Merge git://git.infradead.org/users/willy/linux-nvme
[linux-2.6/cjktty.git] / drivers / block / nvme.c
blob9dcefe40380bf23ca7c1675b4286c5f97a480d79
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45 #define NVME_Q_DEPTH 1024
46 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
48 #define NVME_MINORS 64
49 #define NVME_IO_TIMEOUT (5 * HZ)
50 #define ADMIN_TIMEOUT (60 * HZ)
52 static int nvme_major;
53 module_param(nvme_major, int, 0);
55 static int use_threaded_interrupts;
56 module_param(use_threaded_interrupts, int, 0);
58 static DEFINE_SPINLOCK(dev_list_lock);
59 static LIST_HEAD(dev_list);
60 static struct task_struct *nvme_thread;
63 * Represents an NVM Express device. Each nvme_dev is a PCI function.
65 struct nvme_dev {
66 struct list_head node;
67 struct nvme_queue **queues;
68 u32 __iomem *dbs;
69 struct pci_dev *pci_dev;
70 struct dma_pool *prp_page_pool;
71 struct dma_pool *prp_small_pool;
72 int instance;
73 int queue_count;
74 int db_stride;
75 u32 ctrl_config;
76 struct msix_entry *entry;
77 struct nvme_bar __iomem *bar;
78 struct list_head namespaces;
79 char serial[20];
80 char model[40];
81 char firmware_rev[8];
82 u32 max_hw_sectors;
86 * An NVM Express namespace is equivalent to a SCSI LUN
88 struct nvme_ns {
89 struct list_head list;
91 struct nvme_dev *dev;
92 struct request_queue *queue;
93 struct gendisk *disk;
95 int ns_id;
96 int lba_shift;
100 * An NVM Express queue. Each device has at least two (one for admin
101 * commands and one for I/O commands).
103 struct nvme_queue {
104 struct device *q_dmadev;
105 struct nvme_dev *dev;
106 spinlock_t q_lock;
107 struct nvme_command *sq_cmds;
108 volatile struct nvme_completion *cqes;
109 dma_addr_t sq_dma_addr;
110 dma_addr_t cq_dma_addr;
111 wait_queue_head_t sq_full;
112 wait_queue_t sq_cong_wait;
113 struct bio_list sq_cong;
114 u32 __iomem *q_db;
115 u16 q_depth;
116 u16 cq_vector;
117 u16 sq_head;
118 u16 sq_tail;
119 u16 cq_head;
120 u16 cq_phase;
121 unsigned long cmdid_data[];
125 * Check we didin't inadvertently grow the command struct
127 static inline void _nvme_check_size(void)
129 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
134 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
135 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
136 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
137 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
138 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
141 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
142 struct nvme_completion *);
144 struct nvme_cmd_info {
145 nvme_completion_fn fn;
146 void *ctx;
147 unsigned long timeout;
150 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
152 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
156 * alloc_cmdid() - Allocate a Command ID
157 * @nvmeq: The queue that will be used for this command
158 * @ctx: A pointer that will be passed to the handler
159 * @handler: The function to call on completion
161 * Allocate a Command ID for a queue. The data passed in will
162 * be passed to the completion handler. This is implemented by using
163 * the bottom two bits of the ctx pointer to store the handler ID.
164 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
165 * We can change this if it becomes a problem.
167 * May be called with local interrupts disabled and the q_lock held,
168 * or with interrupts enabled and no locks held.
170 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
171 nvme_completion_fn handler, unsigned timeout)
173 int depth = nvmeq->q_depth - 1;
174 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
175 int cmdid;
177 do {
178 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
179 if (cmdid >= depth)
180 return -EBUSY;
181 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
183 info[cmdid].fn = handler;
184 info[cmdid].ctx = ctx;
185 info[cmdid].timeout = jiffies + timeout;
186 return cmdid;
189 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
190 nvme_completion_fn handler, unsigned timeout)
192 int cmdid;
193 wait_event_killable(nvmeq->sq_full,
194 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
195 return (cmdid < 0) ? -EINTR : cmdid;
198 /* Special values must be less than 0x1000 */
199 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
200 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
201 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
202 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
203 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
205 static void special_completion(struct nvme_dev *dev, void *ctx,
206 struct nvme_completion *cqe)
208 if (ctx == CMD_CTX_CANCELLED)
209 return;
210 if (ctx == CMD_CTX_FLUSH)
211 return;
212 if (ctx == CMD_CTX_COMPLETED) {
213 dev_warn(&dev->pci_dev->dev,
214 "completed id %d twice on queue %d\n",
215 cqe->command_id, le16_to_cpup(&cqe->sq_id));
216 return;
218 if (ctx == CMD_CTX_INVALID) {
219 dev_warn(&dev->pci_dev->dev,
220 "invalid id %d completed on queue %d\n",
221 cqe->command_id, le16_to_cpup(&cqe->sq_id));
222 return;
225 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
229 * Called with local interrupts disabled and the q_lock held. May not sleep.
