ath5k: fix memory leak when fewer than N_PD_CURVES are in use
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath / ath5k / eeprom.c
blob487fa4f5db5fe16369a2a21ec1adf3c518407169
1 /*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #include <linux/slab.h>
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "debug.h"
29 #include "base.h"
32 * Read from eeprom
34 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
36 u32 status, timeout;
38 ATH5K_TRACE(ah->ah_sc);
40 * Initialize EEPROM access
42 if (ah->ah_version == AR5K_AR5210) {
43 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
44 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
45 } else {
46 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
47 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
48 AR5K_EEPROM_CMD_READ);
51 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
52 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
53 if (status & AR5K_EEPROM_STAT_RDDONE) {
54 if (status & AR5K_EEPROM_STAT_RDERR)
55 return -EIO;
56 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
57 0xffff);
58 return 0;
60 udelay(15);
63 return -ETIMEDOUT;
67 * Translate binary channel representation in EEPROM to frequency
69 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
70 unsigned int mode)
72 u16 val;
74 if (bin == AR5K_EEPROM_CHANNEL_DIS)
75 return bin;
77 if (mode == AR5K_EEPROM_MODE_11A) {
78 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
79 val = (5 * bin) + 4800;
80 else
81 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
82 (bin * 10) + 5100;
83 } else {
84 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
85 val = bin + 2300;
86 else
87 val = bin + 2400;
90 return val;
94 * Initialize eeprom & capabilities structs
96 static int
97 ath5k_eeprom_init_header(struct ath5k_hw *ah)
99 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
100 int ret;
101 u16 val;
102 u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
105 * Read values from EEPROM and store them in the capability structure
107 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
108 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
109 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
110 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
111 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
113 /* Return if we have an old EEPROM */
114 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
115 return 0;
118 * Validate the checksum of the EEPROM date. There are some
119 * devices with invalid EEPROMs.
121 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
122 if (val) {
123 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
124 AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
125 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
126 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
129 * Fail safe check to prevent stupid loops due
130 * to busted EEPROMs. XXX: This value is likely too
131 * big still, waiting on a better value.
133 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
134 ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
135 "%d (0x%04x) max expected: %d (0x%04x)\n",
136 eep_max, eep_max,
137 3 * AR5K_EEPROM_INFO_MAX,
138 3 * AR5K_EEPROM_INFO_MAX);
139 return -EIO;
143 for (cksum = 0, offset = 0; offset < eep_max; offset++) {
144 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
145 cksum ^= val;
147 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
148 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
149 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
150 cksum, eep_max,
151 eep_max == AR5K_EEPROM_INFO_MAX ?
152 "default size" : "custom size");
153 return -EIO;
156 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
157 ee_ant_gain);
159 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
160 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
161 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
163 /* XXX: Don't know which versions include these two */
164 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
166 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
167 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
169 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
170 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
171 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
172 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
176 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
177 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
178 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
179 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
181 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
182 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
183 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
186 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
188 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
189 ee->ee_is_hb63 = true;
190 else
191 ee->ee_is_hb63 = false;
193 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
194 ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
195 ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
197 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
198 * and enable serdes programming if needed.
200 * XXX: Serdes values seem to be fixed so
201 * no need to read them here, we write them
202 * during ath5k_hw_attach */
203 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
204 ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
205 true : false;
207 return 0;
212 * Read antenna infos from eeprom
214 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
215 unsigned int mode)
217 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
218 u32 o = *offset;
219 u16 val;
220 int ret, i = 0;
222 AR5K_EEPROM_READ(o++, val);
223 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
224 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
225 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
227 AR5K_EEPROM_READ(o++, val);
228 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
229 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
230 ee->ee_ant_control[mode][i++] = val & 0x3f;
232 AR5K_EEPROM_READ(o++, val);
233 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
234 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
235 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
237 AR5K_EEPROM_READ(o++, val);
238 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
239 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
240 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
241 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
243 AR5K_EEPROM_READ(o++, val);
244 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
245 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
246 ee->ee_ant_control[mode][i++] = val & 0x3f;
248 /* Get antenna switch tables */
249 ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
250 (ee->ee_ant_control[mode][0] << 4);
