Merge branch 'akpm' (fixes from Andrew)
[linux-2.6/cjktty.git] / fs / splice.c
blob718bd0056384688af6ead056156574638c0be6e9
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
44 struct page *page = buf->page;
45 struct address_space *mapping;
47 lock_page(page);
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
61 wait_on_page_writeback(page);
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
81 out_unlock:
82 unlock_page(page);
83 return 1;
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 struct page *page = buf->page;
101 int err;
103 if (!PageUptodate(page)) {
104 lock_page(page);
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
116 * Uh oh, read-error from disk.
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
124 * Page is ok afterall, we are done.
126 unlock_page(page);
129 return 0;
130 error:
131 unlock_page(page);
132 return err;
135 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 smp_mb();
168 if (waitqueue_active(&pipe->wait))
169 wake_up_interruptible(&pipe->wait);
170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
174 * splice_to_pipe - fill passed data into a pipe
175 * @pipe: pipe to fill
176 * @spd: data to fill
178 * Description:
179 * @spd contains a map of pages and len/offset tuples, along with
180 * the struct pipe_buf_operations associated with these pages. This
181 * function will link that data to the pipe.
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 struct splice_pipe_desc *spd)
187 unsigned int spd_pages = spd->nr_pages;
188 int ret, do_wakeup, page_nr;
190 ret = 0;
191 do_wakeup = 0;
192 page_nr = 0;
194 pipe_lock(pipe);
196 for (;;) {
197 if (!pipe->readers) {
198 send_sig(SIGPIPE, current, 0);
199 if (!ret)
200 ret = -EPIPE;
201 break;
204 if (pipe->nrbufs < pipe->buffers) {
205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 struct pipe_buffer *buf = pipe->bufs + newbuf;
208 buf->page = spd->pages[page_nr];
209 buf->offset = spd->partial[page_nr].offset;
210 buf->len = spd->partial[page_nr].len;
211 buf->private = spd->partial[page_nr].private;
212 buf->ops = spd->ops;
213 if (spd->flags & SPLICE_F_GIFT)
214 buf->flags |= PIPE_BUF_FLAG_GIFT;
216 pipe->nrbufs++;
217 page_nr++;
218 ret += buf->len;
220 if (pipe->inode)
221 do_wakeup = 1;
223 if (!--spd->nr_pages)
224 break;
225 if (pipe->nrbufs < pipe->buffers)
226 continue;
228 break;
231 if (spd->flags & SPLICE_F_NONBLOCK) {
232 if (!ret)
233 ret = -EAGAIN;
234 break;
237 if (signal_pending(current)) {
238 if (!ret)
239 ret = -ERESTARTSYS;
240 break;
243 if (do_wakeup) {
244 smp_mb();
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible_sync(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 do_wakeup = 0;
251 pipe->waiting_writers++;
252 pipe_wait(pipe);
253 pipe->waiting_writers--;
256 pipe_unlock(pipe);
258 if (do_wakeup)
259 wakeup_pipe_readers(pipe);
261 while (page_nr < spd_pages)
262 spd->spd_release(spd, page_nr++);
264 return ret;
267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
269 page_cache_release(spd->pages[i]);
273 * Check if we need to grow the arrays holding pages and partial page
274 * descriptions.
276 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
278 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
280 spd->nr_pages_max = buffers;
281 if (buffers <= PIPE_DEF_BUFFERS)
282 return 0;
284 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
285 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
287 if (spd->pages && spd->partial)
288 return 0;
290 kfree(spd->pages);
291 kfree(spd->partial);
292 return -ENOMEM;
295 void splice_shrink_spd(struct splice_pipe_desc *spd)
297 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
298 return;
300 kfree(spd->pages);
301 kfree(spd->partial);
304 static int
305 __generic_file_splice_read(struct file *in, loff_t *ppos,
306 struct pipe_inode_info *pipe, size_t len,
307 unsigned int flags)
309 struct address_space *mapping = in->f_mapping;
310 unsigned int loff, nr_pages, req_pages;
311 struct page *pages[PIPE_DEF_BUFFERS];
312 struct partial_page partial[PIPE_DEF_BUFFERS];
313 struct page *page;
314 pgoff_t index, end_index;
315 loff_t isize;
316 int error, page_nr;
317 struct splice_pipe_desc spd = {
318 .pages = pages,
319 .partial = partial,
320 .nr_pages_max = PIPE_DEF_BUFFERS,
321 .flags = flags,
322 .ops = &page_cache_pipe_buf_ops,
323 .spd_release = spd_release_page,
326 if (splice_grow_spd(pipe, &spd))
327 return -ENOMEM;
329 index = *ppos >> PAGE_CACHE_SHIFT;
330 loff = *ppos & ~PAGE_CACHE_MASK;
331 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
332 nr_pages = min(req_pages, spd.nr_pages_max);
335 * Lookup the (hopefully) full range of pages we need.
337 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
338 index += spd.nr_pages;
341 * If find_get_pages_contig() returned fewer pages than we needed,
342 * readahead/allocate the rest and fill in the holes.
344 if (spd.nr_pages < nr_pages)
345 page_cache_sync_readahead(mapping, &in->f_ra, in,
346 index, req_pages - spd.nr_pages);
348 error = 0;
349 while (spd.nr_pages < nr_pages) {
351 * Page could be there, find_get_pages_contig() breaks on
352 * the first hole.
354 page = find_get_page(mapping, index);
355 if (!page) {
357 * page didn't exist, allocate one.
359 page = page_cache_alloc_cold(mapping);
360 if (!page)
361 break;
363 error = add_to_page_cache_lru(page, mapping, index,
364 GFP_KERNEL);
365 if (unlikely(error)) {
366 page_cache_release(page);
367 if (error == -EEXIST)
368 continue;
369 break;
372 * add_to_page_cache() locks the page, unlock it
373 * to avoid convoluting the logic below even more.
