sighand = rcu_dereference(tsk->sighand);
96 spin_lock(&sighand->siglock);
98 posix_cpu_timers_exit(tsk);
99 if (atomic_dec_and_test(&sig->count))
100 posix_cpu_timers_exit_group(tsk);
101 else {
103 * If there is any task waiting for the group exit
104 * then notify it:
106 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
107 wake_up_process(sig->group_exit_task);
109 if (tsk == sig->curr_target)
110 sig->curr_target = next_thread(tsk);
112 * Accumulate here the counters for all threads but the
113 * group leader as they die, so they can be added into
114 * the process-wide totals when those are taken.
115 * The group leader stays around as a zombie as long
116 * as there are other threads. When it gets reaped,
117 * the exit.c code will add its counts into these totals.
118 * We won't ever get here for the group leader, since it
119 * will have been the last reference on the signal_struct.
121 sig->utime = cputime_add(sig->utime, task_utime(tsk));
122 sig->stime = cputime_add(sig->stime, task_stime(tsk));
123 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
124 sig->min_flt += tsk->min_flt;
125 sig->maj_flt += tsk->maj_flt;
126 sig->nvcsw += tsk->nvcsw;
127 sig->nivcsw += tsk->nivcsw;
128 sig->inblock += task_io_get_inblock(tsk);
129 sig->oublock += task_io_get_oublock(tsk);
130 task_io_accounting_add(&sig->ioac, &tsk->ioac);
131 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
132 sig = NULL; /* Marker for below. */
135 __unhash_process(tsk);
138 * Do this under ->siglock, we can race with another thread
139 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
141 flush_sigqueue(&tsk->pending);
143 tsk->signal = NULL;
144 tsk->sighand = NULL;
145 spin_unlock(&sighand->siglock);
147 __cleanup_sighand(sighand);
148 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
149 if (sig) {
150 flush_sigqueue(&sig->shared_pending);
151 taskstats_tgid_free(sig);
153 * Make sure ->signal can't go away under rq->lock,
154 * see account_group_exec_runtime().
156 task_rq_unlock_wait(tsk);
157 __cleanup_signal(sig);
161 static void delayed_put_task_struct(struct rcu_head *rhp)
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165 trace_sched_process_free(tsk);
166 put_task_struct(tsk);
170 void release_task(struct task_struct * p)
172 struct task_struct *leader;
173 int zap_leader;
174 repeat:
175 tracehook_prepare_release_task(p);
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials */
178 atomic_dec(&__task_cred(p)->user->processes);
180 proc_flush_task(p);
181 write_lock_irq(&tasklist_lock);
182 tracehook_finish_release_task(p);
183 __exit_signal(p);
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
190 zap_leader = 0;
191 leader = p->group_leader;
192 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 BUG_ON(task_detached(leader));
194 do_notify_parent(leader, leader->exit_signal);
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
200 * do_notify_parent() will have marked it self-reaping in
201 * that case.
203 zap_leader = task_detached(leader);
206 * This maintains the invariant that release_task()
207 * only runs on a task in EXIT_DEAD, just for sanity.
209 if (zap_leader)
210 leader->exit_state = EXIT_DEAD;
213 write_unlock_irq(&tasklist_lock);
214 release_thread(p);
215 call_rcu(&p->rcu, delayed_put_task_struct);
217 p = leader;
218 if (unlikely(zap_leader))
219 goto repeat;
223 * This checks not only the pgrp, but falls back on the pid if no
224 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225 * without this...
227 * The caller must hold rcu lock or the tasklist lock.
229 struct pid *session_of_pgrp(struct pid *pgrp)
231 struct task_struct *p;
232 struct pid *sid = NULL;
234 p = pid_task(pgrp, PIDTYPE_PGID);
235 if (p == NULL)
236 p = pid_task(pgrp, PIDTYPE_PID);
237 if (p != NULL)
238 sid = task_session(p);
240 return sid;
244 * Determine if a process group is "orphaned", according to the POSIX
245 * definition in 2.2.2.52. Orphaned process groups are not to be affected
246 * by terminal-generated stop signals. Newly orphaned process groups are
247 * to receive a SIGHUP and a SIGCONT.
249 * "I ask you, have you ever known what it is to be an orphan?"
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
253 struct task_struct *p;
255 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256 if ((p == ignored_task) ||
257 (p->exit_state && thread_group_empty(p)) ||
258 is_global_init(p->real_parent))
259 continue;
261 if (task_pgrp(p->real_parent) != pgrp &&
262 task_session(p->real_parent) == task_session(p))
263 return 0;
264 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
266 return 1;
269 int is_current_pgrp_orphaned(void)
271 int retval;
273 read_lock(&tasklist_lock);
274 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275 read_unlock(&tasklist_lock);
277 return retval;
280 static int has_stopped_jobs(struct pid *pgrp)
282 int retval = 0;
283 struct task_struct *p;
285 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286 if (!task_is_stopped(p))
287 continue;
288 retval = 1;
289 break;
290 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291 return retval;
295 * Check to see if any process groups have become orphaned as
296 * a result of our exiting, and if they have any stopped jobs,
297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
302 struct pid *pgrp = task_pgrp(tsk);
303 struct task_struct *ignored_task = tsk;
305 if (!parent)
306 /* exit: our father is in a different pgrp than
307 * we are and we were the only connection outside.
309 parent = tsk->real_parent;
310 else
311 /* reparent: our child is in a different pgrp than
312 * we are, and it was the only connection outside.
314 ignored_task = NULL;
316 if (task_pgrp(parent) != pgrp &&
317 task_session(parent) == task_session(tsk) &&
318 will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 has_stopped_jobs(pgrp)) {
320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
328 * If a kernel thread is launched as a result of a system call, or if
329 * it ever exits, it should generally reparent itself to kthreadd so it
330 * isn't in the way of other processes and is correctly cleaned up on exit.
332 * The various task state such as scheduling policy and priority may have
333 * been inherited from a user process, so we reset them to sane values here.