251 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
252 ee->ee_ant_control[mode][1] |
253 (ee->ee_ant_control[mode][2] << 6) |
254 (ee->ee_ant_control[mode][3] << 12) |
255 (ee->ee_ant_control[mode][4] << 18) |
256 (ee->ee_ant_control[mode][5] << 24);
257 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
258 ee->ee_ant_control[mode][6] |
259 (ee->ee_ant_control[mode][7] << 6) |
260 (ee->ee_ant_control[mode][8] << 12) |
261 (ee->ee_ant_control[mode][9] << 18) |
262 (ee->ee_ant_control[mode][10] << 24);
264 /* return new offset */
265 *offset = o;
267 return 0;
271 * Read supported modes and some mode-specific calibration data
272 * from eeprom
274 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
275 unsigned int mode)
277 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
278 u32 o = *offset;
279 u16 val;
280 int ret;
282 ee->ee_n_piers[mode] = 0;
283 AR5K_EEPROM_READ(o++, val);
284 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
285 switch(mode) {
286 case AR5K_EEPROM_MODE_11A:
287 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
288 ee->ee_db[mode][3] = (val >> 2) & 0x7;
289 ee->ee_ob[mode][2] = (val << 1) & 0x7;
291 AR5K_EEPROM_READ(o++, val);
292 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
293 ee->ee_db[mode][2] = (val >> 12) & 0x7;
294 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
295 ee->ee_db[mode][1] = (val >> 6) & 0x7;
296 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
297 ee->ee_db[mode][0] = val & 0x7;
298 break;
299 case AR5K_EEPROM_MODE_11G:
300 case AR5K_EEPROM_MODE_11B:
301 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
302 ee->ee_db[mode][1] = val & 0x7;
303 break;
306 AR5K_EEPROM_READ(o++, val);
307 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
308 ee->ee_thr_62[mode] = val & 0xff;
310 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
311 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
313 AR5K_EEPROM_READ(o++, val);
314 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
315 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
317 AR5K_EEPROM_READ(o++, val);
318 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
320 if ((val & 0xff) & 0x80)
321 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
322 else
323 ee->ee_noise_floor_thr[mode] = val & 0xff;
325 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
326 ee->ee_noise_floor_thr[mode] =
327 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
329 AR5K_EEPROM_READ(o++, val);
330 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
331 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
332 ee->ee_xpd[mode] = val & 0x1;
334 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
335 mode != AR5K_EEPROM_MODE_11B)
336 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
338 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
339 AR5K_EEPROM_READ(o++, val);
340 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
342 if (mode == AR5K_EEPROM_MODE_11A)
343 ee->ee_xr_power[mode] = val & 0x3f;
344 else {
345 /* b_DB_11[bg] and b_OB_11[bg] */
346 ee->ee_ob[mode][0] = val & 0x7;
347 ee->ee_db[mode][0] = (val >> 3) & 0x7;
351 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
352 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
353 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
354 } else {
355 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
357 AR5K_EEPROM_READ(o++, val);
358 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
360 if (mode == AR5K_EEPROM_MODE_11G) {
361 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
362 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
363 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
367 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
368 mode == AR5K_EEPROM_MODE_11A) {
369 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
370 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
373 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
374 goto done;
376 /* Note: >= v5 have bg freq piers on another location
377 * so these freq piers are ignored for >= v5 (should be 0xff
378 * anyway) */
379 switch(mode) {
380 case AR5K_EEPROM_MODE_11A:
381 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
382 break;
384 AR5K_EEPROM_READ(o++, val);
385 ee->ee_margin_tx_rx[mode] = val & 0x3f;
386 break;
387 case AR5K_EEPROM_MODE_11B:
388 AR5K_EEPROM_READ(o++, val);
390 ee->ee_pwr_cal_b[0].freq =
391 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
392 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
393 ee->ee_n_piers[mode]++;
395 ee->ee_pwr_cal_b[1].freq =
396 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
397 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
398 ee->ee_n_piers[mode]++;
400 AR5K_EEPROM_READ(o++, val);
401 ee->ee_pwr_cal_b[2].freq =
402 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
403 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
404 ee->ee_n_piers[mode]++;
406 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
407 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
408 break;
409 case AR5K_EEPROM_MODE_11G:
410 AR5K_EEPROM_READ(o++, val);
412 ee->ee_pwr_cal_g[0].freq =
413 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
414 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
415 ee->ee_n_piers[mode]++;
417 ee->ee_pwr_cal_g[1].freq =
418 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
419 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
420 ee->ee_n_piers[mode]++;
422 AR5K_EEPROM_READ(o++, val);
423 ee->ee_turbo_max_power[mode] = val & 0x7f;
424 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
426 AR5K_EEPROM_READ(o++, val);
427 ee->ee_pwr_cal_g[2].freq =
428 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
429 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
430 ee->ee_n_piers[mode]++;
432 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
433 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
435 AR5K_EEPROM_READ(o++, val);
436 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
437 ee->ee_q_cal[mode] = val & 0x1f;
439 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
440 AR5K_EEPROM_READ(o++, val);
441 ee->ee_cck_ofdm_gain_delta = val & 0xff;
443 break;
447 * Read turbo mode information on newer EEPROM versions
449 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
450 goto done;
452 switch (mode){
453 case AR5K_EEPROM_MODE_11A:
454 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
456 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
457 AR5K_EEPROM_READ(o++, val);
458 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
459 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
461 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
462 AR5K_EEPROM_READ(o++, val);
463 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
464 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
466 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
467 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
468 break;
469 case AR5K_EEPROM_MODE_11G:
470 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
472 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
473 AR5K_EEPROM_READ(o++, val);
474 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
475 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
477 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
478 AR5K_EEPROM_READ(o++, val);
479 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
480 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
481 break;
484 done:
485 /* return new offset */
486 *offset = o;
488 return 0;
491 /* Read mode-specific data (except power calibration data) */
492 static int
493 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
495 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
496 u32 mode_offset[3];
497 unsigned int mode;
498 u32 offset;
499 int ret;
502 * Get values for all modes
504 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
505 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
506 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
508 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
509 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
511 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
512 offset = mode_offset[mode];
514 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
515 if (ret)
516 return ret;
518 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
519 if (ret)
520 return ret;
523 /* override for older eeprom versions for better performance */
524 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
525 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
526 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
527 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
530 return 0;
533 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
534 * frequency mask) */
535 static inline int
536 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
537 struct ath5k_chan_pcal_info *pc, unsigned int mode)
539 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
540 int o = *offset;
541 int i = 0;
542 u8 freq1, freq2;
543 int ret;
544 u16 val;
546 ee->ee_n_piers[mode] = 0;
547 while(i < max) {
548 AR5K_EEPROM_READ(o++, val);
550 freq1 = val & 0xff;
551 if (!freq1)
552 break;
554 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
555 freq1, mode);
556 ee->ee_n_piers[mode]++;
558 freq2 = (val >> 8) & 0xff;
559 if (!freq2)
560 break;
562 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
563 freq2, mode);
564 ee->ee_n_piers[mode]++;
567 /* return new offset */
568 *offset = o;
570 return 0;
573 /* Read frequency piers for 802.11a */
574 static int
575 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
577 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
578 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
579 int i, ret;
580 u16 val;
581 u8 mask;
583 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
584 ath5k_eeprom_read_freq_list(ah, &offset,
585 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
586 AR5K_EEPROM_MODE_11A);
587 } else {
588 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
590 AR5K_EEPROM_READ(offset++, val);
591 pcal[0].freq = (val >> 9) & mask;
592 pcal[1].freq = (val >> 2) & mask;
593 pcal[2].freq = (val << 5) & mask;
595 AR5K_EEPROM_READ(offset++, val);
596 pcal[2].freq |= (val >> 11) & 0x1f;
597 pcal[3].freq = (val >> 4) & mask;
598 pcal[4].freq = (val << 3) & mask;
600 AR5K_EEPROM_READ(offset++, val);
601 pcal[4].freq |= (val >> 13) & 0x7;
602 pcal[5].freq = (val >> 6) & mask;
603 pcal[6].freq = (val << 1) & mask;
605 AR5K_EEPROM_READ(offset++, val);
606 pcal[6].freq |= (val >> 15) & 0x1;
607 pcal[7].freq = (val >> 8) & mask;
608 pcal[8].freq = (val >> 1) & mask;
609 pcal[9].freq = (val << 6) & mask;
611 AR5K_EEPROM_READ(offset++, val);
612 pcal[9].freq |= (val >> 10) & 0x3f;
614 /* Fixed number of piers */
615 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
617 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
618 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
619 pcal[i].freq, AR5K_EEPROM_MODE_11A);
623 return 0;
626 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
627 static inline int
628 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
630 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
631 struct ath5k_chan_pcal_info *pcal;
633 switch(mode) {
634 case AR5K_EEPROM_MODE_11B:
635 pcal = ee->ee_pwr_cal_b;
636 break;
637 case AR5K_EEPROM_MODE_11G:
638 pcal = ee->ee_pwr_cal_g;
639 break;
640 default:
641 return -EINVAL;
644 ath5k_eeprom_read_freq_list(ah, &offset,
645 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
646 mode);
648 return 0;
652 * Read power calibration for RF5111 chips
654 * For RF5111 we have an XPD -eXternal Power Detector- curve
655 * for each calibrated channel. Each curve has 0,5dB Power steps
656 * on x axis and PCDAC steps (offsets) on y axis and looks like an
657 * exponential function. To recreate the curve we read 11 points
658 * here and interpolate later.
661 /* Used to match PCDAC steps with power values on RF5111 chips
662 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
663 * steps that match with the power values we read from eeprom. On
664 * older eeprom versions (< 3.2) these steps are equaly spaced at
665 * 10% of the pcdac curve -until the curve reaches it's maximum-
666 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
667 * these 11 steps are spaced in a different way. This function returns
668 * the pcdac steps based on eeprom version and curve min/max so that we
669 * can have pcdac/pwr points.
671 static inline void
672 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
674 static const u16 intercepts3[] =
675 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
676 static const u16 intercepts3_2[] =
677 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
678 const u16 *ip;
679 int i;
681 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
682 ip = intercepts3_2;
683 else
684 ip = intercepts3;
686 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
687 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
690 /* Convert RF5111 specific data to generic raw data
691 * used by interpolation code */
692 static int
693 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
694 struct ath5k_chan_pcal_info *chinfo)
696 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
697 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
698 struct ath5k_pdgain_info *pd;
699 u8 pier, point, idx;
700 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
702 /* Fill raw data for each calibration pier */
703 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
705 pcinfo = &chinfo[pier].rf5111_info;
707 /* Allocate pd_curves for this cal pier */
708 chinfo[pier].pd_curves =
709 kcalloc(AR5K_EEPROM_N_PD_CURVES,
710 sizeof(struct ath5k_pdgain_info),
711 GFP_KERNEL);
713 if (!chinfo[pier].pd_curves)
714 return -ENOMEM;
716 /* Only one curve for RF5111
717 * find out which one and place
718 * in in pd_curves.
