V4L/DVB: v4l2-ioctl: integer overflow in video_usercopy()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / time / timekeeping.c
blob5f458310668a5ac02e5475bdcb383d0947bc878d
1 /*
2 * linux/kernel/time/timekeeping.c
4 * Kernel timekeeping code and accessor functions
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
9 */
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/percpu.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/sched.h>
17 #include <linux/syscore_ops.h>
18 #include <linux/clocksource.h>
19 #include <linux/jiffies.h>
20 #include <linux/time.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
24 /* Structure holding internal timekeeping values. */
25 struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
28 /* The shift value of the current clocksource. */
29 int shift;
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
35 /* shifted nano seconds left over when rounding cycle_interval */
36 s64 xtime_remainder;
37 /* Raw nano seconds accumulated per NTP interval. */
38 u32 raw_interval;
40 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
41 u64 xtime_nsec;
42 /* Difference between accumulated time and NTP time in ntp
43 * shifted nano seconds. */
44 s64 ntp_error;
45 /* Shift conversion between clock shifted nano seconds and
46 * ntp shifted nano seconds. */
47 int ntp_error_shift;
48 /* NTP adjusted clock multiplier */
49 u32 mult;
52 static struct timekeeper timekeeper;
54 /**
55 * timekeeper_setup_internals - Set up internals to use clocksource clock.
57 * @clock: Pointer to clocksource.
59 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
60 * pair and interval request.
62 * Unless you're the timekeeping code, you should not be using this!
64 static void timekeeper_setup_internals(struct clocksource *clock)
66 cycle_t interval;
67 u64 tmp, ntpinterval;
69 timekeeper.clock = clock;
70 clock->cycle_last = clock->read(clock);
72 /* Do the ns -> cycle conversion first, using original mult */
73 tmp = NTP_INTERVAL_LENGTH;
74 tmp <<= clock->shift;
75 ntpinterval = tmp;
76 tmp += clock->mult/2;
77 do_div(tmp, clock->mult);
78 if (tmp == 0)
79 tmp = 1;
81 interval = (cycle_t) tmp;
82 timekeeper.cycle_interval = interval;
84 /* Go back from cycles -> shifted ns */
85 timekeeper.xtime_interval = (u64) interval * clock->mult;
86 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87 timekeeper.raw_interval =
88 ((u64) interval * clock->mult) >> clock->shift;
90 timekeeper.xtime_nsec = 0;
91 timekeeper.shift = clock->shift;
93 timekeeper.ntp_error = 0;
94 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
97 * The timekeeper keeps its own mult values for the currently
98 * active clocksource. These value will be adjusted via NTP
99 * to counteract clock drifting.
101 timekeeper.mult = clock->mult;
104 /* Timekeeper helper functions. */
105 static inline s64 timekeeping_get_ns(void)
107 cycle_t cycle_now, cycle_delta;
108 struct clocksource *clock;
110 /* read clocksource: */
111 clock = timekeeper.clock;
112 cycle_now = clock->read(clock);
114 /* calculate the delta since the last update_wall_time: */
115 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
117 /* return delta convert to nanoseconds using ntp adjusted mult. */
118 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
119 timekeeper.shift);
122 static inline s64 timekeeping_get_ns_raw(void)
124 cycle_t cycle_now, cycle_delta;
125 struct clocksource *clock;
127 /* read clocksource: */
128 clock = timekeeper.clock;
129 cycle_now = clock->read(clock);
131 /* calculate the delta since the last update_wall_time: */
132 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
134 /* return delta convert to nanoseconds using ntp adjusted mult. */
135 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
139 * This read-write spinlock protects us from races in SMP while
140 * playing with xtime.
142 __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
146 * The current time
147 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
148 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
149 * at zero at system boot time, so wall_to_monotonic will be negative,
150 * however, we will ALWAYS keep the tv_nsec part positive so we can use
151 * the usual normalization.
153 * wall_to_monotonic is moved after resume from suspend for the monotonic
154 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
155 * to get the real boot based time offset.
157 * - wall_to_monotonic is no longer the boot time, getboottime must be
158 * used instead.