231 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
232 nvme_completion_fn *fn)
234 void *ctx;
235 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
237 if (cmdid >= nvmeq->q_depth) {
238 *fn = special_completion;
239 return CMD_CTX_INVALID;
241 if (fn)
242 *fn = info[cmdid].fn;
243 ctx = info[cmdid].ctx;
244 info[cmdid].fn = special_completion;
245 info[cmdid].ctx = CMD_CTX_COMPLETED;
246 clear_bit(cmdid, nvmeq->cmdid_data);
247 wake_up(&nvmeq->sq_full);
248 return ctx;
251 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
252 nvme_completion_fn *fn)
254 void *ctx;
255 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
256 if (fn)
257 *fn = info[cmdid].fn;
258 ctx = info[cmdid].ctx;
259 info[cmdid].fn = special_completion;
260 info[cmdid].ctx = CMD_CTX_CANCELLED;
261 return ctx;
264 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
266 return dev->queues[get_cpu() + 1];
269 static void put_nvmeq(struct nvme_queue *nvmeq)
271 put_cpu();
275 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
276 * @nvmeq: The queue to use
277 * @cmd: The command to send
279 * Safe to use from interrupt context
281 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
283 unsigned long flags;
284 u16 tail;
285 spin_lock_irqsave(&nvmeq->q_lock, flags);
286 tail = nvmeq->sq_tail;
287 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
288 if (++tail == nvmeq->q_depth)
289 tail = 0;
290 writel(tail, nvmeq->q_db);
291 nvmeq->sq_tail = tail;
292 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
294 return 0;
298 * The nvme_iod describes the data in an I/O, including the list of PRP
299 * entries. You can't see it in this data structure because C doesn't let
300 * me express that. Use nvme_alloc_iod to ensure there's enough space
301 * allocated to store the PRP list.
303 struct nvme_iod {
304 void *private; /* For the use of the submitter of the I/O */
305 int npages; /* In the PRP list. 0 means small pool in use */
306 int offset; /* Of PRP list */
307 int nents; /* Used in scatterlist */
308 int length; /* Of data, in bytes */
309 dma_addr_t first_dma;
310 struct scatterlist sg[0];
313 static __le64 **iod_list(struct nvme_iod *iod)
315 return ((void *)iod) + iod->offset;
319 * Will slightly overestimate the number of pages needed. This is OK
320 * as it only leads to a small amount of wasted memory for the lifetime of
321 * the I/O.
323 static int nvme_npages(unsigned size)
325 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
326 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
329 static struct nvme_iod *
330 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
332 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
333 sizeof(__le64 *) * nvme_npages(nbytes) +
334 sizeof(struct scatterlist) * nseg, gfp);
336 if (iod) {
337 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
338 iod->npages = -1;
339 iod->length = nbytes;
340 iod->nents = 0;
343 return iod;
346 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
348 const int last_prp = PAGE_SIZE / 8 - 1;
349 int i;
350 __le64 **list = iod_list(iod);
351 dma_addr_t prp_dma = iod->first_dma;
353 if (iod->npages == 0)
354 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
355 for (i = 0; i < iod->npages; i++) {
356 __le64 *prp_list = list[i];
357 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
358 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
359 prp_dma = next_prp_dma;
361 kfree(iod);
364 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
366 struct nvme_queue *nvmeq = get_nvmeq(dev);
367 if (bio_list_empty(&nvmeq->sq_cong))
368 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
369 bio_list_add(&nvmeq->sq_cong, bio);
370 put_nvmeq(nvmeq);
371 wake_up_process(nvme_thread);
374 static void bio_completion(struct nvme_dev *dev, void *ctx,
375 struct nvme_completion *cqe)
377 struct nvme_iod *iod = ctx;
378 struct bio *bio = iod->private;
379 u16 status = le16_to_cpup(&cqe->status) >> 1;
381 if (iod->nents)
382 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
383 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
384 nvme_free_iod(dev, iod);
385 if (status) {
386 bio_endio(bio, -EIO);
387 } else if (bio->bi_vcnt > bio->bi_idx) {
388 requeue_bio(dev, bio);
389 } else {
390 bio_endio(bio, 0);
394 /* length is in bytes. gfp flags indicates whether we may sleep. */
395 static int nvme_setup_prps(struct nvme_dev *dev,
396 struct nvme_common_command *cmd, struct nvme_iod *iod,
397 int total_len, gfp_t gfp)
399 struct dma_pool *pool;
400 int length = total_len;
401 struct scatterlist *sg = iod->sg;
402 int dma_len = sg_dma_len(sg);
403 u64 dma_addr = sg_dma_address(sg);
404 int offset = offset_in_page(dma_addr);
405 __le64 *prp_list;
406 __le64 **list = iod_list(iod);
407 dma_addr_t prp_dma;
408 int nprps, i;
410 cmd->prp1 = cpu_to_le64(dma_addr);
411 length -= (PAGE_SIZE - offset);
412 if (length <= 0)
413 return total_len;
415 dma_len -= (PAGE_SIZE - offset);
416 if (dma_len) {
417 dma_addr += (PAGE_SIZE - offset);
418 } else {
419 sg = sg_next(sg);
420 dma_addr = sg_dma_address(sg);
421 dma_len = sg_dma_len(sg);
424 if (length <= PAGE_SIZE) {
425 cmd->prp2 = cpu_to_le64(dma_addr);
426 return total_len;
429 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
430 if (nprps <= (256 / 8)) {
431 pool = dev->prp_small_pool;
432 iod->npages = 0;
433 } else {
434 pool = dev->prp_page_pool;
435 iod->npages = 1;
438 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
439 if (!prp_list) {
440 cmd->prp2 = cpu_to_le64(dma_addr);
441 iod->npages = -1;
442 return (total_len - length) + PAGE_SIZE;
444 list[0] = prp_list;
445 iod->first_dma = prp_dma;
446 cmd->prp2 = cpu_to_le64(prp_dma);
447 i = 0;
448 for (;;) {
449 if (i == PAGE_SIZE / 8) {
450 __le64 *old_prp_list = prp_list;
451 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
452 if (!prp_list)
453 return total_len - length;
454 list[iod->npages++] = prp_list;
455 prp_list[0] = old_prp_list[i - 1];
456 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
457 i = 1;
459 prp_list[i++] = cpu_to_le64(dma_addr);
460 dma_len -= PAGE_SIZE;
461 dma_addr += PAGE_SIZE;
462 length -= PAGE_SIZE;
463 if (length <= 0)
464 break;
465 if (dma_len > 0)
466 continue;
467 BUG_ON(dma_len < 0);
468 sg = sg_next(sg);
469 dma_addr = sg_dma_address(sg);
470 dma_len = sg_dma_len(sg);
473 return total_len;
476 /* NVMe scatterlists require no holes in the virtual address */
477 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
478 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
480 static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
481 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
483 struct bio_vec *bvec, *bvprv = NULL;
484 struct scatterlist *sg = NULL;
485 int i, old_idx, length = 0, nsegs = 0;
487 sg_init_table(iod->sg, psegs);
488 old_idx = bio->bi_idx;
489 bio_for_each_segment(bvec, bio, i) {
490 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
491 sg->length += bvec->bv_len;
492 } else {
493 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
494 break;
495 sg = sg ? sg + 1 : iod->sg;
496 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
497 bvec->bv_offset);
498 nsegs++;
500 length += bvec->bv_len;
501 bvprv = bvec;
503 bio->bi_idx = i;
504 iod->nents = nsegs;
505 sg_mark_end(sg);
506 if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
507 bio->bi_idx = old_idx;
508 return -ENOMEM;
510 return length;
513 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
514 int cmdid)
516 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
518 memset(cmnd, 0, sizeof(*cmnd));
519 cmnd->common.opcode = nvme_cmd_flush;
520 cmnd->common.command_id = cmdid;
521 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
523 if (++nvmeq->sq_tail == nvmeq->q_depth)
524 nvmeq->sq_tail = 0;
525 writel(nvmeq->sq_tail, nvmeq->q_db);
527 return 0;
530 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
532 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
533 special_completion, NVME_IO_TIMEOUT);
534 if (unlikely(cmdid < 0))
535 return cmdid;
537 return nvme_submit_flush(nvmeq, ns, cmdid);
541 * Called with local interrupts disabled and the q_lock held. May not sleep.