719 * Note: ee_x_gain is reversed here */
720 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
722 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
723 pdgain_idx[0] = idx;
724 break;
728 ee->ee_pd_gains[mode] = 1;
730 pd = &chinfo[pier].pd_curves[idx];
732 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
734 /* Allocate pd points for this curve */
735 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
736 sizeof(u8), GFP_KERNEL);
737 if (!pd->pd_step)
738 return -ENOMEM;
740 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
741 sizeof(s16), GFP_KERNEL);
742 if (!pd->pd_pwr)
743 return -ENOMEM;
745 /* Fill raw dataset
746 * (convert power to 0.25dB units
747 * for RF5112 combatibility) */
748 for (point = 0; point < pd->pd_points; point++) {
750 /* Absolute values */
751 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
753 /* Already sorted */
754 pd->pd_step[point] = pcinfo->pcdac[point];
757 /* Set min/max pwr */
758 chinfo[pier].min_pwr = pd->pd_pwr[0];
759 chinfo[pier].max_pwr = pd->pd_pwr[10];
763 return 0;
766 /* Parse EEPROM data */
767 static int
768 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
770 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
771 struct ath5k_chan_pcal_info *pcal;
772 int offset, ret;
773 int i;
774 u16 val;
776 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
777 switch(mode) {
778 case AR5K_EEPROM_MODE_11A:
779 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
780 return 0;
782 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
783 offset + AR5K_EEPROM_GROUP1_OFFSET);
784 if (ret < 0)
785 return ret;
787 offset += AR5K_EEPROM_GROUP2_OFFSET;
788 pcal = ee->ee_pwr_cal_a;
789 break;
790 case AR5K_EEPROM_MODE_11B:
791 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
792 !AR5K_EEPROM_HDR_11G(ee->ee_header))
793 return 0;
795 pcal = ee->ee_pwr_cal_b;
796 offset += AR5K_EEPROM_GROUP3_OFFSET;
798 /* fixed piers */
799 pcal[0].freq = 2412;
800 pcal[1].freq = 2447;
801 pcal[2].freq = 2484;
802 ee->ee_n_piers[mode] = 3;
803 break;
804 case AR5K_EEPROM_MODE_11G:
805 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
806 return 0;
808 pcal = ee->ee_pwr_cal_g;
809 offset += AR5K_EEPROM_GROUP4_OFFSET;
811 /* fixed piers */
812 pcal[0].freq = 2312;
813 pcal[1].freq = 2412;
814 pcal[2].freq = 2484;
815 ee->ee_n_piers[mode] = 3;
816 break;
817 default:
818 return -EINVAL;
821 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
822 struct ath5k_chan_pcal_info_rf5111 *cdata =
823 &pcal[i].rf5111_info;
825 AR5K_EEPROM_READ(offset++, val);
826 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
827 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
828 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
830 AR5K_EEPROM_READ(offset++, val);
831 cdata->pwr[0] |= ((val >> 14) & 0x3);
832 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
833 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
834 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
836 AR5K_EEPROM_READ(offset++, val);
837 cdata->pwr[3] |= ((val >> 12) & 0xf);
838 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
839 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
841 AR5K_EEPROM_READ(offset++, val);
842 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
843 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
844 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
846 AR5K_EEPROM_READ(offset++, val);
847 cdata->pwr[8] |= ((val >> 14) & 0x3);
848 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
849 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
851 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
852 cdata->pcdac_max, cdata->pcdac);
855 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
860 * Read power calibration for RF5112 chips
862 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
863 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
864 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
865 * power steps on x axis and PCDAC steps on y axis and looks like a
866 * linear function. To recreate the curve and pass the power values
867 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
868 * and 3 points for xpd 3 (higher gain -> lower power) here and
869 * interpolate later.
871 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
874 /* Convert RF5112 specific data to generic raw data
875 * used by interpolation code */
876 static int
877 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
878 struct ath5k_chan_pcal_info *chinfo)
880 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
881 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
882 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
883 unsigned int pier, pdg, point;
885 /* Fill raw data for each calibration pier */
886 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
888 pcinfo = &chinfo[pier].rf5112_info;
890 /* Allocate pd_curves for this cal pier */
891 chinfo[pier].pd_curves =
892 kcalloc(AR5K_EEPROM_N_PD_CURVES,
893 sizeof(struct ath5k_pdgain_info),
894 GFP_KERNEL);
896 if (!chinfo[pier].pd_curves)
897 return -ENOMEM;
899 /* Fill pd_curves */
900 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
902 u8 idx = pdgain_idx[pdg];
903 struct ath5k_pdgain_info *pd =
904 &chinfo[pier].pd_curves[idx];
906 /* Lowest gain curve (max power) */
907 if (pdg == 0) {
908 /* One more point for better accuracy */
909 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
911 /* Allocate pd points for this curve */
912 pd->pd_step = kcalloc(pd->pd_points,
913 sizeof(u8), GFP_KERNEL);
915 if (!pd->pd_step)
916 return -ENOMEM;
918 pd->pd_pwr = kcalloc(pd->pd_points,
919 sizeof(s16), GFP_KERNEL);
921 if (!pd->pd_pwr)
922 return -ENOMEM;
925 /* Fill raw dataset
926 * (all power levels are in 0.25dB units) */
927 pd->pd_step[0] = pcinfo->pcdac_x0[0];
928 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
930 for (point = 1; point < pd->pd_points;
931 point++) {
932 /* Absolute values */
933 pd->pd_pwr[point] =
934 pcinfo->pwr_x0[point];
936 /* Deltas */
937 pd->pd_step[point] =
938 pd->pd_step[point - 1] +
939 pcinfo->pcdac_x0[point];
942 /* Set min power for this frequency */
943 chinfo[pier].min_pwr = pd->pd_pwr[0];
945 /* Highest gain curve (min power) */
946 } else if (pdg == 1) {
948 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
950 /* Allocate pd points for this curve */
951 pd->pd_step = kcalloc(pd->pd_points,
952 sizeof(u8), GFP_KERNEL);
954 if (!pd->pd_step)
955 return -ENOMEM;
957 pd->pd_pwr = kcalloc(pd->pd_points,
958 sizeof(s16), GFP_KERNEL);
960 if (!pd->pd_pwr)
961 return -ENOMEM;
963 /* Fill raw dataset
964 * (all power levels are in 0.25dB units) */
965 for (point = 0; point < pd->pd_points;
966 point++) {
967 /* Absolute values */
968 pd->pd_pwr[point] =
969 pcinfo->pwr_x3[point];
971 /* Fixed points */
972 pd->pd_step[point] =
973 pcinfo->pcdac_x3[point];
976 /* Since we have a higher gain curve
977 * override min power */
978 chinfo[pier].min_pwr = pd->pd_pwr[0];
983 return 0;
986 /* Parse EEPROM data */
987 static int
988 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
990 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
991 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
992 struct ath5k_chan_pcal_info *gen_chan_info;
993 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
994 u32 offset;
995 u8 i, c;
996 u16 val;
997 int ret;
998 u8 pd_gains = 0;
1000 /* Count how many curves we have and
1001 * identify them (which one of the 4
1002 * available curves we have on each count).
