Merge branch 'akpm' (fixes from Andrew)
[linux-2.6/cjktty.git] / mm / memcontrol.c
blob2b552224f5cf7f8b0807d244963df29fbb245634
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
56 #include "internal.h"
57 #include <net/sock.h>
58 #include <net/ip.h>
59 #include <net/tcp_memcontrol.h>
61 #include <asm/uaccess.h>
63 #include <trace/events/vmscan.h>
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 EXPORT_SYMBOL(mem_cgroup_subsys);
68 #define MEM_CGROUP_RECLAIM_RETRIES 5
69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly;
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata = 1;
78 #else
79 static int really_do_swap_account __initdata = 0;
80 #endif
82 #else
83 #define do_swap_account 0
84 #endif
88 * Statistics for memory cgroup.
90 enum mem_cgroup_stat_index {
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 MEM_CGROUP_STAT_NSTATS,
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "mapped_file",
105 "swap",
108 enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
113 MEM_CGROUP_EVENTS_NSTATS,
116 static const char * const mem_cgroup_events_names[] = {
117 "pgpgin",
118 "pgpgout",
119 "pgfault",
120 "pgmajfault",
123 static const char * const mem_cgroup_lru_names[] = {
124 "inactive_anon",
125 "active_anon",
126 "inactive_file",
127 "active_file",
128 "unevictable",
132 * Per memcg event counter is incremented at every pagein/pageout. With THP,
133 * it will be incremated by the number of pages. This counter is used for
134 * for trigger some periodic events. This is straightforward and better
135 * than using jiffies etc. to handle periodic memcg event.
137 enum mem_cgroup_events_target {
138 MEM_CGROUP_TARGET_THRESH,
139 MEM_CGROUP_TARGET_SOFTLIMIT,
140 MEM_CGROUP_TARGET_NUMAINFO,
141 MEM_CGROUP_NTARGETS,
143 #define THRESHOLDS_EVENTS_TARGET 128
144 #define SOFTLIMIT_EVENTS_TARGET 1024
145 #define NUMAINFO_EVENTS_TARGET 1024
147 struct mem_cgroup_stat_cpu {
148 long count[MEM_CGROUP_STAT_NSTATS];
149 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150 unsigned long nr_page_events;
151 unsigned long targets[MEM_CGROUP_NTARGETS];
154 struct mem_cgroup_reclaim_iter {
155 /* css_id of the last scanned hierarchy member */
156 int position;
157 /* scan generation, increased every round-trip */
158 unsigned int generation;
162 * per-zone information in memory controller.
164 struct mem_cgroup_per_zone {
165 struct lruvec lruvec;
166 unsigned long lru_size[NR_LRU_LISTS];
168 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
170 struct rb_node tree_node; /* RB tree node */
171 unsigned long long usage_in_excess;/* Set to the value by which */
172 /* the soft limit is exceeded*/
173 bool on_tree;
174 struct mem_cgroup *memcg; /* Back pointer, we cannot */
175 /* use container_of */
178 struct mem_cgroup_per_node {
179 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
182 struct mem_cgroup_lru_info {
183 struct mem_cgroup_per_node *nodeinfo[0];
187 * Cgroups above their limits are maintained in a RB-Tree, independent of
188 * their hierarchy representation
191 struct mem_cgroup_tree_per_zone {
192 struct rb_root rb_root;
193 spinlock_t lock;
196 struct mem_cgroup_tree_per_node {
197 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
200 struct mem_cgroup_tree {
201 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
204 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
206 struct mem_cgroup_threshold {
207 struct eventfd_ctx *eventfd;
208 u64 threshold;
211 /* For threshold */
212 struct mem_cgroup_threshold_ary {
213 /* An array index points to threshold just below or equal to usage. */
214 int current_threshold;
215 /* Size of entries[] */
216 unsigned int size;
217 /* Array of thresholds */
218 struct mem_cgroup_threshold entries[0];
221 struct mem_cgroup_thresholds {
222 /* Primary thresholds array */
223 struct mem_cgroup_threshold_ary *primary;
225 * Spare threshold array.
226 * This is needed to make mem_cgroup_unregister_event() "never fail".
227 * It must be able to store at least primary->size - 1 entries.
229 struct mem_cgroup_threshold_ary *spare;
232 /* for OOM */
233 struct mem_cgroup_eventfd_list {
234 struct list_head list;
235 struct eventfd_ctx *eventfd;
238 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
239 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
242 * The memory controller data structure. The memory controller controls both
243 * page cache and RSS per cgroup. We would eventually like to provide
244 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
245 * to help the administrator determine what knobs to tune.
247 * TODO: Add a water mark for the memory controller. Reclaim will begin when
248 * we hit the water mark. May be even add a low water mark, such that
249 * no reclaim occurs from a cgroup at it's low water mark, this is
250 * a feature that will be implemented much later in the future.
252 struct mem_cgroup {
253 struct cgroup_subsys_state css;
255 * the counter to account for memory usage
257 struct res_counter res;
259 union {
261 * the counter to account for mem+swap usage.
263 struct res_counter memsw;
266 * rcu_freeing is used only when freeing struct mem_cgroup,
267 * so put it into a union to avoid wasting more memory.
268 * It must be disjoint from the css field. It could be
269 * in a union with the res field, but res plays a much
270 * larger part in mem_cgroup life than memsw, and might
271 * be of interest, even at time of free, when debugging.
272 * So share rcu_head with the less interesting memsw.
274 struct rcu_head rcu_freeing;
276 * We also need some space for a worker in deferred freeing.
277 * By the time we call it, rcu_freeing is no longer in use.
279 struct work_struct work_freeing;
283 * the counter to account for kernel memory usage.
285 struct res_counter kmem;
287 * Should the accounting and control be hierarchical, per subtree?
289 bool use_hierarchy;
290 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
292 bool oom_lock;
293 atomic_t under_oom;
295 atomic_t refcnt;
297 int swappiness;
298 /* OOM-Killer disable */
299 int oom_kill_disable;
301 /* set when res.limit == memsw.limit */
302 bool memsw_is_minimum;
304 /* protect arrays of thresholds */
305 struct mutex thresholds_lock;
307 /* thresholds for memory usage. RCU-protected */
308 struct mem_cgroup_thresholds thresholds;
310 /* thresholds for mem+swap usage. RCU-protected */
311 struct mem_cgroup_thresholds memsw_thresholds;
313 /* For oom notifier event fd */
314 struct list_head oom_notify;
317 * Should we move charges of a task when a task is moved into this
318 * mem_cgroup ? And what type of charges should we move ?
320 unsigned long move_charge_at_immigrate;
322 * set > 0 if pages under this cgroup are moving to other cgroup.
324 atomic_t moving_account;
325 /* taken only while moving_account > 0 */
326 spinlock_t move_lock;
328 * percpu counter.
330 struct mem_cgroup_stat_cpu __percpu *stat;
332 * used when a cpu is offlined or other synchronizations
333 * See mem_cgroup_read_stat().
335 struct mem_cgroup_stat_cpu nocpu_base;
336 spinlock_t pcp_counter_lock;
338 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
339 struct tcp_memcontrol tcp_mem;
340 #endif
341 #if defined(CONFIG_MEMCG_KMEM)
342 /* analogous to slab_common's slab_caches list. per-memcg */
343 struct list_head memcg_slab_caches;
344 /* Not a spinlock, we can take a lot of time walking the list */
345 struct mutex slab_caches_mutex;
346 /* Index in the kmem_cache->memcg_params->memcg_caches array */
347 int kmemcg_id;
348 #endif
350 int last_scanned_node;
351 #if MAX_NUMNODES > 1
352 nodemask_t scan_nodes;
353 atomic_t numainfo_events;
354 atomic_t numainfo_updating;
355 #endif
357 * Per cgroup active and inactive list, similar to the
358 * per zone LRU lists.
360 * WARNING: This has to be the last element of the struct. Don't
361 * add new fields after this point.
363 struct mem_cgroup_lru_info info;
366 static size_t memcg_size(void)
368 return sizeof(struct mem_cgroup) +
369 nr_node_ids * sizeof(struct mem_cgroup_per_node);
372 /* internal only representation about the status of kmem accounting. */
373 enum {
374 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
375 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
376 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
379 /* We account when limit is on, but only after call sites are patched */
380 #define KMEM_ACCOUNTED_MASK \
381 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
383 #ifdef CONFIG_MEMCG_KMEM
384 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
386 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
389 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
391 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
394 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
396 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
399 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
401 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
404 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
415 #endif
417 /* Stuffs for move charges at task migration. */
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 enum move_type {
423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
425 NR_MOVE_TYPE,
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 spinlock_t lock; /* for from, to */
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
433 unsigned long immigrate_flags;
434 unsigned long precharge;
435 unsigned long moved_charge;
436 unsigned long moved_swap;
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439 } mc = {
440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
444 static bool move_anon(void)
446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
449 static bool move_file(void)
451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
461 enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
466 NR_CHARGE_TYPE,
469 /* for encoding cft->private value on file */
470 enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
474 _KMEM,
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
496 static DEFINE_MUTEX(memcg_create_mutex);
498 static void mem_cgroup_get(struct mem_cgroup *memcg);
499 static void mem_cgroup_put(struct mem_cgroup *memcg);
501 static inline
502 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
504 return container_of(s, struct mem_cgroup, css);
507 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
509 return (memcg == root_mem_cgroup);
512 /* Writing them here to avoid exposing memcg's inner layout */
513 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
515 void sock_update_memcg(struct sock *sk)
517 if (mem_cgroup_sockets_enabled) {
518 struct mem_cgroup *memcg;
519 struct cg_proto *cg_proto;
521 BUG_ON(!sk->sk_prot->proto_cgroup);
523 /* Socket cloning can throw us here with sk_cgrp already
524 * filled. It won't however, necessarily happen from
525 * process context. So the test for root memcg given
526 * the current task's memcg won't help us in this case.
528 * Respecting the original socket's memcg is a better
529 * decision in this case.
531 if (sk->sk_cgrp) {
532 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
533 mem_cgroup_get(sk->sk_cgrp->memcg);
534 return;
537 rcu_read_lock();
538 memcg = mem_cgroup_from_task(current);
539 cg_proto = sk->sk_prot->proto_cgroup(memcg);
540 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
541 mem_cgroup_get(memcg);
542 sk->sk_cgrp = cg_proto;
544 rcu_read_unlock();
547 EXPORT_SYMBOL(sock_update_memcg);
549 void sock_release_memcg(struct sock *sk)
551 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
552 struct mem_cgroup *memcg;
553 WARN_ON(!sk->sk_cgrp->memcg);
554 memcg = sk->sk_cgrp->memcg;
555 mem_cgroup_put(memcg);
559 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
561 if (!memcg || mem_cgroup_is_root(memcg))
562 return NULL;
564 return &memcg->tcp_mem.cg_proto;
566 EXPORT_SYMBOL(tcp_proto_cgroup);
568 static void disarm_sock_keys(struct mem_cgroup *memcg)
570 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
571 return;
572 static_key_slow_dec(&memcg_socket_limit_enabled);
574 #else
575 static void disarm_sock_keys(struct mem_cgroup *memcg)
578 #endif
580 #ifdef CONFIG_MEMCG_KMEM
582 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
583 * There are two main reasons for not using the css_id for this:
584 * 1) this works better in sparse environments, where we have a lot of memcgs,
585 * but only a few kmem-limited. Or also, if we have, for instance, 200
586 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
587 * 200 entry array for that.
589 * 2) In order not to violate the cgroup API, we would like to do all memory
590 * allocation in ->create(). At that point, we haven't yet allocated the
591 * css_id. Having a separate index prevents us from messing with the cgroup
592 * core for this
594 * The current size of the caches array is stored in
595 * memcg_limited_groups_array_size. It will double each time we have to
596 * increase it.
598 static DEFINE_IDA(kmem_limited_groups);
599 int memcg_limited_groups_array_size;
602 * MIN_SIZE is different than 1, because we would like to avoid going through
603 * the alloc/free process all the time. In a small machine, 4 kmem-limited
604 * cgroups is a reasonable guess. In the future, it could be a parameter or
605 * tunable, but that is strictly not necessary.
607 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
608 * this constant directly from cgroup, but it is understandable that this is
609 * better kept as an internal representation in cgroup.c. In any case, the
610 * css_id space is not getting any smaller, and we don't have to necessarily
611 * increase ours as well if it increases.
613 #define MEMCG_CACHES_MIN_SIZE 4
614 #define MEMCG_CACHES_MAX_SIZE 65535
617 * A lot of the calls to the cache allocation functions are expected to be
618 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
619 * conditional to this static branch, we'll have to allow modules that does
620 * kmem_cache_alloc and the such to see this symbol as well
622 struct static_key memcg_kmem_enabled_key;
623 EXPORT_SYMBOL(memcg_kmem_enabled_key);
625 static void disarm_kmem_keys(struct mem_cgroup *memcg)
627 if (memcg_kmem_is_active(memcg)) {
628 static_key_slow_dec(&memcg_kmem_enabled_key);
629 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
632 * This check can't live in kmem destruction function,
633 * since the charges will outlive the cgroup
635 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
637 #else
638 static void disarm_kmem_keys(struct mem_cgroup *memcg)
641 #endif /* CONFIG_MEMCG_KMEM */
643 static void disarm_static_keys(struct mem_cgroup *memcg)
645 disarm_sock_keys(memcg);
646 disarm_kmem_keys(memcg);
649 static void drain_all_stock_async(struct mem_cgroup *memcg);
651 static struct mem_cgroup_per_zone *
652 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
654 VM_BUG_ON((unsigned)nid >= nr_node_ids);
655 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
658 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
660 return &memcg->css;
663 static struct mem_cgroup_per_zone *
664 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
666 int nid = page_to_nid(page);
667 int zid = page_zonenum(page);
669 return mem_cgroup_zoneinfo(memcg, nid, zid);
672 static struct mem_cgroup_tree_per_zone *
673 soft_limit_tree_node_zone(int nid, int zid)
675 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
678 static struct mem_cgroup_tree_per_zone *
679 soft_limit_tree_from_page(struct page *page)
681 int nid = page_to_nid(page);
682 int zid = page_zonenum(page);
684 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
687 static void
688 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
689 struct mem_cgroup_per_zone *mz,
690 struct mem_cgroup_tree_per_zone *mctz,
691 unsigned long long new_usage_in_excess)
693 struct rb_node **p = &mctz->rb_root.rb_node;
694 struct rb_node *parent = NULL;
695 struct mem_cgroup_per_zone *mz_node;
697 if (mz->on_tree)
698 return;
700 mz->usage_in_excess = new_usage_in_excess;
701 if (!mz->usage_in_excess)
702 return;
703 while (*p) {
704 parent = *p;
705 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
706 tree_node);
707 if (mz->usage_in_excess < mz_node->usage_in_excess)
708 p = &(*p)->rb_left;
710 * We can't avoid mem cgroups that are over their soft
711 * limit by the same amount
713 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
714 p = &(*p)->rb_right;
716 rb_link_node(&mz->tree_node, parent, p);
717 rb_insert_color(&mz->tree_node, &mctz->rb_root);
718 mz->on_tree = true;
721 static void
722 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
723 struct mem_cgroup_per_zone *mz,
724 struct mem_cgroup_tree_per_zone *mctz)
726 if (!mz->on_tree)
727 return;
728 rb_erase(&mz->tree_node, &mctz->rb_root);
729 mz->on_tree = false;
732 static void
733 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
734 struct mem_cgroup_per_zone *mz,
735 struct mem_cgroup_tree_per_zone *mctz)
737 spin_lock(&mctz->lock);
738 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
739 spin_unlock(&mctz->lock);
743 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
745 unsigned long long excess;
746 struct mem_cgroup_per_zone *mz;
747 struct mem_cgroup_tree_per_zone *mctz;
748 int nid = page_to_nid(page);
749 int zid = page_zonenum(page);
750 mctz = soft_limit_tree_from_page(page);
753 * Necessary to update all ancestors when hierarchy is used.
754 * because their event counter is not touched.
756 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
757 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
758 excess = res_counter_soft_limit_excess(&memcg->res);
760 * We have to update the tree if mz is on RB-tree or
761 * mem is over its softlimit.
763 if (excess || mz->on_tree) {
764 spin_lock(&mctz->lock);
765 /* if on-tree, remove it */
766 if (mz->on_tree)
767 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
769 * Insert again. mz->usage_in_excess will be updated.
770 * If excess is 0, no tree ops.
772 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
773 spin_unlock(&mctz->lock);
778 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
780 int node, zone;
781 struct mem_cgroup_per_zone *mz;
782 struct mem_cgroup_tree_per_zone *mctz;
784 for_each_node(node) {
785 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
786 mz = mem_cgroup_zoneinfo(memcg, node, zone);
787 mctz = soft_limit_tree_node_zone(node, zone);
788 mem_cgroup_remove_exceeded(memcg, mz, mctz);
793 static struct mem_cgroup_per_zone *
794 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
796 struct rb_node *rightmost = NULL;
797 struct mem_cgroup_per_zone *mz;
799 retry:
800 mz = NULL;
801 rightmost = rb_last(&mctz->rb_root);
802 if (!rightmost)
803 goto done; /* Nothing to reclaim from */
805 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
807 * Remove the node now but someone else can add it back,
808 * we will to add it back at the end of reclaim to its correct
809 * position in the tree.
811 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
812 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
813 !css_tryget(&mz->memcg->css))
814 goto retry;
815 done:
816 return mz;
819 static struct mem_cgroup_per_zone *
820 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
822 struct mem_cgroup_per_zone *mz;
824 spin_lock(&mctz->lock);
825 mz = __mem_cgroup_largest_soft_limit_node(mctz);
826 spin_unlock(&mctz->lock);
827 return mz;
831 * Implementation Note: reading percpu statistics for memcg.
833 * Both of vmstat[] and percpu_counter has threshold and do periodic
834 * synchronization to implement "quick" read. There are trade-off between
835 * reading cost and precision of value. Then, we may have a chance to implement
836 * a periodic synchronizion of counter in memcg's counter.
838 * But this _read() function is used for user interface now. The user accounts
839 * memory usage by memory cgroup and he _always_ requires exact value because
840 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
841 * have to visit all online cpus and make sum. So, for now, unnecessary
842 * synchronization is not implemented. (just implemented for cpu hotplug)
844 * If there are kernel internal actions which can make use of some not-exact
845 * value, and reading all cpu value can be performance bottleneck in some
846 * common workload, threashold and synchonization as vmstat[] should be
847 * implemented.
849 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
850 enum mem_cgroup_stat_index idx)
852 long val = 0;
853 int cpu;
855 get_online_cpus();
856 for_each_online_cpu(cpu)
857 val += per_cpu(memcg->stat->count[idx], cpu);
858 #ifdef CONFIG_HOTPLUG_CPU
859 spin_lock(&memcg->pcp_counter_lock);
860 val += memcg->nocpu_base.count[idx];
861 spin_unlock(&memcg->pcp_counter_lock);
862 #endif
863 put_online_cpus();
864 return val;
867 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
868 bool charge)
870 int val = (charge) ? 1 : -1;
871 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
874 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
875 enum mem_cgroup_events_index idx)
877 unsigned long val = 0;
878 int cpu;
880 for_each_online_cpu(cpu)
881 val += per_cpu(memcg->stat->events[idx], cpu);
882 #ifdef CONFIG_HOTPLUG_CPU
883 spin_lock(&memcg->pcp_counter_lock);
884 val += memcg->nocpu_base.events[idx];
885 spin_unlock(&memcg->pcp_counter_lock);
886 #endif
887 return val;
890 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
891 bool anon, int nr_pages)
893 preempt_disable();
896 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
897 * counted as CACHE even if it's on ANON LRU.
899 if (anon)
900 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
901 nr_pages);
902 else
903 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
904 nr_pages);
906 /* pagein of a big page is an event. So, ignore page size */
907 if (nr_pages > 0)
908 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
909 else {
910 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
911 nr_pages = -nr_pages; /* for event */
914 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
916 preempt_enable();
919 unsigned long
920 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
922 struct mem_cgroup_per_zone *mz;
924 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
925 return mz->lru_size[lru];
928 static unsigned long
929 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
930 unsigned int lru_mask)
932 struct mem_cgroup_per_zone *mz;
933 enum lru_list lru;
934 unsigned long ret = 0;
936 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
938 for_each_lru(lru) {
939 if (BIT(lru) & lru_mask)
940 ret += mz->lru_size[lru];
942 return ret;
945 static unsigned long
946 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
947 int nid, unsigned int lru_mask)
949 u64 total = 0;
950 int zid;
952 for (zid = 0; zid < MAX_NR_ZONES; zid++)
953 total += mem_cgroup_zone_nr_lru_pages(memcg,
954 nid, zid, lru_mask);
956 return total;
959 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
960 unsigned int lru_mask)
962 int nid;
963 u64 total = 0;
965 for_each_node_state(nid, N_MEMORY)
966 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
967 return total;
970 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
971 enum mem_cgroup_events_target target)
973 unsigned long val, next;
975 val = __this_cpu_read(memcg->stat->nr_page_events);
976 next = __this_cpu_read(memcg->stat->targets[target]);
977 /* from time_after() in jiffies.h */
978 if ((long)next - (long)val < 0) {
979 switch (target) {
980 case MEM_CGROUP_TARGET_THRESH:
981 next = val + THRESHOLDS_EVENTS_TARGET;
982 break;
983 case MEM_CGROUP_TARGET_SOFTLIMIT:
984 next = val + SOFTLIMIT_EVENTS_TARGET;
985 break;
986 case MEM_CGROUP_TARGET_NUMAINFO:
987 next = val + NUMAINFO_EVENTS_TARGET;
988 break;
989 default:
990 break;
992 __this_cpu_write(memcg->stat->targets[target], next);
993 return true;
995 return false;
999 * Check events in order.