335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
337 static void reparent_to_kthreadd(void)
339 write_lock_irq(&tasklist_lock);
341 ptrace_unlink(current);
342 /* Reparent to init */
343 current->real_parent = current->parent = kthreadd_task;
344 list_move_tail(&current->sibling, &current->real_parent->children);
346 /* Set the exit signal to SIGCHLD so we signal init on exit */
347 current->exit_signal = SIGCHLD;
349 if (task_nice(current) < 0)
350 set_user_nice(current, 0);
351 /* cpus_allowed? */
352 /* rt_priority? */
353 /* signals? */
354 memcpy(current->signal->rlim, init_task.signal->rlim,
355 sizeof(current->signal->rlim));
357 atomic_inc(&init_cred.usage);
358 commit_creds(&init_cred);
359 write_unlock_irq(&tasklist_lock);
362 void __set_special_pids(struct pid *pid)
364 struct task_struct *curr = current->group_leader;
365 pid_t nr = pid_nr(pid);
367 if (task_session(curr) != pid) {
368 change_pid(curr, PIDTYPE_SID, pid);
369 set_task_session(curr, nr);
371 if (task_pgrp(curr) != pid) {
372 change_pid(curr, PIDTYPE_PGID, pid);
373 set_task_pgrp(curr, nr);
377 static void set_special_pids(struct pid *pid)
379 write_lock_irq(&tasklist_lock);
380 __set_special_pids(pid);
381 write_unlock_irq(&tasklist_lock);
385 * Let kernel threads use this to say that they
386 * allow a certain signal (since daemonize() will
387 * have disabled all of them by default).
389 int allow_signal(int sig)
391 if (!valid_signal(sig) || sig < 1)
392 return -EINVAL;
394 spin_lock_irq(&current->sighand->siglock);
395 sigdelset(&current->blocked, sig);
396 if (!current->mm) {
397 /* Kernel threads handle their own signals.
398 Let the signal code know it'll be handled, so
399 that they don't get converted to SIGKILL or
400 just silently dropped */
401 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
403 recalc_sigpending();
404 spin_unlock_irq(&current->sighand->siglock);
405 return 0;
408 EXPORT_SYMBOL(allow_signal);
410 int disallow_signal(int sig)
412 if (!valid_signal(sig) || sig < 1)
413 return -EINVAL;
415 spin_lock_irq(&current->sighand->siglock);
416 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
417 recalc_sigpending();
418 spin_unlock_irq(&current->sighand->siglock);
419 return 0;
422 EXPORT_SYMBOL(disallow_signal);
425 * Put all the gunge required to become a kernel thread without
426 * attached user resources in one place where it belongs.
429 void daemonize(const char *name, ...)
431 va_list args;
432 sigset_t blocked;
434 va_start(args, name);
435 vsnprintf(current->comm, sizeof(current->comm), name, args);
436 va_end(args);
439 * If we were started as result of loading a module, close all of the
440 * user space pages. We don't need them, and if we didn't close them
441 * they would be locked into memory.
443 exit_mm(current);
445 * We don't want to have TIF_FREEZE set if the system-wide hibernation
446 * or suspend transition begins right now.
448 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
450 if (current->nsproxy != &init_nsproxy) {
451 get_nsproxy(&init_nsproxy);
452 switch_task_namespaces(current, &init_nsproxy);
454 set_special_pids(&init_struct_pid);
455 proc_clear_tty(current);
457 /* Block and flush all signals */
458 sigfillset(&blocked);
459 sigprocmask(SIG_BLOCK, &blocked, NULL);
460 flush_signals(current);
462 /* Become as one with the init task */
464 daemonize_fs_struct();
465 exit_files(current);
466 current->files = init_task.files;
467 atomic_inc(&current->files->count);
469 reparent_to_kthreadd();
472 EXPORT_SYMBOL(daemonize);
474 static void close_files(struct files_struct * files)
476 int i, j;
477 struct fdtable *fdt;
479 j = 0;
482 * It is safe to dereference the fd table without RCU or
483 * ->file_lock because this is the last reference to the
484 * files structure.
486 fdt = files_fdtable(files);
487 for (;;) {
488 unsigned long set;
489 i = j * __NFDBITS;
490 if (i >= fdt->max_fds)
491 break;
492 set = fdt->open_fds->fds_bits[j++];
493 while (set) {
494 if (set & 1) {
495 struct file * file = xchg(&fdt->fd[i], NULL);
496 if (file) {
497 filp_close(file, files);
498 cond_resched();
501 i++;
502 set >>= 1;
507 struct files_struct *get_files_struct(struct task_struct *task)
509 struct files_struct *files;
511 task_lock(task);
512 files = task->files;
513 if (files)
514 atomic_inc(&files->count);
515 task_unlock(task);
517 return files;
520 void put_files_struct(struct files_struct *files)
522 struct fdtable *fdt;
524 if (atomic_dec_and_test(&files->count)) {
525 close_files(files);
527 * Free the fd and fdset arrays if we expanded them.
528 * If the fdtable was embedded, pass files for freeing
529 * at the end of the RCU grace period. Otherwise,
530 * you can free files immediately.
532 fdt = files_fdtable(files);
533 if (fdt != &files->fdtab)
534 kmem_cache_free(files_cachep, files);
535 free_fdtable(fdt);
539 void reset_files_struct(struct files_struct *files)
541 struct task_struct *tsk = current;
542 struct files_struct *old;
544 old = tsk->files;
545 task_lock(tsk);
546 tsk->files = files;
547 task_unlock(tsk);
548 put_files_struct(old);
551 void exit_files(struct task_struct *tsk)
553 struct files_struct * files = tsk->files;
555 if (files) {
556 task_lock(tsk);
557 tsk->files = NULL;
558 task_unlock(tsk);
559 put_files_struct(files);
563 #ifdef CONFIG_MM_OWNER
565 * Task p is exiting and it owned mm, lets find a new owner for it
567 static inline int
568 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
571 * If there are other users of the mm and the owner (us) is exiting
572 * we need to find a new owner to take on the responsibility.