1003 * Curves are stored from lower (x0) to
1004 * higher (x3) gain */
1005 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1006 /* ee_x_gain[mode] is x gain mask */
1007 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1008 pdgain_idx[pd_gains++] = i;
1010 ee->ee_pd_gains[mode] = pd_gains;
1012 if (pd_gains == 0 || pd_gains > 2)
1013 return -EINVAL;
1015 switch (mode) {
1016 case AR5K_EEPROM_MODE_11A:
1018 * Read 5GHz EEPROM channels
1020 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1021 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1023 offset += AR5K_EEPROM_GROUP2_OFFSET;
1024 gen_chan_info = ee->ee_pwr_cal_a;
1025 break;
1026 case AR5K_EEPROM_MODE_11B:
1027 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1028 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1029 offset += AR5K_EEPROM_GROUP3_OFFSET;
1031 /* NB: frequency piers parsed during mode init */
1032 gen_chan_info = ee->ee_pwr_cal_b;
1033 break;
1034 case AR5K_EEPROM_MODE_11G:
1035 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1036 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1037 offset += AR5K_EEPROM_GROUP4_OFFSET;
1038 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1039 offset += AR5K_EEPROM_GROUP2_OFFSET;
1041 /* NB: frequency piers parsed during mode init */
1042 gen_chan_info = ee->ee_pwr_cal_g;
1043 break;
1044 default:
1045 return -EINVAL;
1048 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1049 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1051 /* Power values in quarter dB
1052 * for the lower xpd gain curve
1053 * (0 dBm -> higher output power) */
1054 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1055 AR5K_EEPROM_READ(offset++, val);
1056 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1057 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1060 /* PCDAC steps
1061 * corresponding to the above power
1062 * measurements */
1063 AR5K_EEPROM_READ(offset++, val);
1064 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1065 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1066 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1068 /* Power values in quarter dB
1069 * for the higher xpd gain curve
1070 * (18 dBm -> lower output power) */
1071 AR5K_EEPROM_READ(offset++, val);
1072 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1073 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1075 AR5K_EEPROM_READ(offset++, val);
1076 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1078 /* PCDAC steps
1079 * corresponding to the above power
1080 * measurements (fixed) */
1081 chan_pcal_info->pcdac_x3[0] = 20;
1082 chan_pcal_info->pcdac_x3[1] = 35;
1083 chan_pcal_info->pcdac_x3[2] = 63;
1085 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1086 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1088 /* Last xpd0 power level is also channel maximum */
1089 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1090 } else {
1091 chan_pcal_info->pcdac_x0[0] = 1;
1092 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1097 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1102 * Read power calibration for RF2413 chips
1104 * For RF2413 we have a Power to PDDAC table (Power Detector)
1105 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1106 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1107 * axis and looks like an exponential function like the RF5111 curve.
1109 * To recreate the curves we read here the points and interpolate
1110 * later. Note that in most cases only 2 (higher and lower) curves are
1111 * used (like RF5112) but vendors have the oportunity to include all
1112 * 4 curves on eeprom. The final curve (higher power) has an extra
1113 * point for better accuracy like RF5112.
1116 /* For RF2413 power calibration data doesn't start on a fixed location and
1117 * if a mode is not supported, it's section is missing -not zeroed-.
