USB: serial: ftdi additional IDs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_super.c
blob8a899496fd5fe55ef50f4cfdcfcce20e7875a60c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_quota.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_bmap.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_error.h"
40 #include "xfs_itable.h"
41 #include "xfs_fsops.h"
42 #include "xfs_attr.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_utils.h"
45 #include "xfs_vnodeops.h"
46 #include "xfs_log_priv.h"
47 #include "xfs_trans_priv.h"
48 #include "xfs_filestream.h"
49 #include "xfs_da_btree.h"
50 #include "xfs_extfree_item.h"
51 #include "xfs_mru_cache.h"
52 #include "xfs_inode_item.h"
53 #include "xfs_sync.h"
54 #include "xfs_trace.h"
56 #include <linux/namei.h>
57 #include <linux/init.h>
58 #include <linux/slab.h>
59 #include <linux/mount.h>
60 #include <linux/mempool.h>
61 #include <linux/writeback.h>
62 #include <linux/kthread.h>
63 #include <linux/freezer.h>
64 #include <linux/parser.h>
66 static const struct super_operations xfs_super_operations;
67 static kmem_zone_t *xfs_ioend_zone;
68 mempool_t *xfs_ioend_pool;
70 #define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */
71 #define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */
72 #define MNTOPT_LOGDEV "logdev" /* log device */
73 #define MNTOPT_RTDEV "rtdev" /* realtime I/O device */
74 #define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */
75 #define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */
76 #define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */
77 #define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */
78 #define MNTOPT_SUNIT "sunit" /* data volume stripe unit */
79 #define MNTOPT_SWIDTH "swidth" /* data volume stripe width */
80 #define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */
81 #define MNTOPT_MTPT "mtpt" /* filesystem mount point */
82 #define MNTOPT_GRPID "grpid" /* group-ID from parent directory */
83 #define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */
84 #define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */
85 #define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */
86 #define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */
87 #define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */
88 #define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and
89 * unwritten extent conversion */
90 #define MNTOPT_NOBARRIER "nobarrier" /* .. disable */
91 #define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */
92 #define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */
93 #define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */
94 #define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */
95 #define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes
96 * in stat(). */
97 #define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */
98 #define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */
99 #define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */
100 #define MNTOPT_QUOTA "quota" /* disk quotas (user) */
101 #define MNTOPT_NOQUOTA "noquota" /* no quotas */
102 #define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */
103 #define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */
104 #define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */
105 #define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */
106 #define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */
107 #define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */
108 #define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */
109 #define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */
110 #define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */
111 #define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */
112 #define MNTOPT_DELAYLOG "delaylog" /* Delayed logging enabled */
113 #define MNTOPT_NODELAYLOG "nodelaylog" /* Delayed logging disabled */
114 #define MNTOPT_DISCARD "discard" /* Discard unused blocks */
115 #define MNTOPT_NODISCARD "nodiscard" /* Do not discard unused blocks */
118 * Table driven mount option parser.
120 * Currently only used for remount, but it will be used for mount
121 * in the future, too.
123 enum {
124 Opt_barrier, Opt_nobarrier, Opt_err
127 static const match_table_t tokens = {
128 {Opt_barrier, "barrier"},
129 {Opt_nobarrier, "nobarrier"},
130 {Opt_err, NULL}
134 STATIC unsigned long
135 suffix_strtoul(char *s, char **endp, unsigned int base)
137 int last, shift_left_factor = 0;
138 char *value = s;
140 last = strlen(value) - 1;
141 if (value[last] == 'K' || value[last] == 'k') {
142 shift_left_factor = 10;
143 value[last] = '\0';
145 if (value[last] == 'M' || value[last] == 'm') {
146 shift_left_factor = 20;
147 value[last] = '\0';
149 if (value[last] == 'G' || value[last] == 'g') {
150 shift_left_factor = 30;
151 value[last] = '\0';
154 return simple_strtoul((const char *)s, endp, base) << shift_left_factor;
158 * This function fills in xfs_mount_t fields based on mount args.
159 * Note: the superblock has _not_ yet been read in.
161 * Note that this function leaks the various device name allocations on
162 * failure. The caller takes care of them.
164 STATIC int
165 xfs_parseargs(
166 struct xfs_mount *mp,
167 char *options)
169 struct super_block *sb = mp->m_super;
170 char *this_char, *value, *eov;
171 int dsunit = 0;
172 int dswidth = 0;
173 int iosize = 0;
174 __uint8_t iosizelog = 0;
177 * set up the mount name first so all the errors will refer to the
178 * correct device.
180 mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
181 if (!mp->m_fsname)
182 return ENOMEM;
183 mp->m_fsname_len = strlen(mp->m_fsname) + 1;
186 * Copy binary VFS mount flags we are interested in.
188 if (sb->s_flags & MS_RDONLY)
189 mp->m_flags |= XFS_MOUNT_RDONLY;
190 if (sb->s_flags & MS_DIRSYNC)
191 mp->m_flags |= XFS_MOUNT_DIRSYNC;
192 if (sb->s_flags & MS_SYNCHRONOUS)
193 mp->m_flags |= XFS_MOUNT_WSYNC;
196 * Set some default flags that could be cleared by the mount option
197 * parsing.
199 mp->m_flags |= XFS_MOUNT_BARRIER;
200 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
201 mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
202 mp->m_flags |= XFS_MOUNT_DELAYLOG;
205 * These can be overridden by the mount option parsing.