574 if (atomic_read(&mm->mm_users) <= 1)
575 return 0;
576 if (mm->owner != p)
577 return 0;
578 return 1;
581 void mm_update_next_owner(struct mm_struct *mm)
583 struct task_struct *c, *g, *p = current;
585 retry:
586 if (!mm_need_new_owner(mm, p))
587 return;
589 read_lock(&tasklist_lock);
591 * Search in the children
593 list_for_each_entry(c, &p->children, sibling) {
594 if (c->mm == mm)
595 goto assign_new_owner;
599 * Search in the siblings
601 list_for_each_entry(c, &p->parent->children, sibling) {
602 if (c->mm == mm)
603 goto assign_new_owner;
607 * Search through everything else. We should not get
608 * here often
610 do_each_thread(g, c) {
611 if (c->mm == mm)
612 goto assign_new_owner;
613 } while_each_thread(g, c);
615 read_unlock(&tasklist_lock);
617 * We found no owner yet mm_users > 1: this implies that we are
618 * most likely racing with swapoff (try_to_unuse()) or /proc or
619 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
621 mm->owner = NULL;
622 return;
624 assign_new_owner:
625 BUG_ON(c == p);
626 get_task_struct(c);
628 * The task_lock protects c->mm from changing.
629 * We always want mm->owner->mm == mm
631 task_lock(c);
633 * Delay read_unlock() till we have the task_lock()
634 * to ensure that c does not slip away underneath us
636 read_unlock(&tasklist_lock);
637 if (c->mm != mm) {
638 task_unlock(c);
639 put_task_struct(c);
640 goto retry;
642 mm->owner = c;
643 task_unlock(c);
644 put_task_struct(c);
646 #endif /* CONFIG_MM_OWNER */
649 * Turn us into a lazy TLB process if we
650 * aren't already..
652 static void exit_mm(struct task_struct * tsk)
654 struct mm_struct *mm = tsk->mm;
655 struct core_state *core_state;
657 mm_release(tsk, mm);
658 if (!mm)
659 return;
661 * Serialize with any possible pending coredump.
662 * We must hold mmap_sem around checking core_state
663 * and clearing tsk->mm. The core-inducing thread
664 * will increment ->nr_threads for each thread in the
665 * group with ->mm != NULL.
667 down_read(&mm->mmap_sem);
668 core_state = mm->core_state;
669 if (core_state) {
670 struct core_thread self;
671 up_read(&mm->mmap_sem);
673 self.task = tsk;
674 self.next = xchg(&core_state->dumper.next, &self);
676 * Implies mb(), the result of xchg() must be visible
677 * to core_state->dumper.
679 if (atomic_dec_and_test(&core_state->nr_threads))
680 complete(&core_state->startup);
682 for (;;) {
683 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
684 if (!self.task) /* see coredump_finish() */
685 break;
686 schedule();
688 __set_task_state(tsk, TASK_RUNNING);
689 down_read(&mm->mmap_sem);
691 atomic_inc(&mm->mm_count);
692 BUG_ON(mm != tsk->active_mm);
693 /* more a memory barrier than a real lock */
694 task_lock(tsk);
695 tsk->mm = NULL;
696 up_read(&mm->mmap_sem);
697 enter_lazy_tlb(mm, current);
698 /* We don't want this task to be frozen prematurely */
699 clear_freeze_flag(tsk);
700 task_unlock(tsk);
701 mm_update_next_owner(mm);
702 mmput(mm);
706 * Called with irqs disabled, returns true if childs should reap themselves.
708 static int ignoring_children(struct sighand_struct *sigh)
710 int ret;
711 spin_lock(&sigh->siglock);
712 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
713 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
714 spin_unlock(&sigh->siglock);
715 return ret;
718 /* Returns nonzero if the tracee should be released. */
719 int __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
721 __ptrace_unlink(p);
723 if (p->exit_state != EXIT_ZOMBIE)
724 return 0;
726 * If it's a zombie, our attachedness prevented normal
727 * parent notification or self-reaping. Do notification
728 * now if it would have happened earlier. If it should
729 * reap itself we return true.
731 * If it's our own child, there is no notification to do.
732 * But if our normal children self-reap, then this child
733 * was prevented by ptrace and we must reap it now.
735 if (!task_detached(p) && thread_group_empty(p)) {
736 if (!same_thread_group(p->real_parent, tracer))
737 do_notify_parent(p, p->exit_signal);
738 else if (ignoring_children(tracer->sighand))
739 p->exit_signal = -1;
742 if (!task_detached(p))
743 return 0;
745 /* Mark it as in the process of being reaped. */
746 p->exit_state = EXIT_DEAD;
747 return 1;
751 * Detach all tasks we were using ptrace on.
752 * Any that need to be release_task'd are put on the @dead list.
754 * Called with write_lock(&tasklist_lock) held.
756 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
758 struct task_struct *p, *n;
760 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
761 if (__ptrace_detach(parent, p))
762 list_add(&p->ptrace_entry, dead);
767 * Finish up exit-time ptrace cleanup.
769 * Called without locks.
771 static void ptrace_exit_finish(struct task_struct *parent,
772 struct list_head *dead)
774 struct task_struct *p, *n;
776 BUG_ON(!list_empty(&parent->ptraced));
778 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
779 list_del_init(&p->ptrace_entry);
780 release_task(p);
784 static void reparent_thread(struct task_struct *p, struct task_struct *father)
786 if (p->pdeath_signal)
787 /* We already hold the tasklist_lock here. */
788 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
790 list_move_tail(&p->sibling, &p->real_parent->children);
792 /* If this is a threaded reparent there is no need to
793 * notify anyone anything has happened.