375 unlock_page(page);
378 spd.pages[spd.nr_pages++] = page;
379 index++;
383 * Now loop over the map and see if we need to start IO on any
384 * pages, fill in the partial map, etc.
386 index = *ppos >> PAGE_CACHE_SHIFT;
387 nr_pages = spd.nr_pages;
388 spd.nr_pages = 0;
389 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
390 unsigned int this_len;
392 if (!len)
393 break;
396 * this_len is the max we'll use from this page
398 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
399 page = spd.pages[page_nr];
401 if (PageReadahead(page))
402 page_cache_async_readahead(mapping, &in->f_ra, in,
403 page, index, req_pages - page_nr);
406 * If the page isn't uptodate, we may need to start io on it
408 if (!PageUptodate(page)) {
409 lock_page(page);
412 * Page was truncated, or invalidated by the
413 * filesystem. Redo the find/create, but this time the
414 * page is kept locked, so there's no chance of another
415 * race with truncate/invalidate.
417 if (!page->mapping) {
418 unlock_page(page);
419 page = find_or_create_page(mapping, index,
420 mapping_gfp_mask(mapping));
422 if (!page) {
423 error = -ENOMEM;
424 break;
426 page_cache_release(spd.pages[page_nr]);
427 spd.pages[page_nr] = page;
430 * page was already under io and is now done, great
432 if (PageUptodate(page)) {
433 unlock_page(page);
434 goto fill_it;
438 * need to read in the page
440 error = mapping->a_ops->readpage(in, page);
441 if (unlikely(error)) {
443 * We really should re-lookup the page here,
444 * but it complicates things a lot. Instead
445 * lets just do what we already stored, and
446 * we'll get it the next time we are called.
448 if (error == AOP_TRUNCATED_PAGE)
449 error = 0;
451 break;
454 fill_it:
456 * i_size must be checked after PageUptodate.
458 isize = i_size_read(mapping->host);
459 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
460 if (unlikely(!isize || index > end_index))
461 break;
464 * if this is the last page, see if we need to shrink
465 * the length and stop
467 if (end_index == index) {
468 unsigned int plen;
471 * max good bytes in this page
473 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
474 if (plen <= loff)
475 break;
478 * force quit after adding this page
480 this_len = min(this_len, plen - loff);
481 len = this_len;
484 spd.partial[page_nr].offset = loff;
485 spd.partial[page_nr].len = this_len;
486 len -= this_len;
487 loff = 0;
488 spd.nr_pages++;
489 index++;
493 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 * we got, 'nr_pages' is how many pages are in the map.
496 while (page_nr < nr_pages)
497 page_cache_release(spd.pages[page_nr++]);
498 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
500 if (spd.nr_pages)
501 error = splice_to_pipe(pipe, &spd);
503 splice_shrink_spd(&spd);
504 return error;
508 * generic_file_splice_read - splice data from file to a pipe
509 * @in: file to splice from
510 * @ppos: position in @in
511 * @pipe: pipe to splice to
512 * @len: number of bytes to splice
513 * @flags: splice modifier flags
515 * Description:
516 * Will read pages from given file and fill them into a pipe. Can be
517 * used as long as the address_space operations for the source implements
518 * a readpage() hook.
521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 struct pipe_inode_info *pipe, size_t len,
523 unsigned int flags)
525 loff_t isize, left;
526 int ret;
528 isize = i_size_read(in->f_mapping->host);
529 if (unlikely(*ppos >= isize))
530 return 0;
532 left = isize - *ppos;
533 if (unlikely(left < len))
534 len = left;
536 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
537 if (ret > 0) {
538 *ppos += ret;
539 file_accessed(in);
542 return ret;
544 EXPORT_SYMBOL(generic_file_splice_read);
546 static const struct pipe_buf_operations default_pipe_buf_ops = {
547 .can_merge = 0,
548 .map = generic_pipe_buf_map,
549 .unmap = generic_pipe_buf_unmap,
550 .confirm = generic_pipe_buf_confirm,
551 .release = generic_pipe_buf_release,
552 .steal = generic_pipe_buf_steal,
553 .get = generic_pipe_buf_get,
556 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
557 unsigned long vlen, loff_t offset)
559 mm_segment_t old_fs;
560 loff_t pos = offset;
561 ssize_t res;
563 old_fs = get_fs();
564 set_fs(get_ds());
565 /* The cast to a user pointer is valid due to the set_fs() */
566 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
567 set_fs(old_fs);
569 return res;
572 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
573 loff_t pos)
575 mm_segment_t old_fs;
576 ssize_t res;
578 old_fs = get_fs();
579 set_fs(get_ds());
580 /* The cast to a user pointer is valid due to the set_fs() */
581 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
582 set_fs(old_fs);
584 return res;
586 EXPORT_SYMBOL(kernel_write);
588 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
589 struct pipe_inode_info *pipe, size_t len,
590 unsigned int flags)
592 unsigned int nr_pages;
593 unsigned int nr_freed;
594 size_t offset;
595 struct page *pages[PIPE_DEF_BUFFERS];
596 struct partial_page partial[PIPE_DEF_BUFFERS];
597 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
598 ssize_t res;
599 size_t this_len;
600 int error;
601 int i;
602 struct splice_pipe_desc spd = {
603 .pages = pages,
604 .partial = partial,
605 .nr_pages_max = PIPE_DEF_BUFFERS,
606 .flags = flags,
607 .ops = &default_pipe_buf_ops,
608 .spd_release = spd_release_page,
611 if (splice_grow_spd(pipe, &spd))
612 return -ENOMEM;
614 res = -ENOMEM;
615 vec = __vec;
616 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
617 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
618 if (!vec)
619 goto shrink_ret;
622 offset = *ppos & ~PAGE_CACHE_MASK;
623 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
625 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
626 struct page *page;
628 page = alloc_page(GFP_USER);
629 error = -ENOMEM;
630 if (!page)
631 goto err;
633 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
634 vec[i].iov_base = (void __user *) page_address(page);
635 vec[i].iov_len = this_len;
636 spd.pages[i] = page;
637 spd.nr_pages++;
638 len -= this_len;
639 offset = 0;
642 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
643 if (res < 0) {
644 error = res;
645 goto err;
648 error = 0;
649 if (!res)
650 goto err;
652 nr_freed = 0;
653 for (i = 0; i < spd.nr_pages; i++) {
654 this_len = min_t(size_t, vec[i].iov_len, res);
655 spd.partial[i].offset = 0;
656 spd.partial[i].len = this_len;
657 if (!this_len) {
658 __free_page(spd.pages[i]);
659 spd.pages[i] = NULL;
660 nr_freed++;
662 res -= this_len;
664 spd.nr_pages -= nr_freed;
666 res = splice_to_pipe(pipe, &spd);
667 if (res > 0)
668 *ppos += res;
670 shrink_ret:
671 if (vec != __vec)
672 kfree(vec);
673 splice_shrink_spd(&spd);
674 return res;
676 err:
677 for (i = 0; i < spd.nr_pages; i++)
678 __free_page(spd.pages[i]);
680 res = error;
681 goto shrink_ret;
683 EXPORT_SYMBOL(default_file_splice_read);
686 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
687 * using sendpage(). Return the number of bytes sent.