543 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
544 struct bio *bio)
546 struct nvme_command *cmnd;
547 struct nvme_iod *iod;
548 enum dma_data_direction dma_dir;
549 int cmdid, length, result = -ENOMEM;
550 u16 control;
551 u32 dsmgmt;
552 int psegs = bio_phys_segments(ns->queue, bio);
554 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
555 result = nvme_submit_flush_data(nvmeq, ns);
556 if (result)
557 return result;
560 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
561 if (!iod)
562 goto nomem;
563 iod->private = bio;
565 result = -EBUSY;
566 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
567 if (unlikely(cmdid < 0))
568 goto free_iod;
570 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
571 return nvme_submit_flush(nvmeq, ns, cmdid);
573 control = 0;
574 if (bio->bi_rw & REQ_FUA)
575 control |= NVME_RW_FUA;
576 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
577 control |= NVME_RW_LR;
579 dsmgmt = 0;
580 if (bio->bi_rw & REQ_RAHEAD)
581 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
583 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
585 memset(cmnd, 0, sizeof(*cmnd));
586 if (bio_data_dir(bio)) {
587 cmnd->rw.opcode = nvme_cmd_write;
588 dma_dir = DMA_TO_DEVICE;
589 } else {
590 cmnd->rw.opcode = nvme_cmd_read;
591 dma_dir = DMA_FROM_DEVICE;
594 result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
595 if (result < 0)
596 goto free_cmdid;
597 length = result;
599 cmnd->rw.command_id = cmdid;
600 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
601 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
602 GFP_ATOMIC);
603 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
604 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
605 cmnd->rw.control = cpu_to_le16(control);
606 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
608 bio->bi_sector += length >> 9;
610 if (++nvmeq->sq_tail == nvmeq->q_depth)
611 nvmeq->sq_tail = 0;
612 writel(nvmeq->sq_tail, nvmeq->q_db);
614 return 0;
616 free_cmdid:
617 free_cmdid(nvmeq, cmdid, NULL);
618 free_iod:
619 nvme_free_iod(nvmeq->dev, iod);
620 nomem:
621 return result;
624 static void nvme_make_request(struct request_queue *q, struct bio *bio)
626 struct nvme_ns *ns = q->queuedata;
627 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
628 int result = -EBUSY;
630 spin_lock_irq(&nvmeq->q_lock);
631 if (bio_list_empty(&nvmeq->sq_cong))
632 result = nvme_submit_bio_queue(nvmeq, ns, bio);
633 if (unlikely(result)) {
634 if (bio_list_empty(&nvmeq->sq_cong))
635 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
636 bio_list_add(&nvmeq->sq_cong, bio);
639 spin_unlock_irq(&nvmeq->q_lock);
640 put_nvmeq(nvmeq);
643 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
645 u16 head, phase;
647 head = nvmeq->cq_head;
648 phase = nvmeq->cq_phase;
650 for (;;) {
651 void *ctx;
652 nvme_completion_fn fn;
653 struct nvme_completion cqe = nvmeq->cqes[head];
654 if ((le16_to_cpu(cqe.status) & 1) != phase)
655 break;
656 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
657 if (++head == nvmeq->q_depth) {
658 head = 0;
659 phase = !phase;
662 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
663 fn(nvmeq->dev, ctx, &cqe);
666 /* If the controller ignores the cq head doorbell and continuously
667 * writes to the queue, it is theoretically possible to wrap around
668 * the queue twice and mistakenly return IRQ_NONE. Linux only
669 * requires that 0.1% of your interrupts are handled, so this isn't
670 * a big problem.