1002 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1004 preempt_disable();
1005 /* threshold event is triggered in finer grain than soft limit */
1006 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1007 MEM_CGROUP_TARGET_THRESH))) {
1008 bool do_softlimit;
1009 bool do_numainfo __maybe_unused;
1011 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1012 MEM_CGROUP_TARGET_SOFTLIMIT);
1013 #if MAX_NUMNODES > 1
1014 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1015 MEM_CGROUP_TARGET_NUMAINFO);
1016 #endif
1017 preempt_enable();
1019 mem_cgroup_threshold(memcg);
1020 if (unlikely(do_softlimit))
1021 mem_cgroup_update_tree(memcg, page);
1022 #if MAX_NUMNODES > 1
1023 if (unlikely(do_numainfo))
1024 atomic_inc(&memcg->numainfo_events);
1025 #endif
1026 } else
1027 preempt_enable();
1030 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1032 return mem_cgroup_from_css(
1033 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1036 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1039 * mm_update_next_owner() may clear mm->owner to NULL
1040 * if it races with swapoff, page migration, etc.
1041 * So this can be called with p == NULL.
1043 if (unlikely(!p))
1044 return NULL;
1046 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1049 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1051 struct mem_cgroup *memcg = NULL;
1053 if (!mm)
1054 return NULL;
1056 * Because we have no locks, mm->owner's may be being moved to other
1057 * cgroup. We use css_tryget() here even if this looks
1058 * pessimistic (rather than adding locks here).
1060 rcu_read_lock();
1061 do {
1062 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063 if (unlikely(!memcg))
1064 break;
1065 } while (!css_tryget(&memcg->css));
1066 rcu_read_unlock();
1067 return memcg;
1071 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1072 * @root: hierarchy root
1073 * @prev: previously returned memcg, NULL on first invocation
1074 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1076 * Returns references to children of the hierarchy below @root, or
1077 * @root itself, or %NULL after a full round-trip.
1079 * Caller must pass the return value in @prev on subsequent
1080 * invocations for reference counting, or use mem_cgroup_iter_break()
1081 * to cancel a hierarchy walk before the round-trip is complete.
1083 * Reclaimers can specify a zone and a priority level in @reclaim to
1084 * divide up the memcgs in the hierarchy among all concurrent
1085 * reclaimers operating on the same zone and priority.
1087 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1088 struct mem_cgroup *prev,
1089 struct mem_cgroup_reclaim_cookie *reclaim)
1091 struct mem_cgroup *memcg = NULL;
1092 int id = 0;
1094 if (mem_cgroup_disabled())
1095 return NULL;
1097 if (!root)
1098 root = root_mem_cgroup;
1100 if (prev && !reclaim)
1101 id = css_id(&prev->css);
1103 if (prev && prev != root)
1104 css_put(&prev->css);
1106 if (!root->use_hierarchy && root != root_mem_cgroup) {
1107 if (prev)
1108 return NULL;
1109 return root;
1112 while (!memcg) {
1113 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1114 struct cgroup_subsys_state *css;
1116 if (reclaim) {
1117 int nid = zone_to_nid(reclaim->zone);
1118 int zid = zone_idx(reclaim->zone);
1119 struct mem_cgroup_per_zone *mz;
1121 mz = mem_cgroup_zoneinfo(root, nid, zid);
1122 iter = &mz->reclaim_iter[reclaim->priority];
1123 if (prev && reclaim->generation != iter->generation)
1124 return NULL;
1125 id = iter->position;
1128 rcu_read_lock();
1129 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
1130 if (css) {
1131 if (css == &root->css || css_tryget(css))
1132 memcg = mem_cgroup_from_css(css);
1133 } else
1134 id = 0;
1135 rcu_read_unlock();
1137 if (reclaim) {
1138 iter->position = id;
1139 if (!css)
1140 iter->generation++;
1141 else if (!prev && memcg)
1142 reclaim->generation = iter->generation;
1145 if (prev && !css)
1146 return NULL;
1148 return memcg;
1152 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1153 * @root: hierarchy root
1154 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1156 void mem_cgroup_iter_break(struct mem_cgroup *root,
1157 struct mem_cgroup *prev)
1159 if (!root)
1160 root = root_mem_cgroup;
1161 if (prev && prev != root)
1162 css_put(&prev->css);
1166 * Iteration constructs for visiting all cgroups (under a tree). If
1167 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1168 * be used for reference counting.
1170 #define for_each_mem_cgroup_tree(iter, root) \
1171 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1172 iter != NULL; \
1173 iter = mem_cgroup_iter(root, iter, NULL))
1175 #define for_each_mem_cgroup(iter) \
1176 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1177 iter != NULL; \
1178 iter = mem_cgroup_iter(NULL, iter, NULL))
1180 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1182 struct mem_cgroup *memcg;
1184 rcu_read_lock();
1185 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1186 if (unlikely(!memcg))
1187 goto out;
1189 switch (idx) {
1190 case PGFAULT:
1191 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1192 break;
1193 case PGMAJFAULT:
1194 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1195 break;
1196 default:
1197 BUG();
1199 out:
1200 rcu_read_unlock();
1202 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1205 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1206 * @zone: zone of the wanted lruvec
1207 * @memcg: memcg of the wanted lruvec
1209 * Returns the lru list vector holding pages for the given @zone and
1210 * @mem. This can be the global zone lruvec, if the memory controller
1211 * is disabled.
1213 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1214 struct mem_cgroup *memcg)
1216 struct mem_cgroup_per_zone *mz;
1217 struct lruvec *lruvec;
1219 if (mem_cgroup_disabled()) {
1220 lruvec = &zone->lruvec;
1221 goto out;
1224 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1225 lruvec = &mz->lruvec;
1226 out:
1228 * Since a node can be onlined after the mem_cgroup was created,
1229 * we have to be prepared to initialize lruvec->zone here;
1230 * and if offlined then reonlined, we need to reinitialize it.
1232 if (unlikely(lruvec->zone != zone))
1233 lruvec->zone = zone;
1234 return lruvec;
1238 * Following LRU functions are allowed to be used without PCG_LOCK.
1239 * Operations are called by routine of global LRU independently from memcg.
1240 * What we have to take care of here is validness of pc->mem_cgroup.
1242 * Changes to pc->mem_cgroup happens when
1243 * 1. charge
1244 * 2. moving account
1245 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1246 * It is added to LRU before charge.
1247 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1248 * When moving account, the page is not on LRU. It's isolated.
1252 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1253 * @page: the page
1254 * @zone: zone of the page
1256 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1258 struct mem_cgroup_per_zone *mz;
1259 struct mem_cgroup *memcg;
1260 struct page_cgroup *pc;
1261 struct lruvec *lruvec;
1263 if (mem_cgroup_disabled()) {
1264 lruvec = &zone->lruvec;
1265 goto out;
1268 pc = lookup_page_cgroup(page);
1269 memcg = pc->mem_cgroup;
1272 * Surreptitiously switch any uncharged offlist page to root:
1273 * an uncharged page off lru does nothing to secure
1274 * its former mem_cgroup from sudden removal.
1276 * Our caller holds lru_lock, and PageCgroupUsed is updated
1277 * under page_cgroup lock: between them, they make all uses
1278 * of pc->mem_cgroup safe.
1280 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1281 pc->mem_cgroup = memcg = root_mem_cgroup;
1283 mz = page_cgroup_zoneinfo(memcg, page);
1284 lruvec = &mz->lruvec;
1285 out:
1287 * Since a node can be onlined after the mem_cgroup was created,
1288 * we have to be prepared to initialize lruvec->zone here;
1289 * and if offlined then reonlined, we need to reinitialize it.
1291 if (unlikely(lruvec->zone != zone))
1292 lruvec->zone = zone;
1293 return lruvec;
1297 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1298 * @lruvec: mem_cgroup per zone lru vector
1299 * @lru: index of lru list the page is sitting on
1300 * @nr_pages: positive when adding or negative when removing
1302 * This function must be called when a page is added to or removed from an
1303 * lru list.
1305 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1306 int nr_pages)
1308 struct mem_cgroup_per_zone *mz;
1309 unsigned long *lru_size;
1311 if (mem_cgroup_disabled())
1312 return;
1314 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1315 lru_size = mz->lru_size + lru;
1316 *lru_size += nr_pages;
1317 VM_BUG_ON((long)(*lru_size) < 0);
1321 * Checks whether given mem is same or in the root_mem_cgroup's
1322 * hierarchy subtree
1324 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1325 struct mem_cgroup *memcg)
1327 if (root_memcg == memcg)
1328 return true;
1329 if (!root_memcg->use_hierarchy || !memcg)
1330 return false;
1331 return css_is_ancestor(&memcg->css, &root_memcg->css);
1334 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1335 struct mem_cgroup *memcg)
1337 bool ret;
1339 rcu_read_lock();
1340 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1341 rcu_read_unlock();
1342 return ret;
1345 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1347 int ret;
1348 struct mem_cgroup *curr = NULL;
1349 struct task_struct *p;
1351 p = find_lock_task_mm(task);
1352 if (p) {
1353 curr = try_get_mem_cgroup_from_mm(p->mm);
1354 task_unlock(p);
1355 } else {
1357 * All threads may have already detached their mm's, but the oom
1358 * killer still needs to detect if they have already been oom
1359 * killed to prevent needlessly killing additional tasks.
1361 task_lock(task);
1362 curr = mem_cgroup_from_task(task);
1363 if (curr)
1364 css_get(&curr->css);
1365 task_unlock(task);
1367 if (!curr)
1368 return 0;
1370 * We should check use_hierarchy of "memcg" not "curr". Because checking
1371 * use_hierarchy of "curr" here make this function true if hierarchy is
1372 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1373 * hierarchy(even if use_hierarchy is disabled in "memcg").
1375 ret = mem_cgroup_same_or_subtree(memcg, curr);
1376 css_put(&curr->css);
1377 return ret;
1380 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1382 unsigned long inactive_ratio;
1383 unsigned long inactive;
1384 unsigned long active;
1385 unsigned long gb;
1387 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1388 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1390 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1391 if (gb)
1392 inactive_ratio = int_sqrt(10 * gb);
1393 else
1394 inactive_ratio = 1;
1396 return inactive * inactive_ratio < active;
1399 #define mem_cgroup_from_res_counter(counter, member) \
1400 container_of(counter, struct mem_cgroup, member)
1403 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1404 * @memcg: the memory cgroup
1406 * Returns the maximum amount of memory @mem can be charged with, in
1407 * pages.
1409 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1411 unsigned long long margin;
1413 margin = res_counter_margin(&memcg->res);
1414 if (do_swap_account)
1415 margin = min(margin, res_counter_margin(&memcg->memsw));
1416 return margin >> PAGE_SHIFT;
1419 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1421 struct cgroup *cgrp = memcg->css.cgroup;
1423 /* root ? */
1424 if (cgrp->parent == NULL)
1425 return vm_swappiness;
1427 return memcg->swappiness;
1431 * memcg->moving_account is used for checking possibility that some thread is
1432 * calling move_account(). When a thread on CPU-A starts moving pages under
1433 * a memcg, other threads should check memcg->moving_account under
1434 * rcu_read_lock(), like this:
1436 * CPU-A CPU-B
1437 * rcu_read_lock()
1438 * memcg->moving_account+1 if (memcg->mocing_account)
1439 * take heavy locks.
1440 * synchronize_rcu() update something.
1441 * rcu_read_unlock()
1442 * start move here.
1445 /* for quick checking without looking up memcg */
1446 atomic_t memcg_moving __read_mostly;
1448 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1450 atomic_inc(&memcg_moving);
1451 atomic_inc(&memcg->moving_account);
1452 synchronize_rcu();
1455 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1458 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1459 * We check NULL in callee rather than caller.
1461 if (memcg) {
1462 atomic_dec(&memcg_moving);
1463 atomic_dec(&memcg->moving_account);
1468 * 2 routines for checking "mem" is under move_account() or not.
1470 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1471 * is used for avoiding races in accounting. If true,
1472 * pc->mem_cgroup may be overwritten.
1474 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1475 * under hierarchy of moving cgroups. This is for
1476 * waiting at hith-memory prressure caused by "move".
1479 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1481 VM_BUG_ON(!rcu_read_lock_held());
1482 return atomic_read(&memcg->moving_account) > 0;
1485 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1487 struct mem_cgroup *from;
1488 struct mem_cgroup *to;
1489 bool ret = false;
1491 * Unlike task_move routines, we access mc.to, mc.from not under
1492 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1494 spin_lock(&mc.lock);
1495 from = mc.from;
1496 to = mc.to;
1497 if (!from)
1498 goto unlock;
1500 ret = mem_cgroup_same_or_subtree(memcg, from)
1501 || mem_cgroup_same_or_subtree(memcg, to);
1502 unlock:
1503 spin_unlock(&mc.lock);
1504 return ret;
1507 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1509 if (mc.moving_task && current != mc.moving_task) {
1510 if (mem_cgroup_under_move(memcg)) {
1511 DEFINE_WAIT(wait);
1512 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1513 /* moving charge context might have finished. */
1514 if (mc.moving_task)
1515 schedule();
1516 finish_wait(&mc.waitq, &wait);
1517 return true;
1520 return false;
1524 * Take this lock when
1525 * - a code tries to modify page's memcg while it's USED.
1526 * - a code tries to modify page state accounting in a memcg.
1527 * see mem_cgroup_stolen(), too.
1529 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1530 unsigned long *flags)
1532 spin_lock_irqsave(&memcg->move_lock, *flags);
1535 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1536 unsigned long *flags)
1538 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1541 #define K(x) ((x) << (PAGE_SHIFT-10))
1543 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1544 * @memcg: The memory cgroup that went over limit
1545 * @p: Task that is going to be killed
1547 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1548 * enabled
1550 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1552 struct cgroup *task_cgrp;
1553 struct cgroup *mem_cgrp;
1555 * Need a buffer in BSS, can't rely on allocations. The code relies
1556 * on the assumption that OOM is serialized for memory controller.
1557 * If this assumption is broken, revisit this code.
1559 static char memcg_name[PATH_MAX];
1560 int ret;
1561 struct mem_cgroup *iter;
1562 unsigned int i;
1564 if (!p)
1565 return;
1567 rcu_read_lock();
1569 mem_cgrp = memcg->css.cgroup;
1570 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1572 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1573 if (ret < 0) {
1575 * Unfortunately, we are unable to convert to a useful name
1576 * But we'll still print out the usage information
1578 rcu_read_unlock();
1579 goto done;
1581 rcu_read_unlock();
1583 pr_info("Task in %s killed", memcg_name);
1585 rcu_read_lock();
1586 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1587 if (ret < 0) {
1588 rcu_read_unlock();
1589 goto done;
1591 rcu_read_unlock();
1594 * Continues from above, so we don't need an KERN_ level
1596 pr_cont(" as a result of limit of %s\n", memcg_name);
1597 done:
1599 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1600 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1601 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1602 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1603 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1604 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1605 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1606 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1607 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1608 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1609 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1610 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1612 for_each_mem_cgroup_tree(iter, memcg) {
1613 pr_info("Memory cgroup stats");
1615 rcu_read_lock();
1616 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1617 if (!ret)
1618 pr_cont(" for %s", memcg_name);
1619 rcu_read_unlock();
1620 pr_cont(":");
1622 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1623 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1624 continue;
1625 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1626 K(mem_cgroup_read_stat(iter, i)));
1629 for (i = 0; i < NR_LRU_LISTS; i++)
1630 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1631 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1633 pr_cont("\n");
1638 * This function returns the number of memcg under hierarchy tree. Returns
1639 * 1(self count) if no children.
1641 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1643 int num = 0;
1644 struct mem_cgroup *iter;
1646 for_each_mem_cgroup_tree(iter, memcg)
1647 num++;
1648 return num;
1652 * Return the memory (and swap, if configured) limit for a memcg.
1654 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1656 u64 limit;
1658 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1661 * Do not consider swap space if we cannot swap due to swappiness
1663 if (mem_cgroup_swappiness(memcg)) {
1664 u64 memsw;
1666 limit += total_swap_pages << PAGE_SHIFT;
1667 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1670 * If memsw is finite and limits the amount of swap space
1671 * available to this memcg, return that limit.
1673 limit = min(limit, memsw);
1676 return limit;
1679 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1680 int order)
1682 struct mem_cgroup *iter;
1683 unsigned long chosen_points = 0;
1684 unsigned long totalpages;
1685 unsigned int points = 0;
1686 struct task_struct *chosen = NULL;
1689 * If current has a pending SIGKILL, then automatically select it. The
1690 * goal is to allow it to allocate so that it may quickly exit and free
1691 * its memory.
1693 if (fatal_signal_pending(current)) {
1694 set_thread_flag(TIF_MEMDIE);
1695 return;
1698 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1699 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1700 for_each_mem_cgroup_tree(iter, memcg) {
1701 struct cgroup *cgroup = iter->css.cgroup;
1702 struct cgroup_iter it;
1703 struct task_struct *task;
1705 cgroup_iter_start(cgroup, &it);
1706 while ((task = cgroup_iter_next(cgroup, &it))) {
1707 switch (oom_scan_process_thread(task, totalpages, NULL,
1708 false)) {
1709 case OOM_SCAN_SELECT:
1710 if (chosen)
1711 put_task_struct(chosen);
1712 chosen = task;
1713 chosen_points = ULONG_MAX;
1714 get_task_struct(chosen);
1715 /* fall through */
1716 case OOM_SCAN_CONTINUE:
1717 continue;
1718 case OOM_SCAN_ABORT:
1719 cgroup_iter_end(cgroup, &it);
1720 mem_cgroup_iter_break(memcg, iter);
1721 if (chosen)
1722 put_task_struct(chosen);
1723 return;
1724 case OOM_SCAN_OK:
1725 break;
1727 points = oom_badness(task, memcg, NULL, totalpages);
1728 if (points > chosen_points) {
1729 if (chosen)
1730 put_task_struct(chosen);
1731 chosen = task;
1732 chosen_points = points;
1733 get_task_struct(chosen);
1736 cgroup_iter_end(cgroup, &it);
1739 if (!chosen)
1740 return;
1741 points = chosen_points * 1000 / totalpages;
1742 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1743 NULL, "Memory cgroup out of memory");
1746 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1747 gfp_t gfp_mask,
1748 unsigned long flags)
1750 unsigned long total = 0;
1751 bool noswap = false;
1752 int loop;
1754 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1755 noswap = true;
1756 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1757 noswap = true;
1759 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1760 if (loop)
1761 drain_all_stock_async(memcg);
1762 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1764 * Allow limit shrinkers, which are triggered directly
1765 * by userspace, to catch signals and stop reclaim
1766 * after minimal progress, regardless of the margin.
1768 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1769 break;
1770 if (mem_cgroup_margin(memcg))
1771 break;
1773 * If nothing was reclaimed after two attempts, there
1774 * may be no reclaimable pages in this hierarchy.
1776 if (loop && !total)
1777 break;
1779 return total;
1783 * test_mem_cgroup_node_reclaimable
1784 * @memcg: the target memcg
1785 * @nid: the node ID to be checked.
1786 * @noswap : specify true here if the user wants flle only information.
1788 * This function returns whether the specified memcg contains any
1789 * reclaimable pages on a node. Returns true if there are any reclaimable
1790 * pages in the node.
1792 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1793 int nid, bool noswap)
1795 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1796 return true;
1797 if (noswap || !total_swap_pages)
1798 return false;
1799 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1800 return true;
1801 return false;
1804 #if MAX_NUMNODES > 1
1807 * Always updating the nodemask is not very good - even if we have an empty
1808 * list or the wrong list here, we can start from some node and traverse all
1809 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1812 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1814 int nid;
1816 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1817 * pagein/pageout changes since the last update.
1819 if (!atomic_read(&memcg->numainfo_events))
1820 return;
1821 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1822 return;
1824 /* make a nodemask where this memcg uses memory from */
1825 memcg->scan_nodes = node_states[N_MEMORY];
1827 for_each_node_mask(nid, node_states[N_MEMORY]) {
1829 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1830 node_clear(nid, memcg->scan_nodes);
1833 atomic_set(&memcg->numainfo_events, 0);
1834 atomic_set(&memcg->numainfo_updating, 0);
1838 * Selecting a node where we start reclaim from. Because what we need is just
1839 * reducing usage counter, start from anywhere is O,K. Considering
1840 * memory reclaim from current node, there are pros. and cons.
1842 * Freeing memory from current node means freeing memory from a node which
1843 * we'll use or we've used. So, it may make LRU bad. And if several threads
1844 * hit limits, it will see a contention on a node. But freeing from remote
1845 * node means more costs for memory reclaim because of memory latency.
1847 * Now, we use round-robin. Better algorithm is welcomed.
1849 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1851 int node;
1853 mem_cgroup_may_update_nodemask(memcg);
1854 node = memcg->last_scanned_node;
1856 node = next_node(node, memcg->scan_nodes);
1857 if (node == MAX_NUMNODES)
1858 node = first_node(memcg->scan_nodes);
1860 * We call this when we hit limit, not when pages are added to LRU.
1861 * No LRU may hold pages because all pages are UNEVICTABLE or
1862 * memcg is too small and all pages are not on LRU. In that case,
1863 * we use curret node.
1865 if (unlikely(node == MAX_NUMNODES))
1866 node = numa_node_id();
1868 memcg->last_scanned_node = node;
1869 return node;
1873 * Check all nodes whether it contains reclaimable pages or not.
1874 * For quick scan, we make use of scan_nodes. This will allow us to skip
1875 * unused nodes. But scan_nodes is lazily updated and may not cotain
1876 * enough new information. We need to do double check.
1878 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1880 int nid;
1883 * quick check...making use of scan_node.
1884 * We can skip unused nodes.
1886 if (!nodes_empty(memcg->scan_nodes)) {
1887 for (nid = first_node(memcg->scan_nodes);
1888 nid < MAX_NUMNODES;
1889 nid = next_node(nid, memcg->scan_nodes)) {
1891 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1892 return true;
1896 * Check rest of nodes.