795 if (same_thread_group(p->real_parent, father))
796 return;
798 /* We don't want people slaying init. */
799 if (!task_detached(p))
800 p->exit_signal = SIGCHLD;
802 /* If we'd notified the old parent about this child's death,
803 * also notify the new parent.
805 if (!ptrace_reparented(p) &&
806 p->exit_state == EXIT_ZOMBIE &&
807 !task_detached(p) && thread_group_empty(p))
808 do_notify_parent(p, p->exit_signal);
810 kill_orphaned_pgrp(p, father);
814 * When we die, we re-parent all our children.
815 * Try to give them to another thread in our thread
816 * group, and if no such member exists, give it to
817 * the child reaper process (ie "init") in our pid
818 * space.
820 static struct task_struct *find_new_reaper(struct task_struct *father)
822 struct pid_namespace *pid_ns = task_active_pid_ns(father);
823 struct task_struct *thread;
825 thread = father;
826 while_each_thread(father, thread) {
827 if (thread->flags & PF_EXITING)
828 continue;
829 if (unlikely(pid_ns->child_reaper == father))
830 pid_ns->child_reaper = thread;
831 return thread;
834 if (unlikely(pid_ns->child_reaper == father)) {
835 write_unlock_irq(&tasklist_lock);
836 if (unlikely(pid_ns == &init_pid_ns))
837 panic("Attempted to kill init!");
839 zap_pid_ns_processes(pid_ns);
840 write_lock_irq(&tasklist_lock);
842 * We can not clear ->child_reaper or leave it alone.
843 * There may by stealth EXIT_DEAD tasks on ->children,
844 * forget_original_parent() must move them somewhere.
846 pid_ns->child_reaper = init_pid_ns.child_reaper;
849 return pid_ns->child_reaper;
852 static void forget_original_parent(struct task_struct *father)
854 struct task_struct *p, *n, *reaper;
855 LIST_HEAD(ptrace_dead);
857 write_lock_irq(&tasklist_lock);
858 reaper = find_new_reaper(father);
860 * First clean up ptrace if we were using it.
862 ptrace_exit(father, &ptrace_dead);
864 list_for_each_entry_safe(p, n, &father->children, sibling) {
865 p->real_parent = reaper;
866 if (p->parent == father) {
867 BUG_ON(p->ptrace);
868 p->parent = p->real_parent;
870 reparent_thread(p, father);
873 write_unlock_irq(&tasklist_lock);
874 BUG_ON(!list_empty(&father->children));
876 ptrace_exit_finish(father, &ptrace_dead);
880 * Send signals to all our closest relatives so that they know
881 * to properly mourn us..
883 static void exit_notify(struct task_struct *tsk, int group_dead)
885 int signal;
886 void *cookie;
889 * This does two things:
891 * A. Make init inherit all the child processes
892 * B. Check to see if any process groups have become orphaned
893 * as a result of our exiting, and if they have any stopped
894 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
896 forget_original_parent(tsk);
897 exit_task_namespaces(tsk);
899 write_lock_irq(&tasklist_lock);
900 if (group_dead)
901 kill_orphaned_pgrp(tsk->group_leader, NULL);
903 /* Let father know we died
905 * Thread signals are configurable, but you aren't going to use
906 * that to send signals to arbitary processes.
907 * That stops right now.
909 * If the parent exec id doesn't match the exec id we saved
910 * when we started then we know the parent has changed security
911 * domain.
913 * If our self_exec id doesn't match our parent_exec_id then
914 * we have changed execution domain as these two values started
915 * the same after a fork.
917 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
918 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
919 tsk->self_exec_id != tsk->parent_exec_id))
920 tsk->exit_signal = SIGCHLD;
922 signal = tracehook_notify_death(tsk, &cookie, group_dead);
923 if (signal >= 0)
924 signal = do_notify_parent(tsk, signal);
926 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
928 /* mt-exec, de_thread() is waiting for us */
929 if (thread_group_leader(tsk) &&
930 tsk->signal->group_exit_task &&
931 tsk->signal->notify_count < 0)
932 wake_up_process(tsk->signal->group_exit_task);
934 write_unlock_irq(&tasklist_lock);
936 tracehook_report_death(tsk, signal, cookie, group_dead);
938 /* If the process is dead, release it - nobody will wait for it */
939 if (signal == DEATH_REAP)
940 release_task(tsk);
943 #ifdef CONFIG_DEBUG_STACK_USAGE
944 static void check_stack_usage(void)
946 static DEFINE_SPINLOCK(low_water_lock);
947 static int lowest_to_date = THREAD_SIZE;
948 unsigned long *n = end_of_stack(current);
949 unsigned long free;
951 while (*n == 0)
952 n++;
953 free = (unsigned long)n - (unsigned long)end_of_stack(current);
955 if (free >= lowest_to_date)
956 return;
958 spin_lock(&low_water_lock);
959 if (free < lowest_to_date) {
960 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
961 "left\n",
962 current->comm, free);
963 lowest_to_date = free;
965 spin_unlock(&low_water_lock);
967 #else
968 static inline void check_stack_usage(void) {}
969 #endif
971 NORET_TYPE void do_exit(long code)
973 struct task_struct *tsk = current;
974 int group_dead;
976 profile_task_exit(tsk);
978 WARN_ON(atomic_read(&tsk->fs_excl));
980 if (unlikely(in_interrupt()))
981 panic("Aiee, killing interrupt handler!");
982 if (unlikely(!tsk->pid))
983 panic("Attempted to kill the idle task!");
985 tracehook_report_exit(&code);
988 * We're taking recursive faults here in do_exit. Safest is to just
989 * leave this task alone and wait for reboot.
991 if (unlikely(tsk->flags & PF_EXITING)) {
992 printk(KERN_ALERT
993 "Fixing recursive fault but reboot is needed!\n");
995 * We can do this unlocked here. The futex code uses
996 * this flag just to verify whether the pi state
997 * cleanup has been done or not. In the worst case it
998 * loops once more. We pretend that the cleanup was
999 * done as there is no way to return. Either the
1000 * OWNER_DIED bit is set by now or we push the blocked
1001 * task into the wait for ever nirwana as well.