689 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
690 struct pipe_buffer *buf, struct splice_desc *sd)
692 struct file *file = sd->u.file;
693 loff_t pos = sd->pos;
694 int more;
696 if (!likely(file->f_op && file->f_op->sendpage))
697 return -EINVAL;
699 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
701 if (sd->len < sd->total_len && pipe->nrbufs > 1)
702 more |= MSG_SENDPAGE_NOTLAST;
704 return file->f_op->sendpage(file, buf->page, buf->offset,
705 sd->len, &pos, more);
709 * This is a little more tricky than the file -> pipe splicing. There are
710 * basically three cases:
712 * - Destination page already exists in the address space and there
713 * are users of it. For that case we have no other option that
714 * copying the data. Tough luck.
715 * - Destination page already exists in the address space, but there
716 * are no users of it. Make sure it's uptodate, then drop it. Fall
717 * through to last case.
718 * - Destination page does not exist, we can add the pipe page to
719 * the page cache and avoid the copy.
721 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
722 * sd->flags), we attempt to migrate pages from the pipe to the output
723 * file address space page cache. This is possible if no one else has
724 * the pipe page referenced outside of the pipe and page cache. If
725 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
726 * a new page in the output file page cache and fill/dirty that.
728 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
729 struct splice_desc *sd)
731 struct file *file = sd->u.file;
732 struct address_space *mapping = file->f_mapping;
733 unsigned int offset, this_len;
734 struct page *page;
735 void *fsdata;
736 int ret;
738 offset = sd->pos & ~PAGE_CACHE_MASK;
740 this_len = sd->len;
741 if (this_len + offset > PAGE_CACHE_SIZE)
742 this_len = PAGE_CACHE_SIZE - offset;
744 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
745 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
746 if (unlikely(ret))
747 goto out;
749 if (buf->page != page) {
750 char *src = buf->ops->map(pipe, buf, 1);
751 char *dst = kmap_atomic(page);
753 memcpy(dst + offset, src + buf->offset, this_len);
754 flush_dcache_page(page);
755 kunmap_atomic(dst);
756 buf->ops->unmap(pipe, buf, src);
758 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
759 page, fsdata);
760 out:
761 return ret;
763 EXPORT_SYMBOL(pipe_to_file);
765 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
767 smp_mb();
768 if (waitqueue_active(&pipe->wait))
769 wake_up_interruptible(&pipe->wait);
770 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
774 * splice_from_pipe_feed - feed available data from a pipe to a file
775 * @pipe: pipe to splice from
776 * @sd: information to @actor
777 * @actor: handler that splices the data
779 * Description:
780 * This function loops over the pipe and calls @actor to do the
781 * actual moving of a single struct pipe_buffer to the desired
782 * destination. It returns when there's no more buffers left in
783 * the pipe or if the requested number of bytes (@sd->total_len)
784 * have been copied. It returns a positive number (one) if the
785 * pipe needs to be filled with more data, zero if the required
786 * number of bytes have been copied and -errno on error.
788 * This, together with splice_from_pipe_{begin,end,next}, may be
789 * used to implement the functionality of __splice_from_pipe() when
790 * locking is required around copying the pipe buffers to the
791 * destination.
793 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
794 splice_actor *actor)
796 int ret;
798 while (pipe->nrbufs) {
799 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
800 const struct pipe_buf_operations *ops = buf->ops;
802 sd->len = buf->len;
803 if (sd->len > sd->total_len)
804 sd->len = sd->total_len;
806 ret = buf->ops->confirm(pipe, buf);
807 if (unlikely(ret)) {
808 if (ret == -ENODATA)
809 ret = 0;
810 return ret;
813 ret = actor(pipe, buf, sd);
814 if (ret <= 0)
815 return ret;
817 buf->offset += ret;
818 buf->len -= ret;
820 sd->num_spliced += ret;
821 sd->len -= ret;
822 sd->pos += ret;
823 sd->total_len -= ret;
825 if (!buf->len) {
826 buf->ops = NULL;
827 ops->release(pipe, buf);
828 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
829 pipe->nrbufs--;
830 if (pipe->inode)
831 sd->need_wakeup = true;
834 if (!sd->total_len)
835 return 0;
838 return 1;
840 EXPORT_SYMBOL(splice_from_pipe_feed);
843 * splice_from_pipe_next - wait for some data to splice from
844 * @pipe: pipe to splice from
845 * @sd: information about the splice operation
847 * Description:
848 * This function will wait for some data and return a positive
849 * value (one) if pipe buffers are available. It will return zero
850 * or -errno if no more data needs to be spliced.