207 mp->m_logbufs = -1;
208 mp->m_logbsize = -1;
210 if (!options)
211 goto done;
213 while ((this_char = strsep(&options, ",")) != NULL) {
214 if (!*this_char)
215 continue;
216 if ((value = strchr(this_char, '=')) != NULL)
217 *value++ = 0;
219 if (!strcmp(this_char, MNTOPT_LOGBUFS)) {
220 if (!value || !*value) {
221 xfs_warn(mp, "%s option requires an argument",
222 this_char);
223 return EINVAL;
225 mp->m_logbufs = simple_strtoul(value, &eov, 10);
226 } else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) {
227 if (!value || !*value) {
228 xfs_warn(mp, "%s option requires an argument",
229 this_char);
230 return EINVAL;
232 mp->m_logbsize = suffix_strtoul(value, &eov, 10);
233 } else if (!strcmp(this_char, MNTOPT_LOGDEV)) {
234 if (!value || !*value) {
235 xfs_warn(mp, "%s option requires an argument",
236 this_char);
237 return EINVAL;
239 mp->m_logname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
240 if (!mp->m_logname)
241 return ENOMEM;
242 } else if (!strcmp(this_char, MNTOPT_MTPT)) {
243 xfs_warn(mp, "%s option not allowed on this system",
244 this_char);
245 return EINVAL;
246 } else if (!strcmp(this_char, MNTOPT_RTDEV)) {
247 if (!value || !*value) {
248 xfs_warn(mp, "%s option requires an argument",
249 this_char);
250 return EINVAL;
252 mp->m_rtname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
253 if (!mp->m_rtname)
254 return ENOMEM;
255 } else if (!strcmp(this_char, MNTOPT_BIOSIZE)) {
256 if (!value || !*value) {
257 xfs_warn(mp, "%s option requires an argument",
258 this_char);
259 return EINVAL;
261 iosize = simple_strtoul(value, &eov, 10);
262 iosizelog = ffs(iosize) - 1;
263 } else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) {
264 if (!value || !*value) {
265 xfs_warn(mp, "%s option requires an argument",
266 this_char);
267 return EINVAL;
269 iosize = suffix_strtoul(value, &eov, 10);
270 iosizelog = ffs(iosize) - 1;
271 } else if (!strcmp(this_char, MNTOPT_GRPID) ||
272 !strcmp(this_char, MNTOPT_BSDGROUPS)) {
273 mp->m_flags |= XFS_MOUNT_GRPID;
274 } else if (!strcmp(this_char, MNTOPT_NOGRPID) ||
275 !strcmp(this_char, MNTOPT_SYSVGROUPS)) {
276 mp->m_flags &= ~XFS_MOUNT_GRPID;
277 } else if (!strcmp(this_char, MNTOPT_WSYNC)) {
278 mp->m_flags |= XFS_MOUNT_WSYNC;
279 } else if (!strcmp(this_char, MNTOPT_NORECOVERY)) {
280 mp->m_flags |= XFS_MOUNT_NORECOVERY;
281 } else if (!strcmp(this_char, MNTOPT_NOALIGN)) {
282 mp->m_flags |= XFS_MOUNT_NOALIGN;
283 } else if (!strcmp(this_char, MNTOPT_SWALLOC)) {
284 mp->m_flags |= XFS_MOUNT_SWALLOC;
285 } else if (!strcmp(this_char, MNTOPT_SUNIT)) {
286 if (!value || !*value) {
287 xfs_warn(mp, "%s option requires an argument",
288 this_char);
289 return EINVAL;
291 dsunit = simple_strtoul(value, &eov, 10);
292 } else if (!strcmp(this_char, MNTOPT_SWIDTH)) {
293 if (!value || !*value) {
294 xfs_warn(mp, "%s option requires an argument",
295 this_char);
296 return EINVAL;
298 dswidth = simple_strtoul(value, &eov, 10);
299 } else if (!strcmp(this_char, MNTOPT_64BITINODE)) {
300 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
301 #if !XFS_BIG_INUMS
302 xfs_warn(mp, "%s option not allowed on this system",
303 this_char);
304 return EINVAL;
305 #endif
306 } else if (!strcmp(this_char, MNTOPT_NOUUID)) {
307 mp->m_flags |= XFS_MOUNT_NOUUID;
308 } else if (!strcmp(this_char, MNTOPT_BARRIER)) {
309 mp->m_flags |= XFS_MOUNT_BARRIER;
310 } else if (!strcmp(this_char, MNTOPT_NOBARRIER)) {
311 mp->m_flags &= ~XFS_MOUNT_BARRIER;
312 } else if (!strcmp(this_char, MNTOPT_IKEEP)) {
313 mp->m_flags |= XFS_MOUNT_IKEEP;
314 } else if (!strcmp(this_char, MNTOPT_NOIKEEP)) {
315 mp->m_flags &= ~XFS_MOUNT_IKEEP;
316 } else if (!strcmp(this_char, MNTOPT_LARGEIO)) {
317 mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
318 } else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) {
319 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
320 } else if (!strcmp(this_char, MNTOPT_ATTR2)) {
321 mp->m_flags |= XFS_MOUNT_ATTR2;
322 } else if (!strcmp(this_char, MNTOPT_NOATTR2)) {
323 mp->m_flags &= ~XFS_MOUNT_ATTR2;
324 mp->m_flags |= XFS_MOUNT_NOATTR2;
325 } else if (!strcmp(this_char, MNTOPT_FILESTREAM)) {
326 mp->m_flags |= XFS_MOUNT_FILESTREAMS;
327 } else if (!strcmp(this_char, MNTOPT_NOQUOTA)) {
328 mp->m_qflags &= ~(XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
329 XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
330 XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
331 XFS_UQUOTA_ENFD | XFS_OQUOTA_ENFD);
332 } else if (!strcmp(this_char, MNTOPT_QUOTA) ||
333 !strcmp(this_char, MNTOPT_UQUOTA) ||
334 !strcmp(this_char, MNTOPT_USRQUOTA)) {
335 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
336 XFS_UQUOTA_ENFD);
337 } else if (!strcmp(this_char, MNTOPT_QUOTANOENF) ||
338 !strcmp(this_char, MNTOPT_UQUOTANOENF)) {
339 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
340 mp->m_qflags &= ~XFS_UQUOTA_ENFD;
341 } else if (!strcmp(this_char, MNTOPT_PQUOTA) ||
342 !strcmp(this_char, MNTOPT_PRJQUOTA)) {
343 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
344 XFS_OQUOTA_ENFD);
345 } else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) {
346 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
347 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
348 } else if (!strcmp(this_char, MNTOPT_GQUOTA) ||
349 !strcmp(this_char, MNTOPT_GRPQUOTA)) {
350 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
351 XFS_OQUOTA_ENFD);
352 } else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) {
353 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
354 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
355 } else if (!strcmp(this_char, MNTOPT_DELAYLOG)) {
356 mp->m_flags |= XFS_MOUNT_DELAYLOG;
357 } else if (!strcmp(this_char, MNTOPT_NODELAYLOG)) {
358 mp->m_flags &= ~XFS_MOUNT_DELAYLOG;
359 xfs_warn(mp,
360 "nodelaylog is deprecated and will be removed in Linux 3.3");
361 } else if (!strcmp(this_char, MNTOPT_DISCARD)) {
362 mp->m_flags |= XFS_MOUNT_DISCARD;
363 } else if (!strcmp(this_char, MNTOPT_NODISCARD)) {
364 mp->m_flags &= ~XFS_MOUNT_DISCARD;
365 } else if (!strcmp(this_char, "ihashsize")) {
366 xfs_warn(mp,
367 "ihashsize no longer used, option is deprecated.");
368 } else if (!strcmp(this_char, "osyncisdsync")) {
369 xfs_warn(mp,
370 "osyncisdsync has no effect, option is deprecated.");
371 } else if (!strcmp(this_char, "osyncisosync")) {
372 xfs_warn(mp,
373 "osyncisosync has no effect, option is deprecated.");
374 } else if (!strcmp(this_char, "irixsgid")) {
375 xfs_warn(mp,
376 "irixsgid is now a sysctl(2) variable, option is deprecated.");
377 } else {
378 xfs_warn(mp, "unknown mount option [%s].", this_char);
379 return EINVAL;
384 * no recovery flag requires a read-only mount
386 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
387 !(mp->m_flags & XFS_MOUNT_RDONLY)) {
388 xfs_warn(mp, "no-recovery mounts must be read-only.");
389 return EINVAL;
392 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
393 xfs_warn(mp,
394 "sunit and swidth options incompatible with the noalign option");
395 return EINVAL;
398 if ((mp->m_flags & XFS_MOUNT_DISCARD) &&
399 !(mp->m_flags & XFS_MOUNT_DELAYLOG)) {
400 xfs_warn(mp,
401 "the discard option is incompatible with the nodelaylog option");
402 return EINVAL;
405 #ifndef CONFIG_XFS_QUOTA
406 if (XFS_IS_QUOTA_RUNNING(mp)) {
407 xfs_warn(mp, "quota support not available in this kernel.");
408 return EINVAL;
410 #endif
412 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
413 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE))) {
414 xfs_warn(mp, "cannot mount with both project and group quota");
415 return EINVAL;
418 if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
419 xfs_warn(mp, "sunit and swidth must be specified together");
420 return EINVAL;
423 if (dsunit && (dswidth % dsunit != 0)) {
424 xfs_warn(mp,
425 "stripe width (%d) must be a multiple of the stripe unit (%d)",
426 dswidth, dsunit);
427 return EINVAL;
430 done:
431 if (!(mp->m_flags & XFS_MOUNT_NOALIGN)) {
433 * At this point the superblock has not been read
434 * in, therefore we do not know the block size.