160 static struct timespec xtime __attribute__ ((aligned (16)));
161 static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162 static struct timespec total_sleep_time;
165 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
167 static struct timespec raw_time;
169 /* flag for if timekeeping is suspended */
170 int __read_mostly timekeeping_suspended;
172 /* must hold xtime_lock */
173 void timekeeping_leap_insert(int leapsecond)
175 xtime.tv_sec += leapsecond;
176 wall_to_monotonic.tv_sec -= leapsecond;
177 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
178 timekeeper.mult);
182 * timekeeping_forward_now - update clock to the current time
184 * Forward the current clock to update its state since the last call to
185 * update_wall_time(). This is useful before significant clock changes,
186 * as it avoids having to deal with this time offset explicitly.
188 static void timekeeping_forward_now(void)
190 cycle_t cycle_now, cycle_delta;
191 struct clocksource *clock;
192 s64 nsec;
194 clock = timekeeper.clock;
195 cycle_now = clock->read(clock);
196 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197 clock->cycle_last = cycle_now;
199 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
200 timekeeper.shift);
202 /* If arch requires, add in gettimeoffset() */
203 nsec += arch_gettimeoffset();
205 timespec_add_ns(&xtime, nsec);
207 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208 timespec_add_ns(&raw_time, nsec);
212 * getnstimeofday - Returns the time of day in a timespec
213 * @ts: pointer to the timespec to be set
215 * Returns the time of day in a timespec.
217 void getnstimeofday(struct timespec *ts)
219 unsigned long seq;
220 s64 nsecs;
222 WARN_ON(timekeeping_suspended);
224 do {
225 seq = read_seqbegin(&xtime_lock);
227 *ts = xtime;
228 nsecs = timekeeping_get_ns();
230 /* If arch requires, add in gettimeoffset() */
231 nsecs += arch_gettimeoffset();
233 } while (read_seqretry(&xtime_lock, seq));
235 timespec_add_ns(ts, nsecs);
238 EXPORT_SYMBOL(getnstimeofday);
240 ktime_t ktime_get(void)
242 unsigned int seq;
243 s64 secs, nsecs;
245 WARN_ON(timekeeping_suspended);
247 do {
248 seq = read_seqbegin(&xtime_lock);
249 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
250 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251 nsecs += timekeeping_get_ns();
252 /* If arch requires, add in gettimeoffset() */
253 nsecs += arch_gettimeoffset();
255 } while (read_seqretry(&xtime_lock, seq));
257 * Use ktime_set/ktime_add_ns to create a proper ktime on
258 * 32-bit architectures without CONFIG_KTIME_SCALAR.
260 return ktime_add_ns(ktime_set(secs, 0), nsecs);
262 EXPORT_SYMBOL_GPL(ktime_get);
265 * ktime_get_ts - get the monotonic clock in timespec format
266 * @ts: pointer to timespec variable
268 * The function calculates the monotonic clock from the realtime
269 * clock and the wall_to_monotonic offset and stores the result
270 * in normalized timespec format in the variable pointed to by @ts.
272 void ktime_get_ts(struct timespec *ts)
274 struct timespec tomono;
275 unsigned int seq;
276 s64 nsecs;
278 WARN_ON(timekeeping_suspended);
280 do {
281 seq = read_seqbegin(&xtime_lock);
282 *ts = xtime;
283 tomono = wall_to_monotonic;
284 nsecs = timekeeping_get_ns();
285 /* If arch requires, add in gettimeoffset() */
286 nsecs += arch_gettimeoffset();
288 } while (read_seqretry(&xtime_lock, seq));
290 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
291 ts->tv_nsec + tomono.tv_nsec + nsecs);
293 EXPORT_SYMBOL_GPL(ktime_get_ts);
295 #ifdef CONFIG_NTP_PPS
298 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
299 * @ts_raw: pointer to the timespec to be set to raw monotonic time
300 * @ts_real: pointer to the timespec to be set to the time of day
302 * This function reads both the time of day and raw monotonic time at the
303 * same time atomically and stores the resulting timestamps in timespec
304 * format.