1003 tsk->flags |= PF_EXITPIDONE;
1004 set_current_state(TASK_UNINTERRUPTIBLE);
1005 schedule();
1008 exit_signals(tsk); /* sets PF_EXITING */
1010 * tsk->flags are checked in the futex code to protect against
1011 * an exiting task cleaning up the robust pi futexes.
1013 smp_mb();
1014 spin_unlock_wait(&tsk->pi_lock);
1016 if (unlikely(in_atomic()))
1017 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1018 current->comm, task_pid_nr(current),
1019 preempt_count());
1021 acct_update_integrals(tsk);
1023 group_dead = atomic_dec_and_test(&tsk->signal->live);
1024 if (group_dead) {
1025 hrtimer_cancel(&tsk->signal->real_timer);
1026 exit_itimers(tsk->signal);
1028 acct_collect(code, group_dead);
1029 if (group_dead)
1030 tty_audit_exit();
1031 if (unlikely(tsk->audit_context))
1032 audit_free(tsk);
1034 tsk->exit_code = code;
1035 taskstats_exit(tsk, group_dead);
1037 exit_mm(tsk);
1039 if (group_dead)
1040 acct_process();
1041 trace_sched_process_exit(tsk);
1043 exit_sem(tsk);
1044 exit_files(tsk);
1045 exit_fs(tsk);
1046 check_stack_usage();
1047 exit_thread();
1048 cgroup_exit(tsk, 1);
1050 if (group_dead && tsk->signal->leader)
1051 disassociate_ctty(1);
1053 module_put(task_thread_info(tsk)->exec_domain->module);
1054 if (tsk->binfmt)
1055 module_put(tsk->binfmt->module);
1057 proc_exit_connector(tsk);
1058 exit_notify(tsk, group_dead);
1059 #ifdef CONFIG_NUMA
1060 mpol_put(tsk->mempolicy);
1061 tsk->mempolicy = NULL;
1062 #endif
1063 #ifdef CONFIG_FUTEX
1065 * This must happen late, after the PID is not
1066 * hashed anymore:
1068 if (unlikely(!list_empty(&tsk->pi_state_list)))
1069 exit_pi_state_list(tsk);
1070 if (unlikely(current->pi_state_cache))
1071 kfree(current->pi_state_cache);
1072 #endif
1074 * Make sure we are holding no locks:
1076 debug_check_no_locks_held(tsk);
1078 * We can do this unlocked here. The futex code uses this flag
1079 * just to verify whether the pi state cleanup has been done
1080 * or not. In the worst case it loops once more.
1082 tsk->flags |= PF_EXITPIDONE;
1084 if (tsk->io_context)
1085 exit_io_context();
1087 if (tsk->splice_pipe)
1088 __free_pipe_info(tsk->splice_pipe);
1090 preempt_disable();
1091 /* causes final put_task_struct in finish_task_switch(). */
1092 tsk->state = TASK_DEAD;
1093 schedule();
1094 BUG();
1095 /* Avoid "noreturn function does return". */
1096 for (;;)
1097 cpu_relax(); /* For when BUG is null */
1100 EXPORT_SYMBOL_GPL(do_exit);
1102 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1104 if (comp)
1105 complete(comp);
1107 do_exit(code);
1110 EXPORT_SYMBOL(complete_and_exit);
1112 SYSCALL_DEFINE1(exit, int, error_code)
1114 do_exit((error_code&0xff)<<8);
1118 * Take down every thread in the group. This is called by fatal signals
1119 * as well as by sys_exit_group (below).
1121 NORET_TYPE void
1122 do_group_exit(int exit_code)
1124 struct signal_struct *sig = current->signal;
1126 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1128 if (signal_group_exit(sig))
1129 exit_code = sig->group_exit_code;
1130 else if (!thread_group_empty(current)) {
1131 struct sighand_struct *const sighand = current->sighand;
1132 spin_lock_irq(&sighand->siglock);
1133 if (signal_group_exit(sig))
1134 /* Another thread got here before we took the lock. */
1135 exit_code = sig->group_exit_code;
1136 else {
1137 sig->group_exit_code = exit_code;
1138 sig->flags = SIGNAL_GROUP_EXIT;
1139 zap_other_threads(current);
1141 spin_unlock_irq(&sighand->siglock);
1144 do_exit(exit_code);
1145 /* NOTREACHED */
1149 * this kills every thread in the thread group. Note that any externally
1150 * wait4()-ing process will get the correct exit code - even if this
1151 * thread is not the thread group leader.
1153 SYSCALL_DEFINE1(exit_group, int, error_code)
1155 do_group_exit((error_code & 0xff) << 8);
1156 /* NOTREACHED */
1157 return 0;
1160 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1162 struct pid *pid = NULL;
1163 if (type == PIDTYPE_PID)
1164 pid = task->pids[type].pid;
1165 else if (type < PIDTYPE_MAX)
1166 pid = task->group_leader->pids[type].pid;
1167 return pid;
1170 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1171 struct task_struct *p)
1173 int err;
1175 if (type < PIDTYPE_MAX) {
1176 if (task_pid_type(p, type) != pid)
1177 return 0;
1180 /* Wait for all children (clone and not) if __WALL is set;
1181 * otherwise, wait for clone children *only* if __WCLONE is
1182 * set; otherwise, wait for non-clone children *only*. (Note:
1183 * A "clone" child here is one that reports to its parent
1184 * using a signal other than SIGCHLD.) */
1185 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1186 && !(options & __WALL))
1187 return 0;
1189 err = security_task_wait(p);
1190 if (err)
1191 return err;
1193 return 1;
1196 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1197 int why, int status,
1198 struct siginfo __user *infop,
1199 struct rusage __user *rusagep)
1201 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1203 put_task_struct(p);
1204 if (!retval)
1205 retval = put_user(SIGCHLD, &infop->si_signo);
1206 if (!retval)
1207 retval = put_user(0, &infop->si_errno);
1208 if (!retval)
1209 retval = put_user((short)why, &infop->si_code);
1210 if (!retval)
1211 retval = put_user(pid, &infop->si_pid);
1212 if (!retval)
1213 retval = put_user(uid, &infop->si_uid);
1214 if (!retval)
1215 retval = put_user(status, &infop->si_status);
1216 if (!retval)
1217 retval = pid;
1218 return retval;
1222 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1223 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1224 * the lock and this task is uninteresting. If we return nonzero, we have
1225 * released the lock and the system call should return.
