iommu/amd: Don't use MSI address range for DMA addresses
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / process_32.c
bloba3d0dc59067be542d7423d2a8abbc99801c0d3f6
1 /*
2 * Copyright (C) 1995 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
8 /*
9 * This file handles the architecture-dependent parts of process handling..
12 #include <linux/stackprotector.h>
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/fs.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/elfcore.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/user.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/reboot.h>
28 #include <linux/init.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/module.h>
31 #include <linux/kallsyms.h>
32 #include <linux/ptrace.h>
33 #include <linux/personality.h>
34 #include <linux/tick.h>
35 #include <linux/percpu.h>
36 #include <linux/prctl.h>
37 #include <linux/ftrace.h>
38 #include <linux/uaccess.h>
39 #include <linux/io.h>
40 #include <linux/kdebug.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/ldt.h>
45 #include <asm/processor.h>
46 #include <asm/i387.h>
47 #include <asm/desc.h>
48 #ifdef CONFIG_MATH_EMULATION
49 #include <asm/math_emu.h>
50 #endif
52 #include <linux/err.h>
54 #include <asm/tlbflush.h>
55 #include <asm/cpu.h>
56 #include <asm/idle.h>
57 #include <asm/syscalls.h>
58 #include <asm/debugreg.h>
60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
63 * Return saved PC of a blocked thread.
65 unsigned long thread_saved_pc(struct task_struct *tsk)
67 return ((unsigned long *)tsk->thread.sp)[3];
70 #ifndef CONFIG_SMP
71 static inline void play_dead(void)
73 BUG();
75 #endif
78 * The idle thread. There's no useful work to be
79 * done, so just try to conserve power and have a
80 * low exit latency (ie sit in a loop waiting for
81 * somebody to say that they'd like to reschedule)
83 void cpu_idle(void)
85 int cpu = smp_processor_id();
88 * If we're the non-boot CPU, nothing set the stack canary up
89 * for us. CPU0 already has it initialized but no harm in
90 * doing it again. This is a good place for updating it, as
91 * we wont ever return from this function (so the invalid
92 * canaries already on the stack wont ever trigger).
94 boot_init_stack_canary();
96 current_thread_info()->status |= TS_POLLING;
98 /* endless idle loop with no priority at all */
99 while (1) {
100 tick_nohz_stop_sched_tick(1);
101 while (!need_resched()) {
103 check_pgt_cache();
104 rmb();
106 if (cpu_is_offline(cpu))
107 play_dead();
109 local_irq_disable();
110 /* Don't trace irqs off for idle */
111 stop_critical_timings();
112 pm_idle();
113 start_critical_timings();
115 tick_nohz_restart_sched_tick();
116 preempt_enable_no_resched();
117 schedule();
118 preempt_disable();
122 void __show_regs(struct pt_regs *regs, int all)
124 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
125 unsigned long d0, d1, d2, d3, d6, d7;
126 unsigned long sp;
127 unsigned short ss, gs;
129 if (user_mode_vm(regs)) {
130 sp = regs->sp;
131 ss = regs->ss & 0xffff;
132 gs = get_user_gs(regs);
133 } else {
134 sp = kernel_stack_pointer(regs);
135 savesegment(ss, ss);
136 savesegment(gs, gs);
139 show_regs_common();
141 printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
142 (u16)regs->cs, regs->ip, regs->flags,
143 smp_processor_id());
144 print_symbol("EIP is at %s\n", regs->ip);
146 printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
147 regs->ax, regs->bx, regs->cx, regs->dx);
148 printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
149 regs->si, regs->di, regs->bp, sp);
150 printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
151 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
153 if (!all)
154 return;
156 cr0 = read_cr0();
157 cr2 = read_cr2();
158 cr3 = read_cr3();
159 cr4 = read_cr4_safe();
160 printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
161 cr0, cr2, cr3, cr4);
163 get_debugreg(d0, 0);
164 get_debugreg(d1, 1);
165 get_debugreg(d2, 2);
166 get_debugreg(d3, 3);
167 printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
168 d0, d1, d2, d3);
170 get_debugreg(d6, 6);
171 get_debugreg(d7, 7);
172 printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
173 d6, d7);
176 void release_thread(struct task_struct *dead_task)
178 BUG_ON(dead_task->mm);
179 release_vm86_irqs(dead_task);
183 * This gets called before we allocate a new thread and copy
184 * the current task into it.
186 void prepare_to_copy(struct task_struct *tsk)
188 unlazy_fpu(tsk);
191 int copy_thread(unsigned long clone_flags, unsigned long sp,
192 unsigned long unused,
193 struct task_struct *p, struct pt_regs *regs)
195 struct pt_regs *childregs;
196 struct task_struct *tsk;
197 int err;
199 childregs = task_pt_regs(p);
200 *childregs = *regs;
201 childregs->ax = 0;
202 childregs->sp = sp;
204 p->thread.sp = (unsigned long) childregs;
205 p->thread.sp0 = (unsigned long) (childregs+1);
207 p->thread.ip = (unsigned long) ret_from_fork;
209 task_user_gs(p) = get_user_gs(regs);
211 p->thread.io_bitmap_ptr = NULL;
212 tsk = current;
213 err = -ENOMEM;
215 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
217 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
218 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
219 IO_BITMAP_BYTES, GFP_KERNEL);
220 if (!p->thread.io_bitmap_ptr) {
221 p->thread.io_bitmap_max = 0;
222 return -ENOMEM;
224 set_tsk_thread_flag(p, TIF_IO_BITMAP);
227 err = 0;
230 * Set a new TLS for the child thread?