306 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
308 unsigned long seq;
309 s64 nsecs_raw, nsecs_real;
311 WARN_ON_ONCE(timekeeping_suspended);
313 do {
314 u32 arch_offset;
316 seq = read_seqbegin(&xtime_lock);
318 *ts_raw = raw_time;
319 *ts_real = xtime;
321 nsecs_raw = timekeeping_get_ns_raw();
322 nsecs_real = timekeeping_get_ns();
324 /* If arch requires, add in gettimeoffset() */
325 arch_offset = arch_gettimeoffset();
326 nsecs_raw += arch_offset;
327 nsecs_real += arch_offset;
329 } while (read_seqretry(&xtime_lock, seq));
331 timespec_add_ns(ts_raw, nsecs_raw);
332 timespec_add_ns(ts_real, nsecs_real);
334 EXPORT_SYMBOL(getnstime_raw_and_real);
336 #endif /* CONFIG_NTP_PPS */
339 * do_gettimeofday - Returns the time of day in a timeval
340 * @tv: pointer to the timeval to be set
342 * NOTE: Users should be converted to using getnstimeofday()
344 void do_gettimeofday(struct timeval *tv)
346 struct timespec now;
348 getnstimeofday(&now);
349 tv->tv_sec = now.tv_sec;
350 tv->tv_usec = now.tv_nsec/1000;
353 EXPORT_SYMBOL(do_gettimeofday);
355 * do_settimeofday - Sets the time of day
356 * @tv: pointer to the timespec variable containing the new time
358 * Sets the time of day to the new time and update NTP and notify hrtimers
360 int do_settimeofday(const struct timespec *tv)
362 struct timespec ts_delta;
363 unsigned long flags;
365 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
366 return -EINVAL;
368 write_seqlock_irqsave(&xtime_lock, flags);
370 timekeeping_forward_now();
372 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
373 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
374 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
376 xtime = *tv;
378 timekeeper.ntp_error = 0;
379 ntp_clear();
381 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
382 timekeeper.mult);
384 write_sequnlock_irqrestore(&xtime_lock, flags);
386 /* signal hrtimers about time change */
387 clock_was_set();
389 return 0;
392 EXPORT_SYMBOL(do_settimeofday);
396 * timekeeping_inject_offset - Adds or subtracts from the current time.
397 * @tv: pointer to the timespec variable containing the offset
399 * Adds or subtracts an offset value from the current time.
401 int timekeeping_inject_offset(struct timespec *ts)
403 unsigned long flags;
405 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
406 return -EINVAL;
408 write_seqlock_irqsave(&xtime_lock, flags);
410 timekeeping_forward_now();
412 xtime = timespec_add(xtime, *ts);
413 wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);
415 timekeeper.ntp_error = 0;
416 ntp_clear();
418 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
419 timekeeper.mult);
421 write_sequnlock_irqrestore(&xtime_lock, flags);
423 /* signal hrtimers about time change */
424 clock_was_set();
426 return 0;
428 EXPORT_SYMBOL(timekeeping_inject_offset);
431 * change_clocksource - Swaps clocksources if a new one is available
433 * Accumulates current time interval and initializes new clocksource
435 static int change_clocksource(void *data)
437 struct clocksource *new, *old;
439 new = (struct clocksource *) data;
441 timekeeping_forward_now();
442 if (!new->enable || new->enable(new) == 0) {
443 old = timekeeper.clock;
444 timekeeper_setup_internals(new);
445 if (old->disable)
446 old->disable(old);
448 return 0;
452 * timekeeping_notify - Install a new clock source
453 * @clock: pointer to the clock source
455 * This function is called from clocksource.c after a new, better clock
456 * source has been registered. The caller holds the clocksource_mutex.