1227 static int wait_task_zombie(struct task_struct *p, int options,
1228 struct siginfo __user *infop,
1229 int __user *stat_addr, struct rusage __user *ru)
1231 unsigned long state;
1232 int retval, status, traced;
1233 pid_t pid = task_pid_vnr(p);
1234 uid_t uid = __task_cred(p)->uid;
1236 if (!likely(options & WEXITED))
1237 return 0;
1239 if (unlikely(options & WNOWAIT)) {
1240 int exit_code = p->exit_code;
1241 int why, status;
1243 get_task_struct(p);
1244 read_unlock(&tasklist_lock);
1245 if ((exit_code & 0x7f) == 0) {
1246 why = CLD_EXITED;
1247 status = exit_code >> 8;
1248 } else {
1249 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1250 status = exit_code & 0x7f;
1252 return wait_noreap_copyout(p, pid, uid, why,
1253 status, infop, ru);
1257 * Try to move the task's state to DEAD
1258 * only one thread is allowed to do this:
1260 state = xchg(&p->exit_state, EXIT_DEAD);
1261 if (state != EXIT_ZOMBIE) {
1262 BUG_ON(state != EXIT_DEAD);
1263 return 0;
1266 traced = ptrace_reparented(p);
1268 if (likely(!traced)) {
1269 struct signal_struct *psig;
1270 struct signal_struct *sig;
1271 struct task_cputime cputime;
1274 * The resource counters for the group leader are in its
1275 * own task_struct. Those for dead threads in the group
1276 * are in its signal_struct, as are those for the child
1277 * processes it has previously reaped. All these
1278 * accumulate in the parent's signal_struct c* fields.
1280 * We don't bother to take a lock here to protect these
1281 * p->signal fields, because they are only touched by
1282 * __exit_signal, which runs with tasklist_lock
1283 * write-locked anyway, and so is excluded here. We do
1284 * need to protect the access to p->parent->signal fields,
1285 * as other threads in the parent group can be right
1286 * here reaping other children at the same time.
1288 * We use thread_group_cputime() to get times for the thread
1289 * group, which consolidates times for all threads in the
1290 * group including the group leader.
1292 thread_group_cputime(p, &cputime);
1293 spin_lock_irq(&p->parent->sighand->siglock);
1294 psig = p->parent->signal;
1295 sig = p->signal;
1296 psig->cutime =
1297 cputime_add(psig->cutime,
1298 cputime_add(cputime.utime,
1299 sig->cutime));
1300 psig->cstime =
1301 cputime_add(psig->cstime,
1302 cputime_add(cputime.stime,
1303 sig->cstime));
1304 psig->cgtime =
1305 cputime_add(psig->cgtime,
1306 cputime_add(p->gtime,
1307 cputime_add(sig->gtime,
1308 sig->cgtime)));
1309 psig->cmin_flt +=
1310 p->min_flt + sig->min_flt + sig->cmin_flt;
1311 psig->cmaj_flt +=
1312 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1313 psig->cnvcsw +=
1314 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1315 psig->cnivcsw +=
1316 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1317 psig->cinblock +=
1318 task_io_get_inblock(p) +
1319 sig->inblock + sig->cinblock;
1320 psig->coublock +=
1321 task_io_get_oublock(p) +
1322 sig->oublock + sig->coublock;
1323 task_io_accounting_add(&psig->ioac, &p->ioac);
1324 task_io_accounting_add(&psig->ioac, &sig->ioac);
1325 spin_unlock_irq(&p->parent->sighand->siglock);
1329 * Now we are sure this task is interesting, and no other
1330 * thread can reap it because we set its state to EXIT_DEAD.
1332 read_unlock(&tasklist_lock);
1334 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1335 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1336 ? p->signal->group_exit_code : p->exit_code;
1337 if (!retval && stat_addr)
1338 retval = put_user(status, stat_addr);
1339 if (!retval && infop)
1340 retval = put_user(SIGCHLD, &infop->si_signo);
1341 if (!retval && infop)
1342 retval = put_user(0, &infop->si_errno);
1343 if (!retval && infop) {
1344 int why;
1346 if ((status & 0x7f) == 0) {
1347 why = CLD_EXITED;
1348 status >>= 8;
1349 } else {
1350 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1351 status &= 0x7f;
1353 retval = put_user((short)why, &infop->si_code);
1354 if (!retval)
1355 retval = put_user(status, &infop->si_status);
1357 if (!retval && infop)
1358 retval = put_user(pid, &infop->si_pid);
1359 if (!retval && infop)
1360 retval = put_user(uid, &infop->si_uid);
1361 if (!retval)
1362 retval = pid;
1364 if (traced) {
1365 write_lock_irq(&tasklist_lock);
1366 /* We dropped tasklist, ptracer could die and untrace */
1367 ptrace_unlink(p);
1369 * If this is not a detached task, notify the parent.
1370 * If it's still not detached after that, don't release
1371 * it now.
1373 if (!task_detached(p)) {
1374 do_notify_parent(p, p->exit_signal);
1375 if (!task_detached(p)) {
1376 p->exit_state = EXIT_ZOMBIE;
1377 p = NULL;
1380 write_unlock_irq(&tasklist_lock);
1382 if (p != NULL)
1383 release_task(p);
1385 return retval;
1389 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1390 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1391 * the lock and this task is uninteresting. If we return nonzero, we have
1392 * released the lock and the system call should return.