672 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
673 return IRQ_NONE;
675 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
676 nvmeq->cq_head = head;
677 nvmeq->cq_phase = phase;
679 return IRQ_HANDLED;
682 static irqreturn_t nvme_irq(int irq, void *data)
684 irqreturn_t result;
685 struct nvme_queue *nvmeq = data;
686 spin_lock(&nvmeq->q_lock);
687 result = nvme_process_cq(nvmeq);
688 spin_unlock(&nvmeq->q_lock);
689 return result;
692 static irqreturn_t nvme_irq_check(int irq, void *data)
694 struct nvme_queue *nvmeq = data;
695 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
696 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
697 return IRQ_NONE;
698 return IRQ_WAKE_THREAD;
701 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
703 spin_lock_irq(&nvmeq->q_lock);
704 cancel_cmdid(nvmeq, cmdid, NULL);
705 spin_unlock_irq(&nvmeq->q_lock);
708 struct sync_cmd_info {
709 struct task_struct *task;
710 u32 result;
711 int status;
714 static void sync_completion(struct nvme_dev *dev, void *ctx,
715 struct nvme_completion *cqe)
717 struct sync_cmd_info *cmdinfo = ctx;
718 cmdinfo->result = le32_to_cpup(&cqe->result);
719 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
720 wake_up_process(cmdinfo->task);
724 * Returns 0 on success. If the result is negative, it's a Linux error code;
725 * if the result is positive, it's an NVM Express status code
727 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
728 struct nvme_command *cmd, u32 *result, unsigned timeout)
730 int cmdid;
731 struct sync_cmd_info cmdinfo;
733 cmdinfo.task = current;
734 cmdinfo.status = -EINTR;
736 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
737 timeout);
738 if (cmdid < 0)
739 return cmdid;
740 cmd->common.command_id = cmdid;
742 set_current_state(TASK_KILLABLE);
743 nvme_submit_cmd(nvmeq, cmd);
744 schedule();
746 if (cmdinfo.status == -EINTR) {
747 nvme_abort_command(nvmeq, cmdid);
748 return -EINTR;
751 if (result)
752 *result = cmdinfo.result;
754 return cmdinfo.status;
757 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
758 u32 *result)
760 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
763 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
765 int status;
766 struct nvme_command c;
768 memset(&c, 0, sizeof(c));
769 c.delete_queue.opcode = opcode;
770 c.delete_queue.qid = cpu_to_le16(id);
772 status = nvme_submit_admin_cmd(dev, &c, NULL);
773 if (status)
774 return -EIO;
775 return 0;
778 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
779 struct nvme_queue *nvmeq)
781 int status;
782 struct nvme_command c;
783 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
785 memset(&c, 0, sizeof(c));
786 c.create_cq.opcode = nvme_admin_create_cq;
787 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
788 c.create_cq.cqid = cpu_to_le16(qid);
789 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
790 c.create_cq.cq_flags = cpu_to_le16(flags);
791 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
793 status = nvme_submit_admin_cmd(dev, &c, NULL);
794 if (status)
795 return -EIO;
796 return 0;
799 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
800 struct nvme_queue *nvmeq)
802 int status;
803 struct nvme_command c;
804 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
806 memset(&c, 0, sizeof(c));
807 c.create_sq.opcode = nvme_admin_create_sq;
808 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
809 c.create_sq.sqid = cpu_to_le16(qid);
810 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
811 c.create_sq.sq_flags = cpu_to_le16(flags);
812 c.create_sq.cqid = cpu_to_le16(qid);
814 status = nvme_submit_admin_cmd(dev, &c, NULL);
815 if (status)
816 return -EIO;
817 return 0;
820 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
822 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
825 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
827 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
830 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
831 dma_addr_t dma_addr)
833 struct nvme_command c;
835 memset(&c, 0, sizeof(c));
836 c.identify.opcode = nvme_admin_identify;
837 c.identify.nsid = cpu_to_le32(nsid);
838 c.identify.prp1 = cpu_to_le64(dma_addr);
839 c.identify.cns = cpu_to_le32(cns);
841 return nvme_submit_admin_cmd(dev, &c, NULL);
844 static int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
845 dma_addr_t dma_addr, u32 *result)
847 struct nvme_command c;
849 memset(&c, 0, sizeof(c));
850 c.features.opcode = nvme_admin_get_features;
851 c.features.nsid = cpu_to_le32(nsid);
852 c.features.prp1 = cpu_to_le64(dma_addr);
853 c.features.fid = cpu_to_le32(fid);
855 return nvme_submit_admin_cmd(dev, &c, result);
858 static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
859 unsigned dword11, dma_addr_t dma_addr, u32 *result)
861 struct nvme_command c;
863 memset(&c, 0, sizeof(c));
864 c.features.opcode = nvme_admin_set_features;
865 c.features.prp1 = cpu_to_le64(dma_addr);
866 c.features.fid = cpu_to_le32(fid);
867 c.features.dword11 = cpu_to_le32(dword11);
869 return nvme_submit_admin_cmd(dev, &c, result);
873 * nvme_cancel_ios - Cancel outstanding I/Os
874 * @queue: The queue to cancel I/Os on
875 * @timeout: True to only cancel I/Os which have timed out
877 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
879 int depth = nvmeq->q_depth - 1;
880 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
881 unsigned long now = jiffies;
882 int cmdid;
884 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
885 void *ctx;
886 nvme_completion_fn fn;
887 static struct nvme_completion cqe = {
888 .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1,
891 if (timeout && !time_after(now, info[cmdid].timeout))
892 continue;
893 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
894 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
895 fn(nvmeq->dev, ctx, &cqe);
899 static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
901 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
902 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
903 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
904 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
905 kfree(nvmeq);
908 static void nvme_free_queue(struct nvme_dev *dev, int qid)
910 struct nvme_queue *nvmeq = dev->queues[qid];
911 int vector = dev->entry[nvmeq->cq_vector].vector;
913 spin_lock_irq(&nvmeq->q_lock);
914 nvme_cancel_ios(nvmeq, false);
915 while (bio_list_peek(&nvmeq->sq_cong)) {
916 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
917 bio_endio(bio, -EIO);
919 spin_unlock_irq(&nvmeq->q_lock);
921 irq_set_affinity_hint(vector, NULL);
922 free_irq(vector, nvmeq);
924 /* Don't tell the adapter to delete the admin queue */
925 if (qid) {
926 adapter_delete_sq(dev, qid);
927 adapter_delete_cq(dev, qid);
930 nvme_free_queue_mem(nvmeq);
933 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
934 int depth, int vector)