1898 for_each_node_state(nid, N_MEMORY) {
1899 if (node_isset(nid, memcg->scan_nodes))
1900 continue;
1901 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1902 return true;
1904 return false;
1907 #else
1908 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1910 return 0;
1913 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1915 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1917 #endif
1919 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1920 struct zone *zone,
1921 gfp_t gfp_mask,
1922 unsigned long *total_scanned)
1924 struct mem_cgroup *victim = NULL;
1925 int total = 0;
1926 int loop = 0;
1927 unsigned long excess;
1928 unsigned long nr_scanned;
1929 struct mem_cgroup_reclaim_cookie reclaim = {
1930 .zone = zone,
1931 .priority = 0,
1934 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1936 while (1) {
1937 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1938 if (!victim) {
1939 loop++;
1940 if (loop >= 2) {
1942 * If we have not been able to reclaim
1943 * anything, it might because there are
1944 * no reclaimable pages under this hierarchy
1946 if (!total)
1947 break;
1949 * We want to do more targeted reclaim.
1950 * excess >> 2 is not to excessive so as to
1951 * reclaim too much, nor too less that we keep
1952 * coming back to reclaim from this cgroup
1954 if (total >= (excess >> 2) ||
1955 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1956 break;
1958 continue;
1960 if (!mem_cgroup_reclaimable(victim, false))
1961 continue;
1962 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1963 zone, &nr_scanned);
1964 *total_scanned += nr_scanned;
1965 if (!res_counter_soft_limit_excess(&root_memcg->res))
1966 break;
1968 mem_cgroup_iter_break(root_memcg, victim);
1969 return total;
1973 * Check OOM-Killer is already running under our hierarchy.
1974 * If someone is running, return false.
1975 * Has to be called with memcg_oom_lock
1977 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1979 struct mem_cgroup *iter, *failed = NULL;
1981 for_each_mem_cgroup_tree(iter, memcg) {
1982 if (iter->oom_lock) {
1984 * this subtree of our hierarchy is already locked
1985 * so we cannot give a lock.
1987 failed = iter;
1988 mem_cgroup_iter_break(memcg, iter);
1989 break;
1990 } else
1991 iter->oom_lock = true;
1994 if (!failed)
1995 return true;
1998 * OK, we failed to lock the whole subtree so we have to clean up
1999 * what we set up to the failing subtree
2001 for_each_mem_cgroup_tree(iter, memcg) {
2002 if (iter == failed) {
2003 mem_cgroup_iter_break(memcg, iter);
2004 break;
2006 iter->oom_lock = false;
2008 return false;
2012 * Has to be called with memcg_oom_lock
2014 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2016 struct mem_cgroup *iter;
2018 for_each_mem_cgroup_tree(iter, memcg)
2019 iter->oom_lock = false;
2020 return 0;
2023 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2025 struct mem_cgroup *iter;
2027 for_each_mem_cgroup_tree(iter, memcg)
2028 atomic_inc(&iter->under_oom);
2031 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2033 struct mem_cgroup *iter;
2036 * When a new child is created while the hierarchy is under oom,
2037 * mem_cgroup_oom_lock() may not be called. We have to use
2038 * atomic_add_unless() here.
2040 for_each_mem_cgroup_tree(iter, memcg)
2041 atomic_add_unless(&iter->under_oom, -1, 0);
2044 static DEFINE_SPINLOCK(memcg_oom_lock);
2045 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2047 struct oom_wait_info {
2048 struct mem_cgroup *memcg;
2049 wait_queue_t wait;
2052 static int memcg_oom_wake_function(wait_queue_t *wait,
2053 unsigned mode, int sync, void *arg)
2055 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2056 struct mem_cgroup *oom_wait_memcg;
2057 struct oom_wait_info *oom_wait_info;
2059 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2060 oom_wait_memcg = oom_wait_info->memcg;
2063 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2064 * Then we can use css_is_ancestor without taking care of RCU.
2066 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2067 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2068 return 0;
2069 return autoremove_wake_function(wait, mode, sync, arg);
2072 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2074 /* for filtering, pass "memcg" as argument. */
2075 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2078 static void memcg_oom_recover(struct mem_cgroup *memcg)
2080 if (memcg && atomic_read(&memcg->under_oom))
2081 memcg_wakeup_oom(memcg);
2085 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2087 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2088 int order)
2090 struct oom_wait_info owait;
2091 bool locked, need_to_kill;
2093 owait.memcg = memcg;
2094 owait.wait.flags = 0;
2095 owait.wait.func = memcg_oom_wake_function;
2096 owait.wait.private = current;
2097 INIT_LIST_HEAD(&owait.wait.task_list);
2098 need_to_kill = true;
2099 mem_cgroup_mark_under_oom(memcg);
2101 /* At first, try to OOM lock hierarchy under memcg.*/
2102 spin_lock(&memcg_oom_lock);
2103 locked = mem_cgroup_oom_lock(memcg);
2105 * Even if signal_pending(), we can't quit charge() loop without
2106 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2107 * under OOM is always welcomed, use TASK_KILLABLE here.
2109 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2110 if (!locked || memcg->oom_kill_disable)
2111 need_to_kill = false;
2112 if (locked)
2113 mem_cgroup_oom_notify(memcg);
2114 spin_unlock(&memcg_oom_lock);
2116 if (need_to_kill) {
2117 finish_wait(&memcg_oom_waitq, &owait.wait);
2118 mem_cgroup_out_of_memory(memcg, mask, order);
2119 } else {
2120 schedule();
2121 finish_wait(&memcg_oom_waitq, &owait.wait);
2123 spin_lock(&memcg_oom_lock);
2124 if (locked)
2125 mem_cgroup_oom_unlock(memcg);
2126 memcg_wakeup_oom(memcg);
2127 spin_unlock(&memcg_oom_lock);
2129 mem_cgroup_unmark_under_oom(memcg);
2131 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2132 return false;
2133 /* Give chance to dying process */
2134 schedule_timeout_uninterruptible(1);
2135 return true;
2139 * Currently used to update mapped file statistics, but the routine can be
2140 * generalized to update other statistics as well.
2142 * Notes: Race condition
2144 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2145 * it tends to be costly. But considering some conditions, we doesn't need
2146 * to do so _always_.
2148 * Considering "charge", lock_page_cgroup() is not required because all
2149 * file-stat operations happen after a page is attached to radix-tree. There
2150 * are no race with "charge".
2152 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2153 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2154 * if there are race with "uncharge". Statistics itself is properly handled
2155 * by flags.
2157 * Considering "move", this is an only case we see a race. To make the race
2158 * small, we check mm->moving_account and detect there are possibility of race
2159 * If there is, we take a lock.
2162 void __mem_cgroup_begin_update_page_stat(struct page *page,
2163 bool *locked, unsigned long *flags)
2165 struct mem_cgroup *memcg;
2166 struct page_cgroup *pc;
2168 pc = lookup_page_cgroup(page);
2169 again:
2170 memcg = pc->mem_cgroup;
2171 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2172 return;
2174 * If this memory cgroup is not under account moving, we don't
2175 * need to take move_lock_mem_cgroup(). Because we already hold
2176 * rcu_read_lock(), any calls to move_account will be delayed until
2177 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2179 if (!mem_cgroup_stolen(memcg))
2180 return;
2182 move_lock_mem_cgroup(memcg, flags);
2183 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2184 move_unlock_mem_cgroup(memcg, flags);
2185 goto again;
2187 *locked = true;
2190 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2192 struct page_cgroup *pc = lookup_page_cgroup(page);
2195 * It's guaranteed that pc->mem_cgroup never changes while
2196 * lock is held because a routine modifies pc->mem_cgroup
2197 * should take move_lock_mem_cgroup().
2199 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2202 void mem_cgroup_update_page_stat(struct page *page,
2203 enum mem_cgroup_page_stat_item idx, int val)
2205 struct mem_cgroup *memcg;
2206 struct page_cgroup *pc = lookup_page_cgroup(page);
2207 unsigned long uninitialized_var(flags);
2209 if (mem_cgroup_disabled())
2210 return;
2212 memcg = pc->mem_cgroup;
2213 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2214 return;
2216 switch (idx) {
2217 case MEMCG_NR_FILE_MAPPED:
2218 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2219 break;
2220 default:
2221 BUG();
2224 this_cpu_add(memcg->stat->count[idx], val);
2228 * size of first charge trial. "32" comes from vmscan.c's magic value.
2229 * TODO: maybe necessary to use big numbers in big irons.
2231 #define CHARGE_BATCH 32U
2232 struct memcg_stock_pcp {
2233 struct mem_cgroup *cached; /* this never be root cgroup */
2234 unsigned int nr_pages;
2235 struct work_struct work;
2236 unsigned long flags;
2237 #define FLUSHING_CACHED_CHARGE 0
2239 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2240 static DEFINE_MUTEX(percpu_charge_mutex);
2243 * consume_stock: Try to consume stocked charge on this cpu.
2244 * @memcg: memcg to consume from.
2245 * @nr_pages: how many pages to charge.
2247 * The charges will only happen if @memcg matches the current cpu's memcg
2248 * stock, and at least @nr_pages are available in that stock. Failure to
2249 * service an allocation will refill the stock.
2251 * returns true if successful, false otherwise.
2253 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2255 struct memcg_stock_pcp *stock;
2256 bool ret = true;
2258 if (nr_pages > CHARGE_BATCH)
2259 return false;
2261 stock = &get_cpu_var(memcg_stock);
2262 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2263 stock->nr_pages -= nr_pages;
2264 else /* need to call res_counter_charge */
2265 ret = false;
2266 put_cpu_var(memcg_stock);
2267 return ret;
2271 * Returns stocks cached in percpu to res_counter and reset cached information.
2273 static void drain_stock(struct memcg_stock_pcp *stock)
2275 struct mem_cgroup *old = stock->cached;
2277 if (stock->nr_pages) {
2278 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2280 res_counter_uncharge(&old->res, bytes);
2281 if (do_swap_account)
2282 res_counter_uncharge(&old->memsw, bytes);
2283 stock->nr_pages = 0;
2285 stock->cached = NULL;
2289 * This must be called under preempt disabled or must be called by
2290 * a thread which is pinned to local cpu.
2292 static void drain_local_stock(struct work_struct *dummy)
2294 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2295 drain_stock(stock);
2296 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2299 static void __init memcg_stock_init(void)
2301 int cpu;
2303 for_each_possible_cpu(cpu) {
2304 struct memcg_stock_pcp *stock =
2305 &per_cpu(memcg_stock, cpu);
2306 INIT_WORK(&stock->work, drain_local_stock);
2311 * Cache charges(val) which is from res_counter, to local per_cpu area.
2312 * This will be consumed by consume_stock() function, later.
2314 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2316 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2318 if (stock->cached != memcg) { /* reset if necessary */
2319 drain_stock(stock);
2320 stock->cached = memcg;
2322 stock->nr_pages += nr_pages;
2323 put_cpu_var(memcg_stock);
2327 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2328 * of the hierarchy under it. sync flag says whether we should block
2329 * until the work is done.
2331 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2333 int cpu, curcpu;
2335 /* Notify other cpus that system-wide "drain" is running */
2336 get_online_cpus();
2337 curcpu = get_cpu();
2338 for_each_online_cpu(cpu) {
2339 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2340 struct mem_cgroup *memcg;
2342 memcg = stock->cached;
2343 if (!memcg || !stock->nr_pages)
2344 continue;
2345 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2346 continue;
2347 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2348 if (cpu == curcpu)
2349 drain_local_stock(&stock->work);
2350 else
2351 schedule_work_on(cpu, &stock->work);
2354 put_cpu();
2356 if (!sync)
2357 goto out;
2359 for_each_online_cpu(cpu) {
2360 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2361 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2362 flush_work(&stock->work);
2364 out:
2365 put_online_cpus();
2369 * Tries to drain stocked charges in other cpus. This function is asynchronous
2370 * and just put a work per cpu for draining localy on each cpu. Caller can
2371 * expects some charges will be back to res_counter later but cannot wait for
2372 * it.
2374 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2377 * If someone calls draining, avoid adding more kworker runs.
2379 if (!mutex_trylock(&percpu_charge_mutex))
2380 return;
2381 drain_all_stock(root_memcg, false);
2382 mutex_unlock(&percpu_charge_mutex);
2385 /* This is a synchronous drain interface. */
2386 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2388 /* called when force_empty is called */
2389 mutex_lock(&percpu_charge_mutex);
2390 drain_all_stock(root_memcg, true);
2391 mutex_unlock(&percpu_charge_mutex);
2395 * This function drains percpu counter value from DEAD cpu and
2396 * move it to local cpu. Note that this function can be preempted.
2398 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2400 int i;
2402 spin_lock(&memcg->pcp_counter_lock);
2403 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2404 long x = per_cpu(memcg->stat->count[i], cpu);
2406 per_cpu(memcg->stat->count[i], cpu) = 0;
2407 memcg->nocpu_base.count[i] += x;
2409 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2410 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2412 per_cpu(memcg->stat->events[i], cpu) = 0;
2413 memcg->nocpu_base.events[i] += x;
2415 spin_unlock(&memcg->pcp_counter_lock);
2418 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2419 unsigned long action,
2420 void *hcpu)
2422 int cpu = (unsigned long)hcpu;
2423 struct memcg_stock_pcp *stock;
2424 struct mem_cgroup *iter;
2426 if (action == CPU_ONLINE)
2427 return NOTIFY_OK;
2429 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2430 return NOTIFY_OK;
2432 for_each_mem_cgroup(iter)
2433 mem_cgroup_drain_pcp_counter(iter, cpu);
2435 stock = &per_cpu(memcg_stock, cpu);
2436 drain_stock(stock);
2437 return NOTIFY_OK;
2441 /* See __mem_cgroup_try_charge() for details */
2442 enum {
2443 CHARGE_OK, /* success */
2444 CHARGE_RETRY, /* need to retry but retry is not bad */
2445 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2446 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2447 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2450 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2451 unsigned int nr_pages, unsigned int min_pages,
2452 bool oom_check)
2454 unsigned long csize = nr_pages * PAGE_SIZE;
2455 struct mem_cgroup *mem_over_limit;
2456 struct res_counter *fail_res;
2457 unsigned long flags = 0;
2458 int ret;
2460 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2462 if (likely(!ret)) {
2463 if (!do_swap_account)
2464 return CHARGE_OK;
2465 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2466 if (likely(!ret))
2467 return CHARGE_OK;
2469 res_counter_uncharge(&memcg->res, csize);
2470 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2471 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2472 } else
2473 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2475 * Never reclaim on behalf of optional batching, retry with a
2476 * single page instead.
2478 if (nr_pages > min_pages)
2479 return CHARGE_RETRY;
2481 if (!(gfp_mask & __GFP_WAIT))
2482 return CHARGE_WOULDBLOCK;
2484 if (gfp_mask & __GFP_NORETRY)
2485 return CHARGE_NOMEM;
2487 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2488 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2489 return CHARGE_RETRY;
2491 * Even though the limit is exceeded at this point, reclaim
2492 * may have been able to free some pages. Retry the charge
2493 * before killing the task.
2495 * Only for regular pages, though: huge pages are rather
2496 * unlikely to succeed so close to the limit, and we fall back
2497 * to regular pages anyway in case of failure.
2499 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2500 return CHARGE_RETRY;
2503 * At task move, charge accounts can be doubly counted. So, it's
2504 * better to wait until the end of task_move if something is going on.
2506 if (mem_cgroup_wait_acct_move(mem_over_limit))
2507 return CHARGE_RETRY;
2509 /* If we don't need to call oom-killer at el, return immediately */
2510 if (!oom_check)
2511 return CHARGE_NOMEM;
2512 /* check OOM */
2513 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2514 return CHARGE_OOM_DIE;
2516 return CHARGE_RETRY;
2520 * __mem_cgroup_try_charge() does
2521 * 1. detect memcg to be charged against from passed *mm and *ptr,
2522 * 2. update res_counter
2523 * 3. call memory reclaim if necessary.
2525 * In some special case, if the task is fatal, fatal_signal_pending() or
2526 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2527 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2528 * as possible without any hazards. 2: all pages should have a valid
2529 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2530 * pointer, that is treated as a charge to root_mem_cgroup.
2532 * So __mem_cgroup_try_charge() will return
2533 * 0 ... on success, filling *ptr with a valid memcg pointer.
2534 * -ENOMEM ... charge failure because of resource limits.
2535 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2537 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2538 * the oom-killer can be invoked.
2540 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2541 gfp_t gfp_mask,
2542 unsigned int nr_pages,
2543 struct mem_cgroup **ptr,
2544 bool oom)
2546 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2547 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2548 struct mem_cgroup *memcg = NULL;
2549 int ret;
2552 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2553 * in system level. So, allow to go ahead dying process in addition to
2554 * MEMDIE process.
2556 if (unlikely(test_thread_flag(TIF_MEMDIE)
2557 || fatal_signal_pending(current)))
2558 goto bypass;
2561 * We always charge the cgroup the mm_struct belongs to.
2562 * The mm_struct's mem_cgroup changes on task migration if the
2563 * thread group leader migrates. It's possible that mm is not
2564 * set, if so charge the root memcg (happens for pagecache usage).
2566 if (!*ptr && !mm)
2567 *ptr = root_mem_cgroup;
2568 again:
2569 if (*ptr) { /* css should be a valid one */
2570 memcg = *ptr;
2571 if (mem_cgroup_is_root(memcg))
2572 goto done;
2573 if (consume_stock(memcg, nr_pages))
2574 goto done;
2575 css_get(&memcg->css);
2576 } else {
2577 struct task_struct *p;
2579 rcu_read_lock();
2580 p = rcu_dereference(mm->owner);
2582 * Because we don't have task_lock(), "p" can exit.
2583 * In that case, "memcg" can point to root or p can be NULL with
2584 * race with swapoff. Then, we have small risk of mis-accouning.
2585 * But such kind of mis-account by race always happens because
2586 * we don't have cgroup_mutex(). It's overkill and we allo that
2587 * small race, here.
2588 * (*) swapoff at el will charge against mm-struct not against
2589 * task-struct. So, mm->owner can be NULL.
2591 memcg = mem_cgroup_from_task(p);
2592 if (!memcg)
2593 memcg = root_mem_cgroup;
2594 if (mem_cgroup_is_root(memcg)) {
2595 rcu_read_unlock();
2596 goto done;
2598 if (consume_stock(memcg, nr_pages)) {
2600 * It seems dagerous to access memcg without css_get().
2601 * But considering how consume_stok works, it's not
2602 * necessary. If consume_stock success, some charges
2603 * from this memcg are cached on this cpu. So, we
2604 * don't need to call css_get()/css_tryget() before
2605 * calling consume_stock().
2607 rcu_read_unlock();
2608 goto done;
2610 /* after here, we may be blocked. we need to get refcnt */
2611 if (!css_tryget(&memcg->css)) {
2612 rcu_read_unlock();
2613 goto again;
2615 rcu_read_unlock();
2618 do {
2619 bool oom_check;
2621 /* If killed, bypass charge */
2622 if (fatal_signal_pending(current)) {
2623 css_put(&memcg->css);
2624 goto bypass;
2627 oom_check = false;
2628 if (oom && !nr_oom_retries) {
2629 oom_check = true;
2630 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2633 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2634 oom_check);
2635 switch (ret) {
2636 case CHARGE_OK:
2637 break;
2638 case CHARGE_RETRY: /* not in OOM situation but retry */
2639 batch = nr_pages;
2640 css_put(&memcg->css);
2641 memcg = NULL;
2642 goto again;
2643 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2644 css_put(&memcg->css);
2645 goto nomem;
2646 case CHARGE_NOMEM: /* OOM routine works */
2647 if (!oom) {
2648 css_put(&memcg->css);
2649 goto nomem;
2651 /* If oom, we never return -ENOMEM */
2652 nr_oom_retries--;
2653 break;
2654 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2655 css_put(&memcg->css);
2656 goto bypass;
2658 } while (ret != CHARGE_OK);
2660 if (batch > nr_pages)
2661 refill_stock(memcg, batch - nr_pages);
2662 css_put(&memcg->css);
2663 done:
2664 *ptr = memcg;
2665 return 0;
2666 nomem:
2667 *ptr = NULL;
2668 return -ENOMEM;
2669 bypass:
2670 *ptr = root_mem_cgroup;
2671 return -EINTR;
2675 * Somemtimes we have to undo a charge we got by try_charge().
2676 * This function is for that and do uncharge, put css's refcnt.
2677 * gotten by try_charge().
2679 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2680 unsigned int nr_pages)
2682 if (!mem_cgroup_is_root(memcg)) {
2683 unsigned long bytes = nr_pages * PAGE_SIZE;
2685 res_counter_uncharge(&memcg->res, bytes);
2686 if (do_swap_account)
2687 res_counter_uncharge(&memcg->memsw, bytes);
2692 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2693 * This is useful when moving usage to parent cgroup.
2695 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2696 unsigned int nr_pages)
2698 unsigned long bytes = nr_pages * PAGE_SIZE;
2700 if (mem_cgroup_is_root(memcg))
2701 return;
2703 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2704 if (do_swap_account)
2705 res_counter_uncharge_until(&memcg->memsw,
2706 memcg->memsw.parent, bytes);
2710 * A helper function to get mem_cgroup from ID. must be called under
2711 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2712 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2713 * called against removed memcg.)
2715 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2717 struct cgroup_subsys_state *css;
2719 /* ID 0 is unused ID */
2720 if (!id)
2721 return NULL;
2722 css = css_lookup(&mem_cgroup_subsys, id);
2723 if (!css)
2724 return NULL;
2725 return mem_cgroup_from_css(css);
2728 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2730 struct mem_cgroup *memcg = NULL;
2731 struct page_cgroup *pc;
2732 unsigned short id;
2733 swp_entry_t ent;
2735 VM_BUG_ON(!PageLocked(page));
2737 pc = lookup_page_cgroup(page);
2738 lock_page_cgroup(pc);
2739 if (PageCgroupUsed(pc)) {
2740 memcg = pc->mem_cgroup;
2741 if (memcg && !css_tryget(&memcg->css))
2742 memcg = NULL;
2743 } else if (PageSwapCache(page)) {
2744 ent.val = page_private(page);
2745 id = lookup_swap_cgroup_id(ent);
2746 rcu_read_lock();
2747 memcg = mem_cgroup_lookup(id);
2748 if (memcg && !css_tryget(&memcg->css))
2749 memcg = NULL;
2750 rcu_read_unlock();
2752 unlock_page_cgroup(pc);
2753 return memcg;
2756 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2757 struct page *page,
2758 unsigned int nr_pages,
2759 enum charge_type ctype,
2760 bool lrucare)
2762 struct page_cgroup *pc = lookup_page_cgroup(page);
2763 struct zone *uninitialized_var(zone);
2764 struct lruvec *lruvec;
2765 bool was_on_lru = false;
2766 bool anon;
2768 lock_page_cgroup(pc);
2769 VM_BUG_ON(PageCgroupUsed(pc));
2771 * we don't need page_cgroup_lock about tail pages, becase they are not
2772 * accessed by any other context at this point.
