iommu/amd: Don't use MSI address range for DMA addresses
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / uv_time.c
blob56e421bc379b19931d4db718b35e3b92e71c3d5e
1 /*
2 * SGI RTC clock/timer routines.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
19 * Copyright (c) Dimitri Sivanich
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
28 #include <asm/apic.h>
29 #include <asm/cpu.h>
31 #define RTC_NAME "sgi_rtc"
33 static cycle_t uv_read_rtc(struct clocksource *cs);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35 static void uv_rtc_timer_setup(enum clock_event_mode,
36 struct clock_event_device *);
38 static struct clocksource clocksource_uv = {
39 .name = RTC_NAME,
40 .rating = 400,
41 .read = uv_read_rtc,
42 .mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
43 .shift = 10,
44 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
47 static struct clock_event_device clock_event_device_uv = {
48 .name = RTC_NAME,
49 .features = CLOCK_EVT_FEAT_ONESHOT,
50 .shift = 20,
51 .rating = 400,
52 .irq = -1,
53 .set_next_event = uv_rtc_next_event,
54 .set_mode = uv_rtc_timer_setup,
55 .event_handler = NULL,
58 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
60 /* There is one of these allocated per node */
61 struct uv_rtc_timer_head {
62 spinlock_t lock;
63 /* next cpu waiting for timer, local node relative: */
64 int next_cpu;
65 /* number of cpus on this node: */
66 int ncpus;
67 struct {
68 int lcpu; /* systemwide logical cpu number */
69 u64 expires; /* next timer expiration for this cpu */
70 } cpu[1];
74 * Access to uv_rtc_timer_head via blade id.
76 static struct uv_rtc_timer_head **blade_info __read_mostly;
78 static int uv_rtc_evt_enable;
81 * Hardware interface routines
84 /* Send IPIs to another node */
85 static void uv_rtc_send_IPI(int cpu)
87 unsigned long apicid, val;
88 int pnode;
90 apicid = cpu_physical_id(cpu);
91 pnode = uv_apicid_to_pnode(apicid);
92 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
93 (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
94 (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
96 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
99 /* Check for an RTC interrupt pending */
100 static int uv_intr_pending(int pnode)
102 return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
103 UVH_EVENT_OCCURRED0_RTC1_MASK;
106 /* Setup interrupt and return non-zero if early expiration occurred. */
107 static int uv_setup_intr(int cpu, u64 expires)
109 u64 val;
110 int pnode = uv_cpu_to_pnode(cpu);
112 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
113 UVH_RTC1_INT_CONFIG_M_MASK);
114 uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
116 uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
117 UVH_EVENT_OCCURRED0_RTC1_MASK);
119 val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
120 ((u64)cpu_physical_id(cpu) << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
122 /* Set configuration */
123 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
124 /* Initialize comparator value */
125 uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
127 if (uv_read_rtc(NULL) <= expires)
128 return 0;
130 return !uv_intr_pending(pnode);
134 * Per-cpu timer tracking routines
137 static __init void uv_rtc_deallocate_timers(void)
139 int bid;
141 for_each_possible_blade(bid) {
142 kfree(blade_info[bid]);
144 kfree(blade_info);
147 /* Allocate per-node list of cpu timer expiration times. */
148 static __init int uv_rtc_allocate_timers(void)
150 int cpu;
152 blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
153 if (!blade_info)
154 return -ENOMEM;
155 memset(blade_info, 0, uv_possible_blades * sizeof(void *));
157 for_each_present_cpu(cpu) {
158 int nid = cpu_to_node(cpu);
159 int bid = uv_cpu_to_blade_id(cpu);
160 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
161 struct uv_rtc_timer_head *head = blade_info[bid];
163 if (!head) {
164 head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
165 (uv_blade_nr_possible_cpus(bid) *
166 2 * sizeof(u64)),
167 GFP_KERNEL, nid);
168 if (!head) {
169 uv_rtc_deallocate_timers();
170 return -ENOMEM;
172 spin_lock_init(&head->lock);
173 head->ncpus = uv_blade_nr_possible_cpus(bid);
174 head->next_cpu = -1;
175 blade_info[bid] = head;
178 head->cpu[bcpu].lcpu = cpu;
179 head->cpu[bcpu].expires = ULLONG_MAX;
182 return 0;
185 /* Find and set the next expiring timer. */
186 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
188 u64 lowest = ULLONG_MAX;
189 int c, bcpu = -1;
191 head->next_cpu = -1;
192 for (c = 0; c < head->ncpus; c++) {
193 u64 exp = head->cpu[c].expires;
194 if (exp < lowest) {
195 bcpu = c;
196 lowest = exp;
199 if (bcpu >= 0) {
200 head->next_cpu = bcpu;
201 c = head->cpu[bcpu].lcpu;
202 if (uv_setup_intr(c, lowest))
203 /* If we didn't set it up in time, trigger */
204 uv_rtc_send_IPI(c);
205 } else {
206 uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
207 UVH_RTC1_INT_CONFIG_M_MASK);
212 * Set expiration time for current cpu.
214 * Returns 1 if we missed the expiration time.