435 * Before the mount call ends we will convert
436 * these to FSBs.
438 if (dsunit) {
439 mp->m_dalign = dsunit;
440 mp->m_flags |= XFS_MOUNT_RETERR;
443 if (dswidth)
444 mp->m_swidth = dswidth;
447 if (mp->m_logbufs != -1 &&
448 mp->m_logbufs != 0 &&
449 (mp->m_logbufs < XLOG_MIN_ICLOGS ||
450 mp->m_logbufs > XLOG_MAX_ICLOGS)) {
451 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
452 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
453 return XFS_ERROR(EINVAL);
455 if (mp->m_logbsize != -1 &&
456 mp->m_logbsize != 0 &&
457 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
458 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
459 !is_power_of_2(mp->m_logbsize))) {
460 xfs_warn(mp,
461 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
462 mp->m_logbsize);
463 return XFS_ERROR(EINVAL);
466 if (iosizelog) {
467 if (iosizelog > XFS_MAX_IO_LOG ||
468 iosizelog < XFS_MIN_IO_LOG) {
469 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
470 iosizelog, XFS_MIN_IO_LOG,
471 XFS_MAX_IO_LOG);
472 return XFS_ERROR(EINVAL);
475 mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
476 mp->m_readio_log = iosizelog;
477 mp->m_writeio_log = iosizelog;
480 return 0;
483 struct proc_xfs_info {
484 int flag;
485 char *str;
488 STATIC int
489 xfs_showargs(
490 struct xfs_mount *mp,
491 struct seq_file *m)
493 static struct proc_xfs_info xfs_info_set[] = {
494 /* the few simple ones we can get from the mount struct */
495 { XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP },
496 { XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC },
497 { XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN },
498 { XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC },
499 { XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID },
500 { XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY },
501 { XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 },
502 { XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM },
503 { XFS_MOUNT_GRPID, "," MNTOPT_GRPID },
504 { XFS_MOUNT_DELAYLOG, "," MNTOPT_DELAYLOG },
505 { XFS_MOUNT_DISCARD, "," MNTOPT_DISCARD },
506 { 0, NULL }
508 static struct proc_xfs_info xfs_info_unset[] = {
509 /* the few simple ones we can get from the mount struct */
510 { XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO },
511 { XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER },
512 { XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE },
513 { 0, NULL }
515 struct proc_xfs_info *xfs_infop;
517 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
518 if (mp->m_flags & xfs_infop->flag)
519 seq_puts(m, xfs_infop->str);
521 for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
522 if (!(mp->m_flags & xfs_infop->flag))
523 seq_puts(m, xfs_infop->str);
526 if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
527 seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk",
528 (int)(1 << mp->m_writeio_log) >> 10);
530 if (mp->m_logbufs > 0)
531 seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs);
532 if (mp->m_logbsize > 0)
533 seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10);
535 if (mp->m_logname)
536 seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname);
537 if (mp->m_rtname)
538 seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname);
540 if (mp->m_dalign > 0)
541 seq_printf(m, "," MNTOPT_SUNIT "=%d",
542 (int)XFS_FSB_TO_BB(mp, mp->m_dalign));
543 if (mp->m_swidth > 0)
544 seq_printf(m, "," MNTOPT_SWIDTH "=%d",
545 (int)XFS_FSB_TO_BB(mp, mp->m_swidth));
547 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
548 seq_puts(m, "," MNTOPT_USRQUOTA);
549 else if (mp->m_qflags & XFS_UQUOTA_ACCT)
550 seq_puts(m, "," MNTOPT_UQUOTANOENF);
552 /* Either project or group quotas can be active, not both */
554 if (mp->m_qflags & XFS_PQUOTA_ACCT) {
555 if (mp->m_qflags & XFS_OQUOTA_ENFD)
556 seq_puts(m, "," MNTOPT_PRJQUOTA);
557 else
558 seq_puts(m, "," MNTOPT_PQUOTANOENF);
559 } else if (mp->m_qflags & XFS_GQUOTA_ACCT) {
560 if (mp->m_qflags & XFS_OQUOTA_ENFD)
561 seq_puts(m, "," MNTOPT_GRPQUOTA);
562 else
563 seq_puts(m, "," MNTOPT_GQUOTANOENF);
566 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
567 seq_puts(m, "," MNTOPT_NOQUOTA);
569 return 0;
571 __uint64_t
572 xfs_max_file_offset(
573 unsigned int blockshift)
575 unsigned int pagefactor = 1;
576 unsigned int bitshift = BITS_PER_LONG - 1;
578 /* Figure out maximum filesize, on Linux this can depend on
579 * the filesystem blocksize (on 32 bit platforms).
580 * __block_write_begin does this in an [unsigned] long...
581 * page->index << (PAGE_CACHE_SHIFT - bbits)
582 * So, for page sized blocks (4K on 32 bit platforms),
583 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
584 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
585 * but for smaller blocksizes it is less (bbits = log2 bsize).