2776 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2777 * may already be on some other mem_cgroup's LRU. Take care of it.
2779 if (lrucare) {
2780 zone = page_zone(page);
2781 spin_lock_irq(&zone->lru_lock);
2782 if (PageLRU(page)) {
2783 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2784 ClearPageLRU(page);
2785 del_page_from_lru_list(page, lruvec, page_lru(page));
2786 was_on_lru = true;
2790 pc->mem_cgroup = memcg;
2792 * We access a page_cgroup asynchronously without lock_page_cgroup().
2793 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2794 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2795 * before USED bit, we need memory barrier here.
2796 * See mem_cgroup_add_lru_list(), etc.
2798 smp_wmb();
2799 SetPageCgroupUsed(pc);
2801 if (lrucare) {
2802 if (was_on_lru) {
2803 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2804 VM_BUG_ON(PageLRU(page));
2805 SetPageLRU(page);
2806 add_page_to_lru_list(page, lruvec, page_lru(page));
2808 spin_unlock_irq(&zone->lru_lock);
2811 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2812 anon = true;
2813 else
2814 anon = false;
2816 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2817 unlock_page_cgroup(pc);
2820 * "charge_statistics" updated event counter. Then, check it.
2821 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2822 * if they exceeds softlimit.
2824 memcg_check_events(memcg, page);
2827 static DEFINE_MUTEX(set_limit_mutex);
2829 #ifdef CONFIG_MEMCG_KMEM
2830 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2832 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2833 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2837 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2838 * in the memcg_cache_params struct.
2840 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2842 struct kmem_cache *cachep;
2844 VM_BUG_ON(p->is_root_cache);
2845 cachep = p->root_cache;
2846 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2849 #ifdef CONFIG_SLABINFO
2850 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2851 struct seq_file *m)
2853 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2854 struct memcg_cache_params *params;
2856 if (!memcg_can_account_kmem(memcg))
2857 return -EIO;
2859 print_slabinfo_header(m);
2861 mutex_lock(&memcg->slab_caches_mutex);
2862 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2863 cache_show(memcg_params_to_cache(params), m);
2864 mutex_unlock(&memcg->slab_caches_mutex);
2866 return 0;
2868 #endif
2870 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2872 struct res_counter *fail_res;
2873 struct mem_cgroup *_memcg;
2874 int ret = 0;
2875 bool may_oom;
2877 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2878 if (ret)
2879 return ret;
2882 * Conditions under which we can wait for the oom_killer. Those are
2883 * the same conditions tested by the core page allocator
2885 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2887 _memcg = memcg;
2888 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2889 &_memcg, may_oom);
2891 if (ret == -EINTR) {
2893 * __mem_cgroup_try_charge() chosed to bypass to root due to
2894 * OOM kill or fatal signal. Since our only options are to
2895 * either fail the allocation or charge it to this cgroup, do
2896 * it as a temporary condition. But we can't fail. From a
2897 * kmem/slab perspective, the cache has already been selected,
2898 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2899 * our minds.
2901 * This condition will only trigger if the task entered
2902 * memcg_charge_kmem in a sane state, but was OOM-killed during
2903 * __mem_cgroup_try_charge() above. Tasks that were already
2904 * dying when the allocation triggers should have been already
2905 * directed to the root cgroup in memcontrol.h
2907 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2908 if (do_swap_account)
2909 res_counter_charge_nofail(&memcg->memsw, size,
2910 &fail_res);
2911 ret = 0;
2912 } else if (ret)
2913 res_counter_uncharge(&memcg->kmem, size);
2915 return ret;
2918 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2920 res_counter_uncharge(&memcg->res, size);
2921 if (do_swap_account)
2922 res_counter_uncharge(&memcg->memsw, size);
2924 /* Not down to 0 */
2925 if (res_counter_uncharge(&memcg->kmem, size))
2926 return;
2928 if (memcg_kmem_test_and_clear_dead(memcg))
2929 mem_cgroup_put(memcg);
2932 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2934 if (!memcg)
2935 return;
2937 mutex_lock(&memcg->slab_caches_mutex);
2938 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2939 mutex_unlock(&memcg->slab_caches_mutex);
2943 * helper for acessing a memcg's index. It will be used as an index in the
2944 * child cache array in kmem_cache, and also to derive its name. This function
2945 * will return -1 when this is not a kmem-limited memcg.
2947 int memcg_cache_id(struct mem_cgroup *memcg)
2949 return memcg ? memcg->kmemcg_id : -1;
2953 * This ends up being protected by the set_limit mutex, during normal
2954 * operation, because that is its main call site.
2956 * But when we create a new cache, we can call this as well if its parent
2957 * is kmem-limited. That will have to hold set_limit_mutex as well.
2959 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2961 int num, ret;
2963 num = ida_simple_get(&kmem_limited_groups,
2964 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2965 if (num < 0)
2966 return num;
2968 * After this point, kmem_accounted (that we test atomically in
2969 * the beginning of this conditional), is no longer 0. This
2970 * guarantees only one process will set the following boolean
2971 * to true. We don't need test_and_set because we're protected
2972 * by the set_limit_mutex anyway.
2974 memcg_kmem_set_activated(memcg);
2976 ret = memcg_update_all_caches(num+1);
2977 if (ret) {
2978 ida_simple_remove(&kmem_limited_groups, num);
2979 memcg_kmem_clear_activated(memcg);
2980 return ret;
2983 memcg->kmemcg_id = num;
2984 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2985 mutex_init(&memcg->slab_caches_mutex);
2986 return 0;
2989 static size_t memcg_caches_array_size(int num_groups)
2991 ssize_t size;
2992 if (num_groups <= 0)
2993 return 0;
2995 size = 2 * num_groups;
2996 if (size < MEMCG_CACHES_MIN_SIZE)
2997 size = MEMCG_CACHES_MIN_SIZE;
2998 else if (size > MEMCG_CACHES_MAX_SIZE)
2999 size = MEMCG_CACHES_MAX_SIZE;
3001 return size;
3005 * We should update the current array size iff all caches updates succeed. This
3006 * can only be done from the slab side. The slab mutex needs to be held when
3007 * calling this.
3009 void memcg_update_array_size(int num)
3011 if (num > memcg_limited_groups_array_size)
3012 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3015 static void kmem_cache_destroy_work_func(struct work_struct *w);
3017 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3019 struct memcg_cache_params *cur_params = s->memcg_params;
3021 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3023 if (num_groups > memcg_limited_groups_array_size) {
3024 int i;
3025 ssize_t size = memcg_caches_array_size(num_groups);
3027 size *= sizeof(void *);
3028 size += sizeof(struct memcg_cache_params);
3030 s->memcg_params = kzalloc(size, GFP_KERNEL);
3031 if (!s->memcg_params) {
3032 s->memcg_params = cur_params;
3033 return -ENOMEM;
3036 INIT_WORK(&s->memcg_params->destroy,
3037 kmem_cache_destroy_work_func);
3038 s->memcg_params->is_root_cache = true;
3041 * There is the chance it will be bigger than
3042 * memcg_limited_groups_array_size, if we failed an allocation
3043 * in a cache, in which case all caches updated before it, will
3044 * have a bigger array.
3046 * But if that is the case, the data after
3047 * memcg_limited_groups_array_size is certainly unused
3049 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3050 if (!cur_params->memcg_caches[i])
3051 continue;
3052 s->memcg_params->memcg_caches[i] =
3053 cur_params->memcg_caches[i];
3057 * Ideally, we would wait until all caches succeed, and only
3058 * then free the old one. But this is not worth the extra
3059 * pointer per-cache we'd have to have for this.
3061 * It is not a big deal if some caches are left with a size
3062 * bigger than the others. And all updates will reset this
3063 * anyway.
3065 kfree(cur_params);
3067 return 0;
3070 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3071 struct kmem_cache *root_cache)
3073 size_t size = sizeof(struct memcg_cache_params);
3075 if (!memcg_kmem_enabled())
3076 return 0;
3078 if (!memcg)
3079 size += memcg_limited_groups_array_size * sizeof(void *);
3081 s->memcg_params = kzalloc(size, GFP_KERNEL);
3082 if (!s->memcg_params)
3083 return -ENOMEM;
3085 INIT_WORK(&s->memcg_params->destroy,
3086 kmem_cache_destroy_work_func);
3087 if (memcg) {
3088 s->memcg_params->memcg = memcg;
3089 s->memcg_params->root_cache = root_cache;
3090 } else
3091 s->memcg_params->is_root_cache = true;
3093 return 0;
3096 void memcg_release_cache(struct kmem_cache *s)
3098 struct kmem_cache *root;
3099 struct mem_cgroup *memcg;
3100 int id;
3103 * This happens, for instance, when a root cache goes away before we
3104 * add any memcg.
3106 if (!s->memcg_params)
3107 return;
3109 if (s->memcg_params->is_root_cache)
3110 goto out;
3112 memcg = s->memcg_params->memcg;
3113 id = memcg_cache_id(memcg);
3115 root = s->memcg_params->root_cache;
3116 root->memcg_params->memcg_caches[id] = NULL;
3117 mem_cgroup_put(memcg);
3119 mutex_lock(&memcg->slab_caches_mutex);
3120 list_del(&s->memcg_params->list);
3121 mutex_unlock(&memcg->slab_caches_mutex);
3123 out:
3124 kfree(s->memcg_params);
3128 * During the creation a new cache, we need to disable our accounting mechanism
3129 * altogether. This is true even if we are not creating, but rather just
3130 * enqueing new caches to be created.
3132 * This is because that process will trigger allocations; some visible, like
3133 * explicit kmallocs to auxiliary data structures, name strings and internal
3134 * cache structures; some well concealed, like INIT_WORK() that can allocate
3135 * objects during debug.
3137 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3138 * to it. This may not be a bounded recursion: since the first cache creation
3139 * failed to complete (waiting on the allocation), we'll just try to create the
3140 * cache again, failing at the same point.
3142 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3143 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3144 * inside the following two functions.
3146 static inline void memcg_stop_kmem_account(void)
3148 VM_BUG_ON(!current->mm);
3149 current->memcg_kmem_skip_account++;
3152 static inline void memcg_resume_kmem_account(void)
3154 VM_BUG_ON(!current->mm);
3155 current->memcg_kmem_skip_account--;
3158 static void kmem_cache_destroy_work_func(struct work_struct *w)
3160 struct kmem_cache *cachep;
3161 struct memcg_cache_params *p;
3163 p = container_of(w, struct memcg_cache_params, destroy);
3165 cachep = memcg_params_to_cache(p);
3168 * If we get down to 0 after shrink, we could delete right away.
3169 * However, memcg_release_pages() already puts us back in the workqueue
3170 * in that case. If we proceed deleting, we'll get a dangling
3171 * reference, and removing the object from the workqueue in that case
3172 * is unnecessary complication. We are not a fast path.
3174 * Note that this case is fundamentally different from racing with
3175 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3176 * kmem_cache_shrink, not only we would be reinserting a dead cache
3177 * into the queue, but doing so from inside the worker racing to
3178 * destroy it.
3180 * So if we aren't down to zero, we'll just schedule a worker and try
3181 * again
3183 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3184 kmem_cache_shrink(cachep);
3185 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3186 return;
3187 } else
3188 kmem_cache_destroy(cachep);
3191 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3193 if (!cachep->memcg_params->dead)
3194 return;
3197 * There are many ways in which we can get here.
3199 * We can get to a memory-pressure situation while the delayed work is
3200 * still pending to run. The vmscan shrinkers can then release all
3201 * cache memory and get us to destruction. If this is the case, we'll
3202 * be executed twice, which is a bug (the second time will execute over
3203 * bogus data). In this case, cancelling the work should be fine.
3205 * But we can also get here from the worker itself, if
3206 * kmem_cache_shrink is enough to shake all the remaining objects and
3207 * get the page count to 0. In this case, we'll deadlock if we try to
3208 * cancel the work (the worker runs with an internal lock held, which
3209 * is the same lock we would hold for cancel_work_sync().)
3211 * Since we can't possibly know who got us here, just refrain from
3212 * running if there is already work pending
3214 if (work_pending(&cachep->memcg_params->destroy))
3215 return;
3217 * We have to defer the actual destroying to a workqueue, because
3218 * we might currently be in a context that cannot sleep.
3220 schedule_work(&cachep->memcg_params->destroy);
3223 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3225 char *name;
3226 struct dentry *dentry;
3228 rcu_read_lock();
3229 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3230 rcu_read_unlock();
3232 BUG_ON(dentry == NULL);
3234 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3235 memcg_cache_id(memcg), dentry->d_name.name);
3237 return name;
3240 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3241 struct kmem_cache *s)
3243 char *name;
3244 struct kmem_cache *new;
3246 name = memcg_cache_name(memcg, s);
3247 if (!name)
3248 return NULL;
3250 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
3251 (s->flags & ~SLAB_PANIC), s->ctor, s);
3253 if (new)
3254 new->allocflags |= __GFP_KMEMCG;
3256 kfree(name);
3257 return new;
3261 * This lock protects updaters, not readers. We want readers to be as fast as
3262 * they can, and they will either see NULL or a valid cache value. Our model
3263 * allow them to see NULL, in which case the root memcg will be selected.
3265 * We need this lock because multiple allocations to the same cache from a non
3266 * will span more than one worker. Only one of them can create the cache.
3268 static DEFINE_MUTEX(memcg_cache_mutex);
3269 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3270 struct kmem_cache *cachep)
3272 struct kmem_cache *new_cachep;
3273 int idx;
3275 BUG_ON(!memcg_can_account_kmem(memcg));
3277 idx = memcg_cache_id(memcg);
3279 mutex_lock(&memcg_cache_mutex);
3280 new_cachep = cachep->memcg_params->memcg_caches[idx];
3281 if (new_cachep)
3282 goto out;
3284 new_cachep = kmem_cache_dup(memcg, cachep);
3285 if (new_cachep == NULL) {
3286 new_cachep = cachep;
3287 goto out;
3290 mem_cgroup_get(memcg);
3291 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3293 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3295 * the readers won't lock, make sure everybody sees the updated value,
3296 * so they won't put stuff in the queue again for no reason
3298 wmb();
3299 out:
3300 mutex_unlock(&memcg_cache_mutex);
3301 return new_cachep;
3304 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3306 struct kmem_cache *c;
3307 int i;
3309 if (!s->memcg_params)
3310 return;
3311 if (!s->memcg_params->is_root_cache)
3312 return;
3315 * If the cache is being destroyed, we trust that there is no one else
3316 * requesting objects from it. Even if there are, the sanity checks in
3317 * kmem_cache_destroy should caught this ill-case.
3319 * Still, we don't want anyone else freeing memcg_caches under our
3320 * noses, which can happen if a new memcg comes to life. As usual,
3321 * we'll take the set_limit_mutex to protect ourselves against this.
3323 mutex_lock(&set_limit_mutex);
3324 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3325 c = s->memcg_params->memcg_caches[i];
3326 if (!c)
3327 continue;
3330 * We will now manually delete the caches, so to avoid races
3331 * we need to cancel all pending destruction workers and
3332 * proceed with destruction ourselves.
3334 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3335 * and that could spawn the workers again: it is likely that
3336 * the cache still have active pages until this very moment.
3337 * This would lead us back to mem_cgroup_destroy_cache.
3339 * But that will not execute at all if the "dead" flag is not
3340 * set, so flip it down to guarantee we are in control.
3342 c->memcg_params->dead = false;
3343 cancel_work_sync(&c->memcg_params->destroy);
3344 kmem_cache_destroy(c);
3346 mutex_unlock(&set_limit_mutex);
3349 struct create_work {
3350 struct mem_cgroup *memcg;
3351 struct kmem_cache *cachep;
3352 struct work_struct work;
3355 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3357 struct kmem_cache *cachep;
3358 struct memcg_cache_params *params;
3360 if (!memcg_kmem_is_active(memcg))
3361 return;
3363 mutex_lock(&memcg->slab_caches_mutex);
3364 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3365 cachep = memcg_params_to_cache(params);
3366 cachep->memcg_params->dead = true;
3367 schedule_work(&cachep->memcg_params->destroy);
3369 mutex_unlock(&memcg->slab_caches_mutex);
3372 static void memcg_create_cache_work_func(struct work_struct *w)
3374 struct create_work *cw;
3376 cw = container_of(w, struct create_work, work);
3377 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3378 /* Drop the reference gotten when we enqueued. */
3379 css_put(&cw->memcg->css);
3380 kfree(cw);
3384 * Enqueue the creation of a per-memcg kmem_cache.
3385 * Called with rcu_read_lock.
3387 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3388 struct kmem_cache *cachep)
3390 struct create_work *cw;
3392 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3393 if (cw == NULL)
3394 return;
3396 /* The corresponding put will be done in the workqueue. */
3397 if (!css_tryget(&memcg->css)) {
3398 kfree(cw);
3399 return;
3402 cw->memcg = memcg;
3403 cw->cachep = cachep;
3405 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3406 schedule_work(&cw->work);
3409 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3410 struct kmem_cache *cachep)
3413 * We need to stop accounting when we kmalloc, because if the
3414 * corresponding kmalloc cache is not yet created, the first allocation
3415 * in __memcg_create_cache_enqueue will recurse.
3417 * However, it is better to enclose the whole function. Depending on
3418 * the debugging options enabled, INIT_WORK(), for instance, can
3419 * trigger an allocation. This too, will make us recurse. Because at
3420 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3421 * the safest choice is to do it like this, wrapping the whole function.
3423 memcg_stop_kmem_account();
3424 __memcg_create_cache_enqueue(memcg, cachep);
3425 memcg_resume_kmem_account();
3428 * Return the kmem_cache we're supposed to use for a slab allocation.
3429 * We try to use the current memcg's version of the cache.
3431 * If the cache does not exist yet, if we are the first user of it,
3432 * we either create it immediately, if possible, or create it asynchronously
3433 * in a workqueue.
3434 * In the latter case, we will let the current allocation go through with
3435 * the original cache.
3437 * Can't be called in interrupt context or from kernel threads.
3438 * This function needs to be called with rcu_read_lock() held.
3440 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3441 gfp_t gfp)
3443 struct mem_cgroup *memcg;
3444 int idx;
3446 VM_BUG_ON(!cachep->memcg_params);
3447 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3449 if (!current->mm || current->memcg_kmem_skip_account)
3450 return cachep;
3452 rcu_read_lock();
3453 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3454 rcu_read_unlock();
3456 if (!memcg_can_account_kmem(memcg))
3457 return cachep;
3459 idx = memcg_cache_id(memcg);
3462 * barrier to mare sure we're always seeing the up to date value. The
3463 * code updating memcg_caches will issue a write barrier to match this.
3465 read_barrier_depends();
3466 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3468 * If we are in a safe context (can wait, and not in interrupt
3469 * context), we could be be predictable and return right away.
3470 * This would guarantee that the allocation being performed
3471 * already belongs in the new cache.
3473 * However, there are some clashes that can arrive from locking.
3474 * For instance, because we acquire the slab_mutex while doing
3475 * kmem_cache_dup, this means no further allocation could happen
3476 * with the slab_mutex held.
3478 * Also, because cache creation issue get_online_cpus(), this
3479 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3480 * that ends up reversed during cpu hotplug. (cpuset allocates
3481 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3482 * better to defer everything.
3484 memcg_create_cache_enqueue(memcg, cachep);
3485 return cachep;
3488 return cachep->memcg_params->memcg_caches[idx];
3490 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3493 * We need to verify if the allocation against current->mm->owner's memcg is
3494 * possible for the given order. But the page is not allocated yet, so we'll
3495 * need a further commit step to do the final arrangements.
3497 * It is possible for the task to switch cgroups in this mean time, so at
3498 * commit time, we can't rely on task conversion any longer. We'll then use
3499 * the handle argument to return to the caller which cgroup we should commit
3500 * against. We could also return the memcg directly and avoid the pointer
3501 * passing, but a boolean return value gives better semantics considering
3502 * the compiled-out case as well.
3504 * Returning true means the allocation is possible.
3506 bool
3507 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3509 struct mem_cgroup *memcg;
3510 int ret;
3512 *_memcg = NULL;
3513 memcg = try_get_mem_cgroup_from_mm(current->mm);
3516 * very rare case described in mem_cgroup_from_task. Unfortunately there
3517 * isn't much we can do without complicating this too much, and it would
3518 * be gfp-dependent anyway. Just let it go
3520 if (unlikely(!memcg))
3521 return true;
3523 if (!memcg_can_account_kmem(memcg)) {
3524 css_put(&memcg->css);
3525 return true;
3528 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3529 if (!ret)
3530 *_memcg = memcg;
3532 css_put(&memcg->css);
3533 return (ret == 0);
3536 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3537 int order)
3539 struct page_cgroup *pc;
3541 VM_BUG_ON(mem_cgroup_is_root(memcg));
3543 /* The page allocation failed. Revert */
3544 if (!page) {
3545 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3546 return;
3549 pc = lookup_page_cgroup(page);
3550 lock_page_cgroup(pc);
3551 pc->mem_cgroup = memcg;
3552 SetPageCgroupUsed(pc);
3553 unlock_page_cgroup(pc);
3556 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3558 struct mem_cgroup *memcg = NULL;
3559 struct page_cgroup *pc;
3562 pc = lookup_page_cgroup(page);
3564 * Fast unlocked return. Theoretically might have changed, have to
3565 * check again after locking.