1394 static int wait_task_stopped(int ptrace, struct task_struct *p,
1395 int options, struct siginfo __user *infop,
1396 int __user *stat_addr, struct rusage __user *ru)
1398 int retval, exit_code, why;
1399 uid_t uid = 0; /* unneeded, required by compiler */
1400 pid_t pid;
1402 if (!(options & WUNTRACED))
1403 return 0;
1405 exit_code = 0;
1406 spin_lock_irq(&p->sighand->siglock);
1408 if (unlikely(!task_is_stopped_or_traced(p)))
1409 goto unlock_sig;
1411 if (!ptrace && p->signal->group_stop_count > 0)
1413 * A group stop is in progress and this is the group leader.
1414 * We won't report until all threads have stopped.
1416 goto unlock_sig;
1418 exit_code = p->exit_code;
1419 if (!exit_code)
1420 goto unlock_sig;
1422 if (!unlikely(options & WNOWAIT))
1423 p->exit_code = 0;
1425 /* don't need the RCU readlock here as we're holding a spinlock */
1426 uid = __task_cred(p)->uid;
1427 unlock_sig:
1428 spin_unlock_irq(&p->sighand->siglock);
1429 if (!exit_code)
1430 return 0;
1433 * Now we are pretty sure this task is interesting.
1434 * Make sure it doesn't get reaped out from under us while we
1435 * give up the lock and then examine it below. We don't want to
1436 * keep holding onto the tasklist_lock while we call getrusage and
1437 * possibly take page faults for user memory.
1439 get_task_struct(p);
1440 pid = task_pid_vnr(p);
1441 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1442 read_unlock(&tasklist_lock);
1444 if (unlikely(options & WNOWAIT))
1445 return wait_noreap_copyout(p, pid, uid,
1446 why, exit_code,
1447 infop, ru);
1449 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1450 if (!retval && stat_addr)
1451 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1452 if (!retval && infop)
1453 retval = put_user(SIGCHLD, &infop->si_signo);
1454 if (!retval && infop)
1455 retval = put_user(0, &infop->si_errno);
1456 if (!retval && infop)
1457 retval = put_user((short)why, &infop->si_code);
1458 if (!retval && infop)
1459 retval = put_user(exit_code, &infop->si_status);
1460 if (!retval && infop)
1461 retval = put_user(pid, &infop->si_pid);
1462 if (!retval && infop)
1463 retval = put_user(uid, &infop->si_uid);
1464 if (!retval)
1465 retval = pid;
1466 put_task_struct(p);
1468 BUG_ON(!retval);
1469 return retval;
1473 * Handle do_wait work for one task in a live, non-stopped state.
1474 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1475 * the lock and this task is uninteresting. If we return nonzero, we have
1476 * released the lock and the system call should return.
1478 static int wait_task_continued(struct task_struct *p, int options,
1479 struct siginfo __user *infop,
1480 int __user *stat_addr, struct rusage __user *ru)
1482 int retval;
1483 pid_t pid;
1484 uid_t uid;
1486 if (!unlikely(options & WCONTINUED))
1487 return 0;
1489 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1490 return 0;
1492 spin_lock_irq(&p->sighand->siglock);
1493 /* Re-check with the lock held. */
1494 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1495 spin_unlock_irq(&p->sighand->siglock);
1496 return 0;
1498 if (!unlikely(options & WNOWAIT))
1499 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1500 uid = __task_cred(p)->uid;
1501 spin_unlock_irq(&p->sighand->siglock);
1503 pid = task_pid_vnr(p);
1504 get_task_struct(p);
1505 read_unlock(&tasklist_lock);
1507 if (!infop) {
1508 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1509 put_task_struct(p);
1510 if (!retval && stat_addr)
1511 retval = put_user(0xffff, stat_addr);
1512 if (!retval)
1513 retval = pid;
1514 } else {
1515 retval = wait_noreap_copyout(p, pid, uid,
1516 CLD_CONTINUED, SIGCONT,
1517 infop, ru);
1518 BUG_ON(retval == 0);
1521 return retval;
1525 * Consider @p for a wait by @parent.
1527 * -ECHILD should be in *@notask_error before the first call.
1528 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1529 * Returns zero if the search for a child should continue;
1530 * then *@notask_error is 0 if @p is an eligible child,
1531 * or another error from security_task_wait(), or still -ECHILD.
1533 static int wait_consider_task(struct task_struct *parent, int ptrace,
1534 struct task_struct *p, int *notask_error,
1535 enum pid_type type, struct pid *pid, int options,
1536 struct siginfo __user *infop,
1537 int __user *stat_addr, struct rusage __user *ru)
1539 int ret = eligible_child(type, pid, options, p);
1540 if (!ret)
1541 return ret;
1543 if (unlikely(ret < 0)) {
1545 * If we have not yet seen any eligible child,
1546 * then let this error code replace -ECHILD.
1547 * A permission error will give the user a clue
1548 * to look for security policy problems, rather
1549 * than for mysterious wait bugs.
1551 if (*notask_error)
1552 *notask_error = ret;
1555 if (likely(!ptrace) && unlikely(p->ptrace)) {
1557 * This child is hidden by ptrace.
1558 * We aren't allowed to see it now, but eventually we will.
1560 *notask_error = 0;
1561 return 0;
1564 if (p->exit_state == EXIT_DEAD)
1565 return 0;
1568 * We don't reap group leaders with subthreads.
1570 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1571 return wait_task_zombie(p, options, infop, stat_addr, ru);
1574 * It's stopped or running now, so it might
1575 * later continue, exit, or stop again.
1577 *notask_error = 0;
1579 if (task_is_stopped_or_traced(p))
1580 return wait_task_stopped(ptrace, p, options,
1581 infop, stat_addr, ru);
1583 return wait_task_continued(p, options, infop, stat_addr, ru);
1587 * Do the work of do_wait() for one thread in the group, @tsk.