936 struct device *dmadev = &dev->pci_dev->dev;
937 unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
938 sizeof(struct nvme_cmd_info));
939 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
940 if (!nvmeq)
941 return NULL;
943 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
944 &nvmeq->cq_dma_addr, GFP_KERNEL);
945 if (!nvmeq->cqes)
946 goto free_nvmeq;
947 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
949 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
950 &nvmeq->sq_dma_addr, GFP_KERNEL);
951 if (!nvmeq->sq_cmds)
952 goto free_cqdma;
954 nvmeq->q_dmadev = dmadev;
955 nvmeq->dev = dev;
956 spin_lock_init(&nvmeq->q_lock);
957 nvmeq->cq_head = 0;
958 nvmeq->cq_phase = 1;
959 init_waitqueue_head(&nvmeq->sq_full);
960 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
961 bio_list_init(&nvmeq->sq_cong);
962 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
963 nvmeq->q_depth = depth;
964 nvmeq->cq_vector = vector;
966 return nvmeq;
968 free_cqdma:
969 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
970 nvmeq->cq_dma_addr);
971 free_nvmeq:
972 kfree(nvmeq);
973 return NULL;
976 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
977 const char *name)
979 if (use_threaded_interrupts)
980 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
981 nvme_irq_check, nvme_irq,
982 IRQF_DISABLED | IRQF_SHARED,
983 name, nvmeq);
984 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
985 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
988 static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
989 int cq_size, int vector)
991 int result;
992 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
994 if (!nvmeq)
995 return ERR_PTR(-ENOMEM);
997 result = adapter_alloc_cq(dev, qid, nvmeq);
998 if (result < 0)
999 goto free_nvmeq;
1001 result = adapter_alloc_sq(dev, qid, nvmeq);
1002 if (result < 0)
1003 goto release_cq;
1005 result = queue_request_irq(dev, nvmeq, "nvme");
1006 if (result < 0)
1007 goto release_sq;
1009 return nvmeq;
1011 release_sq:
1012 adapter_delete_sq(dev, qid);
1013 release_cq:
1014 adapter_delete_cq(dev, qid);
1015 free_nvmeq:
1016 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1017 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1018 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1019 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1020 kfree(nvmeq);
1021 return ERR_PTR(result);
1024 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1026 int result = 0;
1027 u32 aqa;
1028 u64 cap;
1029 unsigned long timeout;
1030 struct nvme_queue *nvmeq;
1032 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1034 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1035 if (!nvmeq)
1036 return -ENOMEM;
1038 aqa = nvmeq->q_depth - 1;
1039 aqa |= aqa << 16;
1041 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1042 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1043 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1044 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1046 writel(0, &dev->bar->cc);
1047 writel(aqa, &dev->bar->aqa);
1048 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1049 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1050 writel(dev->ctrl_config, &dev->bar->cc);
1052 cap = readq(&dev->bar->cap);
1053 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1054 dev->db_stride = NVME_CAP_STRIDE(cap);
1056 while (!result && !(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1057 msleep(100);
1058 if (fatal_signal_pending(current))
1059 result = -EINTR;
1060 if (time_after(jiffies, timeout)) {
1061 dev_err(&dev->pci_dev->dev,
1062 "Device not ready; aborting initialisation\n");
1063 result = -ENODEV;
1067 if (result) {
1068 nvme_free_queue_mem(nvmeq);
1069 return result;
1072 result = queue_request_irq(dev, nvmeq, "nvme admin");
1073 dev->queues[0] = nvmeq;
1074 return result;
1077 static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1078 unsigned long addr, unsigned length)
1080 int i, err, count, nents, offset;
1081 struct scatterlist *sg;
1082 struct page **pages;
1083 struct nvme_iod *iod;
1085 if (addr & 3)
1086 return ERR_PTR(-EINVAL);
1087 if (!length)
1088 return ERR_PTR(-EINVAL);
1090 offset = offset_in_page(addr);
1091 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1092 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1093 if (!pages)
1094 return ERR_PTR(-ENOMEM);
1096 err = get_user_pages_fast(addr, count, 1, pages);
1097 if (err < count) {
1098 count = err;
1099 err = -EFAULT;
1100 goto put_pages;
1103 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1104 sg = iod->sg;
1105 sg_init_table(sg, count);
1106 for (i = 0; i < count; i++) {
1107 sg_set_page(&sg[i], pages[i],
1108 min_t(int, length, PAGE_SIZE - offset), offset);
1109 length -= (PAGE_SIZE - offset);
1110 offset = 0;
1112 sg_mark_end(&sg[i - 1]);
1113 iod->nents = count;
1115 err = -ENOMEM;
1116 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1117 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1118 if (!nents)
1119 goto free_iod;
1121 kfree(pages);
1122 return iod;
1124 free_iod:
1125 kfree(iod);
1126 put_pages:
1127 for (i = 0; i < count; i++)
1128 put_page(pages[i]);
1129 kfree(pages);
1130 return ERR_PTR(err);
1133 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1134 struct nvme_iod *iod)
1136 int i;
1138 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1139 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1141 for (i = 0; i < iod->nents; i++)
1142 put_page(sg_page(&iod->sg[i]));
1145 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1147 struct nvme_dev *dev = ns->dev;
1148 struct nvme_queue *nvmeq;
1149 struct nvme_user_io io;
1150 struct nvme_command c;
1151 unsigned length;
1152 int status;
1153 struct nvme_iod *iod;
1155 if (copy_from_user(&io, uio, sizeof(io)))
1156 return -EFAULT;
1157 length = (io.nblocks + 1) << ns->lba_shift;
1159 switch (io.opcode) {
1160 case nvme_cmd_write:
1161 case nvme_cmd_read:
1162 case nvme_cmd_compare:
1163 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1164 break;
1165 default:
1166 return -EINVAL;
1169 if (IS_ERR(iod))
1170 return PTR_ERR(iod);
1172 memset(&c, 0, sizeof(c));
1173 c.rw.opcode = io.opcode;
1174 c.rw.flags = io.flags;
1175 c.rw.nsid = cpu_to_le32(ns->ns_id);
1176 c.rw.slba = cpu_to_le64(io.slba);
1177 c.rw.length = cpu_to_le16(io.nblocks);
1178 c.rw.control = cpu_to_le16(io.control);
1179 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1180 c.rw.reftag = io.reftag;
1181 c.rw.apptag = io.apptag;
1182 c.rw.appmask = io.appmask;
1183 /* XXX: metadata */
1184 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1186 nvmeq = get_nvmeq(dev);
1188 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1189 * disabled. We may be preempted at any point, and be rescheduled
1190 * to a different CPU. That will cause cacheline bouncing, but no
1191 * additional races since q_lock already protects against other CPUs.