1118 * So we need to calculate the starting offset for each section by using
1119 * these two functions */
1121 /* Return the size of each section based on the mode and the number of pd
1122 * gains available (maximum 4). */
1123 static inline unsigned int
1124 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1126 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1127 unsigned int sz;
1129 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1130 sz *= ee->ee_n_piers[mode];
1132 return sz;
1135 /* Return the starting offset for a section based on the modes supported
1136 * and each section's size. */
1137 static unsigned int
1138 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1140 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1142 switch(mode) {
1143 case AR5K_EEPROM_MODE_11G:
1144 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1145 offset += ath5k_pdgains_size_2413(ee,
1146 AR5K_EEPROM_MODE_11B) +
1147 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1148 /* fall through */
1149 case AR5K_EEPROM_MODE_11B:
1150 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1151 offset += ath5k_pdgains_size_2413(ee,
1152 AR5K_EEPROM_MODE_11A) +
1153 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1154 /* fall through */
1155 case AR5K_EEPROM_MODE_11A:
1156 break;
1157 default:
1158 break;
1161 return offset;
1164 /* Convert RF2413 specific data to generic raw data
1165 * used by interpolation code */
1166 static int
1167 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1168 struct ath5k_chan_pcal_info *chinfo)
1170 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1171 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1172 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1173 unsigned int pier, pdg, point;
1175 /* Fill raw data for each calibration pier */
1176 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1178 pcinfo = &chinfo[pier].rf2413_info;
1180 /* Allocate pd_curves for this cal pier */
1181 chinfo[pier].pd_curves =
1182 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1183 sizeof(struct ath5k_pdgain_info),
1184 GFP_KERNEL);
1186 if (!chinfo[pier].pd_curves)
1187 return -ENOMEM;
1189 /* Fill pd_curves */
1190 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1192 u8 idx = pdgain_idx[pdg];
1193 struct ath5k_pdgain_info *pd =
1194 &chinfo[pier].pd_curves[idx];
1196 /* One more point for the highest power
1197 * curve (lowest gain) */
1198 if (pdg == ee->ee_pd_gains[mode] - 1)
1199 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1200 else
1201 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1203 /* Allocate pd points for this curve */
1204 pd->pd_step = kcalloc(pd->pd_points,
1205 sizeof(u8), GFP_KERNEL);
1207 if (!pd->pd_step)
1208 return -ENOMEM;
1210 pd->pd_pwr = kcalloc(pd->pd_points,
1211 sizeof(s16), GFP_KERNEL);
1213 if (!pd->pd_pwr)
1214 return -ENOMEM;
1216 /* Fill raw dataset
1217 * convert all pwr levels to
1218 * quarter dB for RF5112 combatibility */
1219 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1220 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1222 for (point = 1; point < pd->pd_points; point++) {
1224 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1225 2 * pcinfo->pwr[pdg][point - 1];
1227 pd->pd_step[point] = pd->pd_step[point - 1] +
1228 pcinfo->pddac[pdg][point - 1];
1232 /* Highest gain curve -> min power */
1233 if (pdg == 0)
1234 chinfo[pier].min_pwr = pd->pd_pwr[0];
1236 /* Lowest gain curve -> max power */
1237 if (pdg == ee->ee_pd_gains[mode] - 1)
1238 chinfo[pier].max_pwr =
1239 pd->pd_pwr[pd->pd_points - 1];
1243 return 0;
1246 /* Parse EEPROM data */
1247 static int
1248 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1250 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1251 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1252 struct ath5k_chan_pcal_info *chinfo;
1253 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1254 u32 offset;
1255 int idx, i, ret;
1256 u16 val;
1257 u8 pd_gains = 0;
1259 /* Count how many curves we have and
1260 * identify them (which one of the 4
1261 * available curves we have on each count).
1262 * Curves are stored from higher to
1263 * lower gain so we go backwards */
1264 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1265 /* ee_x_gain[mode] is x gain mask */
1266 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1267 pdgain_idx[pd_gains++] = idx;
1270 ee->ee_pd_gains[mode] = pd_gains;
1272 if (pd_gains == 0)
1273 return -EINVAL;
1275 offset = ath5k_cal_data_offset_2413(ee, mode);
1276 switch (mode) {
1277 case AR5K_EEPROM_MODE_11A:
1278 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1279 return 0;
1281 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1282 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1283 chinfo = ee->ee_pwr_cal_a;
1284 break;
1285 case AR5K_EEPROM_MODE_11B:
1286 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1287 return 0;
1289 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1290 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1291 chinfo = ee->ee_pwr_cal_b;
1292 break;
1293 case AR5K_EEPROM_MODE_11G:
1294 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1295 return 0;
1297 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1298 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1299 chinfo = ee->ee_pwr_cal_g;
1300 break;
1301 default:
1302 return -EINVAL;
1305 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1306 pcinfo = &chinfo[i].rf2413_info;
1309 * Read pwr_i, pddac_i and the first
1310 * 2 pd points (pwr, pddac)
1312 AR5K_EEPROM_READ(offset++, val);
1313 pcinfo->pwr_i[0] = val & 0x1f;
1314 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1315 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1317 AR5K_EEPROM_READ(offset++, val);
1318 pcinfo->pddac[0][0] = val & 0x3f;
1319 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1320 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1322 AR5K_EEPROM_READ(offset++, val);
1323 pcinfo->pwr[0][2] = val & 0xf;
1324 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1326 pcinfo->pwr[0][3] = 0;
1327 pcinfo->pddac[0][3] = 0;
1329 if (pd_gains > 1) {
1331 * Pd gain 0 is not the last pd gain
1332 * so it only has 2 pd points.
1333 * Continue wih pd gain 1.
1335 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1337 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1338 AR5K_EEPROM_READ(offset++, val);
1339 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1341 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1342 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1344 AR5K_EEPROM_READ(offset++, val);
1345 pcinfo->pwr[1][1] = val & 0xf;
1346 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1347 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1349 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1350 AR5K_EEPROM_READ(offset++, val);
1351 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1353 pcinfo->pwr[1][3] = 0;
1354 pcinfo->pddac[1][3] = 0;
1355 } else if (pd_gains == 1) {
1357 * Pd gain 0 is the last one so
1358 * read the extra point.
1360 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1362 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1363 AR5K_EEPROM_READ(offset++, val);
1364 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1368 * Proceed with the other pd_gains
1369 * as above.