1589 * -ECHILD should be in *@notask_error before the first call.
1590 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1591 * Returns zero if the search for a child should continue; then
1592 * *@notask_error is 0 if there were any eligible children,
1593 * or another error from security_task_wait(), or still -ECHILD.
1595 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1596 enum pid_type type, struct pid *pid, int options,
1597 struct siginfo __user *infop, int __user *stat_addr,
1598 struct rusage __user *ru)
1600 struct task_struct *p;
1602 list_for_each_entry(p, &tsk->children, sibling) {
1604 * Do not consider detached threads.
1606 if (!task_detached(p)) {
1607 int ret = wait_consider_task(tsk, 0, p, notask_error,
1608 type, pid, options,
1609 infop, stat_addr, ru);
1610 if (ret)
1611 return ret;
1615 return 0;
1618 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1619 enum pid_type type, struct pid *pid, int options,
1620 struct siginfo __user *infop, int __user *stat_addr,
1621 struct rusage __user *ru)
1623 struct task_struct *p;
1626 * Traditionally we see ptrace'd stopped tasks regardless of options.
1628 options |= WUNTRACED;
1630 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1631 int ret = wait_consider_task(tsk, 1, p, notask_error,
1632 type, pid, options,
1633 infop, stat_addr, ru);
1634 if (ret)
1635 return ret;
1638 return 0;
1641 static long do_wait(enum pid_type type, struct pid *pid, int options,
1642 struct siginfo __user *infop, int __user *stat_addr,
1643 struct rusage __user *ru)
1645 DECLARE_WAITQUEUE(wait, current);
1646 struct task_struct *tsk;
1647 int retval;
1649 trace_sched_process_wait(pid);
1651 add_wait_queue(&current->signal->wait_chldexit,&wait);
1652 repeat:
1654 * If there is nothing that can match our critiera just get out.
1655 * We will clear @retval to zero if we see any child that might later
1656 * match our criteria, even if we are not able to reap it yet.
1658 retval = -ECHILD;
1659 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1660 goto end;
1662 current->state = TASK_INTERRUPTIBLE;
1663 read_lock(&tasklist_lock);
1664 tsk = current;
1665 do {
1666 int tsk_result = do_wait_thread(tsk, &retval,
1667 type, pid, options,
1668 infop, stat_addr, ru);
1669 if (!tsk_result)
1670 tsk_result = ptrace_do_wait(tsk, &retval,
1671 type, pid, options,
1672 infop, stat_addr, ru);
1673 if (tsk_result) {
1675 * tasklist_lock is unlocked and we have a final result.
1677 retval = tsk_result;
1678 goto end;
1681 if (options & __WNOTHREAD)
1682 break;
1683 tsk = next_thread(tsk);
1684 BUG_ON(tsk->signal != current->signal);
1685 } while (tsk != current);
1686 read_unlock(&tasklist_lock);
1688 if (!retval && !(options & WNOHANG)) {
1689 retval = -ERESTARTSYS;
1690 if (!signal_pending(current)) {
1691 schedule();
1692 goto repeat;
1696 end:
1697 current->state = TASK_RUNNING;
1698 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1699 if (infop) {
1700 if (retval > 0)
1701 retval = 0;
1702 else {
1704 * For a WNOHANG return, clear out all the fields
1705 * we would set so the user can easily tell the
1706 * difference.
1708 if (!retval)
1709 retval = put_user(0, &infop->si_signo);
1710 if (!retval)
1711 retval = put_user(0, &infop->si_errno);
1712 if (!retval)
1713 retval = put_user(0, &infop->si_code);
1714 if (!retval)
1715 retval = put_user(0, &infop->si_pid);
1716 if (!retval)
1717 retval = put_user(0, &infop->si_uid);
1718 if (!retval)
1719 retval = put_user(0, &infop->si_status);
1722 return retval;
1725 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1726 infop, int, options, struct rusage __user *, ru)
1728 struct pid *pid = NULL;
1729 enum pid_type type;
1730 long ret;
1732 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1733 return -EINVAL;
1734 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1735 return -EINVAL;
1737 switch (which) {
1738 case P_ALL:
1739 type = PIDTYPE_MAX;
1740 break;
1741 case P_PID:
1742 type = PIDTYPE_PID;
1743 if (upid <= 0)
1744 return -EINVAL;
1745 break;
1746 case P_PGID:
1747 type = PIDTYPE_PGID;
1748 if (upid <= 0)
1749 return -EINVAL;
1750 break;
1751 default:
1752 return -EINVAL;
1755 if (type < PIDTYPE_MAX)
1756 pid = find_get_pid(upid);
1757 ret = do_wait(type, pid, options, infop, NULL, ru);
1758 put_pid(pid);
1760 /* avoid REGPARM breakage on x86: */
1761 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1762 return ret;
1765 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1766 int, options, struct rusage __user *, ru)
1768 struct pid *pid = NULL;
1769 enum pid_type type;
1770 long ret;
1772 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1773 __WNOTHREAD|__WCLONE|__WALL))
1774 return -EINVAL;
1776 if (upid == -1)
1777 type = PIDTYPE_MAX;
1778 else if (upid < 0) {
1779 type = PIDTYPE_PGID;
1780 pid = find_get_pid(-upid);
1781 } else if (upid == 0) {
1782 type = PIDTYPE_PGID;
1783 pid = get_pid(task_pgrp(current));
1784 } else /* upid > 0 */ {
1785 type = PIDTYPE_PID;
1786 pid = find_get_pid(upid);
1789 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1790 put_pid(pid);
1792 /* avoid REGPARM breakage on x86: */
1793 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1794 return ret;
1797 #ifdef __ARCH_WANT_SYS_WAITPID
1800 * sys_waitpid() remains for compatibility. waitpid() should be
1801 * implemented by calling sys_wait4() from libc.a.
1803 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1805 return sys_wait4(pid, stat_addr, options, NULL);
1808 #endif