1193 put_nvmeq(nvmeq);
1194 if (length != (io.nblocks + 1) << ns->lba_shift)
1195 status = -ENOMEM;
1196 else
1197 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1199 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1200 nvme_free_iod(dev, iod);
1201 return status;
1204 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1205 struct nvme_admin_cmd __user *ucmd)
1207 struct nvme_admin_cmd cmd;
1208 struct nvme_command c;
1209 int status, length;
1210 struct nvme_iod *uninitialized_var(iod);
1212 if (!capable(CAP_SYS_ADMIN))
1213 return -EACCES;
1214 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1215 return -EFAULT;
1217 memset(&c, 0, sizeof(c));
1218 c.common.opcode = cmd.opcode;
1219 c.common.flags = cmd.flags;
1220 c.common.nsid = cpu_to_le32(cmd.nsid);
1221 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1222 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1223 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1224 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1225 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1226 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1227 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1228 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1230 length = cmd.data_len;
1231 if (cmd.data_len) {
1232 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1233 length);
1234 if (IS_ERR(iod))
1235 return PTR_ERR(iod);
1236 length = nvme_setup_prps(dev, &c.common, iod, length,
1237 GFP_KERNEL);
1240 if (length != cmd.data_len)
1241 status = -ENOMEM;
1242 else
1243 status = nvme_submit_admin_cmd(dev, &c, &cmd.result);
1245 if (cmd.data_len) {
1246 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1247 nvme_free_iod(dev, iod);
1250 if (!status && copy_to_user(&ucmd->result, &cmd.result,
1251 sizeof(cmd.result)))
1252 status = -EFAULT;
1254 return status;
1257 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1258 unsigned long arg)
1260 struct nvme_ns *ns = bdev->bd_disk->private_data;
1262 switch (cmd) {
1263 case NVME_IOCTL_ID:
1264 return ns->ns_id;
1265 case NVME_IOCTL_ADMIN_CMD:
1266 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1267 case NVME_IOCTL_SUBMIT_IO:
1268 return nvme_submit_io(ns, (void __user *)arg);
1269 default:
1270 return -ENOTTY;
1274 static const struct block_device_operations nvme_fops = {
1275 .owner = THIS_MODULE,
1276 .ioctl = nvme_ioctl,
1277 .compat_ioctl = nvme_ioctl,
1280 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1282 while (bio_list_peek(&nvmeq->sq_cong)) {
1283 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1284 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1285 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1286 bio_list_add_head(&nvmeq->sq_cong, bio);
1287 break;
1289 if (bio_list_empty(&nvmeq->sq_cong))
1290 remove_wait_queue(&nvmeq->sq_full,
1291 &nvmeq->sq_cong_wait);
1295 static int nvme_kthread(void *data)
1297 struct nvme_dev *dev;
1299 while (!kthread_should_stop()) {
1300 __set_current_state(TASK_RUNNING);
1301 spin_lock(&dev_list_lock);
1302 list_for_each_entry(dev, &dev_list, node) {
1303 int i;
1304 for (i = 0; i < dev->queue_count; i++) {
1305 struct nvme_queue *nvmeq = dev->queues[i];
1306 if (!nvmeq)
1307 continue;
1308 spin_lock_irq(&nvmeq->q_lock);
1309 if (nvme_process_cq(nvmeq))
1310 printk("process_cq did something\n");
1311 nvme_cancel_ios(nvmeq, true);
1312 nvme_resubmit_bios(nvmeq);
1313 spin_unlock_irq(&nvmeq->q_lock);
1316 spin_unlock(&dev_list_lock);
1317 set_current_state(TASK_INTERRUPTIBLE);
1318 schedule_timeout(HZ);
1320 return 0;
1323 static DEFINE_IDA(nvme_index_ida);
1325 static int nvme_get_ns_idx(void)
1327 int index, error;
1329 do {
1330 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1331 return -1;
1333 spin_lock(&dev_list_lock);
1334 error = ida_get_new(&nvme_index_ida, &index);
1335 spin_unlock(&dev_list_lock);
1336 } while (error == -EAGAIN);
1338 if (error)
1339 index = -1;
1340 return index;
1343 static void nvme_put_ns_idx(int index)
1345 spin_lock(&dev_list_lock);
1346 ida_remove(&nvme_index_ida, index);
1347 spin_unlock(&dev_list_lock);
1350 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1351 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1353 struct nvme_ns *ns;
1354 struct gendisk *disk;
1355 int lbaf;
1357 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1358 return NULL;
1360 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1361 if (!ns)
1362 return NULL;
1363 ns->queue = blk_alloc_queue(GFP_KERNEL);
1364 if (!ns->queue)
1365 goto out_free_ns;
1366 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1367 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1368 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1369 /* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
1370 blk_queue_make_request(ns->queue, nvme_make_request);
1371 ns->dev = dev;
1372 ns->queue->queuedata = ns;
1374 disk = alloc_disk(NVME_MINORS);
1375 if (!disk)
1376 goto out_free_queue;
1377 ns->ns_id = nsid;
1378 ns->disk = disk;
1379 lbaf = id->flbas & 0xf;
1380 ns->lba_shift = id->lbaf[lbaf].ds;
1381 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1382 if (dev->max_hw_sectors)