852 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
854 while (!pipe->nrbufs) {
855 if (!pipe->writers)
856 return 0;
858 if (!pipe->waiting_writers && sd->num_spliced)
859 return 0;
861 if (sd->flags & SPLICE_F_NONBLOCK)
862 return -EAGAIN;
864 if (signal_pending(current))
865 return -ERESTARTSYS;
867 if (sd->need_wakeup) {
868 wakeup_pipe_writers(pipe);
869 sd->need_wakeup = false;
872 pipe_wait(pipe);
875 return 1;
877 EXPORT_SYMBOL(splice_from_pipe_next);
880 * splice_from_pipe_begin - start splicing from pipe
881 * @sd: information about the splice operation
883 * Description:
884 * This function should be called before a loop containing
885 * splice_from_pipe_next() and splice_from_pipe_feed() to
886 * initialize the necessary fields of @sd.
888 void splice_from_pipe_begin(struct splice_desc *sd)
890 sd->num_spliced = 0;
891 sd->need_wakeup = false;
893 EXPORT_SYMBOL(splice_from_pipe_begin);
896 * splice_from_pipe_end - finish splicing from pipe
897 * @pipe: pipe to splice from
898 * @sd: information about the splice operation
900 * Description:
901 * This function will wake up pipe writers if necessary. It should
902 * be called after a loop containing splice_from_pipe_next() and
903 * splice_from_pipe_feed().
905 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
907 if (sd->need_wakeup)
908 wakeup_pipe_writers(pipe);
910 EXPORT_SYMBOL(splice_from_pipe_end);
913 * __splice_from_pipe - splice data from a pipe to given actor
914 * @pipe: pipe to splice from
915 * @sd: information to @actor
916 * @actor: handler that splices the data
918 * Description:
919 * This function does little more than loop over the pipe and call
920 * @actor to do the actual moving of a single struct pipe_buffer to
921 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
922 * pipe_to_user.
925 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
926 splice_actor *actor)
928 int ret;
930 splice_from_pipe_begin(sd);
931 do {
932 ret = splice_from_pipe_next(pipe, sd);
933 if (ret > 0)
934 ret = splice_from_pipe_feed(pipe, sd, actor);
935 } while (ret > 0);
936 splice_from_pipe_end(pipe, sd);
938 return sd->num_spliced ? sd->num_spliced : ret;
940 EXPORT_SYMBOL(__splice_from_pipe);
943 * splice_from_pipe - splice data from a pipe to a file
944 * @pipe: pipe to splice from
945 * @out: file to splice to
946 * @ppos: position in @out
947 * @len: how many bytes to splice
948 * @flags: splice modifier flags
949 * @actor: handler that splices the data
951 * Description:
952 * See __splice_from_pipe. This function locks the pipe inode,
953 * otherwise it's identical to __splice_from_pipe().
956 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
957 loff_t *ppos, size_t len, unsigned int flags,
958 splice_actor *actor)
960 ssize_t ret;
961 struct splice_desc sd = {
962 .total_len = len,
963 .flags = flags,
964 .pos = *ppos,
965 .u.file = out,
968 pipe_lock(pipe);
969 ret = __splice_from_pipe(pipe, &sd, actor);
970 pipe_unlock(pipe);
972 return ret;
976 * generic_file_splice_write - splice data from a pipe to a file
977 * @pipe: pipe info
978 * @out: file to write to
979 * @ppos: position in @out
980 * @len: number of bytes to splice
981 * @flags: splice modifier flags
983 * Description:
984 * Will either move or copy pages (determined by @flags options) from
985 * the given pipe inode to the given file.
988 ssize_t
989 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
990 loff_t *ppos, size_t len, unsigned int flags)
992 struct address_space *mapping = out->f_mapping;
993 struct inode *inode = mapping->host;
994 struct splice_desc sd = {
995 .total_len = len,
996 .flags = flags,
997 .pos = *ppos,
998 .u.file = out,
1000 ssize_t ret;
1002 sb_start_write(inode->i_sb);
1004 pipe_lock(pipe);
1006 splice_from_pipe_begin(&sd);
1007 do {
1008 ret = splice_from_pipe_next(pipe, &sd);
1009 if (ret <= 0)
1010 break;
1012 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1013 ret = file_remove_suid(out);
1014 if (!ret) {
1015 ret = file_update_time(out);
1016 if (!ret)
1017 ret = splice_from_pipe_feed(pipe, &sd,
1018 pipe_to_file);
1020 mutex_unlock(&inode->i_mutex);
1021 } while (ret > 0);
1022 splice_from_pipe_end(pipe, &sd);
1024 pipe_unlock(pipe);
1026 if (sd.num_spliced)
1027 ret = sd.num_spliced;
1029 if (ret > 0) {
1030 int err;
1032 err = generic_write_sync(out, *ppos, ret);
1033 if (err)
1034 ret = err;
1035 else
1036 *ppos += ret;
1037 balance_dirty_pages_ratelimited(mapping);
1039 sb_end_write(inode->i_sb);
1041 return ret;
1044 EXPORT_SYMBOL(generic_file_splice_write);
1046 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1047 struct splice_desc *sd)
1049 int ret;
1050 void *data;
1052 data = buf->ops->map(pipe, buf, 0);
1053 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1054 buf->ops->unmap(pipe, buf, data);
1056 return ret;
1059 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1060 struct file *out, loff_t *ppos,
1061 size_t len, unsigned int flags)
1063 ssize_t ret;
1065 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1066 if (ret > 0)
1067 *ppos += ret;
1069 return ret;
1073 * generic_splice_sendpage - splice data from a pipe to a socket
1074 * @pipe: pipe to splice from
1075 * @out: socket to write to
1076 * @ppos: position in @out
1077 * @len: number of bytes to splice
1078 * @flags: splice modifier flags
1080 * Description:
1081 * Will send @len bytes from the pipe to a network socket. No data copying
1082 * is involved.
1085 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1086 loff_t *ppos, size_t len, unsigned int flags)
1088 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1091 EXPORT_SYMBOL(generic_splice_sendpage);
1094 * Attempt to initiate a splice from pipe to file.