586 * Note1: get_block_t takes a long (implicit cast from above)
587 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
588 * can optionally convert the [unsigned] long from above into
589 * an [unsigned] long long.
592 #if BITS_PER_LONG == 32
593 # if defined(CONFIG_LBDAF)
594 ASSERT(sizeof(sector_t) == 8);
595 pagefactor = PAGE_CACHE_SIZE;
596 bitshift = BITS_PER_LONG;
597 # else
598 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
599 # endif
600 #endif
602 return (((__uint64_t)pagefactor) << bitshift) - 1;
605 STATIC int
606 xfs_blkdev_get(
607 xfs_mount_t *mp,
608 const char *name,
609 struct block_device **bdevp)
611 int error = 0;
613 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
614 mp);
615 if (IS_ERR(*bdevp)) {
616 error = PTR_ERR(*bdevp);
617 xfs_warn(mp, "Invalid device [%s], error=%d\n", name, error);
620 return -error;
623 STATIC void
624 xfs_blkdev_put(
625 struct block_device *bdev)
627 if (bdev)
628 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
631 void
632 xfs_blkdev_issue_flush(
633 xfs_buftarg_t *buftarg)
635 blkdev_issue_flush(buftarg->bt_bdev, GFP_KERNEL, NULL);
638 STATIC void
639 xfs_close_devices(
640 struct xfs_mount *mp)
642 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
643 struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
644 xfs_free_buftarg(mp, mp->m_logdev_targp);
645 xfs_blkdev_put(logdev);
647 if (mp->m_rtdev_targp) {
648 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
649 xfs_free_buftarg(mp, mp->m_rtdev_targp);
650 xfs_blkdev_put(rtdev);
652 xfs_free_buftarg(mp, mp->m_ddev_targp);
656 * The file system configurations are:
657 * (1) device (partition) with data and internal log
658 * (2) logical volume with data and log subvolumes.
659 * (3) logical volume with data, log, and realtime subvolumes.
661 * We only have to handle opening the log and realtime volumes here if
662 * they are present. The data subvolume has already been opened by
663 * get_sb_bdev() and is stored in sb->s_bdev.
665 STATIC int
666 xfs_open_devices(
667 struct xfs_mount *mp)
669 struct block_device *ddev = mp->m_super->s_bdev;
670 struct block_device *logdev = NULL, *rtdev = NULL;
671 int error;
674 * Open real time and log devices - order is important.
676 if (mp->m_logname) {
677 error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
678 if (error)
679 goto out;
682 if (mp->m_rtname) {
683 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
684 if (error)
685 goto out_close_logdev;
687 if (rtdev == ddev || rtdev == logdev) {
688 xfs_warn(mp,
689 "Cannot mount filesystem with identical rtdev and ddev/logdev.");
690 error = EINVAL;
691 goto out_close_rtdev;
696 * Setup xfs_mount buffer target pointers
698 error = ENOMEM;
699 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, 0, mp->m_fsname);
700 if (!mp->m_ddev_targp)
701 goto out_close_rtdev;
703 if (rtdev) {
704 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, 1,
705 mp->m_fsname);
706 if (!mp->m_rtdev_targp)
707 goto out_free_ddev_targ;
710 if (logdev && logdev != ddev) {
711 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, 1,
712 mp->m_fsname);
713 if (!mp->m_logdev_targp)
714 goto out_free_rtdev_targ;
715 } else {
716 mp->m_logdev_targp = mp->m_ddev_targp;
719 return 0;
721 out_free_rtdev_targ:
722 if (mp->m_rtdev_targp)
723 xfs_free_buftarg(mp, mp->m_rtdev_targp);
724 out_free_ddev_targ:
725 xfs_free_buftarg(mp, mp->m_ddev_targp);
726 out_close_rtdev:
727 if (rtdev)
728 xfs_blkdev_put(rtdev);
729 out_close_logdev:
730 if (logdev && logdev != ddev)
731 xfs_blkdev_put(logdev);
732 out:
733 return error;
737 * Setup xfs_mount buffer target pointers based on superblock
739 STATIC int
740 xfs_setup_devices(
741 struct xfs_mount *mp)
743 int error;
745 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
746 mp->m_sb.sb_sectsize);
747 if (error)
748 return error;
750 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
751 unsigned int log_sector_size = BBSIZE;
753 if (xfs_sb_version_hassector(&mp->m_sb))
754 log_sector_size = mp->m_sb.sb_logsectsize;
755 error = xfs_setsize_buftarg(mp->m_logdev_targp,
756 mp->m_sb.sb_blocksize,
757 log_sector_size);
758 if (error)
759 return error;
761 if (mp->m_rtdev_targp) {
762 error = xfs_setsize_buftarg(mp->m_rtdev_targp,
763 mp->m_sb.sb_blocksize,
764 mp->m_sb.sb_sectsize);
765 if (error)
766 return error;
769 return 0;
772 /* Catch misguided souls that try to use this interface on XFS */
773 STATIC struct inode *
774 xfs_fs_alloc_inode(
775 struct super_block *sb)
777 BUG();
778 return NULL;
782 * Now that the generic code is guaranteed not to be accessing
783 * the linux inode, we can reclaim the inode.
785 STATIC void
786 xfs_fs_destroy_inode(
787 struct inode *inode)
789 struct xfs_inode *ip = XFS_I(inode);
791 trace_xfs_destroy_inode(ip);
793 XFS_STATS_INC(vn_reclaim);
795 /* bad inode, get out here ASAP */
796 if (is_bad_inode(inode))
797 goto out_reclaim;
799 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0);
802 * We should never get here with one of the reclaim flags already set.
804 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
805 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
808 * We always use background reclaim here because even if the
809 * inode is clean, it still may be under IO and hence we have
810 * to take the flush lock. The background reclaim path handles
811 * this more efficiently than we can here, so simply let background
812 * reclaim tear down all inodes.
814 out_reclaim:
815 xfs_inode_set_reclaim_tag(ip);
819 * Slab object creation initialisation for the XFS inode.
820 * This covers only the idempotent fields in the XFS inode;
821 * all other fields need to be initialised on allocation
822 * from the slab. This avoids the need to repeatedly initialise
823 * fields in the xfs inode that left in the initialise state
824 * when freeing the inode.
826 STATIC void
827 xfs_fs_inode_init_once(
828 void *inode)
830 struct xfs_inode *ip = inode;
832 memset(ip, 0, sizeof(struct xfs_inode));
834 /* vfs inode */
835 inode_init_once(VFS_I(ip));
837 /* xfs inode */
838 atomic_set(&ip->i_pincount, 0);
839 spin_lock_init(&ip->i_flags_lock);
840 init_waitqueue_head(&ip->i_ipin_wait);
842 * Because we want to use a counting completion, complete
843 * the flush completion once to allow a single access to
844 * the flush completion without blocking.