1383 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1385 disk->major = nvme_major;
1386 disk->minors = NVME_MINORS;
1387 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1388 disk->fops = &nvme_fops;
1389 disk->private_data = ns;
1390 disk->queue = ns->queue;
1391 disk->driverfs_dev = &dev->pci_dev->dev;
1392 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1393 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1395 return ns;
1397 out_free_queue:
1398 blk_cleanup_queue(ns->queue);
1399 out_free_ns:
1400 kfree(ns);
1401 return NULL;
1404 static void nvme_ns_free(struct nvme_ns *ns)
1406 int index = ns->disk->first_minor / NVME_MINORS;
1407 put_disk(ns->disk);
1408 nvme_put_ns_idx(index);
1409 blk_cleanup_queue(ns->queue);
1410 kfree(ns);
1413 static int set_queue_count(struct nvme_dev *dev, int count)
1415 int status;
1416 u32 result;
1417 u32 q_count = (count - 1) | ((count - 1) << 16);
1419 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1420 &result);
1421 if (status)
1422 return -EIO;
1423 return min(result & 0xffff, result >> 16) + 1;
1426 static int nvme_setup_io_queues(struct nvme_dev *dev)
1428 int result, cpu, i, nr_io_queues, db_bar_size, q_depth;
1430 nr_io_queues = num_online_cpus();
1431 result = set_queue_count(dev, nr_io_queues);
1432 if (result < 0)
1433 return result;
1434 if (result < nr_io_queues)
1435 nr_io_queues = result;
1437 /* Deregister the admin queue's interrupt */
1438 free_irq(dev->entry[0].vector, dev->queues[0]);
1440 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1441 if (db_bar_size > 8192) {
1442 iounmap(dev->bar);
1443 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1444 db_bar_size);
1445 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1446 dev->queues[0]->q_db = dev->dbs;
1449 for (i = 0; i < nr_io_queues; i++)
1450 dev->entry[i].entry = i;
1451 for (;;) {
1452 result = pci_enable_msix(dev->pci_dev, dev->entry,
1453 nr_io_queues);
1454 if (result == 0) {
1455 break;
1456 } else if (result > 0) {
1457 nr_io_queues = result;
1458 continue;
1459 } else {
1460 nr_io_queues = 1;
1461 break;
1465 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1466 /* XXX: handle failure here */
1468 cpu = cpumask_first(cpu_online_mask);
1469 for (i = 0; i < nr_io_queues; i++) {
1470 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1471 cpu = cpumask_next(cpu, cpu_online_mask);
1474 q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1475 NVME_Q_DEPTH);
1476 for (i = 0; i < nr_io_queues; i++) {
1477 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1478 if (IS_ERR(dev->queues[i + 1]))
1479 return PTR_ERR(dev->queues[i + 1]);
1480 dev->queue_count++;
1483 for (; i < num_possible_cpus(); i++) {
1484 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1485 dev->queues[i + 1] = dev->queues[target + 1];
1488 return 0;
1491 static void nvme_free_queues(struct nvme_dev *dev)
1493 int i;
1495 for (i = dev->queue_count - 1; i >= 0; i--)
1496 nvme_free_queue(dev, i);
1499 static int nvme_dev_add(struct nvme_dev *dev)
1501 int res, nn, i;
1502 struct nvme_ns *ns, *next;
1503 struct nvme_id_ctrl *ctrl;
1504 struct nvme_id_ns *id_ns;
1505 void *mem;
1506 dma_addr_t dma_addr;
1508 res = nvme_setup_io_queues(dev);
1509 if (res)
1510 return res;
1512 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1513 GFP_KERNEL);
1515 res = nvme_identify(dev, 0, 1, dma_addr);
1516 if (res) {
1517 res = -EIO;
1518 goto out_free;
1521 ctrl = mem;
1522 nn = le32_to_cpup(&ctrl->nn);
1523 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1524 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1525 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1526 if (ctrl->mdts) {
1527 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1528 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1531 id_ns = mem;
1532 for (i = 1; i <= nn; i++) {
1533 res = nvme_identify(dev, i, 0, dma_addr);
1534 if (res)
1535 continue;
1537 if (id_ns->ncap == 0)
1538 continue;
1540 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1541 dma_addr + 4096, NULL);
1542 if (res)
1543 memset(mem + 4096, 0, 4096);
1545 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1546 if (ns)
1547 list_add_tail(&ns->list, &dev->namespaces);
1549 list_for_each_entry(ns, &dev->namespaces, list)
1550 add_disk(ns->disk);
1552 goto out;
1554 out_free:
1555 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1556 list_del(&ns->list);
1557 nvme_ns_free(ns);
1560 out:
1561 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1562 return res;
1565 static int nvme_dev_remove(struct nvme_dev *dev)
1567 struct nvme_ns *ns, *next;
1569 spin_lock(&dev_list_lock);
1570 list_del(&dev->node);
1571 spin_unlock(&dev_list_lock);
1573 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1574 list_del(&ns->list);
1575 del_gendisk(ns->disk);
1576 nvme_ns_free(ns);
1579 nvme_free_queues(dev);
1581 return 0;
1584 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1586 struct device *dmadev = &dev->pci_dev->dev;
1587 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1588 PAGE_SIZE, PAGE_SIZE, 0);
1589 if (!dev->prp_page_pool)
1590 return -ENOMEM;
1592 /* Optimisation for I/Os between 4k and 128k */
1593 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1594 256, 256, 0);