1096 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1097 loff_t *ppos, size_t len, unsigned int flags)
1099 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1100 loff_t *, size_t, unsigned int);
1101 int ret;
1103 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1104 return -EBADF;
1106 if (unlikely(out->f_flags & O_APPEND))
1107 return -EINVAL;
1109 ret = rw_verify_area(WRITE, out, ppos, len);
1110 if (unlikely(ret < 0))
1111 return ret;
1113 if (out->f_op && out->f_op->splice_write)
1114 splice_write = out->f_op->splice_write;
1115 else
1116 splice_write = default_file_splice_write;
1118 return splice_write(pipe, out, ppos, len, flags);
1122 * Attempt to initiate a splice from a file to a pipe.
1124 static long do_splice_to(struct file *in, loff_t *ppos,
1125 struct pipe_inode_info *pipe, size_t len,
1126 unsigned int flags)
1128 ssize_t (*splice_read)(struct file *, loff_t *,
1129 struct pipe_inode_info *, size_t, unsigned int);
1130 int ret;
1132 if (unlikely(!(in->f_mode & FMODE_READ)))
1133 return -EBADF;
1135 ret = rw_verify_area(READ, in, ppos, len);
1136 if (unlikely(ret < 0))
1137 return ret;
1139 if (in->f_op && in->f_op->splice_read)
1140 splice_read = in->f_op->splice_read;
1141 else
1142 splice_read = default_file_splice_read;
1144 return splice_read(in, ppos, pipe, len, flags);
1148 * splice_direct_to_actor - splices data directly between two non-pipes
1149 * @in: file to splice from
1150 * @sd: actor information on where to splice to
1151 * @actor: handles the data splicing
1153 * Description:
1154 * This is a special case helper to splice directly between two
1155 * points, without requiring an explicit pipe. Internally an allocated
1156 * pipe is cached in the process, and reused during the lifetime of
1157 * that process.
1160 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1161 splice_direct_actor *actor)
1163 struct pipe_inode_info *pipe;
1164 long ret, bytes;
1165 umode_t i_mode;
1166 size_t len;
1167 int i, flags;
1170 * We require the input being a regular file, as we don't want to
1171 * randomly drop data for eg socket -> socket splicing. Use the
1172 * piped splicing for that!
1174 i_mode = file_inode(in)->i_mode;
1175 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1176 return -EINVAL;
1179 * neither in nor out is a pipe, setup an internal pipe attached to
1180 * 'out' and transfer the wanted data from 'in' to 'out' through that
1182 pipe = current->splice_pipe;
1183 if (unlikely(!pipe)) {
1184 pipe = alloc_pipe_info(NULL);
1185 if (!pipe)
1186 return -ENOMEM;
1189 * We don't have an immediate reader, but we'll read the stuff
1190 * out of the pipe right after the splice_to_pipe(). So set
1191 * PIPE_READERS appropriately.
1193 pipe->readers = 1;
1195 current->splice_pipe = pipe;
1199 * Do the splice.
1201 ret = 0;
1202 bytes = 0;
1203 len = sd->total_len;
1204 flags = sd->flags;
1207 * Don't block on output, we have to drain the direct pipe.
1209 sd->flags &= ~SPLICE_F_NONBLOCK;
1211 while (len) {
1212 size_t read_len;
1213 loff_t pos = sd->pos, prev_pos = pos;
1215 ret = do_splice_to(in, &pos, pipe, len, flags);
1216 if (unlikely(ret <= 0))
1217 goto out_release;
1219 read_len = ret;
1220 sd->total_len = read_len;
1223 * NOTE: nonblocking mode only applies to the input. We
1224 * must not do the output in nonblocking mode as then we
1225 * could get stuck data in the internal pipe:
1227 ret = actor(pipe, sd);
1228 if (unlikely(ret <= 0)) {
1229 sd->pos = prev_pos;
1230 goto out_release;
1233 bytes += ret;
1234 len -= ret;
1235 sd->pos = pos;
1237 if (ret < read_len) {
1238 sd->pos = prev_pos + ret;
1239 goto out_release;
1243 done:
1244 pipe->nrbufs = pipe->curbuf = 0;
1245 file_accessed(in);
1246 return bytes;
1248 out_release:
1250 * If we did an incomplete transfer we must release
1251 * the pipe buffers in question:
1253 for (i = 0; i < pipe->buffers; i++) {
1254 struct pipe_buffer *buf = pipe->bufs + i;
1256 if (buf->ops) {
1257 buf->ops->release(pipe, buf);
1258 buf->ops = NULL;
1262 if (!bytes)
1263 bytes = ret;
1265 goto done;
1267 EXPORT_SYMBOL(splice_direct_to_actor);
1269 static int direct_splice_actor(struct pipe_inode_info *pipe,
1270 struct splice_desc *sd)
1272 struct file *file = sd->u.file;
1274 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1275 sd->flags);
1279 * do_splice_direct - splices data directly between two files
1280 * @in: file to splice from
1281 * @ppos: input file offset
1282 * @out: file to splice to
1283 * @len: number of bytes to splice
1284 * @flags: splice modifier flags
1286 * Description:
1287 * For use by do_sendfile(). splice can easily emulate sendfile, but
1288 * doing it in the application would incur an extra system call
1289 * (splice in + splice out, as compared to just sendfile()). So this helper
1290 * can splice directly through a process-private pipe.
1293 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1294 size_t len, unsigned int flags)
1296 struct splice_desc sd = {
1297 .len = len,
1298 .total_len = len,
1299 .flags = flags,
1300 .pos = *ppos,
1301 .u.file = out,
1303 long ret;
1305 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1306 if (ret > 0)
1307 *ppos = sd.pos;
1309 return ret;
1312 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1313 struct pipe_inode_info *opipe,
1314 size_t len, unsigned int flags);
1317 * Determine where to splice to/from.