846 init_completion(&ip->i_flush);
847 complete(&ip->i_flush);
849 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
850 "xfsino", ip->i_ino);
854 * Dirty the XFS inode when mark_inode_dirty_sync() is called so that
855 * we catch unlogged VFS level updates to the inode.
857 * We need the barrier() to maintain correct ordering between unlogged
858 * updates and the transaction commit code that clears the i_update_core
859 * field. This requires all updates to be completed before marking the
860 * inode dirty.
862 STATIC void
863 xfs_fs_dirty_inode(
864 struct inode *inode,
865 int flags)
867 barrier();
868 XFS_I(inode)->i_update_core = 1;
871 STATIC int
872 xfs_fs_write_inode(
873 struct inode *inode,
874 struct writeback_control *wbc)
876 struct xfs_inode *ip = XFS_I(inode);
877 struct xfs_mount *mp = ip->i_mount;
878 int error = EAGAIN;
880 trace_xfs_write_inode(ip);
882 if (XFS_FORCED_SHUTDOWN(mp))
883 return -XFS_ERROR(EIO);
885 if (wbc->sync_mode == WB_SYNC_ALL || wbc->for_kupdate) {
887 * Make sure the inode has made it it into the log. Instead
888 * of forcing it all the way to stable storage using a
889 * synchronous transaction we let the log force inside the
890 * ->sync_fs call do that for thus, which reduces the number
891 * of synchronous log forces dramatically.
893 error = xfs_log_dirty_inode(ip, NULL, 0);
894 if (error)
895 goto out;
896 return 0;
897 } else {
898 if (!ip->i_update_core)
899 return 0;
902 * We make this non-blocking if the inode is contended, return
903 * EAGAIN to indicate to the caller that they did not succeed.
904 * This prevents the flush path from blocking on inodes inside
905 * another operation right now, they get caught later by
906 * xfs_sync.
908 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
909 goto out;
911 if (xfs_ipincount(ip) || !xfs_iflock_nowait(ip))
912 goto out_unlock;
915 * Now we have the flush lock and the inode is not pinned, we
916 * can check if the inode is really clean as we know that
917 * there are no pending transaction completions, it is not
918 * waiting on the delayed write queue and there is no IO in
919 * progress.
921 if (xfs_inode_clean(ip)) {
922 xfs_ifunlock(ip);
923 error = 0;
924 goto out_unlock;
926 error = xfs_iflush(ip, SYNC_TRYLOCK);
929 out_unlock:
930 xfs_iunlock(ip, XFS_ILOCK_SHARED);
931 out:
933 * if we failed to write out the inode then mark
934 * it dirty again so we'll try again later.
936 if (error)
937 xfs_mark_inode_dirty_sync(ip);
938 return -error;
941 STATIC void
942 xfs_fs_evict_inode(
943 struct inode *inode)
945 xfs_inode_t *ip = XFS_I(inode);
947 trace_xfs_evict_inode(ip);
949 truncate_inode_pages(&inode->i_data, 0);
950 end_writeback(inode);
951 XFS_STATS_INC(vn_rele);
952 XFS_STATS_INC(vn_remove);
953 XFS_STATS_DEC(vn_active);
956 * The iolock is used by the file system to coordinate reads,
957 * writes, and block truncates. Up to this point the lock
958 * protected concurrent accesses by users of the inode. But
959 * from here forward we're doing some final processing of the
960 * inode because we're done with it, and although we reuse the
961 * iolock for protection it is really a distinct lock class
962 * (in the lockdep sense) from before. To keep lockdep happy
963 * (and basically indicate what we are doing), we explicitly
964 * re-init the iolock here.
966 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
967 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
968 lockdep_set_class_and_name(&ip->i_iolock.mr_lock,
969 &xfs_iolock_reclaimable, "xfs_iolock_reclaimable");
971 xfs_inactive(ip);
974 STATIC void
975 xfs_free_fsname(
976 struct xfs_mount *mp)
978 kfree(mp->m_fsname);
979 kfree(mp->m_rtname);
980 kfree(mp->m_logname);
983 STATIC void
984 xfs_fs_put_super(
985 struct super_block *sb)
987 struct xfs_mount *mp = XFS_M(sb);
989 xfs_syncd_stop(mp);
992 * Blow away any referenced inode in the filestreams cache.
993 * This can and will cause log traffic as inodes go inactive
994 * here.
996 xfs_filestream_unmount(mp);
998 xfs_flush_buftarg(mp->m_ddev_targp, 1);
1000 xfs_unmountfs(mp);
1001 xfs_freesb(mp);
1002 xfs_icsb_destroy_counters(mp);
1003 xfs_close_devices(mp);
1004 xfs_free_fsname(mp);
1005 kfree(mp);
1008 STATIC int
1009 xfs_fs_sync_fs(
1010 struct super_block *sb,
1011 int wait)
1013 struct xfs_mount *mp = XFS_M(sb);
1014 int error;
1017 * Not much we can do for the first async pass. Writing out the
1018 * superblock would be counter-productive as we are going to redirty
1019 * when writing out other data and metadata (and writing out a single
1020 * block is quite fast anyway).
1022 * Try to asynchronously kick off quota syncing at least.
1024 if (!wait) {
1025 xfs_qm_sync(mp, SYNC_TRYLOCK);
1026 return 0;
1029 error = xfs_quiesce_data(mp);
1030 if (error)
1031 return -error;
1033 if (laptop_mode) {
1035 * The disk must be active because we're syncing.
1036 * We schedule xfssyncd now (now that the disk is
1037 * active) instead of later (when it might not be).