458 void timekeeping_notify(struct clocksource *clock)
460 if (timekeeper.clock == clock)
461 return;
462 stop_machine(change_clocksource, clock, NULL);
463 tick_clock_notify();
467 * ktime_get_real - get the real (wall-) time in ktime_t format
469 * returns the time in ktime_t format
471 ktime_t ktime_get_real(void)
473 struct timespec now;
475 getnstimeofday(&now);
477 return timespec_to_ktime(now);
479 EXPORT_SYMBOL_GPL(ktime_get_real);
482 * getrawmonotonic - Returns the raw monotonic time in a timespec
483 * @ts: pointer to the timespec to be set
485 * Returns the raw monotonic time (completely un-modified by ntp)
487 void getrawmonotonic(struct timespec *ts)
489 unsigned long seq;
490 s64 nsecs;
492 do {
493 seq = read_seqbegin(&xtime_lock);
494 nsecs = timekeeping_get_ns_raw();
495 *ts = raw_time;
497 } while (read_seqretry(&xtime_lock, seq));
499 timespec_add_ns(ts, nsecs);
501 EXPORT_SYMBOL(getrawmonotonic);
505 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
507 int timekeeping_valid_for_hres(void)
509 unsigned long seq;
510 int ret;
512 do {
513 seq = read_seqbegin(&xtime_lock);
515 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
517 } while (read_seqretry(&xtime_lock, seq));
519 return ret;
523 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
525 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
526 * ensure that the clocksource does not change!
528 u64 timekeeping_max_deferment(void)
530 return timekeeper.clock->max_idle_ns;
534 * read_persistent_clock - Return time from the persistent clock.
536 * Weak dummy function for arches that do not yet support it.
537 * Reads the time from the battery backed persistent clock.
538 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
540 * XXX - Do be sure to remove it once all arches implement it.
542 void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
544 ts->tv_sec = 0;
545 ts->tv_nsec = 0;
549 * read_boot_clock - Return time of the system start.
551 * Weak dummy function for arches that do not yet support it.
552 * Function to read the exact time the system has been started.
553 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
555 * XXX - Do be sure to remove it once all arches implement it.
557 void __attribute__((weak)) read_boot_clock(struct timespec *ts)
559 ts->tv_sec = 0;
560 ts->tv_nsec = 0;
564 * timekeeping_init - Initializes the clocksource and common timekeeping values
566 void __init timekeeping_init(void)
568 struct clocksource *clock;
569 unsigned long flags;
570 struct timespec now, boot;
572 read_persistent_clock(&now);
573 read_boot_clock(&boot);
575 write_seqlock_irqsave(&xtime_lock, flags);
577 ntp_init();
579 clock = clocksource_default_clock();
580 if (clock->enable)
581 clock->enable(clock);
582 timekeeper_setup_internals(clock);
584 xtime.tv_sec = now.tv_sec;
585 xtime.tv_nsec = now.tv_nsec;
586 raw_time.tv_sec = 0;
587 raw_time.tv_nsec = 0;
588 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
589 boot.tv_sec = xtime.tv_sec;
590 boot.tv_nsec = xtime.tv_nsec;
592 set_normalized_timespec(&wall_to_monotonic,
593 -boot.tv_sec, -boot.tv_nsec);
594 total_sleep_time.tv_sec = 0;
595 total_sleep_time.tv_nsec = 0;
596 write_sequnlock_irqrestore(&xtime_lock, flags);
599 /* time in seconds when suspend began */
600 static struct timespec timekeeping_suspend_time;
603 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
604 * @delta: pointer to a timespec delta value
606 * Takes a timespec offset measuring a suspend interval and properly
607 * adds the sleep offset to the timekeeping variables.
609 static void __timekeeping_inject_sleeptime(struct timespec *delta)
611 xtime = timespec_add(xtime, *delta);
612 wall_to_monotonic = timespec_sub(wall_to_monotonic, *delta);
613 total_sleep_time = timespec_add(total_sleep_time, *delta);
618 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
619 * @delta: pointer to a timespec delta value
621 * This hook is for architectures that cannot support read_persistent_clock
622 * because their RTC/persistent clock is only accessible when irqs are enabled.
624 * This function should only be called by rtc_resume(), and allows
625 * a suspend offset to be injected into the timekeeping values.
627 void timekeeping_inject_sleeptime(struct timespec *delta)
629 unsigned long flags;
630 struct timespec ts;
632 /* Make sure we don't set the clock twice */
633 read_persistent_clock(&ts);
634 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
635 return;
637 write_seqlock_irqsave(&xtime_lock, flags);
638 timekeeping_forward_now();
640 __timekeeping_inject_sleeptime(delta);
642 timekeeper.ntp_error = 0;
643 ntp_clear();
644 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
645 timekeeper.mult);
647 write_sequnlock_irqrestore(&xtime_lock, flags);
649 /* signal hrtimers about time change */
650 clock_was_set();
655 * timekeeping_resume - Resumes the generic timekeeping subsystem.