1319 static long do_splice(struct file *in, loff_t __user *off_in,
1320 struct file *out, loff_t __user *off_out,
1321 size_t len, unsigned int flags)
1323 struct pipe_inode_info *ipipe;
1324 struct pipe_inode_info *opipe;
1325 loff_t offset, *off;
1326 long ret;
1328 ipipe = get_pipe_info(in);
1329 opipe = get_pipe_info(out);
1331 if (ipipe && opipe) {
1332 if (off_in || off_out)
1333 return -ESPIPE;
1335 if (!(in->f_mode & FMODE_READ))
1336 return -EBADF;
1338 if (!(out->f_mode & FMODE_WRITE))
1339 return -EBADF;
1341 /* Splicing to self would be fun, but... */
1342 if (ipipe == opipe)
1343 return -EINVAL;
1345 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1348 if (ipipe) {
1349 if (off_in)
1350 return -ESPIPE;
1351 if (off_out) {
1352 if (!(out->f_mode & FMODE_PWRITE))
1353 return -EINVAL;
1354 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1355 return -EFAULT;
1356 off = &offset;
1357 } else
1358 off = &out->f_pos;
1360 ret = do_splice_from(ipipe, out, off, len, flags);
1362 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1363 ret = -EFAULT;
1365 return ret;
1368 if (opipe) {
1369 if (off_out)
1370 return -ESPIPE;
1371 if (off_in) {
1372 if (!(in->f_mode & FMODE_PREAD))
1373 return -EINVAL;
1374 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1375 return -EFAULT;
1376 off = &offset;
1377 } else
1378 off = &in->f_pos;
1380 ret = do_splice_to(in, off, opipe, len, flags);
1382 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1383 ret = -EFAULT;
1385 return ret;
1388 return -EINVAL;
1392 * Map an iov into an array of pages and offset/length tupples. With the
1393 * partial_page structure, we can map several non-contiguous ranges into
1394 * our ones pages[] map instead of splitting that operation into pieces.
1395 * Could easily be exported as a generic helper for other users, in which
1396 * case one would probably want to add a 'max_nr_pages' parameter as well.
1398 static int get_iovec_page_array(const struct iovec __user *iov,
1399 unsigned int nr_vecs, struct page **pages,
1400 struct partial_page *partial, bool aligned,
1401 unsigned int pipe_buffers)
1403 int buffers = 0, error = 0;
1405 while (nr_vecs) {
1406 unsigned long off, npages;
1407 struct iovec entry;
1408 void __user *base;
1409 size_t len;
1410 int i;
1412 error = -EFAULT;
1413 if (copy_from_user(&entry, iov, sizeof(entry)))
1414 break;
1416 base = entry.iov_base;
1417 len = entry.iov_len;
1420 * Sanity check this iovec. 0 read succeeds.
1422 error = 0;
1423 if (unlikely(!len))
1424 break;
1425 error = -EFAULT;
1426 if (!access_ok(VERIFY_READ, base, len))
1427 break;
1430 * Get this base offset and number of pages, then map
1431 * in the user pages.
1433 off = (unsigned long) base & ~PAGE_MASK;
1436 * If asked for alignment, the offset must be zero and the
1437 * length a multiple of the PAGE_SIZE.
1439 error = -EINVAL;
1440 if (aligned && (off || len & ~PAGE_MASK))
1441 break;
1443 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1444 if (npages > pipe_buffers - buffers)
1445 npages = pipe_buffers - buffers;
1447 error = get_user_pages_fast((unsigned long)base, npages,
1448 0, &pages[buffers]);
1450 if (unlikely(error <= 0))
1451 break;
1454 * Fill this contiguous range into the partial page map.
1456 for (i = 0; i < error; i++) {
1457 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1459 partial[buffers].offset = off;
1460 partial[buffers].len = plen;
1462 off = 0;
1463 len -= plen;
1464 buffers++;
1468 * We didn't complete this iov, stop here since it probably
1469 * means we have to move some of this into a pipe to
1470 * be able to continue.
1472 if (len)
1473 break;
1476 * Don't continue if we mapped fewer pages than we asked for,
1477 * or if we mapped the max number of pages that we have
1478 * room for.
1480 if (error < npages || buffers == pipe_buffers)
1481 break;
1483 nr_vecs--;
1484 iov++;
1487 if (buffers)
1488 return buffers;
1490 return error;
1493 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1494 struct splice_desc *sd)
1496 char *src;
1497 int ret;
1500 * See if we can use the atomic maps, by prefaulting in the
1501 * pages and doing an atomic copy
1503 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1504 src = buf->ops->map(pipe, buf, 1);
1505 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1506 sd->len);
1507 buf->ops->unmap(pipe, buf, src);
1508 if (!ret) {
1509 ret = sd->len;
1510 goto out;
1515 * No dice, use slow non-atomic map and copy
1517 src = buf->ops->map(pipe, buf, 0);
1519 ret = sd->len;
1520 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1521 ret = -EFAULT;
1523 buf->ops->unmap(pipe, buf, src);
1524 out:
1525 if (ret > 0)
1526 sd->u.userptr += ret;
1527 return ret;
1531 * For lack of a better implementation, implement vmsplice() to userspace
1532 * as a simple copy of the pipes pages to the user iov.
1534 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1535 unsigned long nr_segs, unsigned int flags)
1537 struct pipe_inode_info *pipe;
1538 struct splice_desc sd;
1539 ssize_t size;
1540 int error;
1541 long ret;
1543 pipe = get_pipe_info(file);
1544 if (!pipe)
1545 return -EBADF;
1547 pipe_lock(pipe);
1549 error = ret = 0;
1550 while (nr_segs) {
1551 void __user *base;
1552 size_t len;
1555 * Get user address base and length for this iovec.
1557 error = get_user(base, &iov->iov_base);
1558 if (unlikely(error))
1559 break;
1560 error = get_user(len, &iov->iov_len);
1561 if (unlikely(error))
1562 break;
1565 * Sanity check this iovec. 0 read succeeds.