1039 flush_delayed_work_sync(&mp->m_sync_work);
1042 return 0;
1045 STATIC int
1046 xfs_fs_statfs(
1047 struct dentry *dentry,
1048 struct kstatfs *statp)
1050 struct xfs_mount *mp = XFS_M(dentry->d_sb);
1051 xfs_sb_t *sbp = &mp->m_sb;
1052 struct xfs_inode *ip = XFS_I(dentry->d_inode);
1053 __uint64_t fakeinos, id;
1054 xfs_extlen_t lsize;
1055 __int64_t ffree;
1057 statp->f_type = XFS_SB_MAGIC;
1058 statp->f_namelen = MAXNAMELEN - 1;
1060 id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
1061 statp->f_fsid.val[0] = (u32)id;
1062 statp->f_fsid.val[1] = (u32)(id >> 32);
1064 xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT);
1066 spin_lock(&mp->m_sb_lock);
1067 statp->f_bsize = sbp->sb_blocksize;
1068 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
1069 statp->f_blocks = sbp->sb_dblocks - lsize;
1070 statp->f_bfree = statp->f_bavail =
1071 sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1072 fakeinos = statp->f_bfree << sbp->sb_inopblog;
1073 statp->f_files =
1074 MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
1075 if (mp->m_maxicount)
1076 statp->f_files = min_t(typeof(statp->f_files),
1077 statp->f_files,
1078 mp->m_maxicount);
1080 /* make sure statp->f_ffree does not underflow */
1081 ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
1082 statp->f_ffree = max_t(__int64_t, ffree, 0);
1084 spin_unlock(&mp->m_sb_lock);
1086 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) ||
1087 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))) ==
1088 (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))
1089 xfs_qm_statvfs(ip, statp);
1090 return 0;
1093 STATIC void
1094 xfs_save_resvblks(struct xfs_mount *mp)
1096 __uint64_t resblks = 0;
1098 mp->m_resblks_save = mp->m_resblks;
1099 xfs_reserve_blocks(mp, &resblks, NULL);
1102 STATIC void
1103 xfs_restore_resvblks(struct xfs_mount *mp)
1105 __uint64_t resblks;
1107 if (mp->m_resblks_save) {
1108 resblks = mp->m_resblks_save;
1109 mp->m_resblks_save = 0;
1110 } else
1111 resblks = xfs_default_resblks(mp);
1113 xfs_reserve_blocks(mp, &resblks, NULL);
1116 STATIC int
1117 xfs_fs_remount(
1118 struct super_block *sb,
1119 int *flags,
1120 char *options)
1122 struct xfs_mount *mp = XFS_M(sb);
1123 substring_t args[MAX_OPT_ARGS];
1124 char *p;
1125 int error;
1127 while ((p = strsep(&options, ",")) != NULL) {
1128 int token;
1130 if (!*p)
1131 continue;
1133 token = match_token(p, tokens, args);
1134 switch (token) {
1135 case Opt_barrier:
1136 mp->m_flags |= XFS_MOUNT_BARRIER;
1137 break;
1138 case Opt_nobarrier:
1139 mp->m_flags &= ~XFS_MOUNT_BARRIER;
1140 break;
1141 default:
1143 * Logically we would return an error here to prevent
1144 * users from believing they might have changed
1145 * mount options using remount which can't be changed.
1147 * But unfortunately mount(8) adds all options from
1148 * mtab and fstab to the mount arguments in some cases
1149 * so we can't blindly reject options, but have to
1150 * check for each specified option if it actually
1151 * differs from the currently set option and only
1152 * reject it if that's the case.
1154 * Until that is implemented we return success for
1155 * every remount request, and silently ignore all
1156 * options that we can't actually change.
1158 #if 0
1159 xfs_info(mp,
1160 "mount option \"%s\" not supported for remount\n", p);
1161 return -EINVAL;
1162 #else
1163 break;
1164 #endif
1168 /* ro -> rw */
1169 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & MS_RDONLY)) {
1170 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1173 * If this is the first remount to writeable state we
1174 * might have some superblock changes to update.
1176 if (mp->m_update_flags) {
1177 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1178 if (error) {
1179 xfs_warn(mp, "failed to write sb changes");
1180 return error;
1182 mp->m_update_flags = 0;
1186 * Fill out the reserve pool if it is empty. Use the stashed
1187 * value if it is non-zero, otherwise go with the default.
1189 xfs_restore_resvblks(mp);
1192 /* rw -> ro */
1193 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & MS_RDONLY)) {
1195 * After we have synced the data but before we sync the
1196 * metadata, we need to free up the reserve block pool so that
1197 * the used block count in the superblock on disk is correct at
1198 * the end of the remount. Stash the current reserve pool size
1199 * so that if we get remounted rw, we can return it to the same
1200 * size.
1203 xfs_quiesce_data(mp);
1204 xfs_save_resvblks(mp);
1205 xfs_quiesce_attr(mp);
1206 mp->m_flags |= XFS_MOUNT_RDONLY;
1209 return 0;
1213 * Second stage of a freeze. The data is already frozen so we only
1214 * need to take care of the metadata. Once that's done write a dummy
1215 * record to dirty the log in case of a crash while frozen.
1217 STATIC int
1218 xfs_fs_freeze(
1219 struct super_block *sb)
1221 struct xfs_mount *mp = XFS_M(sb);
1223 xfs_save_resvblks(mp);
1224 xfs_quiesce_attr(mp);
1225 return -xfs_fs_log_dummy(mp);
1228 STATIC int
1229 xfs_fs_unfreeze(
1230 struct super_block *sb)
1232 struct xfs_mount *mp = XFS_M(sb);
1234 xfs_restore_resvblks(mp);
1235 return 0;
1238 STATIC int
1239 xfs_fs_show_options(
1240 struct seq_file *m,
1241 struct vfsmount *mnt)
1243 return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
1247 * This function fills in xfs_mount_t fields based on mount args.
1248 * Note: the superblock _has_ now been read in.
1250 STATIC int
1251 xfs_finish_flags(
1252 struct xfs_mount *mp)
1254 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
1256 /* Fail a mount where the logbuf is smaller than the log stripe */
1257 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1258 if (mp->m_logbsize <= 0 &&
1259 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
1260 mp->m_logbsize = mp->m_sb.sb_logsunit;
1261 } else if (mp->m_logbsize > 0 &&
1262 mp->m_logbsize < mp->m_sb.sb_logsunit) {
1263 xfs_warn(mp,
1264 "logbuf size must be greater than or equal to log stripe size");
1265 return XFS_ERROR(EINVAL);
1267 } else {
1268 /* Fail a mount if the logbuf is larger than 32K */
1269 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
1270 xfs_warn(mp,
1271 "logbuf size for version 1 logs must be 16K or 32K");
1272 return XFS_ERROR(EINVAL);
1277 * mkfs'ed attr2 will turn on attr2 mount unless explicitly
1278 * told by noattr2 to turn it off
1280 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1281 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1282 mp->m_flags |= XFS_MOUNT_ATTR2;
1285 * prohibit r/w mounts of read-only filesystems
1287 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
1288 xfs_warn(mp,
1289 "cannot mount a read-only filesystem as read-write");
1290 return XFS_ERROR(EROFS);
1293 return 0;
1296 STATIC int
1297 xfs_fs_fill_super(
1298 struct super_block *sb,
1299 void *data,
1300 int silent)
1302 struct inode *root;
1303 struct xfs_mount *mp = NULL;
1304 int flags = 0, error = ENOMEM;
1306 mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
1307 if (!mp)
1308 goto out;
1310 spin_lock_init(&mp->m_sb_lock);
1311 mutex_init(&mp->m_growlock);
1312 atomic_set(&mp->m_active_trans, 0);
1314 mp->m_super = sb;
1315 sb->s_fs_info = mp;
1317 error = xfs_parseargs(mp, (char *)data);
1318 if (error)
1319 goto out_free_fsname;
1321 sb_min_blocksize(sb, BBSIZE);
1322 sb->s_xattr = xfs_xattr_handlers;
1323 sb->s_export_op = &xfs_export_operations;
1324 #ifdef CONFIG_XFS_QUOTA
1325 sb->s_qcop = &xfs_quotactl_operations;
1326 #endif
1327 sb->s_op = &xfs_super_operations;
1329 if (silent)
1330 flags |= XFS_MFSI_QUIET;
1332 error = xfs_open_devices(mp);
1333 if (error)
1334 goto out_free_fsname;
1336 error = xfs_icsb_init_counters(mp);
1337 if (error)
1338 goto out_close_devices;
1340 error = xfs_readsb(mp, flags);
1341 if (error)
1342 goto out_destroy_counters;
1344 error = xfs_finish_flags(mp);
1345 if (error)
1346 goto out_free_sb;
1348 error = xfs_setup_devices(mp);
1349 if (error)
1350 goto out_free_sb;
1352 error = xfs_filestream_mount(mp);
1353 if (error)
1354 goto out_free_sb;
1357 * we must configure the block size in the superblock before we run the
1358 * full mount process as the mount process can lookup and cache inodes.