657 * This is for the generic clocksource timekeeping.
658 * xtime/wall_to_monotonic/jiffies/etc are
659 * still managed by arch specific suspend/resume code.
661 static void timekeeping_resume(void)
663 unsigned long flags;
664 struct timespec ts;
666 read_persistent_clock(&ts);
668 clocksource_resume();
670 write_seqlock_irqsave(&xtime_lock, flags);
672 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
673 ts = timespec_sub(ts, timekeeping_suspend_time);
674 __timekeeping_inject_sleeptime(&ts);
676 /* re-base the last cycle value */
677 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
678 timekeeper.ntp_error = 0;
679 timekeeping_suspended = 0;
680 write_sequnlock_irqrestore(&xtime_lock, flags);
682 touch_softlockup_watchdog();
684 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
686 /* Resume hrtimers */
687 hrtimers_resume();
690 static int timekeeping_suspend(void)
692 unsigned long flags;
694 read_persistent_clock(&timekeeping_suspend_time);
696 write_seqlock_irqsave(&xtime_lock, flags);
697 timekeeping_forward_now();
698 timekeeping_suspended = 1;
699 write_sequnlock_irqrestore(&xtime_lock, flags);
701 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
702 clocksource_suspend();
704 return 0;
707 /* sysfs resume/suspend bits for timekeeping */
708 static struct syscore_ops timekeeping_syscore_ops = {
709 .resume = timekeeping_resume,
710 .suspend = timekeeping_suspend,
713 static int __init timekeeping_init_ops(void)
715 register_syscore_ops(&timekeeping_syscore_ops);
716 return 0;
719 device_initcall(timekeeping_init_ops);
722 * If the error is already larger, we look ahead even further
723 * to compensate for late or lost adjustments.
725 static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
726 s64 *offset)
728 s64 tick_error, i;
729 u32 look_ahead, adj;
730 s32 error2, mult;
733 * Use the current error value to determine how much to look ahead.
734 * The larger the error the slower we adjust for it to avoid problems
735 * with losing too many ticks, otherwise we would overadjust and
736 * produce an even larger error. The smaller the adjustment the
737 * faster we try to adjust for it, as lost ticks can do less harm
738 * here. This is tuned so that an error of about 1 msec is adjusted
739 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
741 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
742 error2 = abs(error2);
743 for (look_ahead = 0; error2 > 0; look_ahead++)
744 error2 >>= 2;
747 * Now calculate the error in (1 << look_ahead) ticks, but first
748 * remove the single look ahead already included in the error.
750 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
751 tick_error -= timekeeper.xtime_interval >> 1;
752 error = ((error - tick_error) >> look_ahead) + tick_error;
754 /* Finally calculate the adjustment shift value. */
755 i = *interval;
756 mult = 1;
757 if (error < 0) {
758 error = -error;
759 *interval = -*interval;
760 *offset = -*offset;
761 mult = -1;
763 for (adj = 0; error > i; adj++)
764 error >>= 1;
766 *interval <<= adj;
767 *offset <<= adj;
768 return mult << adj;
772 * Adjust the multiplier to reduce the error value,
773 * this is optimized for the most common adjustments of -1,0,1,
774 * for other values we can do a bit more work.
776 static void timekeeping_adjust(s64 offset)
778 s64 error, interval = timekeeper.cycle_interval;
779 int adj;
781 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
782 if (error > interval) {
783 error >>= 2;
784 if (likely(error <= interval))
785 adj = 1;
786 else
787 adj = timekeeping_bigadjust(error, &interval, &offset);
788 } else if (error < -interval) {
789 error >>= 2;
790 if (likely(error >= -interval)) {
791 adj = -1;
792 interval = -interval;
793 offset = -offset;
794 } else
795 adj = timekeeping_bigadjust(error, &interval, &offset);
796 } else
797 return;
799 timekeeper.mult += adj;
800 timekeeper.xtime_interval += interval;
801 timekeeper.xtime_nsec -= offset;
802 timekeeper.ntp_error -= (interval - offset) <<
803 timekeeper.ntp_error_shift;
808 * logarithmic_accumulation - shifted accumulation of cycles
810 * This functions accumulates a shifted interval of cycles into
811 * into a shifted interval nanoseconds. Allows for O(log) accumulation
812 * loop.