1371 if (pd_gains > 2) {
1372 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1373 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1375 AR5K_EEPROM_READ(offset++, val);
1376 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1377 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1378 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1380 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1381 AR5K_EEPROM_READ(offset++, val);
1382 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1384 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1385 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1387 pcinfo->pwr[2][3] = 0;
1388 pcinfo->pddac[2][3] = 0;
1389 } else if (pd_gains == 2) {
1390 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1391 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1394 if (pd_gains > 3) {
1395 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1396 AR5K_EEPROM_READ(offset++, val);
1397 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1399 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1400 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1401 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1403 AR5K_EEPROM_READ(offset++, val);
1404 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1405 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1406 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1408 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1409 AR5K_EEPROM_READ(offset++, val);
1410 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1412 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1413 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1415 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1416 AR5K_EEPROM_READ(offset++, val);
1417 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1418 } else if (pd_gains == 3) {
1419 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1420 AR5K_EEPROM_READ(offset++, val);
1421 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1423 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1427 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1432 * Read per rate target power (this is the maximum tx power
1433 * supported by the card). This info is used when setting
1434 * tx power, no matter the channel.
1436 * This also works for v5 EEPROMs.
1438 static int
1439 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1441 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1442 struct ath5k_rate_pcal_info *rate_pcal_info;
1443 u8 *rate_target_pwr_num;
1444 u32 offset;
1445 u16 val;
1446 int ret, i;
1448 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1449 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1450 switch (mode) {
1451 case AR5K_EEPROM_MODE_11A:
1452 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1453 rate_pcal_info = ee->ee_rate_tpwr_a;
1454 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1455 break;
1456 case AR5K_EEPROM_MODE_11B:
1457 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1458 rate_pcal_info = ee->ee_rate_tpwr_b;
1459 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1460 break;
1461 case AR5K_EEPROM_MODE_11G:
1462 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1463 rate_pcal_info = ee->ee_rate_tpwr_g;
1464 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1465 break;
1466 default:
1467 return -EINVAL;
1470 /* Different freq mask for older eeproms (<= v3.2) */
1471 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1472 for (i = 0; i < (*rate_target_pwr_num); i++) {
1473 AR5K_EEPROM_READ(offset++, val);
1474 rate_pcal_info[i].freq =
1475 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1477 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1478 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1480 AR5K_EEPROM_READ(offset++, val);
1482 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1483 val == 0) {
1484 (*rate_target_pwr_num) = i;
1485 break;
1488 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1489 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1490 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1492 } else {
1493 for (i = 0; i < (*rate_target_pwr_num); i++) {
1494 AR5K_EEPROM_READ(offset++, val);
1495 rate_pcal_info[i].freq =
1496 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1498 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1499 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1501 AR5K_EEPROM_READ(offset++, val);
1503 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1504 val == 0) {
1505 (*rate_target_pwr_num) = i;
1506 break;
1509 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1510 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1511 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1515 return 0;
1519 * Read per channel calibration info from EEPROM
1521 * This info is used to calibrate the baseband power table. Imagine
1522 * that for each channel there is a power curve that's hw specific
1523 * (depends on amplifier etc) and we try to "correct" this curve using
1524 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1525 * it can use accurate power values when setting tx power (takes amplifier's
1526 * performance on each channel into account).
1528 * EEPROM provides us with the offsets for some pre-calibrated channels
1529 * and we have to interpolate to create the full table for these channels and
1530 * also the table for any channel.
1532 static int
1533 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1535 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1536 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1537 int mode;
1538 int err;
1540 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1541 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1542 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1543 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1544 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1545 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1546 else
1547 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1550 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1551 mode++) {
1552 err = read_pcal(ah, mode);
1553 if (err)
1554 return err;
1556 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1557 if (err < 0)
1558 return err;
1561 return 0;
1564 static int
1565 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1567 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1568 struct ath5k_chan_pcal_info *chinfo;