1359 * For the same reason we must also initialise the syncd and register
1360 * the inode cache shrinker so that inodes can be reclaimed during
1361 * operations like a quotacheck that iterate all inodes in the
1362 * filesystem.
1364 sb->s_magic = XFS_SB_MAGIC;
1365 sb->s_blocksize = mp->m_sb.sb_blocksize;
1366 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1367 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
1368 sb->s_time_gran = 1;
1369 set_posix_acl_flag(sb);
1371 error = xfs_mountfs(mp);
1372 if (error)
1373 goto out_filestream_unmount;
1375 error = xfs_syncd_init(mp);
1376 if (error)
1377 goto out_unmount;
1379 root = igrab(VFS_I(mp->m_rootip));
1380 if (!root) {
1381 error = ENOENT;
1382 goto out_syncd_stop;
1384 if (is_bad_inode(root)) {
1385 error = EINVAL;
1386 goto out_syncd_stop;
1388 sb->s_root = d_alloc_root(root);
1389 if (!sb->s_root) {
1390 error = ENOMEM;
1391 goto out_iput;
1394 return 0;
1396 out_filestream_unmount:
1397 xfs_filestream_unmount(mp);
1398 out_free_sb:
1399 xfs_freesb(mp);
1400 out_destroy_counters:
1401 xfs_icsb_destroy_counters(mp);
1402 out_close_devices:
1403 xfs_close_devices(mp);
1404 out_free_fsname:
1405 xfs_free_fsname(mp);
1406 kfree(mp);
1407 out:
1408 return -error;
1410 out_iput:
1411 iput(root);
1412 out_syncd_stop:
1413 xfs_syncd_stop(mp);
1414 out_unmount:
1416 * Blow away any referenced inode in the filestreams cache.
1417 * This can and will cause log traffic as inodes go inactive
1418 * here.
1420 xfs_filestream_unmount(mp);
1422 xfs_flush_buftarg(mp->m_ddev_targp, 1);
1424 xfs_unmountfs(mp);
1425 goto out_free_sb;
1428 STATIC struct dentry *
1429 xfs_fs_mount(
1430 struct file_system_type *fs_type,
1431 int flags,
1432 const char *dev_name,
1433 void *data)
1435 return mount_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super);
1438 static int
1439 xfs_fs_nr_cached_objects(
1440 struct super_block *sb)
1442 return xfs_reclaim_inodes_count(XFS_M(sb));
1445 static void
1446 xfs_fs_free_cached_objects(
1447 struct super_block *sb,
1448 int nr_to_scan)
1450 xfs_reclaim_inodes_nr(XFS_M(sb), nr_to_scan);
1453 static const struct super_operations xfs_super_operations = {
1454 .alloc_inode = xfs_fs_alloc_inode,
1455 .destroy_inode = xfs_fs_destroy_inode,
1456 .dirty_inode = xfs_fs_dirty_inode,
1457 .write_inode = xfs_fs_write_inode,
1458 .evict_inode = xfs_fs_evict_inode,
1459 .put_super = xfs_fs_put_super,
1460 .sync_fs = xfs_fs_sync_fs,
1461 .freeze_fs = xfs_fs_freeze,
1462 .unfreeze_fs = xfs_fs_unfreeze,
1463 .statfs = xfs_fs_statfs,
1464 .remount_fs = xfs_fs_remount,
1465 .show_options = xfs_fs_show_options,
1466 .nr_cached_objects = xfs_fs_nr_cached_objects,
1467 .free_cached_objects = xfs_fs_free_cached_objects,
1470 static struct file_system_type xfs_fs_type = {
1471 .owner = THIS_MODULE,
1472 .name = "xfs",
1473 .mount = xfs_fs_mount,
1474 .kill_sb = kill_block_super,
1475 .fs_flags = FS_REQUIRES_DEV,
1478 STATIC int __init
1479 xfs_init_zones(void)
1482 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
1483 if (!xfs_ioend_zone)
1484 goto out;
1486 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
1487 xfs_ioend_zone);
1488 if (!xfs_ioend_pool)
1489 goto out_destroy_ioend_zone;
1491 xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
1492 "xfs_log_ticket");
1493 if (!xfs_log_ticket_zone)
1494 goto out_destroy_ioend_pool;
1496 xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
1497 "xfs_bmap_free_item");
1498 if (!xfs_bmap_free_item_zone)
1499 goto out_destroy_log_ticket_zone;
1501 xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
1502 "xfs_btree_cur");
1503 if (!xfs_btree_cur_zone)
1504 goto out_destroy_bmap_free_item_zone;
1506 xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
1507 "xfs_da_state");
1508 if (!xfs_da_state_zone)
1509 goto out_destroy_btree_cur_zone;
1511 xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
1512 if (!xfs_dabuf_zone)
1513 goto out_destroy_da_state_zone;
1515 xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
1516 if (!xfs_ifork_zone)
1517 goto out_destroy_dabuf_zone;
1519 xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
1520 if (!xfs_trans_zone)
1521 goto out_destroy_ifork_zone;
1523 xfs_log_item_desc_zone =
1524 kmem_zone_init(sizeof(struct xfs_log_item_desc),
1525 "xfs_log_item_desc");
1526 if (!xfs_log_item_desc_zone)
1527 goto out_destroy_trans_zone;
1530 * The size of the zone allocated buf log item is the maximum
1531 * size possible under XFS. This wastes a little bit of memory,
1532 * but it is much faster.