3567 if (!PageCgroupUsed(pc))
3568 return;
3570 lock_page_cgroup(pc);
3571 if (PageCgroupUsed(pc)) {
3572 memcg = pc->mem_cgroup;
3573 ClearPageCgroupUsed(pc);
3575 unlock_page_cgroup(pc);
3578 * We trust that only if there is a memcg associated with the page, it
3579 * is a valid allocation
3581 if (!memcg)
3582 return;
3584 VM_BUG_ON(mem_cgroup_is_root(memcg));
3585 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3587 #else
3588 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3591 #endif /* CONFIG_MEMCG_KMEM */
3593 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3595 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3597 * Because tail pages are not marked as "used", set it. We're under
3598 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3599 * charge/uncharge will be never happen and move_account() is done under
3600 * compound_lock(), so we don't have to take care of races.
3602 void mem_cgroup_split_huge_fixup(struct page *head)
3604 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3605 struct page_cgroup *pc;
3606 int i;
3608 if (mem_cgroup_disabled())
3609 return;
3610 for (i = 1; i < HPAGE_PMD_NR; i++) {
3611 pc = head_pc + i;
3612 pc->mem_cgroup = head_pc->mem_cgroup;
3613 smp_wmb();/* see __commit_charge() */
3614 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3617 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3620 * mem_cgroup_move_account - move account of the page
3621 * @page: the page
3622 * @nr_pages: number of regular pages (>1 for huge pages)
3623 * @pc: page_cgroup of the page.
3624 * @from: mem_cgroup which the page is moved from.
3625 * @to: mem_cgroup which the page is moved to. @from != @to.
3627 * The caller must confirm following.
3628 * - page is not on LRU (isolate_page() is useful.)
3629 * - compound_lock is held when nr_pages > 1
3631 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3632 * from old cgroup.
3634 static int mem_cgroup_move_account(struct page *page,
3635 unsigned int nr_pages,
3636 struct page_cgroup *pc,
3637 struct mem_cgroup *from,
3638 struct mem_cgroup *to)
3640 unsigned long flags;
3641 int ret;
3642 bool anon = PageAnon(page);
3644 VM_BUG_ON(from == to);
3645 VM_BUG_ON(PageLRU(page));
3647 * The page is isolated from LRU. So, collapse function
3648 * will not handle this page. But page splitting can happen.
3649 * Do this check under compound_page_lock(). The caller should
3650 * hold it.
3652 ret = -EBUSY;
3653 if (nr_pages > 1 && !PageTransHuge(page))
3654 goto out;
3656 lock_page_cgroup(pc);
3658 ret = -EINVAL;
3659 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3660 goto unlock;
3662 move_lock_mem_cgroup(from, &flags);
3664 if (!anon && page_mapped(page)) {
3665 /* Update mapped_file data for mem_cgroup */
3666 preempt_disable();
3667 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3668 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3669 preempt_enable();
3671 mem_cgroup_charge_statistics(from, anon, -nr_pages);
3673 /* caller should have done css_get */
3674 pc->mem_cgroup = to;
3675 mem_cgroup_charge_statistics(to, anon, nr_pages);
3676 move_unlock_mem_cgroup(from, &flags);
3677 ret = 0;
3678 unlock:
3679 unlock_page_cgroup(pc);
3681 * check events
3683 memcg_check_events(to, page);
3684 memcg_check_events(from, page);
3685 out:
3686 return ret;
3690 * mem_cgroup_move_parent - moves page to the parent group
3691 * @page: the page to move
3692 * @pc: page_cgroup of the page
3693 * @child: page's cgroup
3695 * move charges to its parent or the root cgroup if the group has no
3696 * parent (aka use_hierarchy==0).
3697 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3698 * mem_cgroup_move_account fails) the failure is always temporary and
3699 * it signals a race with a page removal/uncharge or migration. In the
3700 * first case the page is on the way out and it will vanish from the LRU
3701 * on the next attempt and the call should be retried later.
3702 * Isolation from the LRU fails only if page has been isolated from
3703 * the LRU since we looked at it and that usually means either global
3704 * reclaim or migration going on. The page will either get back to the
3705 * LRU or vanish.
3706 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3707 * (!PageCgroupUsed) or moved to a different group. The page will
3708 * disappear in the next attempt.
3710 static int mem_cgroup_move_parent(struct page *page,
3711 struct page_cgroup *pc,
3712 struct mem_cgroup *child)
3714 struct mem_cgroup *parent;
3715 unsigned int nr_pages;
3716 unsigned long uninitialized_var(flags);
3717 int ret;
3719 VM_BUG_ON(mem_cgroup_is_root(child));
3721 ret = -EBUSY;
3722 if (!get_page_unless_zero(page))
3723 goto out;
3724 if (isolate_lru_page(page))
3725 goto put;
3727 nr_pages = hpage_nr_pages(page);
3729 parent = parent_mem_cgroup(child);
3731 * If no parent, move charges to root cgroup.
3733 if (!parent)
3734 parent = root_mem_cgroup;
3736 if (nr_pages > 1) {
3737 VM_BUG_ON(!PageTransHuge(page));
3738 flags = compound_lock_irqsave(page);
3741 ret = mem_cgroup_move_account(page, nr_pages,
3742 pc, child, parent);
3743 if (!ret)
3744 __mem_cgroup_cancel_local_charge(child, nr_pages);
3746 if (nr_pages > 1)
3747 compound_unlock_irqrestore(page, flags);
3748 putback_lru_page(page);
3749 put:
3750 put_page(page);
3751 out:
3752 return ret;
3756 * Charge the memory controller for page usage.
3757 * Return
3758 * 0 if the charge was successful
3759 * < 0 if the cgroup is over its limit
3761 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3762 gfp_t gfp_mask, enum charge_type ctype)
3764 struct mem_cgroup *memcg = NULL;
3765 unsigned int nr_pages = 1;
3766 bool oom = true;
3767 int ret;
3769 if (PageTransHuge(page)) {
3770 nr_pages <<= compound_order(page);
3771 VM_BUG_ON(!PageTransHuge(page));
3773 * Never OOM-kill a process for a huge page. The
3774 * fault handler will fall back to regular pages.
3776 oom = false;
3779 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3780 if (ret == -ENOMEM)
3781 return ret;
3782 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3783 return 0;
3786 int mem_cgroup_newpage_charge(struct page *page,
3787 struct mm_struct *mm, gfp_t gfp_mask)
3789 if (mem_cgroup_disabled())
3790 return 0;
3791 VM_BUG_ON(page_mapped(page));
3792 VM_BUG_ON(page->mapping && !PageAnon(page));
3793 VM_BUG_ON(!mm);
3794 return mem_cgroup_charge_common(page, mm, gfp_mask,
3795 MEM_CGROUP_CHARGE_TYPE_ANON);
3799 * While swap-in, try_charge -> commit or cancel, the page is locked.
3800 * And when try_charge() successfully returns, one refcnt to memcg without
3801 * struct page_cgroup is acquired. This refcnt will be consumed by
3802 * "commit()" or removed by "cancel()"
3804 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3805 struct page *page,
3806 gfp_t mask,
3807 struct mem_cgroup **memcgp)
3809 struct mem_cgroup *memcg;
3810 struct page_cgroup *pc;
3811 int ret;
3813 pc = lookup_page_cgroup(page);
3815 * Every swap fault against a single page tries to charge the
3816 * page, bail as early as possible. shmem_unuse() encounters
3817 * already charged pages, too. The USED bit is protected by
3818 * the page lock, which serializes swap cache removal, which
3819 * in turn serializes uncharging.
3821 if (PageCgroupUsed(pc))
3822 return 0;
3823 if (!do_swap_account)
3824 goto charge_cur_mm;
3825 memcg = try_get_mem_cgroup_from_page(page);
3826 if (!memcg)
3827 goto charge_cur_mm;
3828 *memcgp = memcg;
3829 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3830 css_put(&memcg->css);
3831 if (ret == -EINTR)
3832 ret = 0;
3833 return ret;
3834 charge_cur_mm:
3835 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3836 if (ret == -EINTR)
3837 ret = 0;
3838 return ret;
3841 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3842 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3844 *memcgp = NULL;
3845 if (mem_cgroup_disabled())
3846 return 0;
3848 * A racing thread's fault, or swapoff, may have already
3849 * updated the pte, and even removed page from swap cache: in
3850 * those cases unuse_pte()'s pte_same() test will fail; but
3851 * there's also a KSM case which does need to charge the page.
3853 if (!PageSwapCache(page)) {
3854 int ret;
3856 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3857 if (ret == -EINTR)
3858 ret = 0;
3859 return ret;
3861 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3864 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3866 if (mem_cgroup_disabled())
3867 return;
3868 if (!memcg)
3869 return;
3870 __mem_cgroup_cancel_charge(memcg, 1);
3873 static void
3874 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3875 enum charge_type ctype)
3877 if (mem_cgroup_disabled())
3878 return;
3879 if (!memcg)
3880 return;
3882 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3884 * Now swap is on-memory. This means this page may be
3885 * counted both as mem and swap....double count.
3886 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3887 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3888 * may call delete_from_swap_cache() before reach here.
3890 if (do_swap_account && PageSwapCache(page)) {
3891 swp_entry_t ent = {.val = page_private(page)};
3892 mem_cgroup_uncharge_swap(ent);
3896 void mem_cgroup_commit_charge_swapin(struct page *page,
3897 struct mem_cgroup *memcg)
3899 __mem_cgroup_commit_charge_swapin(page, memcg,
3900 MEM_CGROUP_CHARGE_TYPE_ANON);
3903 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3904 gfp_t gfp_mask)
3906 struct mem_cgroup *memcg = NULL;
3907 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3908 int ret;
3910 if (mem_cgroup_disabled())
3911 return 0;
3912 if (PageCompound(page))
3913 return 0;
3915 if (!PageSwapCache(page))
3916 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3917 else { /* page is swapcache/shmem */
3918 ret = __mem_cgroup_try_charge_swapin(mm, page,
3919 gfp_mask, &memcg);
3920 if (!ret)
3921 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3923 return ret;
3926 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3927 unsigned int nr_pages,
3928 const enum charge_type ctype)
3930 struct memcg_batch_info *batch = NULL;
3931 bool uncharge_memsw = true;
3933 /* If swapout, usage of swap doesn't decrease */
3934 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3935 uncharge_memsw = false;
3937 batch = &current->memcg_batch;
3939 * In usual, we do css_get() when we remember memcg pointer.
3940 * But in this case, we keep res->usage until end of a series of
3941 * uncharges. Then, it's ok to ignore memcg's refcnt.
3943 if (!batch->memcg)
3944 batch->memcg = memcg;
3946 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3947 * In those cases, all pages freed continuously can be expected to be in
3948 * the same cgroup and we have chance to coalesce uncharges.
3949 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3950 * because we want to do uncharge as soon as possible.
3953 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3954 goto direct_uncharge;
3956 if (nr_pages > 1)
3957 goto direct_uncharge;
3960 * In typical case, batch->memcg == mem. This means we can
3961 * merge a series of uncharges to an uncharge of res_counter.
3962 * If not, we uncharge res_counter ony by one.
3964 if (batch->memcg != memcg)
3965 goto direct_uncharge;
3966 /* remember freed charge and uncharge it later */
3967 batch->nr_pages++;
3968 if (uncharge_memsw)
3969 batch->memsw_nr_pages++;
3970 return;
3971 direct_uncharge:
3972 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3973 if (uncharge_memsw)
3974 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3975 if (unlikely(batch->memcg != memcg))
3976 memcg_oom_recover(memcg);
3980 * uncharge if !page_mapped(page)
3982 static struct mem_cgroup *
3983 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3984 bool end_migration)
3986 struct mem_cgroup *memcg = NULL;
3987 unsigned int nr_pages = 1;
3988 struct page_cgroup *pc;
3989 bool anon;
3991 if (mem_cgroup_disabled())
3992 return NULL;
3994 VM_BUG_ON(PageSwapCache(page));
3996 if (PageTransHuge(page)) {
3997 nr_pages <<= compound_order(page);
3998 VM_BUG_ON(!PageTransHuge(page));
4001 * Check if our page_cgroup is valid
4003 pc = lookup_page_cgroup(page);
4004 if (unlikely(!PageCgroupUsed(pc)))
4005 return NULL;
4007 lock_page_cgroup(pc);
4009 memcg = pc->mem_cgroup;
4011 if (!PageCgroupUsed(pc))
4012 goto unlock_out;
4014 anon = PageAnon(page);
4016 switch (ctype) {
4017 case MEM_CGROUP_CHARGE_TYPE_ANON:
4019 * Generally PageAnon tells if it's the anon statistics to be
4020 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4021 * used before page reached the stage of being marked PageAnon.
4023 anon = true;
4024 /* fallthrough */
4025 case MEM_CGROUP_CHARGE_TYPE_DROP:
4026 /* See mem_cgroup_prepare_migration() */
4027 if (page_mapped(page))
4028 goto unlock_out;
4030 * Pages under migration may not be uncharged. But
4031 * end_migration() /must/ be the one uncharging the
4032 * unused post-migration page and so it has to call
4033 * here with the migration bit still set. See the
4034 * res_counter handling below.
4036 if (!end_migration && PageCgroupMigration(pc))
4037 goto unlock_out;
4038 break;
4039 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4040 if (!PageAnon(page)) { /* Shared memory */
4041 if (page->mapping && !page_is_file_cache(page))
4042 goto unlock_out;
4043 } else if (page_mapped(page)) /* Anon */
4044 goto unlock_out;
4045 break;
4046 default:
4047 break;
4050 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
4052 ClearPageCgroupUsed(pc);
4054 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4055 * freed from LRU. This is safe because uncharged page is expected not
4056 * to be reused (freed soon). Exception is SwapCache, it's handled by
4057 * special functions.
4060 unlock_page_cgroup(pc);
4062 * even after unlock, we have memcg->res.usage here and this memcg
4063 * will never be freed.
4065 memcg_check_events(memcg, page);
4066 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4067 mem_cgroup_swap_statistics(memcg, true);
4068 mem_cgroup_get(memcg);
4071 * Migration does not charge the res_counter for the
4072 * replacement page, so leave it alone when phasing out the
4073 * page that is unused after the migration.
4075 if (!end_migration && !mem_cgroup_is_root(memcg))
4076 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4078 return memcg;
4080 unlock_out:
4081 unlock_page_cgroup(pc);
4082 return NULL;
4085 void mem_cgroup_uncharge_page(struct page *page)
4087 /* early check. */
4088 if (page_mapped(page))
4089 return;
4090 VM_BUG_ON(page->mapping && !PageAnon(page));
4091 if (PageSwapCache(page))
4092 return;
4093 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4096 void mem_cgroup_uncharge_cache_page(struct page *page)
4098 VM_BUG_ON(page_mapped(page));
4099 VM_BUG_ON(page->mapping);
4100 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4104 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4105 * In that cases, pages are freed continuously and we can expect pages
4106 * are in the same memcg. All these calls itself limits the number of
4107 * pages freed at once, then uncharge_start/end() is called properly.
4108 * This may be called prural(2) times in a context,
4111 void mem_cgroup_uncharge_start(void)
4113 current->memcg_batch.do_batch++;
4114 /* We can do nest. */
4115 if (current->memcg_batch.do_batch == 1) {
4116 current->memcg_batch.memcg = NULL;
4117 current->memcg_batch.nr_pages = 0;
4118 current->memcg_batch.memsw_nr_pages = 0;
4122 void mem_cgroup_uncharge_end(void)
4124 struct memcg_batch_info *batch = &current->memcg_batch;
4126 if (!batch->do_batch)
4127 return;
4129 batch->do_batch--;
4130 if (batch->do_batch) /* If stacked, do nothing. */
4131 return;
4133 if (!batch->memcg)
4134 return;
4136 * This "batch->memcg" is valid without any css_get/put etc...
4137 * bacause we hide charges behind us.
4139 if (batch->nr_pages)
4140 res_counter_uncharge(&batch->memcg->res,
4141 batch->nr_pages * PAGE_SIZE);
4142 if (batch->memsw_nr_pages)
4143 res_counter_uncharge(&batch->memcg->memsw,
4144 batch->memsw_nr_pages * PAGE_SIZE);
4145 memcg_oom_recover(batch->memcg);
4146 /* forget this pointer (for sanity check) */
4147 batch->memcg = NULL;
4150 #ifdef CONFIG_SWAP
4152 * called after __delete_from_swap_cache() and drop "page" account.
4153 * memcg information is recorded to swap_cgroup of "ent"
4155 void
4156 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4158 struct mem_cgroup *memcg;
4159 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4161 if (!swapout) /* this was a swap cache but the swap is unused ! */
4162 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4164 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4167 * record memcg information, if swapout && memcg != NULL,
4168 * mem_cgroup_get() was called in uncharge().
4170 if (do_swap_account && swapout && memcg)
4171 swap_cgroup_record(ent, css_id(&memcg->css));
4173 #endif
4175 #ifdef CONFIG_MEMCG_SWAP
4177 * called from swap_entry_free(). remove record in swap_cgroup and
4178 * uncharge "memsw" account.
4180 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4182 struct mem_cgroup *memcg;
4183 unsigned short id;
4185 if (!do_swap_account)
4186 return;
4188 id = swap_cgroup_record(ent, 0);
4189 rcu_read_lock();
4190 memcg = mem_cgroup_lookup(id);
4191 if (memcg) {
4193 * We uncharge this because swap is freed.
4194 * This memcg can be obsolete one. We avoid calling css_tryget
4196 if (!mem_cgroup_is_root(memcg))
4197 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4198 mem_cgroup_swap_statistics(memcg, false);
4199 mem_cgroup_put(memcg);
4201 rcu_read_unlock();
4205 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4206 * @entry: swap entry to be moved
4207 * @from: mem_cgroup which the entry is moved from
4208 * @to: mem_cgroup which the entry is moved to
4210 * It succeeds only when the swap_cgroup's record for this entry is the same
4211 * as the mem_cgroup's id of @from.
4213 * Returns 0 on success, -EINVAL on failure.
4215 * The caller must have charged to @to, IOW, called res_counter_charge() about
4216 * both res and memsw, and called css_get().
4218 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4219 struct mem_cgroup *from, struct mem_cgroup *to)
4221 unsigned short old_id, new_id;
4223 old_id = css_id(&from->css);
4224 new_id = css_id(&to->css);
4226 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4227 mem_cgroup_swap_statistics(from, false);
4228 mem_cgroup_swap_statistics(to, true);
4230 * This function is only called from task migration context now.
4231 * It postpones res_counter and refcount handling till the end
4232 * of task migration(mem_cgroup_clear_mc()) for performance
4233 * improvement. But we cannot postpone mem_cgroup_get(to)
4234 * because if the process that has been moved to @to does
4235 * swap-in, the refcount of @to might be decreased to 0.
4237 mem_cgroup_get(to);
4238 return 0;
4240 return -EINVAL;
4242 #else
4243 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4244 struct mem_cgroup *from, struct mem_cgroup *to)
4246 return -EINVAL;
4248 #endif
4251 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4252 * page belongs to.
4254 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4255 struct mem_cgroup **memcgp)
4257 struct mem_cgroup *memcg = NULL;
4258 unsigned int nr_pages = 1;
4259 struct page_cgroup *pc;
4260 enum charge_type ctype;
4262 *memcgp = NULL;
4264 if (mem_cgroup_disabled())
4265 return;
4267 if (PageTransHuge(page))
4268 nr_pages <<= compound_order(page);
4270 pc = lookup_page_cgroup(page);
4271 lock_page_cgroup(pc);
4272 if (PageCgroupUsed(pc)) {
4273 memcg = pc->mem_cgroup;
4274 css_get(&memcg->css);
4276 * At migrating an anonymous page, its mapcount goes down
4277 * to 0 and uncharge() will be called. But, even if it's fully
4278 * unmapped, migration may fail and this page has to be
4279 * charged again. We set MIGRATION flag here and delay uncharge
4280 * until end_migration() is called
4282 * Corner Case Thinking
4283 * A)
4284 * When the old page was mapped as Anon and it's unmap-and-freed
4285 * while migration was ongoing.
4286 * If unmap finds the old page, uncharge() of it will be delayed
4287 * until end_migration(). If unmap finds a new page, it's
4288 * uncharged when it make mapcount to be 1->0. If unmap code
4289 * finds swap_migration_entry, the new page will not be mapped
4290 * and end_migration() will find it(mapcount==0).
4292 * B)
4293 * When the old page was mapped but migraion fails, the kernel
4294 * remaps it. A charge for it is kept by MIGRATION flag even
4295 * if mapcount goes down to 0. We can do remap successfully
4296 * without charging it again.
4298 * C)
4299 * The "old" page is under lock_page() until the end of
4300 * migration, so, the old page itself will not be swapped-out.
4301 * If the new page is swapped out before end_migraton, our
4302 * hook to usual swap-out path will catch the event.
4304 if (PageAnon(page))
4305 SetPageCgroupMigration(pc);
4307 unlock_page_cgroup(pc);
4309 * If the page is not charged at this point,
4310 * we return here.
4312 if (!memcg)
4313 return;
4315 *memcgp = memcg;
4317 * We charge new page before it's used/mapped. So, even if unlock_page()
4318 * is called before end_migration, we can catch all events on this new
4319 * page. In the case new page is migrated but not remapped, new page's
4320 * mapcount will be finally 0 and we call uncharge in end_migration().
4322 if (PageAnon(page))
4323 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4324 else
4325 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4327 * The page is committed to the memcg, but it's not actually
4328 * charged to the res_counter since we plan on replacing the
4329 * old one and only one page is going to be left afterwards.
4331 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4334 /* remove redundant charge if migration failed*/
4335 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4336 struct page *oldpage, struct page *newpage, bool migration_ok)
4338 struct page *used, *unused;
4339 struct page_cgroup *pc;
4340 bool anon;
4342 if (!memcg)
4343 return;
4345 if (!migration_ok) {
4346 used = oldpage;
4347 unused = newpage;
4348 } else {
4349 used = newpage;
4350 unused = oldpage;
4352 anon = PageAnon(used);
4353 __mem_cgroup_uncharge_common(unused,
4354 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4355 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4356 true);
4357 css_put(&memcg->css);
4359 * We disallowed uncharge of pages under migration because mapcount
4360 * of the page goes down to zero, temporarly.