1569 u8 pier, pdg;
1571 switch (mode) {
1572 case AR5K_EEPROM_MODE_11A:
1573 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1574 return 0;
1575 chinfo = ee->ee_pwr_cal_a;
1576 break;
1577 case AR5K_EEPROM_MODE_11B:
1578 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1579 return 0;
1580 chinfo = ee->ee_pwr_cal_b;
1581 break;
1582 case AR5K_EEPROM_MODE_11G:
1583 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1584 return 0;
1585 chinfo = ee->ee_pwr_cal_g;
1586 break;
1587 default:
1588 return -EINVAL;
1591 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1592 if (!chinfo[pier].pd_curves)
1593 continue;
1595 for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
1596 struct ath5k_pdgain_info *pd =
1597 &chinfo[pier].pd_curves[pdg];
1599 kfree(pd->pd_step);
1600 kfree(pd->pd_pwr);
1603 kfree(chinfo[pier].pd_curves);
1606 return 0;
1609 void
1610 ath5k_eeprom_detach(struct ath5k_hw *ah)
1612 u8 mode;
1614 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1615 ath5k_eeprom_free_pcal_info(ah, mode);
1618 /* Read conformance test limits used for regulatory control */
1619 static int
1620 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1622 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1623 struct ath5k_edge_power *rep;
1624 unsigned int fmask, pmask;
1625 unsigned int ctl_mode;
1626 int ret, i, j;
1627 u32 offset;
1628 u16 val;
1630 pmask = AR5K_EEPROM_POWER_M;
1631 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1632 offset = AR5K_EEPROM_CTL(ee->ee_version);
1633 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1634 for (i = 0; i < ee->ee_ctls; i += 2) {
1635 AR5K_EEPROM_READ(offset++, val);
1636 ee->ee_ctl[i] = (val >> 8) & 0xff;
1637 ee->ee_ctl[i + 1] = val & 0xff;
1640 offset = AR5K_EEPROM_GROUP8_OFFSET;
1641 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1642 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1643 AR5K_EEPROM_GROUP5_OFFSET;
1644 else
1645 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1647 rep = ee->ee_ctl_pwr;
1648 for(i = 0; i < ee->ee_ctls; i++) {
1649 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1650 case AR5K_CTL_11A:
1651 case AR5K_CTL_TURBO:
1652 ctl_mode = AR5K_EEPROM_MODE_11A;
1653 break;
1654 default:
1655 ctl_mode = AR5K_EEPROM_MODE_11G;
1656 break;
1658 if (ee->ee_ctl[i] == 0) {
1659 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1660 offset += 8;
1661 else
1662 offset += 7;
1663 rep += AR5K_EEPROM_N_EDGES;
1664 continue;
1666 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1667 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1668 AR5K_EEPROM_READ(offset++, val);
1669 rep[j].freq = (val >> 8) & fmask;
1670 rep[j + 1].freq = val & fmask;
1672 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1673 AR5K_EEPROM_READ(offset++, val);
1674 rep[j].edge = (val >> 8) & pmask;
1675 rep[j].flag = (val >> 14) & 1;
1676 rep[j + 1].edge = val & pmask;
1677 rep[j + 1].flag = (val >> 6) & 1;
1679 } else {
1680 AR5K_EEPROM_READ(offset++, val);
1681 rep[0].freq = (val >> 9) & fmask;
1682 rep[1].freq = (val >> 2) & fmask;
1683 rep[2].freq = (val << 5) & fmask;
1685 AR5K_EEPROM_READ(offset++, val);
1686 rep[2].freq |= (val >> 11) & 0x1f;
1687 rep[3].freq = (val >> 4) & fmask;
1688 rep[4].freq = (val << 3) & fmask;
1690 AR5K_EEPROM_READ(offset++, val);
1691 rep[4].freq |= (val >> 13) & 0x7;
1692 rep[5].freq = (val >> 6) & fmask;
1693 rep[6].freq = (val << 1) & fmask;
1695 AR5K_EEPROM_READ(offset++, val);
1696 rep[6].freq |= (val >> 15) & 0x1;
1697 rep[7].freq = (val >> 8) & fmask;
1699 rep[0].edge = (val >> 2) & pmask;
1700 rep[1].edge = (val << 4) & pmask;
1702 AR5K_EEPROM_READ(offset++, val);
1703 rep[1].edge |= (val >> 12) & 0xf;
1704 rep[2].edge = (val >> 6) & pmask;
1705 rep[3].edge = val & pmask;
1707 AR5K_EEPROM_READ(offset++, val);
1708 rep[4].edge = (val >> 10) & pmask;
1709 rep[5].edge = (val >> 4) & pmask;
1710 rep[6].edge = (val << 2) & pmask;
1712 AR5K_EEPROM_READ(offset++, val);
1713 rep[6].edge |= (val >> 14) & 0x3;
1714 rep[7].edge = (val >> 8) & pmask;
1716 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1717 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1718 rep[j].freq, ctl_mode);
1720 rep += AR5K_EEPROM_N_EDGES;
1723 return 0;
1726 static int
1727 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1729 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1730 u32 offset;
1731 u16 val;
1732 int ret = 0, i;
1734 offset = AR5K_EEPROM_CTL(ee->ee_version) +
1735 AR5K_EEPROM_N_CTLS(ee->ee_version);
1737 if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1738 /* No spur info for 5GHz */
1739 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1740 /* 2 channels for 2GHz (2464/2420) */
1741 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1742 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1743 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1744 } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1745 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1746 AR5K_EEPROM_READ(offset, val);
1747 ee->ee_spur_chans[i][0] = val;
1748 AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1749 val);
1750 ee->ee_spur_chans[i][1] = val;
1751 offset++;
1755 return ret;
1759 * Initialize eeprom data structure
1762 ath5k_eeprom_init(struct ath5k_hw *ah)
1764 int err;
1766 err = ath5k_eeprom_init_header(ah);
1767 if (err < 0)
1768 return err;
1770 err = ath5k_eeprom_init_modes(ah);
1771 if (err < 0)
1772 return err;
1774 err = ath5k_eeprom_read_pcal_info(ah);
1775 if (err < 0)
1776 return err;
1778 err = ath5k_eeprom_read_ctl_info(ah);
1779 if (err < 0)
1780 return err;
1782 err = ath5k_eeprom_read_spur_chans(ah);
1783 if (err < 0)
1784 return err;
1786 return 0;
1790 * Read the MAC address from eeprom
1792 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1794 u8 mac_d[ETH_ALEN] = {};
1795 u32 total, offset;
1796 u16 data;
1797 int octet, ret;
1799 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1800 if (ret)
1801 return ret;
1803 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1804 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1805 if (ret)
1806 return ret;
1808 total += data;
1809 mac_d[octet + 1] = data & 0xff;
1810 mac_d[octet] = data >> 8;
1811 octet += 2;
1814 if (!total || total == 3 * 0xffff)
1815 return -EINVAL;
1817 memcpy(mac, mac_d, ETH_ALEN);
1819 return 0;