1595 if (!dev->prp_small_pool) {
1596 dma_pool_destroy(dev->prp_page_pool);
1597 return -ENOMEM;
1599 return 0;
1602 static void nvme_release_prp_pools(struct nvme_dev *dev)
1604 dma_pool_destroy(dev->prp_page_pool);
1605 dma_pool_destroy(dev->prp_small_pool);
1608 static DEFINE_IDA(nvme_instance_ida);
1610 static int nvme_set_instance(struct nvme_dev *dev)
1612 int instance, error;
1614 do {
1615 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1616 return -ENODEV;
1618 spin_lock(&dev_list_lock);
1619 error = ida_get_new(&nvme_instance_ida, &instance);
1620 spin_unlock(&dev_list_lock);
1621 } while (error == -EAGAIN);
1623 if (error)
1624 return -ENODEV;
1626 dev->instance = instance;
1627 return 0;
1630 static void nvme_release_instance(struct nvme_dev *dev)
1632 spin_lock(&dev_list_lock);
1633 ida_remove(&nvme_instance_ida, dev->instance);
1634 spin_unlock(&dev_list_lock);
1637 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1639 int bars, result = -ENOMEM;
1640 struct nvme_dev *dev;
1642 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1643 if (!dev)
1644 return -ENOMEM;
1645 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1646 GFP_KERNEL);
1647 if (!dev->entry)
1648 goto free;
1649 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1650 GFP_KERNEL);
1651 if (!dev->queues)
1652 goto free;
1654 if (pci_enable_device_mem(pdev))
1655 goto free;
1656 pci_set_master(pdev);
1657 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1658 if (pci_request_selected_regions(pdev, bars, "nvme"))
1659 goto disable;
1661 INIT_LIST_HEAD(&dev->namespaces);
1662 dev->pci_dev = pdev;
1663 pci_set_drvdata(pdev, dev);
1664 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1665 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1666 result = nvme_set_instance(dev);
1667 if (result)
1668 goto disable;
1670 dev->entry[0].vector = pdev->irq;
1672 result = nvme_setup_prp_pools(dev);
1673 if (result)
1674 goto disable_msix;
1676 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1677 if (!dev->bar) {
1678 result = -ENOMEM;
1679 goto disable_msix;
1682 result = nvme_configure_admin_queue(dev);
1683 if (result)
1684 goto unmap;
1685 dev->queue_count++;
1687 spin_lock(&dev_list_lock);
1688 list_add(&dev->node, &dev_list);
1689 spin_unlock(&dev_list_lock);
1691 result = nvme_dev_add(dev);
1692 if (result)
1693 goto delete;
1695 return 0;
1697 delete:
1698 spin_lock(&dev_list_lock);
1699 list_del(&dev->node);
1700 spin_unlock(&dev_list_lock);
1702 nvme_free_queues(dev);
1703 unmap:
1704 iounmap(dev->bar);
1705 disable_msix:
1706 pci_disable_msix(pdev);
1707 nvme_release_instance(dev);
1708 nvme_release_prp_pools(dev);
1709 disable:
1710 pci_disable_device(pdev);
1711 pci_release_regions(pdev);
1712 free:
1713 kfree(dev->queues);
1714 kfree(dev->entry);
1715 kfree(dev);
1716 return result;
1719 static void nvme_remove(struct pci_dev *pdev)
1721 struct nvme_dev *dev = pci_get_drvdata(pdev);
1722 nvme_dev_remove(dev);
1723 pci_disable_msix(pdev);
1724 iounmap(dev->bar);
1725 nvme_release_instance(dev);
1726 nvme_release_prp_pools(dev);
1727 pci_disable_device(pdev);
1728 pci_release_regions(pdev);
1729 kfree(dev->queues);
1730 kfree(dev->entry);
1731 kfree(dev);
1734 /* These functions are yet to be implemented */
1735 #define nvme_error_detected NULL
1736 #define nvme_dump_registers NULL
1737 #define nvme_link_reset NULL
1738 #define nvme_slot_reset NULL
1739 #define nvme_error_resume NULL
1740 #define nvme_suspend NULL
1741 #define nvme_resume NULL
1743 static const struct pci_error_handlers nvme_err_handler = {
1744 .error_detected = nvme_error_detected,
1745 .mmio_enabled = nvme_dump_registers,
1746 .link_reset = nvme_link_reset,
1747 .slot_reset = nvme_slot_reset,
1748 .resume = nvme_error_resume,
1751 /* Move to pci_ids.h later */
1752 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
1754 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1755 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1756 { 0, }
1758 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1760 static struct pci_driver nvme_driver = {
1761 .name = "nvme",
1762 .id_table = nvme_id_table,
1763 .probe = nvme_probe,
1764 .remove = nvme_remove,
1765 .suspend = nvme_suspend,
1766 .resume = nvme_resume,
1767 .err_handler = &nvme_err_handler,
1770 static int __init nvme_init(void)
1772 int result;
1774 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1775 if (IS_ERR(nvme_thread))
1776 return PTR_ERR(nvme_thread);
1778 result = register_blkdev(nvme_major, "nvme");
1779 if (result < 0)
1780 goto kill_kthread;
1781 else if (result > 0)
1782 nvme_major = result;
1784 result = pci_register_driver(&nvme_driver);
1785 if (result)
1786 goto unregister_blkdev;
1787 return 0;
1789 unregister_blkdev:
1790 unregister_blkdev(nvme_major, "nvme");
1791 kill_kthread:
1792 kthread_stop(nvme_thread);
1793 return result;
1796 static void __exit nvme_exit(void)
1798 pci_unregister_driver(&nvme_driver);
1799 unregister_blkdev(nvme_major, "nvme");
1800 kthread_stop(nvme_thread);
1803 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1804 MODULE_LICENSE("GPL");
1805 MODULE_VERSION("0.8");
1806 module_init(nvme_init);
1807 module_exit(nvme_exit);