4361 * Clear the flag and check the page should be charged.
4363 pc = lookup_page_cgroup(oldpage);
4364 lock_page_cgroup(pc);
4365 ClearPageCgroupMigration(pc);
4366 unlock_page_cgroup(pc);
4369 * If a page is a file cache, radix-tree replacement is very atomic
4370 * and we can skip this check. When it was an Anon page, its mapcount
4371 * goes down to 0. But because we added MIGRATION flage, it's not
4372 * uncharged yet. There are several case but page->mapcount check
4373 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4374 * check. (see prepare_charge() also)
4376 if (anon)
4377 mem_cgroup_uncharge_page(used);
4381 * At replace page cache, newpage is not under any memcg but it's on
4382 * LRU. So, this function doesn't touch res_counter but handles LRU
4383 * in correct way. Both pages are locked so we cannot race with uncharge.
4385 void mem_cgroup_replace_page_cache(struct page *oldpage,
4386 struct page *newpage)
4388 struct mem_cgroup *memcg = NULL;
4389 struct page_cgroup *pc;
4390 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4392 if (mem_cgroup_disabled())
4393 return;
4395 pc = lookup_page_cgroup(oldpage);
4396 /* fix accounting on old pages */
4397 lock_page_cgroup(pc);
4398 if (PageCgroupUsed(pc)) {
4399 memcg = pc->mem_cgroup;
4400 mem_cgroup_charge_statistics(memcg, false, -1);
4401 ClearPageCgroupUsed(pc);
4403 unlock_page_cgroup(pc);
4406 * When called from shmem_replace_page(), in some cases the
4407 * oldpage has already been charged, and in some cases not.
4409 if (!memcg)
4410 return;
4412 * Even if newpage->mapping was NULL before starting replacement,
4413 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4414 * LRU while we overwrite pc->mem_cgroup.
4416 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4419 #ifdef CONFIG_DEBUG_VM
4420 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4422 struct page_cgroup *pc;
4424 pc = lookup_page_cgroup(page);
4426 * Can be NULL while feeding pages into the page allocator for
4427 * the first time, i.e. during boot or memory hotplug;
4428 * or when mem_cgroup_disabled().
4430 if (likely(pc) && PageCgroupUsed(pc))
4431 return pc;
4432 return NULL;
4435 bool mem_cgroup_bad_page_check(struct page *page)
4437 if (mem_cgroup_disabled())
4438 return false;
4440 return lookup_page_cgroup_used(page) != NULL;
4443 void mem_cgroup_print_bad_page(struct page *page)
4445 struct page_cgroup *pc;
4447 pc = lookup_page_cgroup_used(page);
4448 if (pc) {
4449 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4450 pc, pc->flags, pc->mem_cgroup);
4453 #endif
4455 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4456 unsigned long long val)
4458 int retry_count;
4459 u64 memswlimit, memlimit;
4460 int ret = 0;
4461 int children = mem_cgroup_count_children(memcg);
4462 u64 curusage, oldusage;
4463 int enlarge;
4466 * For keeping hierarchical_reclaim simple, how long we should retry
4467 * is depends on callers. We set our retry-count to be function
4468 * of # of children which we should visit in this loop.
4470 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4472 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4474 enlarge = 0;
4475 while (retry_count) {
4476 if (signal_pending(current)) {
4477 ret = -EINTR;
4478 break;
4481 * Rather than hide all in some function, I do this in
4482 * open coded manner. You see what this really does.
4483 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4485 mutex_lock(&set_limit_mutex);
4486 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4487 if (memswlimit < val) {
4488 ret = -EINVAL;
4489 mutex_unlock(&set_limit_mutex);
4490 break;
4493 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4494 if (memlimit < val)
4495 enlarge = 1;
4497 ret = res_counter_set_limit(&memcg->res, val);
4498 if (!ret) {
4499 if (memswlimit == val)
4500 memcg->memsw_is_minimum = true;
4501 else
4502 memcg->memsw_is_minimum = false;
4504 mutex_unlock(&set_limit_mutex);
4506 if (!ret)
4507 break;
4509 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4510 MEM_CGROUP_RECLAIM_SHRINK);
4511 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4512 /* Usage is reduced ? */
4513 if (curusage >= oldusage)
4514 retry_count--;
4515 else
4516 oldusage = curusage;
4518 if (!ret && enlarge)
4519 memcg_oom_recover(memcg);
4521 return ret;
4524 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4525 unsigned long long val)
4527 int retry_count;
4528 u64 memlimit, memswlimit, oldusage, curusage;
4529 int children = mem_cgroup_count_children(memcg);
4530 int ret = -EBUSY;
4531 int enlarge = 0;
4533 /* see mem_cgroup_resize_res_limit */
4534 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4535 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4536 while (retry_count) {
4537 if (signal_pending(current)) {
4538 ret = -EINTR;
4539 break;
4542 * Rather than hide all in some function, I do this in
4543 * open coded manner. You see what this really does.
4544 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4546 mutex_lock(&set_limit_mutex);
4547 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4548 if (memlimit > val) {
4549 ret = -EINVAL;
4550 mutex_unlock(&set_limit_mutex);
4551 break;
4553 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4554 if (memswlimit < val)
4555 enlarge = 1;
4556 ret = res_counter_set_limit(&memcg->memsw, val);
4557 if (!ret) {
4558 if (memlimit == val)
4559 memcg->memsw_is_minimum = true;
4560 else
4561 memcg->memsw_is_minimum = false;
4563 mutex_unlock(&set_limit_mutex);
4565 if (!ret)
4566 break;
4568 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4569 MEM_CGROUP_RECLAIM_NOSWAP |
4570 MEM_CGROUP_RECLAIM_SHRINK);
4571 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4572 /* Usage is reduced ? */
4573 if (curusage >= oldusage)
4574 retry_count--;
4575 else
4576 oldusage = curusage;
4578 if (!ret && enlarge)
4579 memcg_oom_recover(memcg);
4580 return ret;
4583 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4584 gfp_t gfp_mask,
4585 unsigned long *total_scanned)
4587 unsigned long nr_reclaimed = 0;
4588 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4589 unsigned long reclaimed;
4590 int loop = 0;
4591 struct mem_cgroup_tree_per_zone *mctz;
4592 unsigned long long excess;
4593 unsigned long nr_scanned;
4595 if (order > 0)
4596 return 0;
4598 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4600 * This loop can run a while, specially if mem_cgroup's continuously
4601 * keep exceeding their soft limit and putting the system under
4602 * pressure
4604 do {
4605 if (next_mz)
4606 mz = next_mz;
4607 else
4608 mz = mem_cgroup_largest_soft_limit_node(mctz);
4609 if (!mz)
4610 break;
4612 nr_scanned = 0;
4613 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4614 gfp_mask, &nr_scanned);
4615 nr_reclaimed += reclaimed;
4616 *total_scanned += nr_scanned;
4617 spin_lock(&mctz->lock);
4620 * If we failed to reclaim anything from this memory cgroup
4621 * it is time to move on to the next cgroup
4623 next_mz = NULL;
4624 if (!reclaimed) {
4625 do {
4627 * Loop until we find yet another one.
4629 * By the time we get the soft_limit lock
4630 * again, someone might have aded the
4631 * group back on the RB tree. Iterate to
4632 * make sure we get a different mem.
4633 * mem_cgroup_largest_soft_limit_node returns
4634 * NULL if no other cgroup is present on
4635 * the tree
4637 next_mz =
4638 __mem_cgroup_largest_soft_limit_node(mctz);
4639 if (next_mz == mz)
4640 css_put(&next_mz->memcg->css);
4641 else /* next_mz == NULL or other memcg */
4642 break;
4643 } while (1);
4645 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4646 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4648 * One school of thought says that we should not add
4649 * back the node to the tree if reclaim returns 0.
4650 * But our reclaim could return 0, simply because due
4651 * to priority we are exposing a smaller subset of
4652 * memory to reclaim from. Consider this as a longer
4653 * term TODO.
4655 /* If excess == 0, no tree ops */
4656 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4657 spin_unlock(&mctz->lock);
4658 css_put(&mz->memcg->css);
4659 loop++;
4661 * Could not reclaim anything and there are no more
4662 * mem cgroups to try or we seem to be looping without
4663 * reclaiming anything.
4665 if (!nr_reclaimed &&
4666 (next_mz == NULL ||
4667 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4668 break;
4669 } while (!nr_reclaimed);
4670 if (next_mz)
4671 css_put(&next_mz->memcg->css);
4672 return nr_reclaimed;
4676 * mem_cgroup_force_empty_list - clears LRU of a group
4677 * @memcg: group to clear
4678 * @node: NUMA node
4679 * @zid: zone id
4680 * @lru: lru to to clear
4682 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4683 * reclaim the pages page themselves - pages are moved to the parent (or root)
4684 * group.
4686 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4687 int node, int zid, enum lru_list lru)
4689 struct lruvec *lruvec;
4690 unsigned long flags;
4691 struct list_head *list;
4692 struct page *busy;
4693 struct zone *zone;
4695 zone = &NODE_DATA(node)->node_zones[zid];
4696 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4697 list = &lruvec->lists[lru];
4699 busy = NULL;
4700 do {
4701 struct page_cgroup *pc;
4702 struct page *page;
4704 spin_lock_irqsave(&zone->lru_lock, flags);
4705 if (list_empty(list)) {
4706 spin_unlock_irqrestore(&zone->lru_lock, flags);
4707 break;
4709 page = list_entry(list->prev, struct page, lru);
4710 if (busy == page) {
4711 list_move(&page->lru, list);
4712 busy = NULL;
4713 spin_unlock_irqrestore(&zone->lru_lock, flags);
4714 continue;
4716 spin_unlock_irqrestore(&zone->lru_lock, flags);
4718 pc = lookup_page_cgroup(page);
4720 if (mem_cgroup_move_parent(page, pc, memcg)) {
4721 /* found lock contention or "pc" is obsolete. */
4722 busy = page;
4723 cond_resched();
4724 } else
4725 busy = NULL;
4726 } while (!list_empty(list));
4730 * make mem_cgroup's charge to be 0 if there is no task by moving
4731 * all the charges and pages to the parent.
4732 * This enables deleting this mem_cgroup.
4734 * Caller is responsible for holding css reference on the memcg.
4736 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4738 int node, zid;
4739 u64 usage;
4741 do {
4742 /* This is for making all *used* pages to be on LRU. */
4743 lru_add_drain_all();
4744 drain_all_stock_sync(memcg);
4745 mem_cgroup_start_move(memcg);
4746 for_each_node_state(node, N_MEMORY) {
4747 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4748 enum lru_list lru;
4749 for_each_lru(lru) {
4750 mem_cgroup_force_empty_list(memcg,
4751 node, zid, lru);
4755 mem_cgroup_end_move(memcg);
4756 memcg_oom_recover(memcg);
4757 cond_resched();
4760 * Kernel memory may not necessarily be trackable to a specific
4761 * process. So they are not migrated, and therefore we can't
4762 * expect their value to drop to 0 here.
4763 * Having res filled up with kmem only is enough.
4765 * This is a safety check because mem_cgroup_force_empty_list
4766 * could have raced with mem_cgroup_replace_page_cache callers
4767 * so the lru seemed empty but the page could have been added
4768 * right after the check. RES_USAGE should be safe as we always
4769 * charge before adding to the LRU.
4771 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4772 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4773 } while (usage > 0);
4777 * This mainly exists for tests during the setting of set of use_hierarchy.
4778 * Since this is the very setting we are changing, the current hierarchy value
4779 * is meaningless
4781 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4783 struct cgroup *pos;
4785 /* bounce at first found */
4786 cgroup_for_each_child(pos, memcg->css.cgroup)
4787 return true;
4788 return false;
4792 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4793 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4794 * from mem_cgroup_count_children(), in the sense that we don't really care how
4795 * many children we have; we only need to know if we have any. It also counts
4796 * any memcg without hierarchy as infertile.
4798 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4800 return memcg->use_hierarchy && __memcg_has_children(memcg);
4804 * Reclaims as many pages from the given memcg as possible and moves
4805 * the rest to the parent.
4807 * Caller is responsible for holding css reference for memcg.
4809 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4811 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4812 struct cgroup *cgrp = memcg->css.cgroup;
4814 /* returns EBUSY if there is a task or if we come here twice. */
4815 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4816 return -EBUSY;
4818 /* we call try-to-free pages for make this cgroup empty */
4819 lru_add_drain_all();
4820 /* try to free all pages in this cgroup */
4821 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4822 int progress;
4824 if (signal_pending(current))
4825 return -EINTR;
4827 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4828 false);
4829 if (!progress) {
4830 nr_retries--;
4831 /* maybe some writeback is necessary */
4832 congestion_wait(BLK_RW_ASYNC, HZ/10);
4836 lru_add_drain();
4837 mem_cgroup_reparent_charges(memcg);
4839 return 0;
4842 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4844 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4845 int ret;
4847 if (mem_cgroup_is_root(memcg))
4848 return -EINVAL;
4849 css_get(&memcg->css);
4850 ret = mem_cgroup_force_empty(memcg);
4851 css_put(&memcg->css);
4853 return ret;
4857 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4859 return mem_cgroup_from_cont(cont)->use_hierarchy;
4862 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4863 u64 val)
4865 int retval = 0;
4866 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4867 struct cgroup *parent = cont->parent;
4868 struct mem_cgroup *parent_memcg = NULL;
4870 if (parent)
4871 parent_memcg = mem_cgroup_from_cont(parent);
4873 mutex_lock(&memcg_create_mutex);
4875 if (memcg->use_hierarchy == val)
4876 goto out;
4879 * If parent's use_hierarchy is set, we can't make any modifications
4880 * in the child subtrees. If it is unset, then the change can
4881 * occur, provided the current cgroup has no children.
4883 * For the root cgroup, parent_mem is NULL, we allow value to be
4884 * set if there are no children.
4886 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4887 (val == 1 || val == 0)) {
4888 if (!__memcg_has_children(memcg))
4889 memcg->use_hierarchy = val;
4890 else
4891 retval = -EBUSY;
4892 } else
4893 retval = -EINVAL;
4895 out:
4896 mutex_unlock(&memcg_create_mutex);
4898 return retval;
4902 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4903 enum mem_cgroup_stat_index idx)
4905 struct mem_cgroup *iter;
4906 long val = 0;
4908 /* Per-cpu values can be negative, use a signed accumulator */
4909 for_each_mem_cgroup_tree(iter, memcg)
4910 val += mem_cgroup_read_stat(iter, idx);
4912 if (val < 0) /* race ? */
4913 val = 0;
4914 return val;
4917 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4919 u64 val;
4921 if (!mem_cgroup_is_root(memcg)) {
4922 if (!swap)
4923 return res_counter_read_u64(&memcg->res, RES_USAGE);
4924 else
4925 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4928 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4929 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4931 if (swap)
4932 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4934 return val << PAGE_SHIFT;
4937 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
4938 struct file *file, char __user *buf,
4939 size_t nbytes, loff_t *ppos)
4941 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4942 char str[64];
4943 u64 val;
4944 int name, len;
4945 enum res_type type;
4947 type = MEMFILE_TYPE(cft->private);
4948 name = MEMFILE_ATTR(cft->private);
4950 if (!do_swap_account && type == _MEMSWAP)
4951 return -EOPNOTSUPP;
4953 switch (type) {
4954 case _MEM:
4955 if (name == RES_USAGE)
4956 val = mem_cgroup_usage(memcg, false);
4957 else
4958 val = res_counter_read_u64(&memcg->res, name);
4959 break;
4960 case _MEMSWAP:
4961 if (name == RES_USAGE)
4962 val = mem_cgroup_usage(memcg, true);
4963 else
4964 val = res_counter_read_u64(&memcg->memsw, name);
4965 break;
4966 case _KMEM:
4967 val = res_counter_read_u64(&memcg->kmem, name);
4968 break;
4969 default:
4970 BUG();
4973 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4974 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
4977 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
4979 int ret = -EINVAL;
4980 #ifdef CONFIG_MEMCG_KMEM
4981 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4983 * For simplicity, we won't allow this to be disabled. It also can't
4984 * be changed if the cgroup has children already, or if tasks had
4985 * already joined.
4987 * If tasks join before we set the limit, a person looking at
4988 * kmem.usage_in_bytes will have no way to determine when it took
4989 * place, which makes the value quite meaningless.
4991 * After it first became limited, changes in the value of the limit are
4992 * of course permitted.
4994 mutex_lock(&memcg_create_mutex);
4995 mutex_lock(&set_limit_mutex);
4996 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4997 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
4998 ret = -EBUSY;
4999 goto out;
5001 ret = res_counter_set_limit(&memcg->kmem, val);
5002 VM_BUG_ON(ret);
5004 ret = memcg_update_cache_sizes(memcg);
5005 if (ret) {
5006 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5007 goto out;
5009 static_key_slow_inc(&memcg_kmem_enabled_key);
5011 * setting the active bit after the inc will guarantee no one
5012 * starts accounting before all call sites are patched
5014 memcg_kmem_set_active(memcg);
5017 * kmem charges can outlive the cgroup. In the case of slab
5018 * pages, for instance, a page contain objects from various
5019 * processes, so it is unfeasible to migrate them away. We
5020 * need to reference count the memcg because of that.
5022 mem_cgroup_get(memcg);
5023 } else
5024 ret = res_counter_set_limit(&memcg->kmem, val);
5025 out:
5026 mutex_unlock(&set_limit_mutex);
5027 mutex_unlock(&memcg_create_mutex);
5028 #endif
5029 return ret;
5032 #ifdef CONFIG_MEMCG_KMEM
5033 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5035 int ret = 0;
5036 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5037 if (!parent)
5038 goto out;
5040 memcg->kmem_account_flags = parent->kmem_account_flags;
5042 * When that happen, we need to disable the static branch only on those
5043 * memcgs that enabled it. To achieve this, we would be forced to
5044 * complicate the code by keeping track of which memcgs were the ones
5045 * that actually enabled limits, and which ones got it from its
5046 * parents.
5048 * It is a lot simpler just to do static_key_slow_inc() on every child
5049 * that is accounted.
5051 if (!memcg_kmem_is_active(memcg))
5052 goto out;
5055 * destroy(), called if we fail, will issue static_key_slow_inc() and
5056 * mem_cgroup_put() if kmem is enabled. We have to either call them
5057 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5058 * this more consistent, since it always leads to the same destroy path
5060 mem_cgroup_get(memcg);
5061 static_key_slow_inc(&memcg_kmem_enabled_key);
5063 mutex_lock(&set_limit_mutex);
5064 ret = memcg_update_cache_sizes(memcg);
5065 mutex_unlock(&set_limit_mutex);
5066 out:
5067 return ret;
5069 #endif /* CONFIG_MEMCG_KMEM */
5072 * The user of this function is...
5073 * RES_LIMIT.
5075 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5076 const char *buffer)
5078 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5079 enum res_type type;
5080 int name;
5081 unsigned long long val;
5082 int ret;
5084 type = MEMFILE_TYPE(cft->private);
5085 name = MEMFILE_ATTR(cft->private);
5087 if (!do_swap_account && type == _MEMSWAP)
5088 return -EOPNOTSUPP;
5090 switch (name) {
5091 case RES_LIMIT:
5092 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5093 ret = -EINVAL;
5094 break;
5096 /* This function does all necessary parse...reuse it */
5097 ret = res_counter_memparse_write_strategy(buffer, &val);
5098 if (ret)
5099 break;
5100 if (type == _MEM)
5101 ret = mem_cgroup_resize_limit(memcg, val);
5102 else if (type == _MEMSWAP)
5103 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5104 else if (type == _KMEM)
5105 ret = memcg_update_kmem_limit(cont, val);
5106 else
5107 return -EINVAL;
5108 break;
5109 case RES_SOFT_LIMIT:
5110 ret = res_counter_memparse_write_strategy(buffer, &val);
5111 if (ret)
5112 break;
5114 * For memsw, soft limits are hard to implement in terms
5115 * of semantics, for now, we support soft limits for
5116 * control without swap
5118 if (type == _MEM)
5119 ret = res_counter_set_soft_limit(&memcg->res, val);
5120 else
5121 ret = -EINVAL;
5122 break;
5123 default:
5124 ret = -EINVAL; /* should be BUG() ? */
5125 break;
5127 return ret;
5130 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5131 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5133 struct cgroup *cgroup;
5134 unsigned long long min_limit, min_memsw_limit, tmp;
5136 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5137 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5138 cgroup = memcg->css.cgroup;
5139 if (!memcg->use_hierarchy)
5140 goto out;
5142 while (cgroup->parent) {
5143 cgroup = cgroup->parent;
5144 memcg = mem_cgroup_from_cont(cgroup);
5145 if (!memcg->use_hierarchy)
5146 break;
5147 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5148 min_limit = min(min_limit, tmp);
5149 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5150 min_memsw_limit = min(min_memsw_limit, tmp);
5152 out:
5153 *mem_limit = min_limit;
5154 *memsw_limit = min_memsw_limit;
5157 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5159 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5160 int name;
5161 enum res_type type;
5163 type = MEMFILE_TYPE(event);
5164 name = MEMFILE_ATTR(event);
5166 if (!do_swap_account && type == _MEMSWAP)
5167 return -EOPNOTSUPP;
5169 switch (name) {
5170 case RES_MAX_USAGE:
5171 if (type == _MEM)
5172 res_counter_reset_max(&memcg->res);
5173 else if (type == _MEMSWAP)
5174 res_counter_reset_max(&memcg->memsw);
5175 else if (type == _KMEM)
5176 res_counter_reset_max(&memcg->kmem);
5177 else
5178 return -EINVAL;
5179 break;
5180 case RES_FAILCNT:
5181 if (type == _MEM)
5182 res_counter_reset_failcnt(&memcg->res);
5183 else if (type == _MEMSWAP)
5184 res_counter_reset_failcnt(&memcg->memsw);
5185 else if (type == _KMEM)
5186 res_counter_reset_failcnt(&memcg->kmem);
5187 else
5188 return -EINVAL;
5189 break;
5192 return 0;
5195 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5196 struct cftype *cft)
5198 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5201 #ifdef CONFIG_MMU
5202 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5203 struct cftype *cft, u64 val)
5205 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5207 if (val >= (1 << NR_MOVE_TYPE))
5208 return -EINVAL;
5211 * No kind of locking is needed in here, because ->can_attach() will
5212 * check this value once in the beginning of the process, and then carry
5213 * on with stale data. This means that changes to this value will only
5214 * affect task migrations starting after the change.