1567 if (unlikely(!len))
1568 break;
1569 if (unlikely(!base)) {
1570 error = -EFAULT;
1571 break;
1574 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1575 error = -EFAULT;
1576 break;
1579 sd.len = 0;
1580 sd.total_len = len;
1581 sd.flags = flags;
1582 sd.u.userptr = base;
1583 sd.pos = 0;
1585 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1586 if (size < 0) {
1587 if (!ret)
1588 ret = size;
1590 break;
1593 ret += size;
1595 if (size < len)
1596 break;
1598 nr_segs--;
1599 iov++;
1602 pipe_unlock(pipe);
1604 if (!ret)
1605 ret = error;
1607 return ret;
1611 * vmsplice splices a user address range into a pipe. It can be thought of
1612 * as splice-from-memory, where the regular splice is splice-from-file (or
1613 * to file). In both cases the output is a pipe, naturally.
1615 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1616 unsigned long nr_segs, unsigned int flags)
1618 struct pipe_inode_info *pipe;
1619 struct page *pages[PIPE_DEF_BUFFERS];
1620 struct partial_page partial[PIPE_DEF_BUFFERS];
1621 struct splice_pipe_desc spd = {
1622 .pages = pages,
1623 .partial = partial,
1624 .nr_pages_max = PIPE_DEF_BUFFERS,
1625 .flags = flags,
1626 .ops = &user_page_pipe_buf_ops,
1627 .spd_release = spd_release_page,
1629 long ret;
1631 pipe = get_pipe_info(file);
1632 if (!pipe)
1633 return -EBADF;
1635 if (splice_grow_spd(pipe, &spd))
1636 return -ENOMEM;
1638 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1639 spd.partial, false,
1640 spd.nr_pages_max);
1641 if (spd.nr_pages <= 0)
1642 ret = spd.nr_pages;
1643 else
1644 ret = splice_to_pipe(pipe, &spd);
1646 splice_shrink_spd(&spd);
1647 return ret;
1651 * Note that vmsplice only really supports true splicing _from_ user memory
1652 * to a pipe, not the other way around. Splicing from user memory is a simple
1653 * operation that can be supported without any funky alignment restrictions
1654 * or nasty vm tricks. We simply map in the user memory and fill them into
1655 * a pipe. The reverse isn't quite as easy, though. There are two possible
1656 * solutions for that:
1658 * - memcpy() the data internally, at which point we might as well just
1659 * do a regular read() on the buffer anyway.
1660 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1661 * has restriction limitations on both ends of the pipe).
1663 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1666 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1667 unsigned long, nr_segs, unsigned int, flags)
1669 struct fd f;
1670 long error;
1672 if (unlikely(nr_segs > UIO_MAXIOV))
1673 return -EINVAL;
1674 else if (unlikely(!nr_segs))
1675 return 0;
1677 error = -EBADF;
1678 f = fdget(fd);
1679 if (f.file) {
1680 if (f.file->f_mode & FMODE_WRITE)
1681 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1682 else if (f.file->f_mode & FMODE_READ)
1683 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1685 fdput(f);
1688 return error;
1691 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1692 int, fd_out, loff_t __user *, off_out,
1693 size_t, len, unsigned int, flags)
1695 struct fd in, out;
1696 long error;
1698 if (unlikely(!len))
1699 return 0;
1701 error = -EBADF;
1702 in = fdget(fd_in);
1703 if (in.file) {
1704 if (in.file->f_mode & FMODE_READ) {
1705 out = fdget(fd_out);
1706 if (out.file) {
1707 if (out.file->f_mode & FMODE_WRITE)
1708 error = do_splice(in.file, off_in,
1709 out.file, off_out,
1710 len, flags);
1711 fdput(out);
1714 fdput(in);
1716 return error;
1720 * Make sure there's data to read. Wait for input if we can, otherwise
1721 * return an appropriate error.
1723 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1725 int ret;
1728 * Check ->nrbufs without the inode lock first. This function
1729 * is speculative anyways, so missing one is ok.
1731 if (pipe->nrbufs)
1732 return 0;
1734 ret = 0;
1735 pipe_lock(pipe);
1737 while (!pipe->nrbufs) {
1738 if (signal_pending(current)) {
1739 ret = -ERESTARTSYS;
1740 break;
1742 if (!pipe->writers)
1743 break;
1744 if (!pipe->waiting_writers) {
1745 if (flags & SPLICE_F_NONBLOCK) {
1746 ret = -EAGAIN;
1747 break;
1750 pipe_wait(pipe);
1753 pipe_unlock(pipe);
1754 return ret;
1758 * Make sure there's writeable room. Wait for room if we can, otherwise
1759 * return an appropriate error.
1761 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1763 int ret;
1766 * Check ->nrbufs without the inode lock first. This function
1767 * is speculative anyways, so missing one is ok.
1769 if (pipe->nrbufs < pipe->buffers)
1770 return 0;
1772 ret = 0;
1773 pipe_lock(pipe);
1775 while (pipe->nrbufs >= pipe->buffers) {
1776 if (!pipe->readers) {
1777 send_sig(SIGPIPE, current, 0);
1778 ret = -EPIPE;
1779 break;
1781 if (flags & SPLICE_F_NONBLOCK) {
1782 ret = -EAGAIN;
1783 break;
1785 if (signal_pending(current)) {
1786 ret = -ERESTARTSYS;
1787 break;
1789 pipe->waiting_writers++;
1790 pipe_wait(pipe);
1791 pipe->waiting_writers--;
1794 pipe_unlock(pipe);
1795 return ret;
1799 * Splice contents of ipipe to opipe.