814 * Returns the unconsumed cycles.
816 static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
818 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
819 u64 raw_nsecs;
821 /* If the offset is smaller then a shifted interval, do nothing */
822 if (offset < timekeeper.cycle_interval<<shift)
823 return offset;
825 /* Accumulate one shifted interval */
826 offset -= timekeeper.cycle_interval << shift;
827 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
829 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
830 while (timekeeper.xtime_nsec >= nsecps) {
831 timekeeper.xtime_nsec -= nsecps;
832 xtime.tv_sec++;
833 second_overflow();
836 /* Accumulate raw time */
837 raw_nsecs = timekeeper.raw_interval << shift;
838 raw_nsecs += raw_time.tv_nsec;
839 if (raw_nsecs >= NSEC_PER_SEC) {
840 u64 raw_secs = raw_nsecs;
841 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
842 raw_time.tv_sec += raw_secs;
844 raw_time.tv_nsec = raw_nsecs;
846 /* Accumulate error between NTP and clock interval */
847 timekeeper.ntp_error += tick_length << shift;
848 timekeeper.ntp_error -=
849 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
850 (timekeeper.ntp_error_shift + shift);
852 return offset;
857 * update_wall_time - Uses the current clocksource to increment the wall time
859 * Called from the timer interrupt, must hold a write on xtime_lock.
861 static void update_wall_time(void)
863 struct clocksource *clock;
864 cycle_t offset;
865 int shift = 0, maxshift;
867 /* Make sure we're fully resumed: */
868 if (unlikely(timekeeping_suspended))
869 return;
871 clock = timekeeper.clock;
873 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
874 offset = timekeeper.cycle_interval;
875 #else
876 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
877 #endif
878 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
881 * With NO_HZ we may have to accumulate many cycle_intervals
882 * (think "ticks") worth of time at once. To do this efficiently,
883 * we calculate the largest doubling multiple of cycle_intervals
884 * that is smaller then the offset. We then accumulate that
885 * chunk in one go, and then try to consume the next smaller
886 * doubled multiple.
888 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
889 shift = max(0, shift);
890 /* Bound shift to one less then what overflows tick_length */
891 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
892 shift = min(shift, maxshift);
893 while (offset >= timekeeper.cycle_interval) {
894 offset = logarithmic_accumulation(offset, shift);
895 if(offset < timekeeper.cycle_interval<<shift)
896 shift--;
899 /* correct the clock when NTP error is too big */
900 timekeeping_adjust(offset);
903 * Since in the loop above, we accumulate any amount of time
904 * in xtime_nsec over a second into xtime.tv_sec, its possible for
905 * xtime_nsec to be fairly small after the loop. Further, if we're
906 * slightly speeding the clocksource up in timekeeping_adjust(),
907 * its possible the required corrective factor to xtime_nsec could
908 * cause it to underflow.
910 * Now, we cannot simply roll the accumulated second back, since
911 * the NTP subsystem has been notified via second_overflow. So
912 * instead we push xtime_nsec forward by the amount we underflowed,
913 * and add that amount into the error.
915 * We'll correct this error next time through this function, when
916 * xtime_nsec is not as small.
918 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
919 s64 neg = -(s64)timekeeper.xtime_nsec;
920 timekeeper.xtime_nsec = 0;
921 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
926 * Store full nanoseconds into xtime after rounding it up and
927 * add the remainder to the error difference.
929 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
930 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
931 timekeeper.ntp_error += timekeeper.xtime_nsec <<
932 timekeeper.ntp_error_shift;
935 * Finally, make sure that after the rounding
936 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
938 if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
939 xtime.tv_nsec -= NSEC_PER_SEC;
940 xtime.tv_sec++;
941 second_overflow();
944 /* check to see if there is a new clocksource to use */
945 update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
946 timekeeper.mult);
950 * getboottime - Return the real time of system boot.
951 * @ts: pointer to the timespec to be set
953 * Returns the wall-time of boot in a timespec.