5216 memcg->move_charge_at_immigrate = val;
5217 return 0;
5219 #else
5220 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5221 struct cftype *cft, u64 val)
5223 return -ENOSYS;
5225 #endif
5227 #ifdef CONFIG_NUMA
5228 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5229 struct seq_file *m)
5231 int nid;
5232 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5233 unsigned long node_nr;
5234 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5236 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5237 seq_printf(m, "total=%lu", total_nr);
5238 for_each_node_state(nid, N_MEMORY) {
5239 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5240 seq_printf(m, " N%d=%lu", nid, node_nr);
5242 seq_putc(m, '\n');
5244 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5245 seq_printf(m, "file=%lu", file_nr);
5246 for_each_node_state(nid, N_MEMORY) {
5247 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5248 LRU_ALL_FILE);
5249 seq_printf(m, " N%d=%lu", nid, node_nr);
5251 seq_putc(m, '\n');
5253 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5254 seq_printf(m, "anon=%lu", anon_nr);
5255 for_each_node_state(nid, N_MEMORY) {
5256 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5257 LRU_ALL_ANON);
5258 seq_printf(m, " N%d=%lu", nid, node_nr);
5260 seq_putc(m, '\n');
5262 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5263 seq_printf(m, "unevictable=%lu", unevictable_nr);
5264 for_each_node_state(nid, N_MEMORY) {
5265 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5266 BIT(LRU_UNEVICTABLE));
5267 seq_printf(m, " N%d=%lu", nid, node_nr);
5269 seq_putc(m, '\n');
5270 return 0;
5272 #endif /* CONFIG_NUMA */
5274 static inline void mem_cgroup_lru_names_not_uptodate(void)
5276 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5279 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5280 struct seq_file *m)
5282 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5283 struct mem_cgroup *mi;
5284 unsigned int i;
5286 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5287 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5288 continue;
5289 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5290 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5293 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5294 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5295 mem_cgroup_read_events(memcg, i));
5297 for (i = 0; i < NR_LRU_LISTS; i++)
5298 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5299 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5301 /* Hierarchical information */
5303 unsigned long long limit, memsw_limit;
5304 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5305 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5306 if (do_swap_account)
5307 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5308 memsw_limit);
5311 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5312 long long val = 0;
5314 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5315 continue;
5316 for_each_mem_cgroup_tree(mi, memcg)
5317 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5318 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5321 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5322 unsigned long long val = 0;
5324 for_each_mem_cgroup_tree(mi, memcg)
5325 val += mem_cgroup_read_events(mi, i);
5326 seq_printf(m, "total_%s %llu\n",
5327 mem_cgroup_events_names[i], val);
5330 for (i = 0; i < NR_LRU_LISTS; i++) {
5331 unsigned long long val = 0;
5333 for_each_mem_cgroup_tree(mi, memcg)
5334 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5335 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5338 #ifdef CONFIG_DEBUG_VM
5340 int nid, zid;
5341 struct mem_cgroup_per_zone *mz;
5342 struct zone_reclaim_stat *rstat;
5343 unsigned long recent_rotated[2] = {0, 0};
5344 unsigned long recent_scanned[2] = {0, 0};
5346 for_each_online_node(nid)
5347 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5348 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5349 rstat = &mz->lruvec.reclaim_stat;
5351 recent_rotated[0] += rstat->recent_rotated[0];
5352 recent_rotated[1] += rstat->recent_rotated[1];
5353 recent_scanned[0] += rstat->recent_scanned[0];
5354 recent_scanned[1] += rstat->recent_scanned[1];
5356 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5357 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5358 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5359 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5361 #endif
5363 return 0;
5366 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5368 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5370 return mem_cgroup_swappiness(memcg);
5373 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5374 u64 val)
5376 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5377 struct mem_cgroup *parent;
5379 if (val > 100)
5380 return -EINVAL;
5382 if (cgrp->parent == NULL)
5383 return -EINVAL;
5385 parent = mem_cgroup_from_cont(cgrp->parent);
5387 mutex_lock(&memcg_create_mutex);
5389 /* If under hierarchy, only empty-root can set this value */
5390 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5391 mutex_unlock(&memcg_create_mutex);
5392 return -EINVAL;
5395 memcg->swappiness = val;
5397 mutex_unlock(&memcg_create_mutex);
5399 return 0;
5402 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5404 struct mem_cgroup_threshold_ary *t;
5405 u64 usage;
5406 int i;
5408 rcu_read_lock();
5409 if (!swap)
5410 t = rcu_dereference(memcg->thresholds.primary);
5411 else
5412 t = rcu_dereference(memcg->memsw_thresholds.primary);
5414 if (!t)
5415 goto unlock;
5417 usage = mem_cgroup_usage(memcg, swap);
5420 * current_threshold points to threshold just below or equal to usage.
5421 * If it's not true, a threshold was crossed after last
5422 * call of __mem_cgroup_threshold().
5424 i = t->current_threshold;
5427 * Iterate backward over array of thresholds starting from
5428 * current_threshold and check if a threshold is crossed.
5429 * If none of thresholds below usage is crossed, we read
5430 * only one element of the array here.
5432 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5433 eventfd_signal(t->entries[i].eventfd, 1);
5435 /* i = current_threshold + 1 */
5436 i++;
5439 * Iterate forward over array of thresholds starting from
5440 * current_threshold+1 and check if a threshold is crossed.
5441 * If none of thresholds above usage is crossed, we read
5442 * only one element of the array here.
5444 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5445 eventfd_signal(t->entries[i].eventfd, 1);
5447 /* Update current_threshold */
5448 t->current_threshold = i - 1;
5449 unlock:
5450 rcu_read_unlock();
5453 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5455 while (memcg) {
5456 __mem_cgroup_threshold(memcg, false);
5457 if (do_swap_account)
5458 __mem_cgroup_threshold(memcg, true);
5460 memcg = parent_mem_cgroup(memcg);
5464 static int compare_thresholds(const void *a, const void *b)
5466 const struct mem_cgroup_threshold *_a = a;
5467 const struct mem_cgroup_threshold *_b = b;
5469 return _a->threshold - _b->threshold;
5472 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5474 struct mem_cgroup_eventfd_list *ev;
5476 list_for_each_entry(ev, &memcg->oom_notify, list)
5477 eventfd_signal(ev->eventfd, 1);
5478 return 0;
5481 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5483 struct mem_cgroup *iter;
5485 for_each_mem_cgroup_tree(iter, memcg)
5486 mem_cgroup_oom_notify_cb(iter);
5489 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5490 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5492 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5493 struct mem_cgroup_thresholds *thresholds;
5494 struct mem_cgroup_threshold_ary *new;
5495 enum res_type type = MEMFILE_TYPE(cft->private);
5496 u64 threshold, usage;
5497 int i, size, ret;
5499 ret = res_counter_memparse_write_strategy(args, &threshold);
5500 if (ret)
5501 return ret;
5503 mutex_lock(&memcg->thresholds_lock);
5505 if (type == _MEM)
5506 thresholds = &memcg->thresholds;
5507 else if (type == _MEMSWAP)
5508 thresholds = &memcg->memsw_thresholds;
5509 else
5510 BUG();
5512 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5514 /* Check if a threshold crossed before adding a new one */
5515 if (thresholds->primary)
5516 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5518 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5520 /* Allocate memory for new array of thresholds */
5521 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5522 GFP_KERNEL);
5523 if (!new) {
5524 ret = -ENOMEM;
5525 goto unlock;
5527 new->size = size;
5529 /* Copy thresholds (if any) to new array */
5530 if (thresholds->primary) {
5531 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5532 sizeof(struct mem_cgroup_threshold));
5535 /* Add new threshold */
5536 new->entries[size - 1].eventfd = eventfd;
5537 new->entries[size - 1].threshold = threshold;
5539 /* Sort thresholds. Registering of new threshold isn't time-critical */
5540 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5541 compare_thresholds, NULL);
5543 /* Find current threshold */
5544 new->current_threshold = -1;
5545 for (i = 0; i < size; i++) {
5546 if (new->entries[i].threshold <= usage) {
5548 * new->current_threshold will not be used until
5549 * rcu_assign_pointer(), so it's safe to increment
5550 * it here.
5552 ++new->current_threshold;
5553 } else
5554 break;
5557 /* Free old spare buffer and save old primary buffer as spare */
5558 kfree(thresholds->spare);
5559 thresholds->spare = thresholds->primary;
5561 rcu_assign_pointer(thresholds->primary, new);
5563 /* To be sure that nobody uses thresholds */
5564 synchronize_rcu();
5566 unlock:
5567 mutex_unlock(&memcg->thresholds_lock);
5569 return ret;
5572 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5573 struct cftype *cft, struct eventfd_ctx *eventfd)
5575 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5576 struct mem_cgroup_thresholds *thresholds;
5577 struct mem_cgroup_threshold_ary *new;
5578 enum res_type type = MEMFILE_TYPE(cft->private);
5579 u64 usage;
5580 int i, j, size;
5582 mutex_lock(&memcg->thresholds_lock);
5583 if (type == _MEM)
5584 thresholds = &memcg->thresholds;
5585 else if (type == _MEMSWAP)
5586 thresholds = &memcg->memsw_thresholds;
5587 else
5588 BUG();
5590 if (!thresholds->primary)
5591 goto unlock;
5593 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5595 /* Check if a threshold crossed before removing */
5596 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5598 /* Calculate new number of threshold */
5599 size = 0;
5600 for (i = 0; i < thresholds->primary->size; i++) {
5601 if (thresholds->primary->entries[i].eventfd != eventfd)
5602 size++;
5605 new = thresholds->spare;
5607 /* Set thresholds array to NULL if we don't have thresholds */
5608 if (!size) {
5609 kfree(new);
5610 new = NULL;
5611 goto swap_buffers;
5614 new->size = size;
5616 /* Copy thresholds and find current threshold */
5617 new->current_threshold = -1;
5618 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5619 if (thresholds->primary->entries[i].eventfd == eventfd)
5620 continue;
5622 new->entries[j] = thresholds->primary->entries[i];
5623 if (new->entries[j].threshold <= usage) {
5625 * new->current_threshold will not be used
5626 * until rcu_assign_pointer(), so it's safe to increment
5627 * it here.
5629 ++new->current_threshold;
5631 j++;
5634 swap_buffers:
5635 /* Swap primary and spare array */
5636 thresholds->spare = thresholds->primary;
5637 /* If all events are unregistered, free the spare array */
5638 if (!new) {
5639 kfree(thresholds->spare);
5640 thresholds->spare = NULL;
5643 rcu_assign_pointer(thresholds->primary, new);
5645 /* To be sure that nobody uses thresholds */
5646 synchronize_rcu();
5647 unlock:
5648 mutex_unlock(&memcg->thresholds_lock);
5651 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5652 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5654 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5655 struct mem_cgroup_eventfd_list *event;
5656 enum res_type type = MEMFILE_TYPE(cft->private);
5658 BUG_ON(type != _OOM_TYPE);
5659 event = kmalloc(sizeof(*event), GFP_KERNEL);
5660 if (!event)
5661 return -ENOMEM;
5663 spin_lock(&memcg_oom_lock);
5665 event->eventfd = eventfd;
5666 list_add(&event->list, &memcg->oom_notify);
5668 /* already in OOM ? */
5669 if (atomic_read(&memcg->under_oom))
5670 eventfd_signal(eventfd, 1);
5671 spin_unlock(&memcg_oom_lock);
5673 return 0;
5676 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5677 struct cftype *cft, struct eventfd_ctx *eventfd)
5679 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5680 struct mem_cgroup_eventfd_list *ev, *tmp;
5681 enum res_type type = MEMFILE_TYPE(cft->private);
5683 BUG_ON(type != _OOM_TYPE);
5685 spin_lock(&memcg_oom_lock);
5687 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5688 if (ev->eventfd == eventfd) {
5689 list_del(&ev->list);
5690 kfree(ev);
5694 spin_unlock(&memcg_oom_lock);
5697 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5698 struct cftype *cft, struct cgroup_map_cb *cb)
5700 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5702 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5704 if (atomic_read(&memcg->under_oom))
5705 cb->fill(cb, "under_oom", 1);
5706 else
5707 cb->fill(cb, "under_oom", 0);
5708 return 0;
5711 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5712 struct cftype *cft, u64 val)
5714 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5715 struct mem_cgroup *parent;
5717 /* cannot set to root cgroup and only 0 and 1 are allowed */
5718 if (!cgrp->parent || !((val == 0) || (val == 1)))
5719 return -EINVAL;
5721 parent = mem_cgroup_from_cont(cgrp->parent);
5723 mutex_lock(&memcg_create_mutex);
5724 /* oom-kill-disable is a flag for subhierarchy. */
5725 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5726 mutex_unlock(&memcg_create_mutex);
5727 return -EINVAL;
5729 memcg->oom_kill_disable = val;
5730 if (!val)
5731 memcg_oom_recover(memcg);
5732 mutex_unlock(&memcg_create_mutex);
5733 return 0;
5736 #ifdef CONFIG_MEMCG_KMEM
5737 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5739 int ret;
5741 memcg->kmemcg_id = -1;
5742 ret = memcg_propagate_kmem(memcg);
5743 if (ret)
5744 return ret;
5746 return mem_cgroup_sockets_init(memcg, ss);
5749 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5751 mem_cgroup_sockets_destroy(memcg);
5753 memcg_kmem_mark_dead(memcg);
5755 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5756 return;
5759 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5760 * path here, being careful not to race with memcg_uncharge_kmem: it is
5761 * possible that the charges went down to 0 between mark_dead and the
5762 * res_counter read, so in that case, we don't need the put
5764 if (memcg_kmem_test_and_clear_dead(memcg))
5765 mem_cgroup_put(memcg);
5767 #else
5768 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5770 return 0;
5773 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5776 #endif
5778 static struct cftype mem_cgroup_files[] = {
5780 .name = "usage_in_bytes",
5781 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5782 .read = mem_cgroup_read,
5783 .register_event = mem_cgroup_usage_register_event,
5784 .unregister_event = mem_cgroup_usage_unregister_event,
5787 .name = "max_usage_in_bytes",
5788 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5789 .trigger = mem_cgroup_reset,
5790 .read = mem_cgroup_read,
5793 .name = "limit_in_bytes",
5794 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5795 .write_string = mem_cgroup_write,
5796 .read = mem_cgroup_read,
5799 .name = "soft_limit_in_bytes",
5800 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5801 .write_string = mem_cgroup_write,
5802 .read = mem_cgroup_read,
5805 .name = "failcnt",
5806 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5807 .trigger = mem_cgroup_reset,
5808 .read = mem_cgroup_read,
5811 .name = "stat",
5812 .read_seq_string = memcg_stat_show,
5815 .name = "force_empty",
5816 .trigger = mem_cgroup_force_empty_write,
5819 .name = "use_hierarchy",
5820 .write_u64 = mem_cgroup_hierarchy_write,
5821 .read_u64 = mem_cgroup_hierarchy_read,
5824 .name = "swappiness",
5825 .read_u64 = mem_cgroup_swappiness_read,
5826 .write_u64 = mem_cgroup_swappiness_write,
5829 .name = "move_charge_at_immigrate",
5830 .read_u64 = mem_cgroup_move_charge_read,
5831 .write_u64 = mem_cgroup_move_charge_write,
5834 .name = "oom_control",
5835 .read_map = mem_cgroup_oom_control_read,
5836 .write_u64 = mem_cgroup_oom_control_write,
5837 .register_event = mem_cgroup_oom_register_event,
5838 .unregister_event = mem_cgroup_oom_unregister_event,
5839 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5841 #ifdef CONFIG_NUMA
5843 .name = "numa_stat",
5844 .read_seq_string = memcg_numa_stat_show,
5846 #endif
5847 #ifdef CONFIG_MEMCG_KMEM
5849 .name = "kmem.limit_in_bytes",
5850 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5851 .write_string = mem_cgroup_write,
5852 .read = mem_cgroup_read,
5855 .name = "kmem.usage_in_bytes",
5856 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5857 .read = mem_cgroup_read,
5860 .name = "kmem.failcnt",
5861 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5862 .trigger = mem_cgroup_reset,
5863 .read = mem_cgroup_read,
5866 .name = "kmem.max_usage_in_bytes",
5867 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5868 .trigger = mem_cgroup_reset,
5869 .read = mem_cgroup_read,
5871 #ifdef CONFIG_SLABINFO
5873 .name = "kmem.slabinfo",
5874 .read_seq_string = mem_cgroup_slabinfo_read,
5876 #endif
5877 #endif
5878 { }, /* terminate */
5881 #ifdef CONFIG_MEMCG_SWAP
5882 static struct cftype memsw_cgroup_files[] = {
5884 .name = "memsw.usage_in_bytes",
5885 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5886 .read = mem_cgroup_read,
5887 .register_event = mem_cgroup_usage_register_event,
5888 .unregister_event = mem_cgroup_usage_unregister_event,
5891 .name = "memsw.max_usage_in_bytes",
5892 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5893 .trigger = mem_cgroup_reset,
5894 .read = mem_cgroup_read,
5897 .name = "memsw.limit_in_bytes",
5898 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5899 .write_string = mem_cgroup_write,
5900 .read = mem_cgroup_read,
5903 .name = "memsw.failcnt",
5904 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5905 .trigger = mem_cgroup_reset,
5906 .read = mem_cgroup_read,
5908 { }, /* terminate */
5910 #endif
5911 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5913 struct mem_cgroup_per_node *pn;
5914 struct mem_cgroup_per_zone *mz;
5915 int zone, tmp = node;
5917 * This routine is called against possible nodes.
5918 * But it's BUG to call kmalloc() against offline node.
5920 * TODO: this routine can waste much memory for nodes which will
5921 * never be onlined. It's better to use memory hotplug callback
5922 * function.
5924 if (!node_state(node, N_NORMAL_MEMORY))
5925 tmp = -1;
5926 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5927 if (!pn)
5928 return 1;
5930 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5931 mz = &pn->zoneinfo[zone];
5932 lruvec_init(&mz->lruvec);
5933 mz->usage_in_excess = 0;
5934 mz->on_tree = false;
5935 mz->memcg = memcg;
5937 memcg->info.nodeinfo[node] = pn;
5938 return 0;
5941 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5943 kfree(memcg->info.nodeinfo[node]);
5946 static struct mem_cgroup *mem_cgroup_alloc(void)
5948 struct mem_cgroup *memcg;
5949 size_t size = memcg_size();
5951 /* Can be very big if nr_node_ids is very big */
5952 if (size < PAGE_SIZE)
5953 memcg = kzalloc(size, GFP_KERNEL);
5954 else
5955 memcg = vzalloc(size);
5957 if (!memcg)
5958 return NULL;
5960 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5961 if (!memcg->stat)
5962 goto out_free;
5963 spin_lock_init(&memcg->pcp_counter_lock);
5964 return memcg;
5966 out_free:
5967 if (size < PAGE_SIZE)
5968 kfree(memcg);
5969 else
5970 vfree(memcg);
5971 return NULL;
5975 * At destroying mem_cgroup, references from swap_cgroup can remain.
5976 * (scanning all at force_empty is too costly...)
5978 * Instead of clearing all references at force_empty, we remember
5979 * the number of reference from swap_cgroup and free mem_cgroup when
5980 * it goes down to 0.
5982 * Removal of cgroup itself succeeds regardless of refs from swap.
5985 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5987 int node;
5988 size_t size = memcg_size();
5990 mem_cgroup_remove_from_trees(memcg);
5991 free_css_id(&mem_cgroup_subsys, &memcg->css);
5993 for_each_node(node)
5994 free_mem_cgroup_per_zone_info(memcg, node);
5996 free_percpu(memcg->stat);
5999 * We need to make sure that (at least for now), the jump label
6000 * destruction code runs outside of the cgroup lock. This is because
6001 * get_online_cpus(), which is called from the static_branch update,
6002 * can't be called inside the cgroup_lock. cpusets are the ones
6003 * enforcing this dependency, so if they ever change, we might as well.
6005 * schedule_work() will guarantee this happens. Be careful if you need
6006 * to move this code around, and make sure it is outside
6007 * the cgroup_lock.
6009 disarm_static_keys(memcg);
6010 if (size < PAGE_SIZE)
6011 kfree(memcg);
6012 else
6013 vfree(memcg);
6018 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6019 * but in process context. The work_freeing structure is overlaid
6020 * on the rcu_freeing structure, which itself is overlaid on memsw.