1801 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1802 struct pipe_inode_info *opipe,
1803 size_t len, unsigned int flags)
1805 struct pipe_buffer *ibuf, *obuf;
1806 int ret = 0, nbuf;
1807 bool input_wakeup = false;
1810 retry:
1811 ret = ipipe_prep(ipipe, flags);
1812 if (ret)
1813 return ret;
1815 ret = opipe_prep(opipe, flags);
1816 if (ret)
1817 return ret;
1820 * Potential ABBA deadlock, work around it by ordering lock
1821 * grabbing by pipe info address. Otherwise two different processes
1822 * could deadlock (one doing tee from A -> B, the other from B -> A).
1824 pipe_double_lock(ipipe, opipe);
1826 do {
1827 if (!opipe->readers) {
1828 send_sig(SIGPIPE, current, 0);
1829 if (!ret)
1830 ret = -EPIPE;
1831 break;
1834 if (!ipipe->nrbufs && !ipipe->writers)
1835 break;
1838 * Cannot make any progress, because either the input
1839 * pipe is empty or the output pipe is full.
1841 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1842 /* Already processed some buffers, break */
1843 if (ret)
1844 break;
1846 if (flags & SPLICE_F_NONBLOCK) {
1847 ret = -EAGAIN;
1848 break;
1852 * We raced with another reader/writer and haven't
1853 * managed to process any buffers. A zero return
1854 * value means EOF, so retry instead.
1856 pipe_unlock(ipipe);
1857 pipe_unlock(opipe);
1858 goto retry;
1861 ibuf = ipipe->bufs + ipipe->curbuf;
1862 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1863 obuf = opipe->bufs + nbuf;
1865 if (len >= ibuf->len) {
1867 * Simply move the whole buffer from ipipe to opipe
1869 *obuf = *ibuf;
1870 ibuf->ops = NULL;
1871 opipe->nrbufs++;
1872 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1873 ipipe->nrbufs--;
1874 input_wakeup = true;
1875 } else {
1877 * Get a reference to this pipe buffer,
1878 * so we can copy the contents over.
1880 ibuf->ops->get(ipipe, ibuf);
1881 *obuf = *ibuf;
1884 * Don't inherit the gift flag, we need to
1885 * prevent multiple steals of this page.
1887 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1889 obuf->len = len;
1890 opipe->nrbufs++;
1891 ibuf->offset += obuf->len;
1892 ibuf->len -= obuf->len;
1894 ret += obuf->len;
1895 len -= obuf->len;
1896 } while (len);
1898 pipe_unlock(ipipe);
1899 pipe_unlock(opipe);
1902 * If we put data in the output pipe, wakeup any potential readers.
1904 if (ret > 0)
1905 wakeup_pipe_readers(opipe);
1907 if (input_wakeup)
1908 wakeup_pipe_writers(ipipe);
1910 return ret;
1914 * Link contents of ipipe to opipe.
1916 static int link_pipe(struct pipe_inode_info *ipipe,
1917 struct pipe_inode_info *opipe,
1918 size_t len, unsigned int flags)
1920 struct pipe_buffer *ibuf, *obuf;
1921 int ret = 0, i = 0, nbuf;
1924 * Potential ABBA deadlock, work around it by ordering lock
1925 * grabbing by pipe info address. Otherwise two different processes
1926 * could deadlock (one doing tee from A -> B, the other from B -> A).
1928 pipe_double_lock(ipipe, opipe);
1930 do {
1931 if (!opipe->readers) {
1932 send_sig(SIGPIPE, current, 0);
1933 if (!ret)
1934 ret = -EPIPE;
1935 break;
1939 * If we have iterated all input buffers or ran out of
1940 * output room, break.
1942 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1943 break;
1945 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1946 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1949 * Get a reference to this pipe buffer,
1950 * so we can copy the contents over.
1952 ibuf->ops->get(ipipe, ibuf);
1954 obuf = opipe->bufs + nbuf;
1955 *obuf = *ibuf;
1958 * Don't inherit the gift flag, we need to
1959 * prevent multiple steals of this page.
1961 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1963 if (obuf->len > len)
1964 obuf->len = len;
1966 opipe->nrbufs++;
1967 ret += obuf->len;
1968 len -= obuf->len;
1969 i++;
1970 } while (len);
1973 * return EAGAIN if we have the potential of some data in the
1974 * future, otherwise just return 0
1976 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1977 ret = -EAGAIN;
1979 pipe_unlock(ipipe);
1980 pipe_unlock(opipe);
1983 * If we put data in the output pipe, wakeup any potential readers.
1985 if (ret > 0)
1986 wakeup_pipe_readers(opipe);
1988 return ret;
1992 * This is a tee(1) implementation that works on pipes. It doesn't copy
1993 * any data, it simply references the 'in' pages on the 'out' pipe.
1994 * The 'flags' used are the SPLICE_F_* variants, currently the only
1995 * applicable one is SPLICE_F_NONBLOCK.
1997 static long do_tee(struct file *in, struct file *out, size_t len,
1998 unsigned int flags)
2000 struct pipe_inode_info *ipipe = get_pipe_info(in);
2001 struct pipe_inode_info *opipe = get_pipe_info(out);
2002 int ret = -EINVAL;
2005 * Duplicate the contents of ipipe to opipe without actually
2006 * copying the data.
2008 if (ipipe && opipe && ipipe != opipe) {
2010 * Keep going, unless we encounter an error. The ipipe/opipe
2011 * ordering doesn't really matter.
2013 ret = ipipe_prep(ipipe, flags);
2014 if (!ret) {
2015 ret = opipe_prep(opipe, flags);
2016 if (!ret)
2017 ret = link_pipe(ipipe, opipe, len, flags);
2021 return ret;
2024 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2026 struct fd in;
2027 int error;
2029 if (unlikely(!len))
2030 return 0;
2032 error = -EBADF;
2033 in = fdget(fdin);
2034 if (in.file) {
2035 if (in.file->f_mode & FMODE_READ) {
2036 struct fd out = fdget(fdout);
2037 if (out.file) {
2038 if (out.file->f_mode & FMODE_WRITE)
2039 error = do_tee(in.file, out.file,
2040 len, flags);
2041 fdput(out);
2044 fdput(in);
2047 return error;