1534 xfs_buf_item_zone = kmem_zone_init((sizeof(xfs_buf_log_item_t) +
1535 (((XFS_MAX_BLOCKSIZE / XFS_BLF_CHUNK) /
1536 NBWORD) * sizeof(int))), "xfs_buf_item");
1537 if (!xfs_buf_item_zone)
1538 goto out_destroy_log_item_desc_zone;
1540 xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
1541 ((XFS_EFD_MAX_FAST_EXTENTS - 1) *
1542 sizeof(xfs_extent_t))), "xfs_efd_item");
1543 if (!xfs_efd_zone)
1544 goto out_destroy_buf_item_zone;
1546 xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
1547 ((XFS_EFI_MAX_FAST_EXTENTS - 1) *
1548 sizeof(xfs_extent_t))), "xfs_efi_item");
1549 if (!xfs_efi_zone)
1550 goto out_destroy_efd_zone;
1552 xfs_inode_zone =
1553 kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
1554 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD,
1555 xfs_fs_inode_init_once);
1556 if (!xfs_inode_zone)
1557 goto out_destroy_efi_zone;
1559 xfs_ili_zone =
1560 kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
1561 KM_ZONE_SPREAD, NULL);
1562 if (!xfs_ili_zone)
1563 goto out_destroy_inode_zone;
1565 return 0;
1567 out_destroy_inode_zone:
1568 kmem_zone_destroy(xfs_inode_zone);
1569 out_destroy_efi_zone:
1570 kmem_zone_destroy(xfs_efi_zone);
1571 out_destroy_efd_zone:
1572 kmem_zone_destroy(xfs_efd_zone);
1573 out_destroy_buf_item_zone:
1574 kmem_zone_destroy(xfs_buf_item_zone);
1575 out_destroy_log_item_desc_zone:
1576 kmem_zone_destroy(xfs_log_item_desc_zone);
1577 out_destroy_trans_zone:
1578 kmem_zone_destroy(xfs_trans_zone);
1579 out_destroy_ifork_zone:
1580 kmem_zone_destroy(xfs_ifork_zone);
1581 out_destroy_dabuf_zone:
1582 kmem_zone_destroy(xfs_dabuf_zone);
1583 out_destroy_da_state_zone:
1584 kmem_zone_destroy(xfs_da_state_zone);
1585 out_destroy_btree_cur_zone:
1586 kmem_zone_destroy(xfs_btree_cur_zone);
1587 out_destroy_bmap_free_item_zone:
1588 kmem_zone_destroy(xfs_bmap_free_item_zone);
1589 out_destroy_log_ticket_zone:
1590 kmem_zone_destroy(xfs_log_ticket_zone);
1591 out_destroy_ioend_pool:
1592 mempool_destroy(xfs_ioend_pool);
1593 out_destroy_ioend_zone:
1594 kmem_zone_destroy(xfs_ioend_zone);
1595 out:
1596 return -ENOMEM;
1599 STATIC void
1600 xfs_destroy_zones(void)
1602 kmem_zone_destroy(xfs_ili_zone);
1603 kmem_zone_destroy(xfs_inode_zone);
1604 kmem_zone_destroy(xfs_efi_zone);
1605 kmem_zone_destroy(xfs_efd_zone);
1606 kmem_zone_destroy(xfs_buf_item_zone);
1607 kmem_zone_destroy(xfs_log_item_desc_zone);
1608 kmem_zone_destroy(xfs_trans_zone);
1609 kmem_zone_destroy(xfs_ifork_zone);
1610 kmem_zone_destroy(xfs_dabuf_zone);
1611 kmem_zone_destroy(xfs_da_state_zone);
1612 kmem_zone_destroy(xfs_btree_cur_zone);
1613 kmem_zone_destroy(xfs_bmap_free_item_zone);
1614 kmem_zone_destroy(xfs_log_ticket_zone);
1615 mempool_destroy(xfs_ioend_pool);
1616 kmem_zone_destroy(xfs_ioend_zone);
1620 STATIC int __init
1621 xfs_init_workqueues(void)
1624 * max_active is set to 8 to give enough concurency to allow
1625 * multiple work operations on each CPU to run. This allows multiple
1626 * filesystems to be running sync work concurrently, and scales with
1627 * the number of CPUs in the system.
1629 xfs_syncd_wq = alloc_workqueue("xfssyncd", WQ_CPU_INTENSIVE, 8);
1630 if (!xfs_syncd_wq)
1631 return -ENOMEM;
1632 return 0;
1635 STATIC void
1636 xfs_destroy_workqueues(void)
1638 destroy_workqueue(xfs_syncd_wq);
1641 STATIC int __init
1642 init_xfs_fs(void)
1644 int error;
1646 printk(KERN_INFO XFS_VERSION_STRING " with "
1647 XFS_BUILD_OPTIONS " enabled\n");
1649 xfs_dir_startup();
1651 error = xfs_init_zones();
1652 if (error)
1653 goto out;
1655 error = xfs_init_workqueues();
1656 if (error)
1657 goto out_destroy_zones;
1659 error = xfs_mru_cache_init();
1660 if (error)
1661 goto out_destroy_wq;
1663 error = xfs_filestream_init();
1664 if (error)
1665 goto out_mru_cache_uninit;
1667 error = xfs_buf_init();
1668 if (error)
1669 goto out_filestream_uninit;
1671 error = xfs_init_procfs();
1672 if (error)
1673 goto out_buf_terminate;
1675 error = xfs_sysctl_register();
1676 if (error)
1677 goto out_cleanup_procfs;
1679 vfs_initquota();
1681 error = register_filesystem(&xfs_fs_type);
1682 if (error)
1683 goto out_sysctl_unregister;
1684 return 0;
1686 out_sysctl_unregister:
1687 xfs_sysctl_unregister();
1688 out_cleanup_procfs:
1689 xfs_cleanup_procfs();
1690 out_buf_terminate:
1691 xfs_buf_terminate();
1692 out_filestream_uninit:
1693 xfs_filestream_uninit();
1694 out_mru_cache_uninit:
1695 xfs_mru_cache_uninit();
1696 out_destroy_wq:
1697 xfs_destroy_workqueues();
1698 out_destroy_zones:
1699 xfs_destroy_zones();
1700 out:
1701 return error;
1704 STATIC void __exit
1705 exit_xfs_fs(void)
1707 vfs_exitquota();
1708 unregister_filesystem(&xfs_fs_type);
1709 xfs_sysctl_unregister();
1710 xfs_cleanup_procfs();
1711 xfs_buf_terminate();
1712 xfs_filestream_uninit();
1713 xfs_mru_cache_uninit();
1714 xfs_destroy_workqueues();
1715 xfs_destroy_zones();
1718 module_init(init_xfs_fs);
1719 module_exit(exit_xfs_fs);
1721 MODULE_AUTHOR("Silicon Graphics, Inc.");
1722 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
1723 MODULE_LICENSE("GPL");