6022 static void free_work(struct work_struct *work)
6024 struct mem_cgroup *memcg;
6026 memcg = container_of(work, struct mem_cgroup, work_freeing);
6027 __mem_cgroup_free(memcg);
6030 static void free_rcu(struct rcu_head *rcu_head)
6032 struct mem_cgroup *memcg;
6034 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6035 INIT_WORK(&memcg->work_freeing, free_work);
6036 schedule_work(&memcg->work_freeing);
6039 static void mem_cgroup_get(struct mem_cgroup *memcg)
6041 atomic_inc(&memcg->refcnt);
6044 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6046 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6047 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6048 call_rcu(&memcg->rcu_freeing, free_rcu);
6049 if (parent)
6050 mem_cgroup_put(parent);
6054 static void mem_cgroup_put(struct mem_cgroup *memcg)
6056 __mem_cgroup_put(memcg, 1);
6060 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6062 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6064 if (!memcg->res.parent)
6065 return NULL;
6066 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6068 EXPORT_SYMBOL(parent_mem_cgroup);
6070 static void __init mem_cgroup_soft_limit_tree_init(void)
6072 struct mem_cgroup_tree_per_node *rtpn;
6073 struct mem_cgroup_tree_per_zone *rtpz;
6074 int tmp, node, zone;
6076 for_each_node(node) {
6077 tmp = node;
6078 if (!node_state(node, N_NORMAL_MEMORY))
6079 tmp = -1;
6080 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6081 BUG_ON(!rtpn);
6083 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6085 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6086 rtpz = &rtpn->rb_tree_per_zone[zone];
6087 rtpz->rb_root = RB_ROOT;
6088 spin_lock_init(&rtpz->lock);
6093 static struct cgroup_subsys_state * __ref
6094 mem_cgroup_css_alloc(struct cgroup *cont)
6096 struct mem_cgroup *memcg;
6097 long error = -ENOMEM;
6098 int node;
6100 memcg = mem_cgroup_alloc();
6101 if (!memcg)
6102 return ERR_PTR(error);
6104 for_each_node(node)
6105 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6106 goto free_out;
6108 /* root ? */
6109 if (cont->parent == NULL) {
6110 root_mem_cgroup = memcg;
6111 res_counter_init(&memcg->res, NULL);
6112 res_counter_init(&memcg->memsw, NULL);
6113 res_counter_init(&memcg->kmem, NULL);
6116 memcg->last_scanned_node = MAX_NUMNODES;
6117 INIT_LIST_HEAD(&memcg->oom_notify);
6118 atomic_set(&memcg->refcnt, 1);
6119 memcg->move_charge_at_immigrate = 0;
6120 mutex_init(&memcg->thresholds_lock);
6121 spin_lock_init(&memcg->move_lock);
6123 return &memcg->css;
6125 free_out:
6126 __mem_cgroup_free(memcg);
6127 return ERR_PTR(error);
6130 static int
6131 mem_cgroup_css_online(struct cgroup *cont)
6133 struct mem_cgroup *memcg, *parent;
6134 int error = 0;
6136 if (!cont->parent)
6137 return 0;
6139 mutex_lock(&memcg_create_mutex);
6140 memcg = mem_cgroup_from_cont(cont);
6141 parent = mem_cgroup_from_cont(cont->parent);
6143 memcg->use_hierarchy = parent->use_hierarchy;
6144 memcg->oom_kill_disable = parent->oom_kill_disable;
6145 memcg->swappiness = mem_cgroup_swappiness(parent);
6147 if (parent->use_hierarchy) {
6148 res_counter_init(&memcg->res, &parent->res);
6149 res_counter_init(&memcg->memsw, &parent->memsw);
6150 res_counter_init(&memcg->kmem, &parent->kmem);
6153 * We increment refcnt of the parent to ensure that we can
6154 * safely access it on res_counter_charge/uncharge.
6155 * This refcnt will be decremented when freeing this
6156 * mem_cgroup(see mem_cgroup_put).
6158 mem_cgroup_get(parent);
6159 } else {
6160 res_counter_init(&memcg->res, NULL);
6161 res_counter_init(&memcg->memsw, NULL);
6162 res_counter_init(&memcg->kmem, NULL);
6164 * Deeper hierachy with use_hierarchy == false doesn't make
6165 * much sense so let cgroup subsystem know about this
6166 * unfortunate state in our controller.
6168 if (parent != root_mem_cgroup)
6169 mem_cgroup_subsys.broken_hierarchy = true;
6172 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6173 mutex_unlock(&memcg_create_mutex);
6174 if (error) {
6176 * We call put now because our (and parent's) refcnts
6177 * are already in place. mem_cgroup_put() will internally
6178 * call __mem_cgroup_free, so return directly
6180 mem_cgroup_put(memcg);
6181 if (parent->use_hierarchy)
6182 mem_cgroup_put(parent);
6184 return error;
6187 static void mem_cgroup_css_offline(struct cgroup *cont)
6189 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6191 mem_cgroup_reparent_charges(memcg);
6192 mem_cgroup_destroy_all_caches(memcg);
6195 static void mem_cgroup_css_free(struct cgroup *cont)
6197 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6199 kmem_cgroup_destroy(memcg);
6201 mem_cgroup_put(memcg);
6204 #ifdef CONFIG_MMU
6205 /* Handlers for move charge at task migration. */
6206 #define PRECHARGE_COUNT_AT_ONCE 256
6207 static int mem_cgroup_do_precharge(unsigned long count)
6209 int ret = 0;
6210 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6211 struct mem_cgroup *memcg = mc.to;
6213 if (mem_cgroup_is_root(memcg)) {
6214 mc.precharge += count;
6215 /* we don't need css_get for root */
6216 return ret;
6218 /* try to charge at once */
6219 if (count > 1) {
6220 struct res_counter *dummy;
6222 * "memcg" cannot be under rmdir() because we've already checked
6223 * by cgroup_lock_live_cgroup() that it is not removed and we
6224 * are still under the same cgroup_mutex. So we can postpone
6225 * css_get().
6227 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6228 goto one_by_one;
6229 if (do_swap_account && res_counter_charge(&memcg->memsw,
6230 PAGE_SIZE * count, &dummy)) {
6231 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6232 goto one_by_one;
6234 mc.precharge += count;
6235 return ret;
6237 one_by_one:
6238 /* fall back to one by one charge */
6239 while (count--) {
6240 if (signal_pending(current)) {
6241 ret = -EINTR;
6242 break;
6244 if (!batch_count--) {
6245 batch_count = PRECHARGE_COUNT_AT_ONCE;
6246 cond_resched();
6248 ret = __mem_cgroup_try_charge(NULL,
6249 GFP_KERNEL, 1, &memcg, false);
6250 if (ret)
6251 /* mem_cgroup_clear_mc() will do uncharge later */
6252 return ret;
6253 mc.precharge++;
6255 return ret;
6259 * get_mctgt_type - get target type of moving charge
6260 * @vma: the vma the pte to be checked belongs
6261 * @addr: the address corresponding to the pte to be checked
6262 * @ptent: the pte to be checked
6263 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6265 * Returns
6266 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6267 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6268 * move charge. if @target is not NULL, the page is stored in target->page
6269 * with extra refcnt got(Callers should handle it).
6270 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6271 * target for charge migration. if @target is not NULL, the entry is stored
6272 * in target->ent.
6274 * Called with pte lock held.
6276 union mc_target {
6277 struct page *page;
6278 swp_entry_t ent;
6281 enum mc_target_type {
6282 MC_TARGET_NONE = 0,
6283 MC_TARGET_PAGE,
6284 MC_TARGET_SWAP,
6287 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6288 unsigned long addr, pte_t ptent)
6290 struct page *page = vm_normal_page(vma, addr, ptent);
6292 if (!page || !page_mapped(page))
6293 return NULL;
6294 if (PageAnon(page)) {
6295 /* we don't move shared anon */
6296 if (!move_anon())
6297 return NULL;
6298 } else if (!move_file())
6299 /* we ignore mapcount for file pages */
6300 return NULL;
6301 if (!get_page_unless_zero(page))
6302 return NULL;
6304 return page;
6307 #ifdef CONFIG_SWAP
6308 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6309 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6311 struct page *page = NULL;
6312 swp_entry_t ent = pte_to_swp_entry(ptent);
6314 if (!move_anon() || non_swap_entry(ent))
6315 return NULL;
6317 * Because lookup_swap_cache() updates some statistics counter,
6318 * we call find_get_page() with swapper_space directly.
6320 page = find_get_page(swap_address_space(ent), ent.val);
6321 if (do_swap_account)
6322 entry->val = ent.val;
6324 return page;
6326 #else
6327 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6328 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6330 return NULL;
6332 #endif
6334 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6335 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6337 struct page *page = NULL;
6338 struct address_space *mapping;
6339 pgoff_t pgoff;
6341 if (!vma->vm_file) /* anonymous vma */
6342 return NULL;
6343 if (!move_file())
6344 return NULL;
6346 mapping = vma->vm_file->f_mapping;
6347 if (pte_none(ptent))
6348 pgoff = linear_page_index(vma, addr);
6349 else /* pte_file(ptent) is true */
6350 pgoff = pte_to_pgoff(ptent);
6352 /* page is moved even if it's not RSS of this task(page-faulted). */
6353 page = find_get_page(mapping, pgoff);
6355 #ifdef CONFIG_SWAP
6356 /* shmem/tmpfs may report page out on swap: account for that too. */
6357 if (radix_tree_exceptional_entry(page)) {
6358 swp_entry_t swap = radix_to_swp_entry(page);
6359 if (do_swap_account)
6360 *entry = swap;
6361 page = find_get_page(swap_address_space(swap), swap.val);
6363 #endif
6364 return page;
6367 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6368 unsigned long addr, pte_t ptent, union mc_target *target)
6370 struct page *page = NULL;
6371 struct page_cgroup *pc;
6372 enum mc_target_type ret = MC_TARGET_NONE;
6373 swp_entry_t ent = { .val = 0 };
6375 if (pte_present(ptent))
6376 page = mc_handle_present_pte(vma, addr, ptent);
6377 else if (is_swap_pte(ptent))
6378 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6379 else if (pte_none(ptent) || pte_file(ptent))
6380 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6382 if (!page && !ent.val)
6383 return ret;
6384 if (page) {
6385 pc = lookup_page_cgroup(page);
6387 * Do only loose check w/o page_cgroup lock.
6388 * mem_cgroup_move_account() checks the pc is valid or not under
6389 * the lock.
6391 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6392 ret = MC_TARGET_PAGE;
6393 if (target)
6394 target->page = page;
6396 if (!ret || !target)
6397 put_page(page);
6399 /* There is a swap entry and a page doesn't exist or isn't charged */
6400 if (ent.val && !ret &&
6401 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6402 ret = MC_TARGET_SWAP;
6403 if (target)
6404 target->ent = ent;
6406 return ret;
6409 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6411 * We don't consider swapping or file mapped pages because THP does not
6412 * support them for now.
6413 * Caller should make sure that pmd_trans_huge(pmd) is true.
6415 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6416 unsigned long addr, pmd_t pmd, union mc_target *target)
6418 struct page *page = NULL;
6419 struct page_cgroup *pc;
6420 enum mc_target_type ret = MC_TARGET_NONE;
6422 page = pmd_page(pmd);
6423 VM_BUG_ON(!page || !PageHead(page));
6424 if (!move_anon())
6425 return ret;
6426 pc = lookup_page_cgroup(page);
6427 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6428 ret = MC_TARGET_PAGE;
6429 if (target) {
6430 get_page(page);
6431 target->page = page;
6434 return ret;
6436 #else
6437 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6438 unsigned long addr, pmd_t pmd, union mc_target *target)
6440 return MC_TARGET_NONE;
6442 #endif
6444 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6445 unsigned long addr, unsigned long end,
6446 struct mm_walk *walk)
6448 struct vm_area_struct *vma = walk->private;
6449 pte_t *pte;
6450 spinlock_t *ptl;
6452 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6453 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6454 mc.precharge += HPAGE_PMD_NR;
6455 spin_unlock(&vma->vm_mm->page_table_lock);
6456 return 0;
6459 if (pmd_trans_unstable(pmd))
6460 return 0;
6461 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6462 for (; addr != end; pte++, addr += PAGE_SIZE)
6463 if (get_mctgt_type(vma, addr, *pte, NULL))
6464 mc.precharge++; /* increment precharge temporarily */
6465 pte_unmap_unlock(pte - 1, ptl);
6466 cond_resched();
6468 return 0;
6471 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6473 unsigned long precharge;
6474 struct vm_area_struct *vma;
6476 down_read(&mm->mmap_sem);
6477 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6478 struct mm_walk mem_cgroup_count_precharge_walk = {
6479 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6480 .mm = mm,
6481 .private = vma,
6483 if (is_vm_hugetlb_page(vma))
6484 continue;
6485 walk_page_range(vma->vm_start, vma->vm_end,
6486 &mem_cgroup_count_precharge_walk);
6488 up_read(&mm->mmap_sem);
6490 precharge = mc.precharge;
6491 mc.precharge = 0;
6493 return precharge;
6496 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6498 unsigned long precharge = mem_cgroup_count_precharge(mm);
6500 VM_BUG_ON(mc.moving_task);
6501 mc.moving_task = current;
6502 return mem_cgroup_do_precharge(precharge);
6505 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6506 static void __mem_cgroup_clear_mc(void)
6508 struct mem_cgroup *from = mc.from;
6509 struct mem_cgroup *to = mc.to;
6511 /* we must uncharge all the leftover precharges from mc.to */
6512 if (mc.precharge) {
6513 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6514 mc.precharge = 0;
6517 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6518 * we must uncharge here.
6520 if (mc.moved_charge) {
6521 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6522 mc.moved_charge = 0;
6524 /* we must fixup refcnts and charges */
6525 if (mc.moved_swap) {
6526 /* uncharge swap account from the old cgroup */
6527 if (!mem_cgroup_is_root(mc.from))
6528 res_counter_uncharge(&mc.from->memsw,
6529 PAGE_SIZE * mc.moved_swap);
6530 __mem_cgroup_put(mc.from, mc.moved_swap);
6532 if (!mem_cgroup_is_root(mc.to)) {
6534 * we charged both to->res and to->memsw, so we should
6535 * uncharge to->res.
6537 res_counter_uncharge(&mc.to->res,
6538 PAGE_SIZE * mc.moved_swap);
6540 /* we've already done mem_cgroup_get(mc.to) */
6541 mc.moved_swap = 0;
6543 memcg_oom_recover(from);
6544 memcg_oom_recover(to);
6545 wake_up_all(&mc.waitq);
6548 static void mem_cgroup_clear_mc(void)
6550 struct mem_cgroup *from = mc.from;
6553 * we must clear moving_task before waking up waiters at the end of
6554 * task migration.
6556 mc.moving_task = NULL;
6557 __mem_cgroup_clear_mc();
6558 spin_lock(&mc.lock);
6559 mc.from = NULL;
6560 mc.to = NULL;
6561 spin_unlock(&mc.lock);
6562 mem_cgroup_end_move(from);
6565 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6566 struct cgroup_taskset *tset)
6568 struct task_struct *p = cgroup_taskset_first(tset);
6569 int ret = 0;
6570 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6571 unsigned long move_charge_at_immigrate;
6574 * We are now commited to this value whatever it is. Changes in this
6575 * tunable will only affect upcoming migrations, not the current one.
6576 * So we need to save it, and keep it going.
6578 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6579 if (move_charge_at_immigrate) {
6580 struct mm_struct *mm;
6581 struct mem_cgroup *from = mem_cgroup_from_task(p);
6583 VM_BUG_ON(from == memcg);
6585 mm = get_task_mm(p);
6586 if (!mm)
6587 return 0;
6588 /* We move charges only when we move a owner of the mm */
6589 if (mm->owner == p) {
6590 VM_BUG_ON(mc.from);
6591 VM_BUG_ON(mc.to);
6592 VM_BUG_ON(mc.precharge);
6593 VM_BUG_ON(mc.moved_charge);
6594 VM_BUG_ON(mc.moved_swap);
6595 mem_cgroup_start_move(from);
6596 spin_lock(&mc.lock);
6597 mc.from = from;
6598 mc.to = memcg;
6599 mc.immigrate_flags = move_charge_at_immigrate;
6600 spin_unlock(&mc.lock);
6601 /* We set mc.moving_task later */
6603 ret = mem_cgroup_precharge_mc(mm);
6604 if (ret)
6605 mem_cgroup_clear_mc();
6607 mmput(mm);
6609 return ret;
6612 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6613 struct cgroup_taskset *tset)
6615 mem_cgroup_clear_mc();
6618 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6619 unsigned long addr, unsigned long end,
6620 struct mm_walk *walk)
6622 int ret = 0;
6623 struct vm_area_struct *vma = walk->private;
6624 pte_t *pte;
6625 spinlock_t *ptl;
6626 enum mc_target_type target_type;
6627 union mc_target target;
6628 struct page *page;
6629 struct page_cgroup *pc;
6632 * We don't take compound_lock() here but no race with splitting thp
6633 * happens because:
6634 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6635 * under splitting, which means there's no concurrent thp split,
6636 * - if another thread runs into split_huge_page() just after we
6637 * entered this if-block, the thread must wait for page table lock
6638 * to be unlocked in __split_huge_page_splitting(), where the main
6639 * part of thp split is not executed yet.
6641 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6642 if (mc.precharge < HPAGE_PMD_NR) {
6643 spin_unlock(&vma->vm_mm->page_table_lock);
6644 return 0;
6646 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6647 if (target_type == MC_TARGET_PAGE) {
6648 page = target.page;
6649 if (!isolate_lru_page(page)) {
6650 pc = lookup_page_cgroup(page);
6651 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6652 pc, mc.from, mc.to)) {
6653 mc.precharge -= HPAGE_PMD_NR;
6654 mc.moved_charge += HPAGE_PMD_NR;
6656 putback_lru_page(page);
6658 put_page(page);
6660 spin_unlock(&vma->vm_mm->page_table_lock);
6661 return 0;
6664 if (pmd_trans_unstable(pmd))
6665 return 0;
6666 retry:
6667 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6668 for (; addr != end; addr += PAGE_SIZE) {
6669 pte_t ptent = *(pte++);
6670 swp_entry_t ent;
6672 if (!mc.precharge)
6673 break;
6675 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6676 case MC_TARGET_PAGE:
6677 page = target.page;
6678 if (isolate_lru_page(page))
6679 goto put;
6680 pc = lookup_page_cgroup(page);
6681 if (!mem_cgroup_move_account(page, 1, pc,
6682 mc.from, mc.to)) {
6683 mc.precharge--;
6684 /* we uncharge from mc.from later. */
6685 mc.moved_charge++;
6687 putback_lru_page(page);
6688 put: /* get_mctgt_type() gets the page */
6689 put_page(page);
6690 break;
6691 case MC_TARGET_SWAP:
6692 ent = target.ent;
6693 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6694 mc.precharge--;
6695 /* we fixup refcnts and charges later. */
6696 mc.moved_swap++;
6698 break;
6699 default:
6700 break;
6703 pte_unmap_unlock(pte - 1, ptl);
6704 cond_resched();
6706 if (addr != end) {
6708 * We have consumed all precharges we got in can_attach().
6709 * We try charge one by one, but don't do any additional
6710 * charges to mc.to if we have failed in charge once in attach()
6711 * phase.
6713 ret = mem_cgroup_do_precharge(1);
6714 if (!ret)
6715 goto retry;
6718 return ret;
6721 static void mem_cgroup_move_charge(struct mm_struct *mm)
6723 struct vm_area_struct *vma;
6725 lru_add_drain_all();
6726 retry:
6727 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6729 * Someone who are holding the mmap_sem might be waiting in
6730 * waitq. So we cancel all extra charges, wake up all waiters,
6731 * and retry. Because we cancel precharges, we might not be able
6732 * to move enough charges, but moving charge is a best-effort
6733 * feature anyway, so it wouldn't be a big problem.
6735 __mem_cgroup_clear_mc();
6736 cond_resched();
6737 goto retry;
6739 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6740 int ret;
6741 struct mm_walk mem_cgroup_move_charge_walk = {
6742 .pmd_entry = mem_cgroup_move_charge_pte_range,
6743 .mm = mm,
6744 .private = vma,
6746 if (is_vm_hugetlb_page(vma))
6747 continue;
6748 ret = walk_page_range(vma->vm_start, vma->vm_end,
6749 &mem_cgroup_move_charge_walk);
6750 if (ret)
6752 * means we have consumed all precharges and failed in
6753 * doing additional charge. Just abandon here.
6755 break;
6757 up_read(&mm->mmap_sem);
6760 static void mem_cgroup_move_task(struct cgroup *cont,
6761 struct cgroup_taskset *tset)
6763 struct task_struct *p = cgroup_taskset_first(tset);
6764 struct mm_struct *mm = get_task_mm(p);
6766 if (mm) {
6767 if (mc.to)
6768 mem_cgroup_move_charge(mm);
6769 mmput(mm);
6771 if (mc.to)
6772 mem_cgroup_clear_mc();
6774 #else /* !CONFIG_MMU */
6775 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6776 struct cgroup_taskset *tset)
6778 return 0;
6780 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6781 struct cgroup_taskset *tset)
6784 static void mem_cgroup_move_task(struct cgroup *cont,
6785 struct cgroup_taskset *tset)
6788 #endif
6790 struct cgroup_subsys mem_cgroup_subsys = {
6791 .name = "memory",
6792 .subsys_id = mem_cgroup_subsys_id,
6793 .css_alloc = mem_cgroup_css_alloc,
6794 .css_online = mem_cgroup_css_online,
6795 .css_offline = mem_cgroup_css_offline,
6796 .css_free = mem_cgroup_css_free,
6797 .can_attach = mem_cgroup_can_attach,
6798 .cancel_attach = mem_cgroup_cancel_attach,
6799 .attach = mem_cgroup_move_task,
6800 .base_cftypes = mem_cgroup_files,
6801 .early_init = 0,
6802 .use_id = 1,
6805 #ifdef CONFIG_MEMCG_SWAP
6806 static int __init enable_swap_account(char *s)
6808 /* consider enabled if no parameter or 1 is given */
6809 if (!strcmp(s, "1"))
6810 really_do_swap_account = 1;
6811 else if (!strcmp(s, "0"))
6812 really_do_swap_account = 0;
6813 return 1;
6815 __setup("swapaccount=", enable_swap_account);
6817 static void __init memsw_file_init(void)
6819 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6822 static void __init enable_swap_cgroup(void)
6824 if (!mem_cgroup_disabled() && really_do_swap_account) {
6825 do_swap_account = 1;
6826 memsw_file_init();
6830 #else
6831 static void __init enable_swap_cgroup(void)
6834 #endif
6837 * subsys_initcall() for memory controller.
6839 * Some parts like hotcpu_notifier() have to be initialized from this context
6840 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6841 * everything that doesn't depend on a specific mem_cgroup structure should
6842 * be initialized from here.
6844 static int __init mem_cgroup_init(void)
6846 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6847 enable_swap_cgroup();
6848 mem_cgroup_soft_limit_tree_init();
6849 memcg_stock_init();
6850 return 0;
6852 subsys_initcall(mem_cgroup_init);