216 static int uv_rtc_set_timer(int cpu, u64 expires)
218 int pnode = uv_cpu_to_pnode(cpu);
219 int bid = uv_cpu_to_blade_id(cpu);
220 struct uv_rtc_timer_head *head = blade_info[bid];
221 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
222 u64 *t = &head->cpu[bcpu].expires;
223 unsigned long flags;
224 int next_cpu;
226 spin_lock_irqsave(&head->lock, flags);
228 next_cpu = head->next_cpu;
229 *t = expires;
231 /* Will this one be next to go off? */
232 if (next_cpu < 0 || bcpu == next_cpu ||
233 expires < head->cpu[next_cpu].expires) {
234 head->next_cpu = bcpu;
235 if (uv_setup_intr(cpu, expires)) {
236 *t = ULLONG_MAX;
237 uv_rtc_find_next_timer(head, pnode);
238 spin_unlock_irqrestore(&head->lock, flags);
239 return -ETIME;
243 spin_unlock_irqrestore(&head->lock, flags);
244 return 0;
248 * Unset expiration time for current cpu.
250 * Returns 1 if this timer was pending.
252 static int uv_rtc_unset_timer(int cpu, int force)
254 int pnode = uv_cpu_to_pnode(cpu);
255 int bid = uv_cpu_to_blade_id(cpu);
256 struct uv_rtc_timer_head *head = blade_info[bid];
257 int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
258 u64 *t = &head->cpu[bcpu].expires;
259 unsigned long flags;
260 int rc = 0;
262 spin_lock_irqsave(&head->lock, flags);
264 if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
265 rc = 1;
267 if (rc) {
268 *t = ULLONG_MAX;
269 /* Was the hardware setup for this timer? */
270 if (head->next_cpu == bcpu)
271 uv_rtc_find_next_timer(head, pnode);
274 spin_unlock_irqrestore(&head->lock, flags);
276 return rc;
281 * Kernel interface routines.
285 * Read the RTC.
287 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
288 * cachelines of it's own page. This allows faster simultaneous reads
289 * from a given socket.
291 static cycle_t uv_read_rtc(struct clocksource *cs)
293 unsigned long offset;
295 if (uv_get_min_hub_revision_id() == 1)
296 offset = 0;
297 else
298 offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
300 return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
304 * Program the next event, relative to now
306 static int uv_rtc_next_event(unsigned long delta,
307 struct clock_event_device *ced)
309 int ced_cpu = cpumask_first(ced->cpumask);
311 return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
315 * Setup the RTC timer in oneshot mode
317 static void uv_rtc_timer_setup(enum clock_event_mode mode,
318 struct clock_event_device *evt)
320 int ced_cpu = cpumask_first(evt->cpumask);
322 switch (mode) {
323 case CLOCK_EVT_MODE_PERIODIC:
324 case CLOCK_EVT_MODE_ONESHOT:
325 case CLOCK_EVT_MODE_RESUME:
326 /* Nothing to do here yet */
327 break;
328 case CLOCK_EVT_MODE_UNUSED:
329 case CLOCK_EVT_MODE_SHUTDOWN:
330 uv_rtc_unset_timer(ced_cpu, 1);
331 break;
335 static void uv_rtc_interrupt(void)
337 int cpu = smp_processor_id();
338 struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
340 if (!ced || !ced->event_handler)
341 return;
343 if (uv_rtc_unset_timer(cpu, 0) != 1)
344 return;
346 ced->event_handler(ced);
349 static int __init uv_enable_evt_rtc(char *str)
351 uv_rtc_evt_enable = 1;
353 return 1;
355 __setup("uvrtcevt", uv_enable_evt_rtc);
357 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
359 struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
361 *ced = clock_event_device_uv;
362 ced->cpumask = cpumask_of(smp_processor_id());
363 clockevents_register_device(ced);
366 static __init int uv_rtc_setup_clock(void)
368 int rc;
370 if (!is_uv_system())
371 return -ENODEV;
373 clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second,
374 clocksource_uv.shift);
376 /* If single blade, prefer tsc */
377 if (uv_num_possible_blades() == 1)
378 clocksource_uv.rating = 250;
380 rc = clocksource_register(&clocksource_uv);
381 if (rc)
382 printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
383 else
384 printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
385 sn_rtc_cycles_per_second/(unsigned long)1E6);
387 if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
388 return rc;
390 /* Setup and register clockevents */
391 rc = uv_rtc_allocate_timers();
392 if (rc)
393 goto error;
395 x86_platform_ipi_callback = uv_rtc_interrupt;
397 clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
398 NSEC_PER_SEC, clock_event_device_uv.shift);
400 clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
401 sn_rtc_cycles_per_second;
403 clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
404 (NSEC_PER_SEC / sn_rtc_cycles_per_second);
406 rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
407 if (rc) {
408 x86_platform_ipi_callback = NULL;
409 uv_rtc_deallocate_timers();
410 goto error;
413 printk(KERN_INFO "UV RTC clockevents registered\n");
415 return 0;
417 error:
418 clocksource_unregister(&clocksource_uv);
419 printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
421 return rc;
423 arch_initcall(uv_rtc_setup_clock);