955 * This is based on the wall_to_monotonic offset and the total suspend
956 * time. Calls to settimeofday will affect the value returned (which
957 * basically means that however wrong your real time clock is at boot time,
958 * you get the right time here).
960 void getboottime(struct timespec *ts)
962 struct timespec boottime = {
963 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
964 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
967 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
969 EXPORT_SYMBOL_GPL(getboottime);
973 * get_monotonic_boottime - Returns monotonic time since boot
974 * @ts: pointer to the timespec to be set
976 * Returns the monotonic time since boot in a timespec.
978 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
979 * includes the time spent in suspend.
981 void get_monotonic_boottime(struct timespec *ts)
983 struct timespec tomono, sleep;
984 unsigned int seq;
985 s64 nsecs;
987 WARN_ON(timekeeping_suspended);
989 do {
990 seq = read_seqbegin(&xtime_lock);
991 *ts = xtime;
992 tomono = wall_to_monotonic;
993 sleep = total_sleep_time;
994 nsecs = timekeeping_get_ns();
996 } while (read_seqretry(&xtime_lock, seq));
998 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
999 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
1001 EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1004 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1006 * Returns the monotonic time since boot in a ktime
1008 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1009 * includes the time spent in suspend.
1011 ktime_t ktime_get_boottime(void)
1013 struct timespec ts;
1015 get_monotonic_boottime(&ts);
1016 return timespec_to_ktime(ts);
1018 EXPORT_SYMBOL_GPL(ktime_get_boottime);
1021 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1022 * @ts: pointer to the timespec to be converted
1024 void monotonic_to_bootbased(struct timespec *ts)
1026 *ts = timespec_add(*ts, total_sleep_time);
1028 EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1030 unsigned long get_seconds(void)
1032 return xtime.tv_sec;
1034 EXPORT_SYMBOL(get_seconds);
1036 struct timespec __current_kernel_time(void)
1038 return xtime;
1041 struct timespec current_kernel_time(void)
1043 struct timespec now;
1044 unsigned long seq;
1046 do {
1047 seq = read_seqbegin(&xtime_lock);
1049 now = xtime;
1050 } while (read_seqretry(&xtime_lock, seq));
1052 return now;
1054 EXPORT_SYMBOL(current_kernel_time);
1056 struct timespec get_monotonic_coarse(void)
1058 struct timespec now, mono;
1059 unsigned long seq;
1061 do {
1062 seq = read_seqbegin(&xtime_lock);
1064 now = xtime;
1065 mono = wall_to_monotonic;
1066 } while (read_seqretry(&xtime_lock, seq));
1068 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1069 now.tv_nsec + mono.tv_nsec);
1070 return now;
1074 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1075 * without sampling the sequence number in xtime_lock.
1076 * jiffies is defined in the linker script...
1078 void do_timer(unsigned long ticks)
1080 jiffies_64 += ticks;
1081 update_wall_time();
1082 calc_global_load(ticks);
1086 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1087 * and sleep offsets.
1088 * @xtim: pointer to timespec to be set with xtime
1089 * @wtom: pointer to timespec to be set with wall_to_monotonic
1090 * @sleep: pointer to timespec to be set with time in suspend
1092 void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1093 struct timespec *wtom, struct timespec *sleep)
1095 unsigned long seq;
1097 do {
1098 seq = read_seqbegin(&xtime_lock);
1099 *xtim = xtime;
1100 *wtom = wall_to_monotonic;
1101 *sleep = total_sleep_time;
1102 } while (read_seqretry(&xtime_lock, seq));
1106 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1108 ktime_t ktime_get_monotonic_offset(void)
1110 unsigned long seq;
1111 struct timespec wtom;
1113 do {
1114 seq = read_seqbegin(&xtime_lock);
1115 wtom = wall_to_monotonic;
1116 } while (read_seqretry(&xtime_lock, seq));
1117 return timespec_to_ktime(wtom);
1121 * xtime_update() - advances the timekeeping infrastructure
1122 * @ticks: number of ticks, that have elapsed since the last call.
1124 * Must be called with interrupts disabled.
1126 void xtime_update(unsigned long ticks)
1128 write_seqlock(&xtime_lock);
1129 do_timer(ticks);
1130 write_sequnlock(&xtime_lock);