232 if (clone_flags & CLONE_SETTLS)
233 err = do_set_thread_area(p, -1,
234 (struct user_desc __user *)childregs->si, 0);
236 if (err && p->thread.io_bitmap_ptr) {
237 kfree(p->thread.io_bitmap_ptr);
238 p->thread.io_bitmap_max = 0;
240 return err;
243 void
244 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
246 set_user_gs(regs, 0);
247 regs->fs = 0;
248 regs->ds = __USER_DS;
249 regs->es = __USER_DS;
250 regs->ss = __USER_DS;
251 regs->cs = __USER_CS;
252 regs->ip = new_ip;
253 regs->sp = new_sp;
255 * Free the old FP and other extended state
257 free_thread_xstate(current);
259 EXPORT_SYMBOL_GPL(start_thread);
263 * switch_to(x,yn) should switch tasks from x to y.
265 * We fsave/fwait so that an exception goes off at the right time
266 * (as a call from the fsave or fwait in effect) rather than to
267 * the wrong process. Lazy FP saving no longer makes any sense
268 * with modern CPU's, and this simplifies a lot of things (SMP
269 * and UP become the same).
271 * NOTE! We used to use the x86 hardware context switching. The
272 * reason for not using it any more becomes apparent when you
273 * try to recover gracefully from saved state that is no longer
274 * valid (stale segment register values in particular). With the
275 * hardware task-switch, there is no way to fix up bad state in
276 * a reasonable manner.
278 * The fact that Intel documents the hardware task-switching to
279 * be slow is a fairly red herring - this code is not noticeably
280 * faster. However, there _is_ some room for improvement here,
281 * so the performance issues may eventually be a valid point.
282 * More important, however, is the fact that this allows us much
283 * more flexibility.
285 * The return value (in %ax) will be the "prev" task after
286 * the task-switch, and shows up in ret_from_fork in entry.S,
287 * for example.
289 __notrace_funcgraph struct task_struct *
290 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
292 struct thread_struct *prev = &prev_p->thread,
293 *next = &next_p->thread;
294 int cpu = smp_processor_id();
295 struct tss_struct *tss = &per_cpu(init_tss, cpu);
296 bool preload_fpu;
298 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
301 * If the task has used fpu the last 5 timeslices, just do a full
302 * restore of the math state immediately to avoid the trap; the
303 * chances of needing FPU soon are obviously high now
305 preload_fpu = tsk_used_math(next_p) && next_p->fpu_counter > 5;
307 __unlazy_fpu(prev_p);
309 /* we're going to use this soon, after a few expensive things */
310 if (preload_fpu)
311 prefetch(next->fpu.state);
314 * Reload esp0.
316 load_sp0(tss, next);
319 * Save away %gs. No need to save %fs, as it was saved on the
320 * stack on entry. No need to save %es and %ds, as those are
321 * always kernel segments while inside the kernel. Doing this
322 * before setting the new TLS descriptors avoids the situation
323 * where we temporarily have non-reloadable segments in %fs
324 * and %gs. This could be an issue if the NMI handler ever
325 * used %fs or %gs (it does not today), or if the kernel is
326 * running inside of a hypervisor layer.
328 lazy_save_gs(prev->gs);
331 * Load the per-thread Thread-Local Storage descriptor.
333 load_TLS(next, cpu);
336 * Restore IOPL if needed. In normal use, the flags restore
337 * in the switch assembly will handle this. But if the kernel
338 * is running virtualized at a non-zero CPL, the popf will
339 * not restore flags, so it must be done in a separate step.
341 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
342 set_iopl_mask(next->iopl);
345 * Now maybe handle debug registers and/or IO bitmaps
347 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
348 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
349 __switch_to_xtra(prev_p, next_p, tss);
351 /* If we're going to preload the fpu context, make sure clts
352 is run while we're batching the cpu state updates. */
353 if (preload_fpu)
354 clts();
357 * Leave lazy mode, flushing any hypercalls made here.
358 * This must be done before restoring TLS segments so
359 * the GDT and LDT are properly updated, and must be
360 * done before math_state_restore, so the TS bit is up
361 * to date.
363 arch_end_context_switch(next_p);
365 if (preload_fpu)
366 __math_state_restore();
369 * Restore %gs if needed (which is common)
371 if (prev->gs | next->gs)
372 lazy_load_gs(next->gs);
374 percpu_write(current_task, next_p);
376 return prev_p;
379 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
380 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
382 unsigned long get_wchan(struct task_struct *p)
384 unsigned long bp, sp, ip;
385 unsigned long stack_page;
386 int count = 0;
387 if (!p || p == current || p->state == TASK_RUNNING)
388 return 0;
389 stack_page = (unsigned long)task_stack_page(p);
390 sp = p->thread.sp;
391 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
392 return 0;
393 /* include/asm-i386/system.h:switch_to() pushes bp last. */
394 bp = *(unsigned long *) sp;
395 do {
396 if (bp < stack_page || bp > top_ebp+stack_page)
397 return 0;
398 ip = *(unsigned long *) (bp+4);
399 if (!in_sched_functions(ip))
400 return ip;
401 bp = *(unsigned long *) bp;
402 } while (count++ < 16);
403 return 0;